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In 2003 Lawler and Werner introduced the Brownian loop measure and studied some of its properties. Cardy and Gamsa has predicted a formula for the total mass of the Brownian loop measure on the set of simple loops in the upper half plane and disconnect two given points from the boundary. In this paper we give a rigorous proof of the formula.

Introduction

The conformally invariant scaling limits of a series of planar lattice models can be described by the one-parameter family of random fractal curves SLE(κ), which was introduced by Schramm. These models include site percolation on the triangular graph, loop erased random walk, Ising model, harmonic random walk, discrete Gaussian free field, FK-Ising model and uniform spanning tree. Using SLE as a tool, many problems related to the Theorem 1. Denote by µ loop H the Brownian loop measure on the upper half plane and by γ a sample of the Brownian loop. Given two points z = x + iy, w = u + iv ∈ H, let E(z, w) denote the event that γ disconnects both z and w from the boundary of H. Then we have

µ loop H [E(z, w)] = - π 5 √ 3 - 1 10 η 3 F 2 (1, 4 3 , 1; 5 3 
, 2; η) -1 10 log(η(η -1)) + Γ( 2 3 ) 2 5Γ( 43 ) (η(η -1))

1 3 2 F 1 (1, 2 3 ; 4 3 
, η).

(1.1)

where η = η(z, w) = - (x -u) 2 + (y -v) 2 4yv , (1.2)
and 3 F 2 , 2 F 1 are the hypergeometric functions.

The formula (1.1) was first given by Cardy and Gamsa using conformal field theory which assumes that O(n) model has the scaling limit. In fact (1.1) has a nicer form:

µ loop [E(z, w)] = - 1 10 [log σ + (1 -σ) 3 F 2 (1, 4 3 , 1; 5 3 , 2; 1 -σ)], (1.3) 
where

σ = σ(z, w) = |z -w| 2 |z -w| 2 = (x -u) 2 + (y -v) 2 (x -u) 2 + (y + v) 2 , (1.4)
and 3 F 2 is the hypergeometric function. Remark 2. By the conformal invariance of Brownian loop measure (see [START_REF] Gregory | The brownian loop soup[END_REF]), for any simply connected domain D ⊂ C with z, w ∈ D, we can get the total mass of the Brownian loop in D that disconnect both z and w from ∂D by the conformal map from D to H. In particular, if D = D, we choose the conformal map ϕ(z) = i 1+z 1-z from D onto H. Then the total mass of the Brownian loop measure in

D that disconnects z, w ∈ D from ∂D is - 1 10 [log σ + (1 -σ) 3 F 2 (1, 4 3 , 1; 5 3 , 2; 1 -σ)],
where σ = σ(z, w)

= |z-w| 2 |1-z w| 2 .

Background

In this section very brief introductions on the chordal SLE, Brownian loop measure and SLE bubble measure are given.

Chordal SLE process

The chordal SLE process from 0 to ∞ in H is a random family of conformal maps (g t : t ≥ 0) that satisfies

∂ t g t (z) = 2 g t (z) - √ κB t , 0 ≤ t < τ (z), g 0 (z) = z. (2.1)
where B is a standard Brownian motion and τ (z) is the blow-up time for the differential equation (2.1). The SLE(κ) process is generated by a continuous curve γ, (see [START_REF] Rohde | Basic properties of SLE[END_REF] and [START_REF] Gregory F Lawler | Conformal invariance of planar loop-erased random walks and uniform spanning trees[END_REF]). That is, the following limits exists:

γ(t) = lim y↓0 g -1 t (iy + √ κB t ).
The curve γ is a simple curve if and only if κ ∈ (0, 4], (see [START_REF] Rohde | Basic properties of SLE[END_REF]). The SLE(κ) curve satisfies the scaling invariance property (see [START_REF] Rohde | Basic properties of SLE[END_REF]), i.e for any r > 0, rγ has the same distribution as γ (with a time rescaling). So given any triple set (D, a, b), where D is a simply connected domain with two given boundary points a and b, we can define the SLE process on D from a to b by the conformal map from H to D that sends 0 to a and ∞ to b.

The following lemma will be useful in defining the SLE-bubble measure.

