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On The Brownian Loop Measure

Yong Han ∗ Yuefei Wang† Michel Zinsmeister‡

April 5, 2017

Abstract

In 2003 Lawler and Werner introduced the Brownian loop measure
and studied some of its properties. Cardy and Gamsa has predicted
a formula for the total mass of the Brownian loop measure on the
set of simple loops in the upper half plane and disconnect two given
points from the boundary. In this paper we give a rigorous proof of
the formula.

Keywords: Brownian loop, SLE bubble, Brownian bubble, Disconnect
from boundary

1 Introduction

The conformally invariant scaling limits of a series of planar lattice mod-
els can be described by the one-parameter family of random fractal curves
SLE(κ), which was introduced by Schramm. These models include site per-
colation on the triangular graph, loop erased random walk, Ising model,
harmonic random walk, discrete Gaussian free field, FK-Ising model and u-
niform spanning tree. Using SLE as a tool, many problems related to the
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properties of these models have been solved, such as the arm exponents for
these models. There are also some variants of SLE (conformal loop ensemble,
Brownian loop measure, Brownian bubble measure) that describe the scaling
limit of the random loops in these models. Therefore it is natural to use
SLE to get properties of these loop measures. One of theses application is
to use SLE(8

3
) to study the properties of the Brownian bubble measure and

Brownian loop measure. In fact, by rescaling and letting the two end points
tends to one common point, one can get the Brownian bubble measure(up
to a additive constant).

Recently Beliaev and Viklund [1] found a formula for the probability
that two given points lies to the left of the SLE(8

3
) curve and used it to

study some connectivity functions for SLE(8
3
) bubbles and to reconstruct the

chordal restriction measure introduced by Lawler, Werner and Schramm [2].
In this paper, we will follow their work and use the SLE(8

3
) bubble measure to

derive the formula for the total mass of the Brownian loop that disconnects
two given points from the boundary. This formula was predicted by Cardy
and Gamsa [3], and the formula we get here just differ by a constant from
theirs.

In the following section, we give a brief introduction to the topics that
will be used in this paper, which include the definition of SLE processes,
Brownian bubble measure, Brownian loop measure, SLE(κ) bubble measure
and the relation between these measures. In the third section, we give the
proof of the main theorem.

Theorem 1. Denote by µloop
H the Brownian loop measure on the upper half

plane and by γ a sample of the Brownian loop. Given two points z = x +
iy, w = u + iv ∈ H, let E(z, w) denote the event that γ disconnects both z
and w from the boundary of H. Then we have

µloop
H [E(z, w)] =− π

5
√
3
− 1

10
η 3F2(1,

4

3
, 1;

5

3
, 2; η)− 1

10
log(η(η − 1))

+
Γ(2

3
)2

5Γ(4
3
)
(η(η − 1))

1
3 2F1(1,

2

3
;
4

3
, η).

(1.1)

where

η = η(z, w) = −(x− u)2 + (y − v)2

4yv
, (1.2)

and 3F2, 2F1 are the hypergeometric functions.
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The formula (1.1) was first given by Cardy and Gamsa using conformal
field theory which assumes that O(n) model has the scaling limit. In fact
(1.1) has a nicer form:

µloop[E(z, w)] = − 1

10
[log σ + (1− σ) 3F2(1,

4

3
, 1;

5

3
, 2; 1− σ)], (1.3)

where

σ = σ(z, w) =
|z − w|2

|z − w̄|2
=

(x− u)2 + (y − v)2

(x− u)2 + (y + v)2
, (1.4)

and 3F2 is the hypergeometric function.

Remark 2. By the conformal invariance of Brownian loop measure (see [4]),
for any simply connected domain D ⊂ C with z, w ∈ D, we can get the
total mass of the Brownian loop in D that disconnect both z and w from
∂D by the conformal map from D to H. In particular, if D = D, we choose
the conformal map ϕ(z) = i1+z

1−z
from D onto H. Then the total mass of the

Brownian loop measure in D that disconnects z, w ∈ D from ∂D is

− 1

10
[log σ̃ + (1− σ̃) 3F2(1,

4

3
, 1;

5

3
, 2; 1− σ̃)],

where σ̃ = σ̃(z, w) = |z−w|2
|1−zw̄|2 .

