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Locally stationary Hawkes processes have been introduced in order to generalise classical Hawkes processes away from stationarity by allowing for a time-varying second-order structure. This class of self-exciting point processes has recently attracted a lot of interest in applications in the life sciences (seismology, genomics, neuro-science,...), but also in the modeling of high-frequency financial data. In this contribution we provide a fully developed nonparametric estimation theory of both local mean density and local Bartlett spectra of a locally stationary Hawkes process. In particular we apply our kernel estimation of the spectrum localised both in time and frequency to two data sets of transaction times revealing pertinent features in the data that had not been made visible by classical non-localised approaches based on models with constant fertility functions over time.

Introduction

Many recent time series data modelling and analysis problems increasingly face the challenge of occurring time-variations of the underlying probabilistic structure (mean, variance-covariance, spectral structure,....). This is due to the availability of larger and larger data stretches which can hardly any longer be described by stationary models. Mathematical statisticians (Dahlhaus (1996b), [START_REF] Zhou | Local linear quantile estimation for non-stationary time series[END_REF], [START_REF] Birr | Quantile spectral analysis for locally stationary time series[END_REF], among others) have contributed with time-localised estimation approaches for many of these time series data based on rigorous models of locally stationary approximations to the non-stationary data. Often it has been only via these theoretical studies that wellmotivated and fully understood time-dependent estimation methods could be developed which correctly adapt to the degree of deviation of the underlying data from a stationary situation (e.g. via the modelling of either a slow -or in contrast a rather abruptchange of the probabilistic structure over time). For many of these situations, the development of an asymptotic theory of doubly-indexed stochastic processes has proven to be useful: the underlying data stretch is considered to be part of a family of processes which asymptotically approaches a limiting process which locally shows all the characteristics of a stationary process (hence "the locally stationary approximation"). Accompanying estimators ought to adapt to this behavior, e.g. by introduction of local bandwidths in time. Many of these aforementioned approaches have been achieved in the context of classical real-valued series in discrete time, e.g. for (linear) time series via time-varying MA(∞) representations which apply for a large class of models (see, e.g., [START_REF] Dahlhaus | A likelihood approximation for locally stationary processes[END_REF]). Once those are available, the development of a rigorous asymptotic estimation theory is achievable.

This approach, however, is not directly applicable to the model of locally stationary Hawkes processes, a class of self-exciting point processes introduced in [START_REF] Roueff | Locally stationary Hawkes processes[END_REF] with not only time-varying baseline intensity (such as in [START_REF] Chen | Inference for a non-stationary self-exciting point process with an application in ulta-high frequency financial data modeling[END_REF]) but also time-varying fertility function. The fertility function describes the iterative probabilistic mechanism for Hawkes processes to generate offsprings from each occurrence governed by a conditional Poisson point process, given all previous generations. Often, a fertility function p(t) with exponential decay over time t is assumed. The condition p < 1 ensures a non-explosive accumulation of consecutive populations of the underlying process. When this fertility function is made varying over time through a second argument, one can still rely on the point process mechanism to derive locally stationary approximations.

In this paper we treat estimation of the first and second order structure of locally stationary Hawkes processes on the real line, with a (time-dependent) fertility function p(•; t) assumed to be causal, i.e. supported on R + . Whereas for estimating the local mean density of the process it is sufficient to introduce a localisation via a short window (kernel) in time, for estimating the second-order structure, i.e. the local Bartlett spectrum of the process, one needs to localise both in time and frequency: this time-frequency analysis will be provided via a pair of kernels which concentrate around a given point (t, ω) in the time-frequency plane. Using an appropriate choice of bandwidths in time and in frequency which tend to zero with rates calibrated to minimize the asymptotic meansquare error between the time-frequency estimator and the true underlying local Bartlett spectrum, one can show consisteny of our estimator of the latter one. Note that the use of kernels for non-parametric estimation with counting process is not new. To the best of our knowledge this was introduced first by Ramlau- [START_REF] Ramlau-Hansen | Smoothing counting process intensities by means of kernel functions[END_REF] for estimating regression point process models such as those introduced in [START_REF] Aalen | Statistical inference for a family of counting processes[END_REF], see also [START_REF] Andersen | Counting process models for life history data: A review [with discussion and reply[END_REF] for a general account on the estimation of such processes.

