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sur-Marne, France.

ABSTRACT

We investigate the numerical modeling and simulation of maadcal effective
properties of disordered foams in 3d. We consider the elastihe thermal conductiv-
ity as well as the permeability. We present a meshing praeeidu the microstructure
of randomly disordered wet foams. The material behaviorasl@ed by constitutive
equations and a boundary value problem is set on the miaodste. We present and
implement the homogenization approach for the deternanaii the effective mechan-
ical properties. The local problems are discretized andesbWith the finite element
method. We investigate the monodisperse and disorderdjacation of a wet foam
by varying the volume fraction.

INTRODUCTION

The structure of foam materials involves several lengtlesdaom macroscopic
scale to macroscopic scale. In the context, the modelingoaphp is an homogeniza-
tion, or multi-scale approach [Allaire, 1989], consistinghree main stages: the rep-
resentation, the localization and the homogenizationhiénfirst step, the modeling
of the microstructure is established through a represeataection of the material
microstructure, namely a Representative Volume ElemenEjRWYhe formal defini-
tion of the RVE requires a condition of separation of scatego-macro) assumed
all along this work. The wet foam structure is modeled as dicoaus network of
convex polyhedral surfaces and the meshing procedure edl@s a Voronoi tessel-
lation, which in turn is based on random packings algoritfiorduato et al., 2001].
The Voronoi tessellation then requires to evolve toward yspal structure of foam
[Kraynik et al., 2003, Kraynik and Reinelt, 1999], this preses called theelaxation
In the localization stage, at the microscopic scale, thallpmperties on the RVE are
derived as the solutions of a boundary value problem set@RWE. We consider the
deformation of the solid Plateau border, modeled by anieldstology. We also deter-
mine the thermal conductivity, the heat transfer is modélethe Fourier’s law on the
Plateau border. Morevover, we study the fluid flow within tleequs part. To model
the microscopic flow within the pores, we consider the Staasations for a viscous
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fluid. These boundary value problems are discretized anaddalith the Finite Ele-
ment Method. Finally, the macroscopic mechanical propsréire predicted by mean
of averaging the local fields within the RVE.

NUMERICAL MODELING OF THE FOAM STRUCTURE

The structure of a dry foam is modeled as a set of convex pdhghpacked
to fill space. We adopt the Voronoi tessellation algorithngemerate a partition of
a sphere into convex polyhedral cells. Then, the surfacke#bronoi tessellation is
drived to evolve toward physically relevant geometry modgthe foam microstructure
[Kraynik et al., 2003, Kraynik and Reinelt, 1999]. This stagecalled the relaxation
[Kraynik et al., 2003, Kraynik and Reinelt, 1999] and the aitjon provides a stable
structure of foam. The surface is evolved toward some logaimum in surface en-
ergy by iterating Conjugate Gradient descent method of opéiion, with the Surface
Evolver software developed by Ken Brakke (1992) [Brakke, 189®lan et al., 1995].
Besides, the cells are constrained to have equal volumesirtbdeling a monodisperse
structure of disordered foam. Furthermore, the mesh idaegad, the facets of the tri-
angulation are shaped as equilateral as possible and edek igemoved to the average
position of its neighboring vertices. We iterate this altfon until the number of non-
minimal features (in Plateau’s law [Weaire and Hutzler, p@ends ta). A wet foam
structure can then be inferred starting from this relaxedcsire. The extension to a
wet foam structure with arbitrary volume fraction is acl@dvhrough the addition of
the Plateau border. Subsequently the Plateau border'sneols gradually increased
and adjusted. The volume meshing procedure is achievedGwitsh [GMSH]. In the
framework of the homogenization approach, the generatedbstructure models the
Representative Volume Element (RVE).

The figure 1 below depicted the mesh of a disordered micrasire with N =
128 cells and a volume fraction = 10%. We represent both the Plateau border (left)
and the porous part (right).

STATEMENT OF THE LOCAL PROBLEMS
The elasticity problem

The elasticity model is adopted to describe the small dedtion of the solid
Plateau border. The domai, c R? standing for the Plateau border is filled by a
solid material. The rheology is defined by the linear Hookag and the constitutive
equation reads:

o =2ue(u) + Mtracee(u)  in €, 1)

whereo denotes the total stress tensothe linearized strain tensox,andy stand for
the Lam coefficients. We consider the equilibrium state efrtiaterial, the momentum
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Figure 1. Meshed microstructure of a disordered foam withN = 128 cells and a
volume fraction ¢ = 10%. Plateau border (left) and porous part (right).

balance law with no body force reads
dive =0 in¢,. (2)

The boundary” is divided into disjoint part§’ = I',, U I', denoting the external sur-
face and the internal surface respectively, corresponttingge boundary where the
displacement: is imposed and to the boundary where the tractiovi is imposed (no-
stress). In order to implement the homogenization appragelapply an homogeneous
loading E' corresponding to uniform boundary conditions [Dormieurlet2002]. To
achieve this we enforce

u=F-x onl,, 3)
oN =0 onl,, (4)

whereN stands for the outward unit normal ®rand E is an order tensor.