2 Background

In this section very brief introductions on the chordal SLE, Brownian loop
measure and SLE bubble measure are given.

2.1 Chordal SLE process

The chordal SLE process from 0 to ∞ in H is a random family of conformal
maps (gt : t ≥ 0) that satisfies

∂tgt(z) =
2

gt(z)−
√
κBt

, 0 ≤ t < τ(z), g0(z) = z. (2.1)

where B is a standard Brownian motion and τ(z) is the blow-up time for the
differential equation (2.1). The SLE(κ) process is generated by a continuous
curve γ, (see [5] and [6]). That is, the following limits exists:

γ(t) = lim
y↓0

g−1
t (iy +

√
κBt).
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The curve γ is a simple curve if and only if κ ∈ (0, 4], (see[5]). The SLE(κ)
curve satisfies the scaling invariance property (see [5]), i.e for any r > 0, rγ
has the same distribution as γ (with a time rescaling). So given any triple set
(D, a, b), where D is a simply connected domain with two given boundary
points a and b, we can define the SLE process on D from a to b by the
conformal map from H to D that sends 0 to a and ∞ to b.

The following lemma will be useful in defining the SLE-bubble measure.

Lemma 3 (see [7]). Given z = x + iy ∈ H, suppose κ ∈ (0, 4] and γ is the
SLE(κ) curve from 0 to ∞ in H. Then the probability that γ passes the left
of z is

p(z) = C

∫ x
y

−∞
(1 + t2)−

4
κdt, (2.2)

where C = C(κ) is the constant that make the total integral above equal to 1.

2.2 Brownian loop measure and bubble measure

In this section, we will introduce several measures on the space of continuous
curves in the plane. To keep the present article short, we will not provide
the detailed discussions but instead refer the reader to the fifth chapter of
Lawler’s book [8] and [4].

Let µ(z; t) be the law of a complex Brownian motion (Bs : 0 ≤ s ≤ t)
starting from z. And µ(z; t) can be written as

µ(z; t) =

∫
C
µ(z, w; t)dw

where the above integral can be regarded as the integral of measure-valued
functions. Here µ(z; t) and µ(z, w; t) are regarded as measures on the space
of curves in the plane. Using the density function of the complex Brownian
motion, we can see that the total mass of µ(z, w; t) is 1

2πt
exp{− 1

2t
|z − w|2}.

Let µ(z, w) be the measure defined by µ(z, w) =
∫∞
0

µ(z, w; t). This is
a σ−finite infinite measure. If D ⊂ C is a simply connected domain with
nice boundary and z, w ∈ D, we can define µD(z, w) be the restriction of
µ(z, w) on the space of curves that lie inside D. If z ̸= w, the total measure
of µD(z, w) is πGD(z, w), where GD(z, w) is the Green function on D.

If D is a simply connected domain with nice boundary, let B be a com-
plex Brownian motion starting from z ∈ D and τD the exit time. Denote
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µD(z, ∂D) the law of (Bt : 0 ≤ t ≤ τD), we can write

µD(z, ∂D) =

∫
∂D

µD(z, w)dw.

Here µD(z, w) can be regarded as a measure on the space of curves in D
from z to w ∈ ∂D, and the total mass of µD(z, w) is the the Poisson kernel
HD(z, w). For z ∈ D,w ∈ ∂D, µD(z, w) can also be equivalently defined by
the limits

µD(z, w) = lim
ϵ→0

1

2ϵ
µD(z, w + ϵnw),

where nw is the inner normal at w.
And similarly for z, w ∈ ∂D, we can also define

µD(z, w) = lim
ϵ→0

1

2ϵ2
µD(z + ϵnz, w + ϵnw)

It can be showed that the above limits exist in the sense of Prohorov conver-
gence(see Chapter 5 of [8]).