Lemma 3 (see [START_REF] Schramm | A percolation formula[END_REF]). Given z = x + iy ∈ H, suppose κ ∈ (0, 4] and γ is the SLE(κ) curve from 0 to ∞ in H. Then the probability that γ passes the left of z is

p(z) = C ∫ x y -∞ (1 + t 2 ) -4 κ dt, (2.2)
where C = C(κ) is the constant that make the total integral above equal to 1.

Brownian loop measure and bubble measure

In this section, we will introduce several measures on the space of continuous curves in the plane. To keep the present article short, we will not provide the detailed discussions but instead refer the reader to the fifth chapter of Lawler's book [START_REF] Gregory | Conformally invariant processes in the plane[END_REF] and [START_REF] Gregory | The brownian loop soup[END_REF]. Let µ(z; t) be the law of a complex Brownian motion (B s : 0 ≤ s ≤ t) starting from z. And µ(z; t) can be written as

µ(z; t) = ∫ C µ(z, w; t)dw
where the above integral can be regarded as the integral of measure-valued functions. Here µ(z; t) and µ(z, w; t) are regarded as measures on the space of curves in the plane. Using the density function of the complex Brownian motion, we can see that the total mass of µ(z, w; t) is 1 2πt exp{-1 2t |z -w| 2 }. Let µ(z, w) be the measure defined by µ(z, w) = ∫ ∞ 0 µ(z, w; t). This is a σ-finite infinite measure. If D ⊂ C is a simply connected domain with nice boundary and z, w ∈ D, we can define µ D (z, w) be the restriction of µ(z, w) on the space of curves that lie inside D.

If z ̸ = w, the total measure of µ D (z, w) is πG D (z, w), where G D (z, w) is the Green function on D.
If D is a simply connected domain with nice boundary, let B be a complex Brownian motion starting from z ∈ D and τ D the exit time. Denote µ D (z, ∂D) the law of (B t : 0 ≤ t ≤ τ D ), we can write

µ D (z, ∂D) = ∫ ∂D µ D (z, w)dw.
Here µ D (z, w) can be regarded as a measure on the space of curves in D from z to w ∈ ∂D, and the total mass of µ D (z, w) is the the Poisson kernel H D (z, w). For z ∈ D, w ∈ ∂D, µ D (z, w) can also be equivalently defined by the limits

µ D (z, w) = lim ϵ→0 1 2ϵ µ D (z, w + ϵn w ),
where n w is the inner normal at w. And similarly for z, w ∈ ∂D, we can also define

µ D (z, w) = lim ϵ→0 1 2ϵ 2 µ D (z + ϵn z , w + ϵn w )
It can be showed that the above limits exist in the sense of Prohorov convergence(see Chapter 5 of [START_REF] Gregory | Conformally invariant processes in the plane[END_REF]).

Given z ∈ ∂D, the Brownian bubble measure µ bub D (z) is defined as the limit

µ bub D (z) := lim w∈∂D,w→z πµ D (z, w).
The Brownian loop measure is defined as following:

µ loop C := ∫ C 1 t γ µ(z, z)dz = ∫ C ∫ ∞ 0 1 t γ µ(z, z; t)dtdz.
Since µ(z, z) is a measure defined on loops with z as a marked point(called a root), the Brownian loop measure should be understood as the above integral of measures by forgetting the root. For any domain D, let µ loop D be the restriction of the Brownian loop measure on the space of loops inside D.

For any a ∈ R, define H a := {x + iy ∈ C : y > a}, according to the lowest point of the Brownian loop, the Brownian loop can be decomposed into the following integral of Brownian bubbles(see [START_REF] Gregory | The brownian loop soup[END_REF]):

µ loop C = 1 π ∫ C µ bub Hy (x + iy)dxdy. (2.3) (2.
3) will be very important in our computation.

SLE bubble measure

In this section we will define the SLE bubble measure and give the relation between SLE( 83 ) bubble and Brownian bubble measure. Suppose κ ∈ (0, 4], ϵ > 0 and γ ϵ is the SLE(κ) curve from 0 to ϵ in the upper half plane. Let µ ϵ denote the law of γ ϵ . Lemma 4. The limit of the following limit exists:

µ bub SLE(κ) (0) = lim ϵ→0 ϵ 1-8 κ µ ϵ . (2.4)
We call µ bub SLE(κ) (0) the SLE(κ)-bubble measure.

