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Abstract. By means of two dimensional contact dynamics simulations, we analyzed the effect of the particle

size distribution (PSD) on the shear strength of granular materials composed of un-breakable disks. We mod-

elled PSDs with a normalized beta function, which allows for building S-shaped gradation curves, such as those

that typically occur in soils. We systematically controlled and varied the size span and the shape of the PSD, and

found that the shear strength is independent both characteristics. This implies that PSD modification procedures

such as material scalping (i.e., removing the smallest and/or largest particles in the sample) should not affect

significantly the shear strength of the material composed of unbreakable discs. In order to explore the origins

of the invariance of the shear strength with PSD, we analyzed the connectivity, force transmission, and friction

mobilization in terms of anisotropies, finding that the constant shear strength is due to a subtle compensation of

anisotropies.

1 Introduction

The study of the mechanical behavior of mine wastes con-

taining particles of metric order is a challenging task be-

cause commercial testing devices can only accommodate

samples composed of particles a few centimeters in di-

mension. The construction of larger devices for labora-

tory testing is not economical. To overcome the equip-

ment size limitations, testing of coarse material is con-

ducted on samples prepared by convenient modification of

the particle size distribution (PSD). Parallel scaling (i.e.,

reducing the particles’ size while keeping the PSD shape

constant) or material scalping (i.e., removing the small-

est and/or largest particles) are some of the technics used

to prepare samples for laboratory testing [1]. The tested

sample may thus differ from the prototype in both the size

of the particles and the form of the PSD.

Sample preparation procedures such as parallel scal-

ing or material scalping are widely used in engineering

practice. However, when and how these procedures af-

fect the material’s mechanical response (e.g., the shear

strength) remains an open question. Important elements

to be considered for tackling this question are: (i) the rela-

tion between particle size and fragmentation probability;

(ii) the link between PSD, packing fraction, and connec-

tivity; and (iii) the evolution of particle’s shape and inter-

action’s forces with particle size.

⋆e-mail: emilien.azema@umontpellier.fr
⋆⋆e-mail: slinero@srk.com.au
⋆⋆⋆e-mail: n.estrada22@uniandes.edu.co
⋆⋆⋆⋆e-mail: alizcano@srk.com

A possible strategy for studying this problem the-

oretically is to analyze simplified systems (e.g., two-

dimensional systems, comprised of circular and un-

breakable grains, with simple interaction laws such as

Coulomb friction). This allows for singling out the effects

of the PSD while leaving out the “noise” of other impor-

tant factors. Discrete element methods are well suited for

this type of simulations. Recently, this strategy has been

used successfully to analyze the effect of the PSD on pack-

ing fraction and shear strength (see Refs. [2–6]), focus-

ing on the comparison between bi-disperse and continu-

ous PSDs, as well as on uniform distributions by volume

fraction. Works exploring the effect of the PSD shape by

means of discrete element simulations are rare (see Refs.

[7, 8]).

The main objective of this work was to analyze the

effect of the particle size distribution (PSD) on the shear

strength of granular materials composed of unbreakable

disks. We build different PSDs using a normalized beta

function, which allows for building S-shaped gradation

curves, such as those that typically occur in soils. We

varied two parameters independently over a broad para-

metric space, controlling both the size span and the shape

of the PSD. We found that the shear strength is invariant

with both the size span and the shape of the PSD. From

a micromechanical viewpoint, we show that the shear

strength remains constant for different PSDs thanks to a

subtle compensation of anisotropies, specifically, contact

and branch length anisotropies. The results support several



hypotheses proposed recently and extend their validity to

a larger family of PSDs.

2 Numerical procedures

The size span of the PSDs is defined by:

s = (dmax − dmin)/(dmax + dmin), (1)

where dmax and dmin are the minimum and maximum par-

ticle diameters, respectively; s = 0 corresponds to a

monodisperse packing whereas s = 1 corresponds to an

infinitely large polydispersity.

A β-function was use to model the shape of the PSDs.

It is defined by:

β(x) =
1

B(a, b)

∫ x

0

ta−1(1 − t)b−1dt, (2)

where, a > 0 and b > 0 are the parameters of the distribu-

tion and B(a, b) = Γ(a)Γ/Γ(a + b), where Γ is the Gamma

function. The PSD can then be described using the cumu-

late distribution function h(d) (also called grading curve in

industrial contexts), given by

h(d) = β[x = dr(d); a, b], (3)

where dr(d) = (d − dmin)/(dmax − dmin) is the the reduced

diameter. As shown by Voivret et al. in Ref. [9], this

model allows for controlling both the size span and the

shape of the PSD, including reference distributions such

as monodisperse, power law, and S-shaped PSD curves.

In our simulations, dmax was 0.15 m and the size span was

varied in the range s ∈ [0.2, 0.4, 0.6, 0.8, 0.9].