Given z ∈ ∂D, the Brownian bubble measure µbub
D (z) is defined as

the limit
µbub
D (z) := lim

w∈∂D,w→z
πµD(z, w).

The Brownian loop measure is defined as following:

µloop
C :=

∫
C

1

tγ
µ(z, z)dz =

∫
C

∫ ∞

0

1

tγ
µ(z, z; t)dtdz.

Since µ(z, z) is a measure defined on loops with z as a marked point(called a
root), the Brownian loop measure should be understood as the above integral
of measures by forgetting the root. For any domain D, let µloop

D be the
restriction of the Brownian loop measure on the space of loops inside D.

For any a ∈ R, define Ha := {x+ iy ∈ C : y > a}, according to the lowest
point of the Brownian loop, the Brownian loop can be decomposed into the
following integral of Brownian bubbles(see [4]):

µloop
C =

1

π

∫
C
µbub
Hy

(x+ iy)dxdy. (2.3)

(2.3) will be very important in our computation.
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2.3 SLE bubble measure

In this section we will define the SLE bubble measure and give the relation
between SLE(8

3
) bubble and Brownian bubble measure.

Suppose κ ∈ (0, 4], ϵ > 0 and γϵ is the SLE(κ) curve from 0 to ϵ in the
upper half plane. Let µϵ denote the law of γϵ.

Lemma 4. The limit of the following limit exists:

µbub
SLE(κ)(0) = lim

ϵ→0
ϵ1−

8
κµϵ. (2.4)

We call µbub
SLE(κ)(0) the SLE(κ)-bubble measure.

Proof. We only need to show that the limit restricted to some generated
algebras that consist of finite mass exists. Here we choose the measurable
sets {γ : γ disconnects z from ∞} for fixed z ∈ H. By the definition of the
SLE(κ) from 0 to ϵ, we choose the auto-conformal map Fϵ(z) = ϵz

z+1
that

sends ∞ to ϵ and fixes 0. We have

P[γ disconnects z from ∞] = p(F−1
ϵ (z)),

where p(z) is defined in (2.2). Therefore

lim
ϵ→0

ϵ1−
8
κp(F−1

ϵ (z)) =
Γ( 4

κ
)

√
πΓ(8−κ

2κ
)( 8

κ
− 1)

(
x2 + y2

y
)1−

8
κ (2.5)

So for fix z ∈ H, if we denote µϵ(z) the restriction of µϵ restricted to the
curves that disconnect z from ∞, then by the above equation, we know that
the limit

µbub
SLE(κ)(0, z) := lim

ϵ→0
ϵ1−

8
κµϵ(z)

exists and therefore we can define µbub
SLE(κ)(0) as the limit of µbub

SLE(κ)(0, z) as z
tends to zero.

If κ = 8
3
, from (2.5), we get that the total mass of the SLE(8

3
)-bubble

that disconnects a given point z = x+ iy ∈ H is 1
4
( y
x2+y2

)2 = 1
4
(Im 1

z
)2 which

corresponds to the part (a) of proposition 3.1 in [1]. In fact, [1] also gives the
measure of the SLE(8

3
)-bubble that disconnects two points z, w ∈ H from ∞

which we will state as the following lemma.
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Lemma 5 (see [1]). Let E(z, w) be the event that two points z, w ∈ H are
disconnected from ∞ by a SLE(8

3
) curve from 0 to ϵ, then

µϵ[E(z, w)] =
1

4
Im (

1

z
)Im (

1

w
)G(σ(z, w))ϵ2 +O(ϵ3). (2.6)

where σ is defined as (1.4) and

G(t) = 1− t 2F1(1,
4

3
;
5

3
; 1− t). (2.7)

Here 2F1 is the hypergeometric function.