Proof. We only need to show that the limit restricted to some generated algebras that consist of finite mass exists. Here we choose the measurable sets {γ : γ disconnects z from ∞} for fixed z ∈ H. By the definition of the SLE(κ) from 0 to ϵ, we choose the auto-conformal map F ϵ (z) = ϵz z+1 that sends ∞ to ϵ and fixes 0. We have

P[γ disconnects z from ∞] = p(F -1 ϵ (z)),
where p(z) is defined in (2.2). Therefore

lim ϵ→0 ϵ 1-8 κ p(F -1 ϵ (z)) = Γ( 4 κ ) √ πΓ( 8-κ 2κ )( 8 κ -1) ( x 2 + y 2 y ) 1-8 κ (2.5)
So for fix z ∈ H, if we denote µ ϵ (z) the restriction of µ ϵ restricted to the curves that disconnect z from ∞, then by the above equation, we know that the limit

µ bub SLE(κ) (0, z) := lim ϵ→0 ϵ 1-8 κ µ ϵ (z)
exists and therefore we can define µ bub SLE(κ) (0) as the limit of µ bub SLE(κ) (0, z) as z tends to zero.

If κ = 8
3 , from (2.5), we get that the total mass of the SLE( 83 )-bubble that disconnects a given point z 2 which corresponds to the part (a) of proposition 3.1 in [START_REF] Beliaev | Some remarks on SLE bubbles and schramm's two-point observable[END_REF]. In fact, [START_REF] Beliaev | Some remarks on SLE bubbles and schramm's two-point observable[END_REF] also gives the measure of the SLE( 83 )-bubble that disconnects two points z, w ∈ H from ∞ which we will state as the following lemma.

= x + iy ∈ H is 1 4 ( y x 2 +y 2 ) 2 = 1 4 (Im 1 z )
Lemma 5 (see [START_REF] Beliaev | Some remarks on SLE bubbles and schramm's two-point observable[END_REF]). Let E(z, w) be the event that two points z, w ∈ H are disconnected from ∞ by a SLE( 83 ) curve from 0 to ϵ, then

µ ϵ [E(z, w)] = 1 4 Im ( 1 z )Im ( 1 w )G(σ(z, w))ϵ 2 + O(ϵ 3 ). (2.6)
where σ is defined as (1.4) and

G(t) = 1 -t 2 F 1 (1, 4 3 ; 5 3 
; 1 -t).

(2.7)

Here 2 F 1 is the hypergeometric function.

Notice that when κ = 8 3 , it holds that 1 -8 κ = -2. so we have

µ bub SLE (0)[E(z, w)] = 1 4 Im ( 1 z )Im ( 1 w ) = 1 4 yv (x 2 + y 2 )(u 2 + v 2 )
G(σ(z, w)). (2.8) SLE( 83 )-bubble measure is closely related to Brownian bubble, in fact they only differ by a constant. Given a loop γ such that γ(0) = γ(t γ ) = 0 and γ(0, t γ ) ⊂ H, call the complement of the unbounded connected component of H γ the hull enclosed by γ. In the following we will let γ denote both the loop and hull enclosed by it. Lemma 6 (see [START_REF] Lawler | Conformal restriction: the chordal case[END_REF]). As measures on the hulls enclosed by loops, the following holds:

µ bub H (0) = 8 5 µ bub SLE( 83 ) (0). Proof. By the construction of the Brownian bubble measure at 0 (see the Chapter 5 of Lawler's book [START_REF] Gregory | Conformally invariant processes in the plane[END_REF]), it is the unique measure on loops(or hulls enclosed by loops) in H rooted at 0 such that the total mass that the sample intersect |z| = r is 1 r 2 for any r > 0. Since

{ {γ : γ ∩ {|z| = r} = ∅} : r > 0 }
is a algebra that generate the σ-algebra of the space of loops, we only need to show that the total mass of the SLE( 83 )-bubble sample intersecting |z| = r is 5 8r 2 . Define F ϵ (z) = z ϵ-z , the imagine of the circle |z| = r under F ϵ is a circle with center c 0 = -r 2 r 2 -ϵ 2 and radius ρ = ϵr r 2 -ϵ 2 . Define the conformal map ϕ ϵ (z) = z -c 0 + ρ 2 z-c 0 which maps H B(c 0 , ρ) onto H with the derivative at ∞ equaling to 1. By the conformal restriction property of SLE( 83 ), we have

µ ϵ [γ ∩ |z| = r = ∅] = µ ∞ [γ ∩ B(c 0 , ρ) = ∅] = ϕ ′ ϵ (0) 5 8 .
Therefore we can check that

µ bub SLE(κ) (0)[γ ∩ {|z| = r} ̸ = ∅] = lim ϵ→0 1 ϵ 2 (1 -ϕ ′ ϵ (0)) 5 8 = 5 8r 2 .

