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Abstract. Grain fragmentation is simulated by means of a three-dimensional discrete element approach called
bonded-cell method (BCM). In this method, grains and potential fragments may have any polyhedral shape and
size, capturing the geometrical complexity of brittle grain failure. As an application of this method, we present
the uniaxial compaction of samples composed of several grains and we analyse the load-density relations, the
grain size evolution, and the failure mechanism within the grains. This numerical approach permitted us to
analyse the effect of the grains internal strength on the macroscopic compaction behaviour and to study the
evolution of the grain size distribution towards a power-law distribution as several experiments have shown in
literature. Finally, we present a brief micro-mechanical analysis on the failure modes within the grains, letting
us know the kind of stresses that prompts grain fragmentation.

1 Introduction

Fragmentation of brittle grains has major effects on the
compressive and shear strength of granular materials [1,
2], packing fraction [10], the yielding surface [11], grain
size distribution [8], etc. Most of these observations have
been conducted or analysed through experimental or em-
pirical approaches and, together with the concepts of frac-
ture mechanics, they provide a remarkable insight into the
behaviour of breakable grains.

Nevertheless, the simulation of grain fragmentation re-
mains still a challenge. Several models have been pro-
posed to deal with fragmentation in the framework of con-
tinuum or discrete element methods (some examples can
be found in Ref. [4] and Refs. [5, 15], respectively).
These numerical methods contain, the most of the times,
two main ingredients: the failure criterion and the geom-
etry evolution. They define the stress level to split a grain
apart and the shape of fragments. Due to the rapid evolu-
tion of grain geometry and grain size distribution during
any fragmentation event, the computational cost of these
models may be very important. Then, very simplified
models have been, up to now, the way to tackle this phe-
nomenon. For instance, the clustering of discs or spheres,
in 2D and 3D simulations respectively, are the most com-
mon techniques to deal with grain failure. However, the
shape complexity of grains and fragments is needed to
properly map the macroscopic response from the grain
scale interactions. For this reason, and inspired by the
two-dimensional strategy of Nguyen et al. [12], we have
introduced a three-dimensional discrete element approach
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to simulate fragmentation [3]. In this model, each grain
is composed of a set of potential fragments, also known
as cells, bonded with a couple of mechanical constrains or
bonding strengths. When the intercell forces reach such
strengths, the grains are allowed to fail in arbitrary shapes
as their interactions and external loads may determine it.

This article is organized as follows: In Section 2, we
briefly present the numerical model for grain fragmenta-
tion and the numerical procedure to perform uniaxial com-
pressions on assemblies of grains. In Section 3, we present
some results on the behaviour of such assemblies concern-
ing the load-density relations, the grain size evolution, and
the failure mechanism within the grains. Finally, we dis-
cuss the current results and potential perspectives of this
work.

2 Numerical experiments

The discrete element approach that we use to simu-
late grain fragmentation is known as bonded-cell method
(BCM) [3, 12]. As an application of the BCM, we per-
formed uniaxial compression tests on assemblies of crush-
able grains. This kind of test was chosen given its sim-
plicity and its well-known macroscopic response. In the
two following Subsections, we briefly present the BCM-
3D and the numerical procedures to perform the compres-
sion tests.

2.1 Bonded-Cell Method in 3D

This numerical method is based on the subdivision of
grains in a set of potential fragments or cells. These frag-



Figure 1. Exploded view of a convex grain composed of 3 cells.