Notice that when κ = 8
3
, it holds that 1− 8

κ
= −2. so we have

µbub
SLE(0)[E(z, w)] =

1

4
Im (

1

z
)Im (

1

w
) =

1

4

yv

(x2 + y2)(u2 + v2)
G(σ(z, w)). (2.8)

SLE(8
3
)-bubble measure is closely related to Brownian bubble, in fact they

only differ by a constant. Given a loop γ such that γ(0) = γ(tγ) = 0 and
γ(0, tγ) ⊂ H, call the complement of the unbounded connected component
of H r γ the hull enclosed by γ. In the following we will let γ denote both
the loop and hull enclosed by it.

Lemma 6 (see [2]). As measures on the hulls enclosed by loops, the following
holds:

µbub
H (0) =

8

5
µbub
SLE( 8

3
)
(0).

Proof. By the construction of the Brownian bubble measure at 0 (see the
Chapter 5 of Lawler’s book [8]), it is the unique measure on loops(or hulls
enclosed by loops) in H rooted at 0 such that the total mass that the sample
intersect |z| = r is 1

r2
for any r > 0. Since{
{γ : γ ∩ {|z| = r} = ∅} : r > 0

}
is a algebra that generate the σ−algebra of the space of loops, we only need
to show that the total mass of the SLE(8

3
)-bubble sample intersecting |z| = r

is 5
8r2

. Define Fϵ(z) = z
ϵ−z

, the imagine of the circle |z| = r under Fϵ is a

circle with center c0 = − r2

r2−ϵ2
and radius ρ = ϵr

r2−ϵ2
. Define the conformal
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map ϕϵ(z) = z−c0+
ρ2

z−c0
which maps HrB(c0, ρ) onto H with the derivative

at∞ equaling to 1. By the conformal restriction property of SLE(8
3
), we have

µϵ[γ ∩ |z| = r = ∅] = µ∞[γ ∩B(c0, ρ) = ∅] = ϕ′
ϵ(0)

5
8 .

Therefore we can check that

µbub
SLE(κ)(0)[γ ∩ {|z| = r} ≠ ∅] = lim

ϵ→0

1

ϵ2
(1− ϕ′

ϵ(0))
5
8 =

5

8r2
.

3 Proof of the main theorem

In this section we will give a detailed proof of our main theorem.

3.1 Proof of the nicer form

Given two points z0 = x0 + iy0 and w0 = u0 + iv0 ∈ H. By the symmetry
property of the the Brownian loop measure, we may assume without loss of
generality y0 ≤ v0, u0 ≥ x0. By (2.3),

µloop
H [E(z0, w0)] =

1

π

∫
H
µbub
Hy

(x+ iy)[E(z0, w0)]dxdy

=
1

π

∫ y0

0

∫
R
µbub
Hy

(x+ iy)[E(z0, w0)]dxdy.

Here E(z0, w0) denotes the event that the Brownian loop sample in H dis-
connects both z0 and w0 from the boundary of H.

By the translation invariance of the Brownian bubble measure, we have

µbub
Hy

(x+ iy)[E(z0, w0)] = µbub
H (0)[E(z0 − z, w0 − z)].

By Lemma 6 we have µbub
H (0) = 8

5
µbub
SLE(κ)(0). Therefore by (2.8),

µloop
H [E(z0, w0)] =

8

5π

∫ y0

0

∫
R
µbub
SLE(κ)(0)[E(z0 − x− iy, w0 − x− iy)]dxdy

=
8

5π

∫ y0

0

∫
R

1

4
Im

( 1

z0 − x− iy

)
Im

( 1

w0 − x− iy

)
G(σ(z0 − x− iy, w0 − x− iy))dxdy. (3.1)
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So in order to prove the theorem, we only need to compute above integral.
Define two functions as follows:

f(x, y) :=
(y0 − y)(v0 − y)

[(x0 − x)2 + (y0 − y)2]× [(u0 − x)2 + (v0 − y)2]
. (3.2)

g(y) :=
(x0 − u0)

2 + (y0 − v0)
2

(x0 − u0)2 + (y0 + v0 − 2y)2

2F1(1,
4

3
;
5

3
;

4(y0 − y)(v0 − y)

(x0 − u0)2 + (y0 + v0 − 2y)2
). (3.3)

Lemma 7. Take the notations as above, for fixed y > 0,∫
R
f(x, y)dx =

2(y0 − y) + v0 − y0

(x0 − u0)2 +
(
2(y0 − y) + v0 − y0

)2π. (3.4)

Proof. For fixed y > 0, denote

a = y0 − y, b = v0 − y, c = u0 − x0, d = v0 − y0.