In order to generate a set of particle diameters follow-

ing a given distribution, the range dmax − dmin was divided

into Nc classes. Within each class, a uniform distribution

by volume (area) of grains was considered. By construc-

tion, the number of particles increased with b, thus Nc and

the total number of particles Np were chosen in order to:

(i) obtain a good fit with the theoretical curve and (ii) ob-

tain a “reasonable” sample size, in terms of the number

of particles. In the simulations presented here, the param-

eter a was fixed to 1 and the parameter b varied from 1

(a uniform distribution by volume fraction) to 5 (S-shaped

gradation with a pronounced curvature). The total number

of particles increased from 10, 000 for b = 1 to ∼ 70, 000

for b = 5. Figure 1 shows the theoretical PSDs, i.e., Eq.3,

as well as the PSD of the simulated samples (points), for

several combinations of s and b.

The simulations used the contact dynamics (CD)

method [10], which assumes perfectly rigid particles in-

teracting through mutual exclusion and Coulomb friction.

We used the code LMGC90 which is a multipurpose soft-

ware developed in the University of Montpellier, capable

of modeling a collection of deformable or undeformable

particles of various shapes by different algorithms. In each

simulation, the particles were first compacted by isotropic

compression inside a box. The gravity was set to 0. The

friction coefficients between particles was set to µ = 0.4.

The friction coefficient between the particles and the walls
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Figure 1. Theoretical and simulated particle size distributions

for several combinations of parameters s and b.

Figure 2. Zoom for (s = 0.2, b = 1)(a), (s = 0.2, b = 5)(b),

(s = 0.9, b = 1)(c) and (s = 0.9, b = 5)(d) at the end of the

isotropic compression. Floating particles (i.e., particles with one

or no contacts) are shown in white.

was set to µw = 0, in order to obtain homogeneous and

isotropic particles packing. Figure 2 shows zooms of the

packings obtained for four different values of s and b at the

end of isotropic compaction. Small crystalized regions can

be observed for small values of s, which happens because

most of the particles have the same diameter. In contrast,

disorder increases with s.

The samples were then sheared in a biaxial configura-

tion. A downward velocity vy was imposed on the upper

wall while keeping a constant confining stress on the lat-

eral walls. The strain rate vy/H was low, so that the test

can be considered as quasi-static.

3 Macroscopic shear strength

The stress tensor σ can be evaluated from the simula-

tion data as an average over all the contacts of the dyadic

product of the contact force fc and the branch vector ℓc:

σαβ = nc〈 f
c
αℓ

c
β
〉c [10], where nc is the number density of

contacts c and the average 〈...〉c runs over all contacts in

a control volume. In 2D, we define the stress deviator as

q = (σ1 − σ2)/2 and the mean stress as p = (σ1 + σ2)/2,

where σ1,2 are the principal stresses. The stress state is
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Figure 3. Shear strength (q/p)∗ in the steady state as function of

s, for all values of b.
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Figure 4. Maps of normal forces in a portion of the sample for

(s = 0.2, b = 5)(a) and (s = 0.9, b = 5)(b) after a large shear

strain. Line thickness is proportional to the normal force.

described by the mean stress p and the normalized shear

stress q/p [11]. During shear, q/p increased initially to a

peak value and then decreased to a nearly constant value

(q/p)∗, which we used to characterize the material’s shear

strength in the steady state.

Figure 3 shows the evolution of (q/p)∗ as a function of

s, for all values of b. It can be seen that, regardless of b,

the shear strength is almost independent of s and close to

0.28. This has been previously observed for samples com-

posed of circular [12] and polygonal [6] particles with a

uniform distribution by volume fraction. Our results ex-

tend this counterintuitive observation to the family of S-

shaped PSDs described by Eq. 3.

4 Anisotropies of the contact and force

network

The shear strength of dry granular materials is generally

attributed to the buildup of an anisotropic structure during

shear due to friction between the particles and as a result

of steric effects depending on particle shape [13].This is

well illustrated in Fig. 4, which shows two maps of nor-

mal forces in a portion of the sample for (s, b) = (0.2, 5)

and (s, b) = (0.9, 5) after a large shear strain. The con-

tact forces are represented by segments joining the particle

centers, whose thickness is proportional to the force mag-

nitude. Visual inspection reveals that the connectivity of

the contact network varies drastically with s in terms of

both the mean number of contacts per particle (i.e., coor-

dination number) and the contacts’ orientation and length.