The thermal conductivity problem

The heat transfer model on the solid Plateau border is eraglay order to
prescribe the thermal conductivity. The behavior is defingthe linear Fourier’s law
and the constitutive equation reads

q(x) = —rkVT(x) inQy, (5)

whereT'(z) € R denotes the temperature within the materidly) € R? is the heat
flux andk is the conductivity coefficient. We consider the thermalildogium state of



“Template” — 2017/3/15 — 8:40

the material, the thermal balance law is expressed as
divg(x) =0 in €. (6)

The boundaryl” is divided into disjoint partd” = I'y U I'y. In order to implement
the homogenization approach, we apply an homogeneous\padcorresponding to
uniform boundary conditions. To achieve this, we enforce

T=A-z only, (7)
qg-N=0 onT,, (8)

where A is an orderl tensor. The solution represents the local figrand the local
temperaturd” at the microscopic scale, induced by the macroscopic Igadin

The Stokes problem

At the microscopic scale, the flow of a viscous fluid is goverbg the Stokes
equations [Allaire, 1989]. The domaid, C R? standing for the porous part saturated
by an incompressible Newtonian fluid. The constitutive éiquas written

o=2uD(u)—p inQy, (9)

whereu € R? denotes the velocityy € R is the pressure field and > 0 is the
viscosity. We consider the equilibrium state of the matennal the fluid is assumed to
be incompressible.

—pdivD(u)+Vp=0 inQy,
divu =0 in Qf

The boundary of the domain is disjoint info= I'y; UT"., wherel'; stands for the solid-
fluid interface and’, is the external surface. We assume a no-slip boundary condit
the solid-fluid interface and the homogenization approaéimplemented by applying
an homogeneous loadiagon the RVE.

u=20 onTl,
oN =—(a-x)-N onl..

NUMERICAL RESULTS

The problems, and are written in a variational form and @iszed using the
Galerkin method together with the finite element method. f@selution is achieved
throught the FreeFem++ langage and the numerical methoetisewthe conjugate
gradient or the GMRES solver for larger systems such adthe512 cells mesh.
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Figure 2. Elastic modulus i, normalized with © = 0] = 26 and LamA®©
b
H H H 2 1000 H H
coefficent normalized with K’ = A + 3 = <75°, with respect to the volume fraction

¢. Left: no refinement (1) and right: 2 refinements ()

Elasticity

We have determined the macroscopic properties by aver#ggngiress field on
the whole domain. As the structure exhibits isotropy, theedite macroscopic elastic
tensorC,, is reduced ta3 coefficients)\, + 2uy, A, anduy, where), andu, are the
discretized Lam coefficients. In the figure 2 below, we repnés;, and\;, with respect
to the volume fractio. We have compared the result for different number of c¥lls
on both ary (no refinement) mesh andra (2 refinements) mesh.

The macroscopic properties linearly increase with themadraction. The size
of the RVE affects the results mainly for the elastic moduka the Lam coefficient,
on ther, mesh, the converged homogenized solution is reached etlenvwi 32 cells,
whereas for the elastic modulus, the converged homogesaedion is not reached
even withNV = 512 cells. In other words, with two refinements, the size of theeRY
large enough to obtain the converged homogenized solytidm addition, by studying
the periodic case of a Kelvin structure, we have inferred d@ result withV = 512
are abouR0% different from the converged homogenized solution.
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Figure 3. Thermal conductivity x; normalized with the conductivity coefficient
x = 100. Left: no refinement (r,) and right: 2 refinements ().

Thermal conductivity

We have determined the macroscopic thermal conductivitausraging the
flux field on the whole domain. As the structure exhibits ispy; the discrete macro-
scopic thermal conductivity tensi;, is reduced tos;, , wherex, is the discretized
conductivity. In the figure 3 below, we representwith respect to the volume fraction
on both thery, mesh and the, mesh.

The macroscopic thermal conductivity linearly increaséh the volume frac-
tion. The size of the RVE slightly influences the results simee obtain almost su-
perimposed results with respect to the number of 8gland the results are enhanced
with two refinements (our approximation provides an uppemgoof the homogenized
solution). Meaning that the numerical error of approximatdominates the error of
the homogenization approach. In addition, by studying thogic case of a Kelvin
structure, we have inferred that our result with= 512 are about% different from
the converged homogenized solution.

Permeability

The resolution is achieved through a MPI (Message Passtegdioe) formu-
lation in FreeFem++ langage with a MPI resolutionrgn= 4 processors. The numer-
ical method adopted to solve the linear system is the Mumpdltjivontal Massively
Parallel Solver) which is a sparse direct solver. We deteerthie macroscopic perme-
ability by averaging the velocity field on the whole domairs #e structure exhibits
isotropy, the discrete macroscopic permeability teri§pns reduced tdK,; = &, ,
wherek;, is the discretized permeability. In the monodisperse condiion, the aver-
age cell volume z stands for the only characteristic length scale. In the ég@ubelow,
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Figure 4. Permeability ﬁ—g with respect to the volume fraction¢.

we represent the ratig;l, wherer = (?jf—f)% with respect to the volume fraction. We
compare the result foy} different value of number of ¢éll

The macroscopic permeability linearly decreases with theme fraction. The
size of the RVE significantly influences the results. Morec#pally, we observe that
the number of cell has more influence on low volume fractioa 2, 5% than on high
volume fractiony = 20%. This fact relies on the slightly higher number of elements
for meshes withy = 20%, leading to a more accurate approximation of the numerical
solution in the finite element method.

CONCLUSION

First of all, we point out that an elaborate meshing procedas to be carried
out, which is time consuming and difficult to implement in ttase of real microstruc-
tures. Indeed, the microstructure of foams presents ilaeijes such as singularities
and requires to reach a stable state of equilibrium, mogehe physically relevant
microstructure of foams. In this context, we manage to elytiautomate the foam
meshing procedure of disordered wet foams. Besides, oultsese in good agree-
ment with the well-known results on dependence of the machbproperties of the
foam with respect to the volume fraction (we have compardt estimates available
in the literature data). As a consequence, we are confidanai2 bubbles RVE with
two refinements mesh provides an accurate homogenizedosolut
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