Then we have

f(x, y) =
ab

[(x0 − x)2 + a2][(u0 − x)2 + b2]
.

By standard calculus,∫
R
f(x, y)dx =

∫
R

ab

[(x0 − x)2 + a2][(u0 − x)2 + b2]
dx

=ab

∫
R

1

[x2 + a2][(x+ c)2 + b2]
dx

=
abπ

ab
(
a4 − 2a2(b2 − c2) + (b2 + c2)2

)(b(b2 + c2 − a2) arctan[
x

a
]

+ a
[
(a2 + c2 − b2) arctan[

c+ x

b
] + bc log

b2 + (c+ x)2

a2 + x2

])
|∞−∞

=π
b(b2 + c2 − a2) + a(a2 + c2 − b2)

a4 − 2a2(b2 − c2) + (b2 + c2)2
.
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Replace b by a+ d, we get∫
R
f(x, y)dx =

(2a+ d)π

c2 + (2a+ d)2
,

which is what we want.

By (3.1), we have

µloop
H [E(z0, w0)] =

8

5π

∫ y0

0

∫
R

1

4
f(x, y)(1− g(y))dxdy

=
8

5π

∫ y0

0

π

4

2a+ d

c2 + (2a+ d)2
[1− g(y)]dy =

2

5
(A−B), (3.5)

where

A = A(z0, w0) =

∫ y0

0

2(y0 − y) + v0 − y0

(x0 − u0)2 +
(
2(y0 − y) + v0 − y0

)2dy, (3.6)

and

B = B(z0, w0) =

∫ y0

0

2(y0 − y) + v0 − y0

(x0 − u0)2 +
(
2(y0 − y) + v0 − y0

)2 g(y)dy. (3.7)

Lemma 8.

A =
1

4
log

1

σ
,

where σ is defined as (1.4).

Proof. By (3.6) we have

A =

∫ y0

0

2(y0 − y) + d

c2 + (2(y0 − y) + d)2
dy =

∫ y0

0

2y + d

c2 + (2y + d)2
dy

=
1

2

∫ 2y0+d
c

d/c

y

1 + y2
dy =

1

4
log

c2 + (2y0 + d)2

c2 + d2
.

In the second equation we used the change of variable y → y0 − y and in the
last equation we used the change of variable y → 2y+d

c
. Notice that

c2 + (2y0 + d)2

c2 + d2
=

(u0 − x0)
2 + (y0 + v0)

2

(u0 − x0)2 + (v0 − y0)2
=

1

σ
.
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Lemma 9.

B =
1

4
(1− σ) 3F2(1,

4

3
, 1;

5

3
, 2; 1− σ),

where σ is defined as (1.4).

Proof. By (3.7) and the definition of g(y), we have

B =

∫ y0

0

2(y0 − y) + d

c2 + (2(y0 − y) + d)2
· c2 + d2

c2 + (2(y0 − y) + d)2
·

2F1(1,
4

3
;
5

3
;
4(y0 − y)((y0 − y) + d)

c2 + (2(y0 − y) + d)2
)dy

=

∫ y0

0

2y + d

c2 + (2y + d)2
· c2 + d2

c2 + (2y + d)2
· 2F1(1,

4

3
;
5

3
;

