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ABSTRACT

We investigate the numerical modeling and simulation of mechanical effective
properties of disordered foams in 3d. We consider the elasticity, the thermal conductiv-
ity as well as the permeability. We present a meshing procedure for the microstructure
of randomly disordered wet foams. The material behavior is modeled by constitutive
equations and a boundary value problem is set on the microstructure. We present and
implement the homogenization approach for the determination of the effective mechan-
ical properties. The local problems are discretized and solved with the finite element
method. We investigate the monodisperse and disordered configuration of a wet foam
by varying the volume fraction.

INTRODUCTION

The structure of foam materials involves several length scales from macroscopic
scale to macroscopic scale. In the context, the modeling approach is an homogeniza-
tion, or multi-scale approach [Allaire, 1989], consistingin three main stages: the rep-
resentation, the localization and the homogenization. In the first step, the modeling
of the microstructure is established through a representative section of the material
microstructure, namely a Representative Volume Element (RVE). The formal defini-
tion of the RVE requires a condition of separation of scales (micro-macro) assumed
all along this work. The wet foam structure is modeled as a continuous network of
convex polyhedral surfaces and the meshing procedure is based on a Voronoi tessel-
lation, which in turn is based on random packings algorithm [Torquato et al., 2001].
The Voronoi tessellation then requires to evolve toward a physical structure of foam
[Kraynik et al., 2003, Kraynik and Reinelt, 1999], this process is called therelaxation.
In the localization stage, at the microscopic scale, the local properties on the RVE are
derived as the solutions of a boundary value problem set on the RVE. We consider the
deformation of the solid Plateau border, modeled by an elastic rheology. We also deter-
mine the thermal conductivity, the heat transfer is modeledby the Fourier’s law on the
Plateau border. Morevover, we study the fluid flow within the porous part. To model
the microscopic flow within the pores, we consider the Stokesequations for a viscous
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fluid. These boundary value problems are discretized and solved with the Finite Ele-
ment Method. Finally, the macroscopic mechanical properties are predicted by mean
of averaging the local fields within the RVE.

NUMERICAL MODELING OF THE FOAM STRUCTURE

The structure of a dry foam is modeled as a set of convex polyhedra packed
to fill space. We adopt the Voronoi tessellation algorithm togenerate a partition of
a sphere into convex polyhedral cells. Then, the surface of the Voronoi tessellation is
drived to evolve toward physically relevant geometry modeling the foam microstructure
[Kraynik et al., 2003, Kraynik and Reinelt, 1999]. This stageis called the relaxation
[Kraynik et al., 2003, Kraynik and Reinelt, 1999] and the algorithm provides a stable
structure of foam. The surface is evolved toward some local minimum in surface en-
ergy by iterating Conjugate Gradient descent method of optimization, with the Surface
Evolver software developed by Ken Brakke (1992) [Brakke, 1992, Phelan et al., 1995].
Besides, the cells are constrained to have equal volumes, thus modeling a monodisperse
structure of disordered foam. Furthermore, the mesh is regularized, the facets of the tri-
angulation are shaped as equilateral as possible and each vertex is moved to the average
position of its neighboring vertices. We iterate this algorithm until the number of non-
minimal features (in Plateau’s law [Weaire and Hutzler, 2001]) tends to0. A wet foam
structure can then be inferred starting from this relaxed structure. The extension to a
wet foam structure with arbitrary volume fraction is achieved through the addition of
the Plateau border. Subsequently the Plateau border’s volume is gradually increased
and adjusted. The volume meshing procedure is achieved withGmsh [GMSH]. In the
framework of the homogenization approach, the generated microstructure models the
Representative Volume Element (RVE).

The figure 1 below depicted the mesh of a disordered microstructure withN =
128 cells and a volume fractionφ = 10%. We represent both the Plateau border (left)
and the porous part (right).