Self exciting point processes have been recently used for modelling point processes resulting from high frequency financial data such as price jump instants (see e.g. [START_REF] Bacry | Modelling microstructure noise with mutually exciting point processes[END_REF]) or limit order book events (see e.g. [START_REF] Zheng | Modelling bid and ask prices using constrained Hawkes processes: Ergodicity and scaling limit[END_REF]). In this paper we will illustrate our time frequency analysis approach for point processes on transaction times of two assets (which are Essilor International SA and Total SA).

The rest of the paper is organised as follows. In Section 2, we introduce all necessary preparatory material to develop our estimation theory, including the definition of the population quantities, i.e. local mean density and local Bartlett spectra that we wish to estimate. Section 3 defines our kernel estimators and treats asymptotic bias and variance developments of those under regularity assumptions to be given beforehand. Although these developments are far from being direct and straightforward, the resulting rates of convergence are completely intuitive from a usual nonparametric time-frequency estimation point of view. Section 4 presents the analysis of our transaction data sets leading to interesting observations that have not previously been revealed by a classical analysis with time-constant fertility functions. In Section 5, we present, as a result of independent interest in its own, the necessary new techniques of directly controlling moments of non-stationary Hawkes processes. All proofs are deferred to the Appendix.

Preparatory material

In this preparatory section we prepare the ground for developing the presentation of our asymptotic estimation theory of local Bartlett spectra. We do this by introducing a list of useful conventions and definitions, as well as recalling the main concepts and results of [START_REF] Roueff | Locally stationary Hawkes processes[END_REF] in as much as they are necessary.

Conventions and notation

We here set some general conventions and notation adopted all along the paper. Additional ones are introduced in relation with the main assumptions in Section 3.1. A point process is identified with a random measure with discrete support, N = k δ t k typically, where δ t is the Dirac measure at point t and {t k } the corresponding (locally finite) random set of points. We use the notation µ(g) for a measure µ and a function g to express g dµ when convenient. In particular, for a measurable set A, µ(A) = µ(½ A ) and for a point process N , N (g) = k g(t k ). The shift operator of lag t is denoted by S t . For a set A, S t (A) = {x -t, x ∈ A} and for a function g, S t (g) = g(• + t), so that S t (½ A ) = ½ S t (A) . One can then compose a measure µ with S t , yielding for a function g, µ

• S t (g) = µ(g(• + t).
We also need some notation for the functional norms which we deal with in this work. Usual L p -norms are denoted by |h| p ,

|h| p = |h| p 1/p , for p ∈ [1, ∞) and |h| ∞ is the essential supremum on R, |h| ∞ = ess sup t∈R |h(t)| .
We also use the following weighted L p norms which we define to be for any p ≥ 1, β > 0, a ≥ 0 and h : R → C,

|h| (β),p := h × | • | β p = h(t) t β p dt 1/p , (1) 
|h| a,p := h × e a|•| p = |h(t)| p e a p |t| dt 1/p , (2) 
with the above usual essential sup extensions to the case p = ∞.

We denote the convolution product by * , that is, for any two functions h 1 and h 2 ,

h 1 * h 2 (s) = h 1 (s -t)h 2 (t)dt .
Finally we use for a random variable X the notation

X p := (E|X| p ) 1/p , for p ≥ 1 . (3)

From stationary to non-stationary and locally stationary Hawkes processes

To start with, we first recall the definition of a stationary (linear) Hawkes process N with immigrant intensity λ c and fertility function p defined on the positive half-line. The conditional intensity function λ(t) of such a process is driven by the fertility function taken at the time distances to previous points of the process, i.e. λ(t) is given by

λ(t) = λ c + t - -∞ p(t -s) N (ds) = λ c + ti<t p(t -t i ) . (4) 
Here the first integral is to be read as the integral of the "fertility" function p with respect to the counting process N , which is a sum of Dirac masses at (random) points (t i ) i∈Z . The existence of a stationary point processes with conditional intensity (4) holds under the condition p < 1 and can be constructed as a cluster point process (see [START_REF] Daley | An Introduction to the Theory of Point Processes -Volume I: Elementary Theory and Methods[END_REF], Example 6.3(c))).