4y(y + d)

c2 + (2y + d)2
)dy

=

∫ 2y0+d
c

d
c

cy

c2 + c2y2
· c2 + d2

c2 + c2y2
· 2F1(1,

4

3
;
5

3
;
c2y2 − d2

c2 + c2y2
) · c

2
dy

=
1

2

c2 + d2

c2

∫ 2y0+d
c

d
c

y

(1 + y2)2
· 2F1(1,

4

3
;
5

3
;
c2y2 − d2

c2 + c2y2
)dy

=
1

4

∫ 4y0(y0+d)

c2+(2y0+d)2

0
2F1(1,

4

3
;
5

3
; y)dy

=
1

4

4y0(y0 + d)

c2 + (2y0 + d)2
· 3F2(1,

4

3
, 1;

5

3
, 2;

4y0(y0 + d)

c2 + (2y0 + d)2
)

=
1

4
(1− σ) 3F2(1,

4

3
, 1;

5

3
, 2; 1− σ).

Here the second equation used the change of variable y → y0 − y, the third
equation used the change of variable y → 2y+d

c
, the fifth equation used the

change of variable c2y2−d2

c2+c2y2
→ y and the sixth equation used the equation

about hypergeometric functions below:∫ x

0
2F1(a, b; c, y)dy = x 3F2(a, b, 1; c, 2, x).
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Now by (3.5) and Lemma 8 and Lemma 9 we get (1.3).

3.2 Proof of Cardy’s formula

In this section we will prove the equivalence of formula (1.1) and (1.3). First
we will recall some identities for the hypergeometric functions which will be
used in our proof. We will assume that our hypergeometric functions are all
well defined. And they satisfies the following identities (see Chapter 8 of [9]):

2F1(a, b; c; x) = (1− x)−b
2F1(c− a, b; c;

x

x− 1
). (3.8)

2F1(a, b; c; x) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b; a+ b+ 1− c; 1− x)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− x)c−a−b

2F1(c− a, c− b; c+ 1− a− b; 1− x). (3.9)

2F1(a, b; c;x) = (1− x)c−a−b
2F1(c− a, c− b; c;x). (3.10)

Notice that η = σ
σ−1

and σ ∈ (0, 1). We define a function ϕ on [0, 1] as
following.

ϕ(t) =
2π√
3
+

t

t− 1
3F2(1,

4

3
, 1;

5

3
, 2;

t

t− 1
)− (1− t) 3F2(1,

4

3
, 1;

5

3
, 2; 1− t)

− 2 log(1− t)− 2
Γ(2

3
)2

Γ(4
3
)

3

√
t

(t− 1)2
2F1(1,

2

3
;
4

3
;

t

t− 1
). (3.11)

To prove that (1.1) and (1.3) are equivalent, we only need to show that
ϕ(t) ≡ 0. Notice that ϕ(0) = 2π√

3
− 3F2(1,

4
3
, 1; 5

3
, 2; 1) = 0, it is left to show

that ϕ′(t) ≡ 0. Take the following notations.

I(t) :=
t

t− 1
3F2(1,

4

3
, 1;

5

3
, 2;

t

t− 1
)− 2 log(1− t),

J(t) := −(1− t) 3F2(1,
4

3
, 1;

5

3
, 2; 1− t),

K(t) := −2
Γ(2

3
)2

Γ(4
3
)

3

√
t

(t− 1)2
2F1(1,

2

3
;
4

3
;

t

t− 1
).
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Define f(x) = x 3F2(1,
4
3
, 1; 5

3
, 2;x). It is easy to check that

f ′(x) = 2F1(1,
4

3
;
5

3
;x).

So

dI(t)

dt
=

2

1− t
+ f ′(

t

t− 1
)

−1

(1− t)2
=

2

1− t
− 1

(1− t)2
2F1(1,

4

3
;
5

3
;

t

t− 1
)

=
2

1− t
− 1

1− t
2F1(1,

1

3
;
5

3
; t). (3.12)

The last equation follows from (3.8) by assigning a = 1
3
, b = 1, c = 5

3
. Simi-

larly we get
dJ(t)

dt
= f ′(1− t) = 2F1(1,

4

3
;
5

3
; 1− t).