Proof of the main theorem

In this section we will give a detailed proof of our main theorem.

Proof of the nicer form

Given two points z 0 = x 0 + iy 0 and w 0 = u 0 + iv 0 ∈ H. By the symmetry property of the the Brownian loop measure, we may assume without loss of generality y 0 ≤ v 0 , u 0 ≥ x 0 . By (2.3),

µ loop H [E(z 0 , w 0 )] = 1 π ∫ H µ bub Hy (x + iy)[E(z 0 , w 0 )]dxdy = 1 π ∫ y 0 0 ∫ R µ bub Hy (x + iy)[E(z 0 , w 0 )]dxdy.
Here E(z 0 , w 0 ) denotes the event that the Brownian loop sample in H disconnects both z 0 and w 0 from the boundary of H.

By the translation invariance of the Brownian bubble measure, we have

µ bub Hy (x + iy)[E(z 0 , w 0 )] = µ bub H (0)[E(z 0 -z, w 0 -z)].
By Lemma 6 we have µ bub H (0) = 8 5 µ bub SLE(κ) (0). Therefore by (2.8),

µ loop H [E(z 0 , w 0 )] = 8 5π ∫ y 0 0 ∫ R µ bub SLE(κ) (0)[E(z 0 -x -iy, w 0 -x -iy)]dxdy = 8 5π ∫ y 0 0 ∫ R 1 4 Im ( 1 z 0 -x -iy ) Im ( 1 w 0 -x -iy ) G(σ(z 0 -x -iy, w 0 -x -iy))dxdy. (3.1)
So in order to prove the theorem, we only need to compute above integral. Define two functions as follows:

f (x, y) := (y 0 -y)(v 0 -y) [(x 0 -x) 2 + (y 0 -y) 2 ] × [(u 0 -x) 2 + (v 0 -y) 2 ] . (3.2) g(y) := (x 0 -u 0 ) 2 + (y 0 -v 0 ) 2 (x 0 -u 0 ) 2 + (y 0 + v 0 -2y) 2 2 F 1 (1, 4 3 ; 5 3 
; 4(y 0 -y)(v 0 -y) (x 0 -u 0 ) 2 + (y 0 + v 0 -2y) 2 ). (3.3)
Lemma 7. Take the notations as above, for fixed y > 0,

∫ R f (x, y)dx = 2(y 0 -y) + v 0 -y 0 (x 0 -u 0 ) 2 + ( 2(y 0 -y) + v 0 -y 0 ) 2 π. (3.4)
Proof. For fixed y > 0, denote

a = y 0 -y, b = v 0 -y, c = u 0 -x 0 , d = v 0 -y 0 .
Then we have

f (x, y) = ab [(x 0 -x) 2 + a 2 ][(u 0 -x) 2 + b 2 ]
.

By standard calculus, ∫ R f (x, y)dx = ∫ R ab [(x 0 -x) 2 + a 2 ][(u 0 -x) 2 + b 2 ] dx =ab ∫ R 1 [x 2 + a 2 ][(x + c) 2 + b 2 ] dx = abπ ab ( a 4 -2a 2 (b 2 -c 2 ) + (b 2 + c 2 ) 2 ) ( b(b 2 + c 2 -a 2 ) arctan[ x a ] + a [ (a 2 + c 2 -b 2 ) arctan[ c + x b ] + bc log b 2 + (c + x) 2 a 2 + x 2 ] ) | ∞ -∞ =π b(b 2 + c 2 -a 2 ) + a(a 2 + c 2 -b 2 ) a 4 -2a 2 (b 2 -c 2 ) + (b 2 + c 2 ) 2 . Replace b by a + d, we get ∫ R f (x, y)dx = (2a + d)π c 2 + (2a + d) 2 ,
which is what we want.