STATEMENT OF THE LOCAL PROBLEMS

The elasticity problem

The elasticity model is adopted to describe the small deformation of the solid
Plateau border. The domainΩs ⊂ R

3 standing for the Plateau border is filled by a
solid material. The rheology is defined by the linear Hooke’slaw and the constitutive
equation reads:

σ = 2µε(u) + λ trace ε(u) in Ωs, (1)

whereσ denotes the total stress tensor,ε the linearized strain tensor,λ andµ stand for
the Lam coefficients. We consider the equilibrium state of the material, the momentum
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Figure 1. Meshed microstructure of a disordered foam withN = 128 cells and a
volume fraction φ = 10%. Plateau border (left) and porous part (right).

balance law with no body force reads

div σ = 0 in Ωs. (2)

The boundaryΓ is divided into disjoint partsΓ = Γu ∪ Γσ denoting the external sur-
face and the internal surface respectively, correspondingto the boundary where the
displacementu is imposed and to the boundary where the tractionσN is imposed (no-
stress). In order to implement the homogenization approach, we apply an homogeneous
loadingE corresponding to uniform boundary conditions [Dormieux etal., 2002]. To
achieve this we enforce

u = E · x onΓu, (3)

σN = 0 onΓσ, (4)

whereN stands for the outward unit normal onΓ andE is an order2 tensor.

The thermal conductivity problem

The heat transfer model on the solid Plateau border is employed in order to
prescribe the thermal conductivity. The behavior is definedby the linear Fourier’s law
and the constitutive equation reads

q(x) = −κ∇T (x) in Ωs, (5)

whereT (x) ∈ R denotes the temperature within the material,q(x) ∈ R
3 is the heat

flux andκ is the conductivity coefficient. We consider the thermal equilibrium state of
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the material, the thermal balance law is expressed as

div q(x) = 0 in Ωs. (6)

The boundaryΓ is divided into disjoint partsΓ = ΓT ∪ Γq. In order to implement
the homogenization approach, we apply an homogeneous loadingA corresponding to
uniform boundary conditions. To achieve this, we enforce

T = A · x onΓT , (7)

q ·N = 0 onΓq, (8)

whereA is an order1 tensor. The solution represents the local fluxq and the local
temperatureT at the microscopic scale, induced by the macroscopic loadingA.

The Stokes problem

At the microscopic scale, the flow of a viscous fluid is governed by the Stokes
equations [Allaire, 1989]. The domainΩf ⊂ R

3 standing for the porous part saturated
by an incompressible Newtonian fluid. The constitutive equation is written

σ = 2µD(u)− p in Ωf , (9)

whereu ∈ R
3 denotes the velocity,p ∈ R is the pressure field andµ > 0 is the

viscosity. We consider the equilibrium state of the material and the fluid is assumed to
be incompressible.

−µ divD(u) +∇p = 0 in Ωf ,

divu = 0 in Ωf .

The boundary of the domain is disjoint intoΓ = Γsf∪Γe, whereΓsf stands for the solid-
fluid interface andΓe is the external surface. We assume a no-slip boundary condition at
the solid-fluid interface and the homogenization approach is implemented by applying
an homogeneous loadingα on the RVE.

u = 0 onΓsf ,

σN = −(α · x) ·N onΓe.

NUMERICAL RESULTS

The problems , and are written in a variational form and discretized using the
Galerkin method together with the finite element method. Theresolution is achieved
throught the FreeFem++ langage and the numerical method is wether the conjugate
gradient or the GMRES solver for larger systems such as theN = 512 cells mesh.
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Figure 2. Elastic modulusµh normalized with µ = E
2(1+ν)

= 1000
2,6

and LamÃ©
coefficent normalized withK = λ + 2

3
= 1000

1,2
, with respect to the volume fraction

φ. Left: no refinement (r0) and right: 2 refinements (r2)

Elasticity

We have determined the macroscopic properties by averagingthe stress field on
the whole domain. As the structure exhibits isotropy, the discrete macroscopic elastic
tensorCh is reduced to3 coefficientsλh + 2µh, λh andµh whereλh andµh are the
discretized Lam coefficients. In the figure 2 below, we representµh andλh with respect
to the volume fractionφ. We have compared the result for different number of cellsN ,
on both ar0 (no refinement) mesh and ar2 (2 refinements) mesh.