Using (3.9) with a = 1, b = 4
3
, c = 5

3
, we have

2F1(1,
4

3
;
5

3
; 1− t) = − 2F1(1,

4

3
;
5

3
; t) +

2

3

Γ(2
3
)2

Γ(4
3
)
t−

2
3 2F1(

1

3
,
2

3
;
1

3
; t)

By letting a = 1
3
, b = 2

3
, c = 1

3
in (3.10), the following holds

2F1(
1

3
,
2

3
;
1

3
; t) = (1− t)−

2
3 2F1(0,−

1

3
;
1

3
, x) = (1− t)−

2
3 .

Therefore
dJ(t)

dt
= − 2F1(1,

4

3
;
5

3
; t) +

2

3

Γ(2
3
)2

Γ(4
3
)
(t(1− t))−

2
3 . (3.13)

Lastly we deal with the derivative of K(t) with respect to t. By letting
a = 1

3
, b = 2

3
, c = 4

3
in (3.8), we can get

2F1(1,
2

3
;
4

3
;

t

t− 1
) = (1− t)

2
3 2F1(1,

2

3
;
4

3
; t).

Consequently,

K(t) = −2
Γ(2

3
)2

Γ(4
3
)
t
1
3 2F1(1,

2

3
;
4

3
; t).
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And

dK(t)

dt
= −2

Γ(2
3
)2

Γ(4
3
)

[1
3
t−

2
3 2F1(1,

2

3
;
4

3
; t) + t

1
3
(1− t)−

2
3 − 2F1(1,

2
3
; 4
3
; t)

3t

]
= −2

3

Γ(2
3
)2

Γ(4
3
)
t−

2
3 (1− t)−

2
3 . (3.14)

Combining (3.12),(3.13) and (3.14), we have

ϕ′(t) =
dI(t)

dt
+
dJ(t)

dt
+
dK(t)

t
=

2

1− t
− 1

1− t
2F1(1,

1

3
;
5

3
; t)− 2F1(1,

4

3
;
5

3
; t).

Lemma 10.

2− 2F1(1,
1

3
;
5

3
; t)− (1− t) 2F1(1,

4

3
;
5

3
; t) = 0.

Proof. By definition we have

2F1(1,
4

3
;
5

3
; t) = 1 +

∞∑
n=1

Γ(n+ 4
3
)Γ(5

3
)

Γ(4
3
)Γ(n+ 5

3
)
tn.

Therefore

t 2F1(1,
4

3
;
5

3
; t) =

∞∑
n=1

Γ(n+ 1
3
)Γ(5

3
)

Γ(4
3
)Γ(n+ 2

3
)
tn.

Similarly

2F1(1,
1

3
;
5

3
; t) = 1 +

∞∑
n=1

Γ(n+ 1
3
)Γ(5

3
)

Γ(1
3
)Γ(n+ 5

3
)
tn.

By using the relation Γ(x+ 1) = xΓ(x), we can see that the coefficient of tn

in the sum is

Γ(n+ 1
3
)Γ(5

3
)

Γ(4
3
)Γ(n+ 2

3
)
−

Γ(n+ 4
3
)Γ(5

3
)

Γ(4
3
)Γ(n+ 5

3
)
−

Γ(n+ 1
3
)Γ(5

3
)

Γ(1
3
)Γ(n+ 5

3
)
= 0.

From Lemma 10, we have ϕ′(t) ≡ 0, and therefore ϕ ≡ ϕ(0) = 0. This
completes the proof of the equivalence between (1.1) and (1.3).
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4 The other cases

Given z, w ∈ H, and γ the sample of the Brownian loop in the upper half
plane. According to the property of Brownian path, almost surely, z, w ̸∈ γ.
So except the case that γ disconnects both z and w from the boundary, there
are three other cases:

(1) γ disconnects z from the boundary but does not disconnect w from
the boundary;

(2) γ disconnects w from the boundary but does not disconnect z from
the boundary;

(3) γ does neither disconnects z from the boundary nor disconnects w
from the boundary.