By (3.1), we have

µ loop H [E(z 0 , w 0 )] = 8 5π ∫ y 0 0 ∫ R 1 4 f (x, y)(1 -g(y))dxdy = 8 5π ∫ y 0 0 π 4 2a + d c 2 + (2a + d) 2 [1 -g(y)]dy = 2 5 (A -B), (3.5) 
where

A = A(z 0 , w 0 ) = ∫ y 0 0 2(y 0 -y) + v 0 -y 0 (x 0 -u 0 ) 2 + ( 2(y 0 -y) + v 0 -y 0 ) 2 dy, (3.6) 
and

B = B(z 0 , w 0 ) = ∫ y 0 0 2(y 0 -y) + v 0 -y 0 (x 0 -u 0 ) 2 + ( 2(y 0 -y) + v 0 -y 0 ) 2 g(y)dy. (3.7) Lemma 8. A = 1 4 log 1 σ ,
where σ is defined as (1.4).

Proof. By (3.6) we have

A = ∫ y 0 0 2(y 0 -y) + d c 2 + (2(y 0 -y) + d) 2 dy = ∫ y 0 0 2y + d c 2 + (2y + d) 2 dy = 1 2 
∫ 2y 0 +d c d/c y 1 + y 2 dy = 1 4 log c 2 + (2y 0 + d) 2 c 2 + d 2 .
In the second equation we used the change of variable y → y 0 -y and in the last equation we used the change of variable y → 2y+d c . Notice that

c 2 + (2y 0 + d) 2 c 2 + d 2 = (u 0 -x 0 ) 2 + (y 0 + v 0 ) 2 (u 0 -x 0 ) 2 + (v 0 -y 0 ) 2 = 1 σ . Lemma 9. B = 1 4 (1 -σ) 3 F 2 (1, 4 3 , 1; 5 3 , 2; 1 -σ),
where σ is defined as (1.4).

Proof. By (3.7) and the definition of g(y), we have

B = ∫ y 0 0 2(y 0 -y) + d c 2 + (2(y 0 -y) + d) 2 • c 2 + d 2 c 2 + (2(y 0 -y) + d) 2 • 2 F 1 (1, 4 3 ; 5 3 ; 4(y 0 -y)((y 0 -y) + d) c 2 + (2(y 0 -y) + d) 2 )dy = ∫ y 0 0 2y + d c 2 + (2y + d) 2 • c 2 + d 2 c 2 + (2y + d) 2 • 2 F 1 (1, 4 3 ; 5 3 ; 4y(y + d) c 2 + (2y + d) 2 )dy = ∫ 2y 0 +d c d c cy c 2 + c 2 y 2 • c 2 + d c 2 + c 2 y 2 • 2 F 1 (1, 4 3 ; 5 3 
; 

c 2 y 2 -d 2 c 2 + c 2 y 2 ) • c 2 dy = 1 2 c 2 + d 2 c 2 ∫ 2y 0 +d c d c y (1 + y 2 ) 2 • 2 F 1 (1,
(y 0 + d) c 2 + (2y 0 + d) 2 • 3 F 2 (1, 4 3 , 1; 5 3 , 2; 4y 0 (y 0 + d) c 2 + (2y 0 + d) 2 ) = 1 4 (1 -σ) 3 F 2 (1, 4 3 , 1; 5 3 , 2; 1 -σ).
Here the second equation used the change of variable y → y 0 -y, the third equation used the change of variable y → 2y+d c , the fifth equation used the change of variable c 2 y 2 -d 2 c 2 +c 2 y 2 → y and the sixth equation used the equation about hypergeometric functions below:

∫ x 0 2 F 1 (a, b; c, y)dy = x 3 F 2 (a, b, 1; c, 2, x).
Now by (3.5) and Lemma 8 and Lemma 9 we get (1.3).

Proof of Cardy's formula

In this section we will prove the equivalence of formula (1.1) and (1.3). First we will recall some identities for the hypergeometric functions which will be used in our proof. We will assume that our hypergeometric functions are all well defined. And they satisfies the following identities (see Chapter 8 of [START_REF] Beals | Special functions: a graduate text[END_REF]):

2 F 1 (a, b; c; x) = (1 -x) -b 2 F 1 (c -a, b; c; x x -1
).

(3.8)