The macroscopic properties linearly increase with the volume fraction. The size
of the RVE affects the results mainly for the elastic modulus. For the Lam coefficient,
on ther2 mesh, the converged homogenized solution is reached even withN = 32 cells,
whereas for the elastic modulus, the converged homogenizedsolution is not reached
even withN = 512 cells. In other words, with two refinements, the size of the RVE is
large enough to obtain the converged homogenized solutionλh. In addition, by studying
the periodic case of a Kelvin structure, we have inferred that our result withN = 512
are about20% different from the converged homogenized solution.
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Figure 3. Thermal conductivity κh normalized with the conductivity coefficient
κ = 100. Left: no refinement (r0) and right: 2 refinements (r2).

Thermal conductivity

We have determined the macroscopic thermal conductivity byaveraging the
flux field on the whole domain. As the structure exhibits isotropy, the discrete macro-
scopic thermal conductivity tensorKKKh is reduced toκh , whereκh is the discretized
conductivity. In the figure 3 below, we representκh with respect to the volume fraction
on both ther0 mesh and ther2 mesh.

The macroscopic thermal conductivity linearly increases with the volume frac-
tion. The size of the RVE slightly influences the results since we obtain almost su-
perimposed results with respect to the number of cellN , and the results are enhanced
with two refinements (our approximation provides an upper bound of the homogenized
solution). Meaning that the numerical error of approximation dominates the error of
the homogenization approach. In addition, by studying the periodic case of a Kelvin
structure, we have inferred that our result withN = 512 are about5% different from
the converged homogenized solution.

Permeability

The resolution is achieved through a MPI (Message Passing Interface) formu-
lation in FreeFem++ langage with a MPI resolution onnp = 4 processors. The numer-
ical method adopted to solve the linear system is the Mumps (MUltifrontal Massively
Parallel Solver) which is a sparse direct solver. We determine the macroscopic perme-
ability by averaging the velocity field on the whole domain. As the structure exhibits
isotropy, the discrete macroscopic permeability tensorKh is reduced toKh = kh ,
wherekh is the discretized permeability. In the monodisperse configuration, the aver-
age cell volumevB stands for the only characteristic length scale. In the figure 4 below,
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Figure 4. Permeability kh
r2

with respect to the volume fractionφ.

we represent the ratio
kh

r2
, wherer =

(

3vB
4π

)
1

3 , with respect to the volume fraction. We

compare the result for different value of number of cellN .
The macroscopic permeability linearly decreases with the volume fraction. The

size of the RVE significantly influences the results. More specifically, we observe that
the number of cell has more influence on low volume fractionφ = 2, 5% than on high
volume fractionφ = 20%. This fact relies on the slightly higher number of elements
for meshes withφ = 20%, leading to a more accurate approximation of the numerical
solution in the finite element method.

CONCLUSION

First of all, we point out that an elaborate meshing procedure has to be carried
out, which is time consuming and difficult to implement in thecase of real microstruc-
tures. Indeed, the microstructure of foams presents irregularities such as singularities
and requires to reach a stable state of equilibrium, modeling the physically relevant
microstructure of foams. In this context, we manage to entirely automate the foam
meshing procedure of disordered wet foams. Besides, our results are in good agree-
ment with the well-known results on dependence of the mechanical properties of the
foam with respect to the volume fraction (we have compared with estimates available
in the literature data). As a consequence, we are confidant that a512 bubbles RVE with
two refinements mesh provides an accurate homogenized solution.
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