We will show that the total measure of above three cases are infinite. In
fact, using the same method as [1], we can show the following lemma.

Lemma 11. Suppose that γ is the sample of the SLE(8
3
) from 0 to ϵ and

denote above three cases by E1(z, w), E2(z, w) and E3(z, w) respectively. Then

P[E1(z, w)] =
1

4
ϵ2
(
(Im

1

z
)2 − Im

1

z
Im

1

w
G(σ)

)
+O(ϵ3), (4.1)

P[E2(z, w)] =
1

4
ϵ2
[
(Im

1

w
)2 − Im

1

z
Im

1

w
G(σ)

]
+O(ϵ3), (4.2)

P[E3(z, w)] = 1− 1

4
ϵ2
[
(Im

1

w
)2 + (Im

1

z
)2 − Im

1

z
Im

1

w
G(σ)

]
+O(ϵ3). (4.3)

The proof of this lemma is the same as in [1]. We only need to prove that
for SLE(8

3
) γ from 0 to ∞, the following holds.

P[γ passes the left of z and the right of w]

= 1
4
(1− x

|z|)(1 +
u
|w|)(1−

y
|z|−x

v
|w|+u

G(σ)).

P[γ passes the left of w and the right of z]

= 1
4
(1 + x

|z|)(1−
u
|w|)(1−

y
|z|+x

v
|w|−u

G(σ)).

P[γ passes the right of both z and w]

= 1
4
(1− x

|z|)(1−
u
|w|)(1 +

y
|z|−x

v
|w|−u

G(σ)).

where G(σ) is the same as (2.7). Then using the conformal map Fϵ(z) =
ϵz
1+z

to convert the SLE(8
3
) from 0 to ∞ into the SLE(8

3
) from 0 to ϵ. Combing
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above lemma and the definition of the Brownian bubble measure and lemma
6, we can get

µbub
H (0)(E1(z, w)) =

1

10
[(

y

x2 + y2
)2 − y

x2 + y2
v

u2 + v2
G(σ(z, w))].

µbub
H (0)(E2(z, w)) =

1

10
[(

v

u2 + v2
)2 − y

x2 + y2
v

u2 + v2
G(σ(z, w))].

µbub
H (0)(E3(z, w)) = ∞.

By relation (2.3) and calculating the integral on the upper half plane, we
can see that the total mass of the Brownian loop measure on these three sets
are infinite. In fact, we can see intuitively that these three cases all contain
the loops with arbitrary small diameter, while the event E(z, w) in the main
theorem exclude these small loops.

References

[1] Dmitry Beliaev and Fredrik Johansson Viklund. Some remarks on SLE
bubbles and schramm’s two-point observable. Communications in Math-
ematical Physics, 320(2):379–394, 2013.

[2] Gregory Lawler, Oded Schramm, and Wendelin Werner. Conformal re-
striction: the chordal case. Journal of the American Mathematical Soci-
ety, 16(4):917–955, 2003.

[3] Adam Gamsa and John Cardy. Correlation functions of twist operators
applied to single self-avoiding loops. Journal of Physics A: Mathematical
and General, 39(41):12983, 2006.

[4] Gregory F Lawler and Wendelin Werner. The brownian loop soup. Prob-
ability theory and related fields, 128(4):565–588, 2004.

[5] Steffen Rohde and Oded Schramm. Basic properties of SLE. In Selected
Works of Oded Schramm, pages 989–1030. Springer, 2011.

[6] Gregory F Lawler, Oded Schramm, and Wendelin Werner. Conformal in-
variance of planar loop-erased random walks and uniform spanning trees.
In Selected Works of Oded Schramm, pages 931–987. Springer, 2011.

16



[7] Oded Schramm et al. A percolation formula. Electron. Comm. Probab,
6:115–120, 2001.

[8] Gregory F Lawler. Conformally invariant processes in the plane. Number
114. American Mathematical Soc., 2008.

[9] Richard Beals and Roderick Wong. Special functions: a graduate text,
volume 126. Cambridge University Press, 2010.

17