2 F 1 (a, b; c; x) = Γ(c)Γ(c -a -b) Γ(c -a)Γ(c -b) 2 F 1 (a, b; a + b + 1 -c; 1 -x) + Γ(c)Γ(a + b -c) Γ(a)Γ(b) (1 -x) c-a-b 2 F 1 (c -a, c -b; c + 1 -a -b; 1 -x). (3.9) 2 F 1 (a, b; c; x) = (1 -x) c-a-b 2 F 1 (c -a, c -b; c; x). ( 3.10) 
Notice that η = σ σ-1 and σ ∈ (0, 1). We define a function ϕ on [0, 1] as following. ). (3.11) To prove that (1.1) and (1.3) are equivalent, we only need to show that ϕ(t) ≡ 0. Notice that ϕ(0) = 2π √ 3 -3 F 2 (1, 4 3 , 1; 5 3 , 2; 1) = 0, it is left to show that ϕ ′ (t) ≡ 0. Take the following notations. ).

ϕ(t) = 2π √ 3 + t t -1 3 F 2 (1, 4 
I(t) := t t -1 3 F 2 (1, 4 
above lemma and the definition of the Brownian bubble measure and lemma 6, we can get

µ bub H (0)(E 1 (z, w)) = 1 10 [( y x 2 + y 2 ) 2 - y x 2 + y 2 v u 2 + v 2 G(σ(z, w))]. µ bub H (0)(E 2 (z, w)) = 1 10 [( v u 2 + v 2 ) 2 - y x 2 + y 2 v u 2 + v 2 G(σ(z, w))].
µ bub H (0)(E 3 (z, w)) = ∞. By relation (2.3) and calculating the integral on the upper half plane, we can see that the total mass of the Brownian loop measure on these three sets are infinite. In fact, we can see intuitively that these three cases all contain the loops with arbitrary small diameter, while the event E(z, w) in the main theorem exclude these small loops.

c 2 y 2 -d 2 c 2 + c 2 y 2
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Define f (x) = x 3 F 2 (1, 4 3 , 1; 5 3 , 2; x). It is easy to check that

; x).

So

; t).

(3.12)

The last equation follows from (3.8) by assigning

; 1 -t).

By letting a = 1 3 , b = 2 3 , c = 1 3 in (3.10), the following holds

Lastly we deal with the derivative of K(t) with respect to t. By letting

; t).

Consequently,

And

Combining (3.12),(3.13) and (3.14), we have

; t).

Lemma 10.

; t) = 0.

Proof. By definition we have

3 )Γ( 53 ) Γ( 43 )Γ(n + 5 3 )

Therefore

3 )Γ( 53 ) Γ( 43 )Γ(n + 2 3 )

3 )Γ( 53 ) Γ( 13 )Γ(n + 5 3 )

By using the relation Γ(x + 1) = xΓ(x), we can see that the coefficient of t n in the sum is Γ(n + 1 3 )Γ( 53 ) Γ( 43 )Γ(n + 2 3 )

3 )Γ( 53 ) Γ( 43 )Γ(n + 5 3 )

From Lemma 10, we have ϕ ′ (t) ≡ 0, and therefore ϕ ≡ ϕ(0) = 0. This completes the proof of the equivalence between (1.1) and (1.3).

The other cases

Given z, w ∈ H, and γ the sample of the Brownian loop in the upper half plane. According to the property of Brownian path, almost surely, z, w ̸ ∈ γ. So except the case that γ disconnects both z and w from the boundary, there are three other cases:

(1) γ disconnects z from the boundary but does not disconnect w from the boundary;

(2) γ disconnects w from the boundary but does not disconnect z from the boundary;

(3) γ does neither disconnects z from the boundary nor disconnects w from the boundary.

We will show that the total measure of above three cases are infinite. In fact, using the same method as [START_REF] Beliaev | Some remarks on SLE bubbles and schramm's two-point observable[END_REF], we can show the following lemma.

Lemma 11. Suppose that γ is the sample of the SLE( 83 ) from 0 to ϵ and denote above three cases by E 1 (z, w), E 2 (z, w) and E 3 (z, w) respectively. Then

3)

The proof of this lemma is the same as in [START_REF] Beliaev | Some remarks on SLE bubbles and schramm's two-point observable[END_REF]. We only need to prove that for SLE( 83 ) γ from 0 to ∞, the following holds. P[γ passes the left of z and the right of w] where G(σ) is the same as (2.7). Then using the conformal map F ϵ (z) = ϵz 1+z to convert the SLE( 83 ) from 0 to ∞ into the SLE( 83 ) from 0 to ϵ. Combing