We extend the stationary Hawkes model defined by the conditional intensity (4) to the non-stationary case by authorizing the immigrant intensity λ c to be a function λ c (t) of time t and also the fertility function p to be time varying, replacing p(t -s) by the more general p(t -s; t). To ensure a locally finite point process in this definition, we impose the two conditions

ζ 1 := sup t∈R p(s; t) ds < 1 and |λ c | ∞ < ∞ .
(5)

They yield the existence of a non-stationary point process N with a mean density function which is uniformly bounded by |λ c | ∞ /(1 -ζ 1 ) (see [START_REF] Roueff | Locally stationary Hawkes processes[END_REF], Definition 1)).

As non-stationary Hawkes processes can evolve quite arbitrarily over time, the statistical analysis of them requires to introduce local stationary approximations in the same fashion as time varying autoregressive processes in time series, for which locally stationary models have been successfully introduced (see Dahlhaus (1996b)). Thus, a locally stationary Hawkes process with local immigrant intensity λ <LS> c (•) and local fertility function p <LS> (•; •) is a collection (N T ) T ≥1 of non-stationary Hawkes processes with respective immigrant intensity and fertility function given by λ cT (t) = λ <LS> c (t/T ) and varying fertility function given by p T (•; t) = p <LS> (•; t/T ), see (Roueff et al., 2016, Definition 2) where this model is called a locally stationary Hawkes process. For a given real location t, the scaled location t/T is typically called an absolute location and denoted by u or v.

Note that the collection (N T ) T ≥1 of non-stationary Hawkes processes are defined using the same time varying parameters λ <LS> c and p <LS> but with the time varying arguments scaled by T . As a result, the larger T is, the slower the parameters evolve along the time.

An assumption corresponding to (5) to guarantee that, for all T ≥ 1, the nonstationary Hawkes process N T admits a uniformly bounded mean density function is the following:

ζ <LS> 1 := sup u∈R p <LS> (r; u) dr < 1 and λ <LS> c ∞ < ∞ . ( 6 
)
Under this assumption, for each absolute location u ∈ R, the function r → p <LS> (r; u) satisfies the required condition for the fertility function of a stationary Hawkes process. Hence, assuming (6), for any absolute location u, we denote by N (•; u) a stationary Hawkes process with constant immigrant intensity λ <LS> c (u) and fertility function r → p <LS> (r; u). In the following subsection we will include this assumption (6) into a stronger set of assumptions that we use for derivation of the results on asymptotic estimation theory.

We also remark that, for any T ≥ 1, the conditional intensity function λ T of the non-stationary Hawkes process N T takes the form

λ T (t) = λ <LS> c (t/T ) + t - -∞ p <LS> (t -s; t/T ) N T (ds) = λ <LS> c (t/T ) + ti,T <t p <LS> (t -t i,T ; t/T ) ,
where (t i,T ) i∈Z denote the points of N T . This latter formula can also be used to simulate locally stationary Hawkes processes on the real line. The examples for locally stationary Hawkes processes (with time varying Gamma shaped fertility functions) used in (Roueff et al., 2016, Section 2.6) were simulated in this way.

First and second order statistics for point processes are of primary importance for statistical inference. As for time series they are conveniently described in the stationary case by a mean parameter for the first order statistics and a spectral representation, the so called Bartlett spectrum (see [START_REF] Daley | An Introduction to the Theory of Point Processes -Volume I: Elementary Theory and Methods[END_REF], Proposition 8.2.I)), for the covariance structure. The locally stationary approach allows us to define such quantities as depending on the absolute time u as introduced in the following section.