A way to capture this microstructure is to consider

the probability distribution P(n) of the contact normals n,

which is generically nonuniform. In two dimensions, the

unit vector n is described by a single angle θ, the orienta-

tion of the contact normal. The probability density func-

tion P(θ) of contact normals provides detailed statistical

information about the fabric. It is π-periodic in the ab-

sence of an intrinsic polarity for n. At the lowest order, we

have [14, 15]

P(θ) = {1 + ac cos 2(θ − θσ)}/2π, (4)

where θσ is the major principal stress direction (θσ = π/2),

and ac is the contact anisotropy.

This description of the granular microstructure can be

enriched by considering also the angular average of nor-

mal branch length and forces:



















〈ℓn〉(θ) = 〈ℓ〉{1 + aℓn cos 2(θ − θσ)}

〈 fn〉(θ) = 〈 fn〉{1 + a f n cos 2(θ − θσ)}

〈 ft〉(θ) = 〈 fn〉a f t sin 2(θ − θσ),

(5)

where 〈 fn〉 and 〈ℓ〉 are the mean force and the mean branch

length, and aln, a f n, and a f t the branch length, normal

force and tangential forces anisotropies.

The anisotropies ac, aℓn, a f n, and a f t are interesting

descriptors of the granular microstructure and force trans-

mission properties, because they underlie the different mi-

croscopic origins of shear strength. The general expres-

sion of the stress tensor leads to the following simple

relation[14, 15]:

q

p
≃

1

2
(ac + aln + a f n + a f t). (6)

This expression is very useful, since it allows for de-

scribing the shear strength as the addition of several mi-

crostructural anisotropies. It is worth noting that the shear

strength can be understood as the material’s ability to bear

anisotropic stress.

Figure 5(a) shows the evolution of ac and aℓn as func-

tions of s, for all values of b. For small values of b (i.e.,

b = 1 and 2), it can be seen that ac decreases with s, in-

dicating that the anisotropy of the contact network is de-

creasing. This happens because, as s increases, the coor-

dination number also increases, and the particles are sur-

rounded by an increasing number of contacts. On the other

side, it can be seen that aℓn increases with s, indicating that

the branch lengths of the contacts that are oriented along

the principal stress direction tend to be longer. These re-

sults show that the shear strength remains constant due to

a compensation of anisotropies: the contact network be-

comes less anisotropic but the force chains along the prin-

cipal stress direction tend to be captured by the larger par-

ticles. Lastly, for large values of b (i.e., b = 4 and 5), both

ac and aℓn remain approximately constant with s and b.

Figure 5(b) shows the evolution of a f n and a f t as func-

tions of s for all values of b. In contrast to contact and

branch length anisotropies, it can be seen that a f n and a f t

are approximately constant with s and b. This means that

the anisotropy of force chains as well as the degree of fric-

tion mobilization are not affected by changing the PSD.



ac

aℓ

(a)

afn

aft

(b)

Figure 5. (a) Contact and branch length anisotropies, ac and aℓn
respectively, and (b) Normal and tangential force anisotropies,

a f n and a f t respectively, all averaged in the steady state, as func-

tions of s, for all values of b.

5 Conclusions

We investigated the joint effect of the size span and shape

of the particle size distribution (PSD) on the shear strength

of packings composed of unbreakable disks, by means of

contact dynamics simulations. For this, we independently

varied the size span and shape of the distribution across

a broad parametric space, and investigated the microme-

chanical origin of the shear strength for each simulated

PSD.

On the first hand, we showed that the shear strength

is independent of both the size span and the shape of the

PSD. This has already been observed, also by means of

discrete element simulations, for samples with uniform

distributions by volume fraction [6, 12]. In these cases,

only the PSD size span was varied in samples with uni-

form distributions by volume fraction. Our results extend

the validity of this result by showing that the shear strength

is invariant, not only with the size span, but also with the

shape of the PSD, at least for those shapes that can be de-

scribed by Eq. 3. These findings are in agreement with

those reported recently in [8] for particle distributions de-

scribed by a power law.

On the second hand, we investigated the origins of the

shear strength by analyzing the contact, branch length, and

force anisotropies. It was shown that the shear strength re-

mains constant due to a compensation between the contact

and branch length anisotropies, while force anisotropy and

friction mobilization remain constant. As shown previ-

ously [6, 12], these results confirm that, as the size span of

the PSD increases, the system is more and more connected

and larger forces tend to be captured by larger particles.
The results suggest that the differences observed on the

laboratory, in the mechanical response of prototype soil

samples and its scaled representations, can be attributed to

factors other than the PSD changes introduced with the

scaling procedure. It should be noted that this investi-

gation considers that particle characteristics (e.g., shape,

strength, and interaction laws) do not depend on particle

size. In real materials, several important characteristics,

such as grain fragmentation probability, grain shape, and

interaction forces, depend notably on particle size. As

a consequence, modifying the PSD of a real soil change

also the nature of the particles that compose the sample,

which can provoke appreciable changes in the mechanical

response of the granular system.
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