ments are obtained after a Voronoi tessellation of the orig-
inal grain. By changing the number of generators in the
tessellation, it is possible to control the number of poten-
tial fragments (n). Also, it is possible to modify the ge-
ometry of fragments by controlling the dislocation of the
centroid of the cells with respect to the position of its cor-
responding generator [6]. A weighting of such dislocation
for all the cells within a grain let us define a geometri-
cal degree of disorder (1) that may vary between 0 and 1.
When A tends to 0, the cells have almost-regular shapes
and they are well distributed within the grain. As A in-
creases, the cells may have elongated shapes and varying
sizes. Figure 1 shows an example of a grain with 3 cells
highlighting the way it is composed in an exploded view.
The intercell bond is determined by two parameters: a ten-
sile strength (C;) acting in the normal contact direction,
and a shear strength (C;) present in the tangential contact
direction. Once the forces between two cells reach either
C;-S orCy- S, with § equals to the contact area, the bond
is permanently lost (i.e., a fissure is created along the inter-
cell contact surface). These broken surfaces will behave,
in case of a new interaction with other cells, as dry sur-
faces with a coeflicient of friction y. It has been shown
that parameters n. and A can modify the strength of in-
dividual grains under diametral compression. However, it
is the intercell strength that mainly controls the compres-
sive behaviour of individual grains [3]. For the following
numerical experiments, and for the sake of simplicity, we
fixed ng = 10,1 =0.25 and u = 0.4.

We used the discrete element method known as con-
tact dynamics for our simulations, in which the equation
of motion is integrated in an implicit time stepping scheme
and the cells are considered as rigid bodies [13]. In effect,
overlapping between bodies do not represent the contact
deformations and only are taken into account during the
contact detection. In addition, the cells velocities and con-
tact forces are computed by means of a Gauss-Seidel it-
erative algorithm as function of the external loads and the
rigid bodies interactions.

2.2 Compression tests

Assemblies of crushable grains were built by depositing
polyhedral grains into cubic boxes. The assemblies were
composed of 1000 grains, and each grain had 10 cells. For
each sample, the intercell bonding strength varied between

(d)

Figure 2. Front view of a sample composed of 1000 grains as the
applied vertical stress increases from (a) o, = 0, to (b) o, = 2C,.
The frontal wall was removed for the visualization.

0.1 and 10 MPa. Then, with the aim of having dense sam-
ples, isotropic compressions were carried out keeping in
mind that the imposed stresses were light enough to pre-
vent fragmentation during this test stage. Finally, uniaxial
compression tests were undertaken on each assembly.

Figure 2 shows screenshots of a sample as the verti-
cal load o7, is increased. In this figure, it is possible to
identify grains that are being fragmented as well as others
that remain intact throughout the compaction. In general,
grains transmitting an important part of the vertical load
are more susceptible to break while grains outside such
force networks are barely affected.

3 Results

In this section, we present some results concerning the
relation between the external load and the sample den-
sity, the grain size evolution, and the fragmentation mode
within the grains. The first two parameters mentioned
above are measures at the sample scale, and they are usu-
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Figure 3. Evolution of the void ratio as function of the normal-
ized vertical load for samples presenting different intercell bond-
ing strength 7.

ally found in experimental testing. The fragmentation
mode is, instead, a measure at the grain scale and it de-
scribes the type of stresses that are causing the loss of
bonds between cells.

3.1 Load vs density

In our experiments, the sample density is analysed through
the void ratio (e) that is the parameter relating the volume
of voids in the sample (V,) and the volume of grains (V)
(e = V,/V,). As the vertical stress increases, the volume
of the container is reduced and the void ratio should de-
crease as well. Figure 3 shows the evolution of e as the
ratio o, /o, increases (i.e., the imposed stress normalized
by a stress of reference o, = 1 MPa). For the sake of sim-
plicity, and given that C, and C,, were increased simultane-
ously in different tests, let us simplify the notation as fol-
lows: C; = C,, = n. Two different regimes during the com-
paction can be differentiated. The first one corresponds to
that where the volume is slowly reduced as the load starts
to increase. During the second stage, the void ratio de-
creases more rapidly. The transition between these two
regimes is affected in particular by the intercell strength.
Even if this effect seems to be relatively small, when com-
pared with the general behaviour during the compaction,
it evidences the increase of energy per unit of volume that
is being stored in the intact bonds. We could also observe
that fragmentation occurs since the beginning of the load-
ing and it does not stop till the end of the second regime.
At that point, not all the bonds are broken but the dense ar-
rangement of grains prevents more fragmentation events.

3.2 Grain size evolution

Figure 4 shows the evolution of the grain size distribution
(i.e., the cumulative probability & of having a grain of di-
ameter d), for the sample with = 1 MPa, as function of
the measured vertical strain. As it can be observed, the
sample starts as a mono-disperse assembly of grains. Dif-
ferent grain size distributions are presented for 4 values of
vertical strain (&) during the compaction. As indicated
in the Figure, the dashed line corresponds to a power-law
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Figure 4. Evolution of the grain size distribution for 5 differ-
ent instants during the compaction. The dashed line corresponds
to the ultimate grain size distribution repetitively found in lit-
erature. Such distribution has a power-law shape of the form
h*(d) = (d/dpax)*~®, with @ = 2.6.
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Figure 5. Evolution of the fragmentation index as function of
the vertical strain for one of the samples tested.

distribution, being dm.x the maximum particle size in the
sample, and @ = 2.6. This exponent o has been repet-
itively found in experiments where granular samples un-
dergo large shear deformations [14]. Regardless of the
fact that in our model fragmentation events are constrained
by the size of the smallest cell and the available space
between grains, the grain size distribution tends partially
to such power distribution. These grain size distributions
may be compared by means of a fragmentation index B,
[7, 8], that can be calculated as follows:

[ (ho(d) = h(d))dd
B, = o , (1)
L (ho(d) ~ e (d))dd

where hy is the grain size distribution at the beginning of
the simulation. Figure 5 shows the evolution of B, as func-
tion of the vertical strain. It indicates that, in the case of
uni-axial compression tests, the fragmentation reaches at
most 50% of the potential fragmentation /#*(d) for this ma-
terial . Nevertheless, we can observe the grain size dis-
tribution will hardly evolve further than such distribution
shown in Fig. 4 for g, = 0.18. Then, the potential grain
size distribution should be indeed revised to have a better
evaluation of grain fragmentation during uni-axial com-
pression tests.
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Figure 6. Intercell failure mode classification in contacts lost by
tensile (/;) or shear (/) stresses normalized by the initial number
of bonds N, .

3.3 Fragmentation mode

By means of our discrete element approach, we were
able to identify the bonds that are lost by tensile or shear
stresses. Figure 6 shows the number of bonds lost either
in traction /; or shear /; modes normalized by the initial
number of bonds (Np,), as function of the external load
o, for the samples with 7 = 1 MPa. In this figure, we can
remark that most of the bonds are lost by shear stresses.
We could determine that tensile failures are rare as the
load increases, and they are usually consequence of pre-
vious shear failures that push apart other cells by induced
indirect traction. Also, the increase of grain coordination
(average number of contacts per grains), reduces the prob-
ability of having cells that fail in the tensile mode.

4 Discussion and perspectives

We have implemented a three-dimensional model to grain
fragmentation known as bonded-cell method (BCM),
based on the bonding of a grain potential fragments or
cells. With this approach, the fragmentation events are
function of the external loads and interaction between
the grains, and it allows fragments to evolve into diverse
shapes and sizes. We analysed the behaviour of assem-
blies of particles under uni-axial compression. In particu-
lar, we studied the load-density relations, the evolution of
the grain size distribution, and the type of stresses within
the grains that are causing failure. Our results are in very
good agreement with experimental testing performed in
soil and rock mechanics. For instance, this work presented
the evolution of density as the vertical load increases. It let
us observe how the grain size of fragments evolves towards
a well-known power-law distribution, as well as we could
identify the roll of the intercell strength on the energy stor-
age within intact the bonds. Finally, we showed that shear
failure is the principal mechanism of fragmentation in uni-
axial compression tests. This discrete element approach
permits to clearly map the macroscopic behaviour from
the grain and contacts scale, making our 3D bonded-cell
method an outstanding framework to study crushable ma-
terials. Future works with the BCM-3D will include the
study of the shape variability of fragments, the evolution

of number of contacts per fragment, and analysis on the
consumption of energy as fragmentation occur.
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