Local mean density and Bartlett spectrum

Consider a locally stationary Hawkes process (N T ) T ≥1 with local immigrant intensity λ <LS> c and local fertility function p <LS> (•; •) satisfying condition (6). Although for a given T , the first and second order statistics of N T can be quite involved, some intuitive asymptotic approximations are available as T grows to infinity. Namely, for any absolute time u, the local statistical behavior of N T around real time T u has to be well approximated by that of a stationary Hawkes process with (constant) immigrant intensity λ <LS> c (u) and fertility function p <LS> (•; u). This stationary Hawkes process at absolute location u is denoted in the following by N (•; u). Precise approximation results are provided in [START_REF] Roueff | Locally stationary Hawkes processes[END_REF] and recalled in Section 3.4.1 below. Presently, we only need to introduce how to define this local first and second order statistical structure.

We first introduce the local mean density function m <LS> 1 (u) defined at each absolute location u, as the mean parameter of the stationary Hawkes process N (•; u). By (Daley and Vere-Jones, 2003, Eq. (6.3.26) in Example 6.3(c)), it is given by

m <LS> 1 (u) = λ <LS> c (u) 1 -p <LS> (•; u) . (7) 
A convenient way to describe the covariance structure of a second order stationary point process N on R is to rely on a spectral representation, the Bartlett spectrum, which is defined as the (unique) non-negative measure Γ on the Borel sets such that, for any bounded and compactly supported function f on R, (see [START_REF] Daley | An Introduction to the Theory of Point Processes -Volume I: Elementary Theory and Methods[END_REF], Proposition 8.2.I))

Var

N (f ) = Γ(|F | 2 ) = |F (ω)| 2 Γ(dω) ,
where F denotes the Fourier transform of f ,

F (ω) = f (t) e -itω dt .
For the stationary Hawkes processes N (•; u), the Bartlett spectrum admits a density given by (see (Daley and Vere-Jones, 2003, Example 8.2(e)))

γ <LS> (u; ω) = m <LS> 1 (u) 2π 1 -P <LS> (ω; u) -2 , (8) 
where

P <LS> (ω; u) = p <LS> (t; u) e -itω dt .
Analagous to the first order structure, we call γ <LS> (u; ω) the local Bartlett spectrum density at frequency ω and absolute location u. This local Bartlett spectrum density plays a role similar to that of the local spectral density f (u, λ) introduced in (Dahlhaus, 1996b, Page 142) for locally stationary time series.

Estimators

As our approach is local in time and frequency, we rely on two kernels w and q which are required to be compactly supported (see Remark 1 below). More precisely, we have the following assumptions.

(K-1) Let w be a R → R + bounded function with compact support such that w = |w| 1 = 1.

(K-2) Let q be a R → C bounded function with compact support such that |q| 2 = √ 2π.

To localize in time let b 1 > 0 be a given time bandwidth and define w b1 and w T b1 to be the corresponding kernels in absolute time u and real time t, namely,

w b1 (u) := b -1 1 w(u/b 1 ) and w T b1 (t) := T -1 w b1 (t/T ) = (T b 1 ) -1 w(t/(T b 1 )) . (9) 
Let now u 0 be a fixed absolute time. For estimating the local mean density m <LS> 1 (u 0 ) given by equation ( 7), approximating the mean density function t → m 1T (t) of N T locally in the neighborhood of T u 0 by m <LS> 1 (u 0 ) we have, for b 1 small,

m <LS> 1 (u 0 ) ≈ w T b1 (t -T u 0 )m 1T (t) dt ,
where we used w T b1 = 1 and that the support of t → w T b1 (t -T u 0 ) essentially lives in the neighborhood of T u 0 for T b 1 small. Since the right-hand side of this approximation is E N T (S -T u0 w T b1 ) , this suggests the following estimator of m <LS> 1 (u 0 ),

m b1 (u 0 ) := N T (S -T u0 w T b1 ) = w T b1 (t -T u 0 ) N T (dt) . ( 10 
)
For estimation of the second order structure, i.e. the local Bartlett spectral density γ <LS> (u 0 ; ω 0 ) for some given point (u 0 , ω 0 ) of the time-frequency plane, we need also to localise in frequency by a kernel which will be given by the (squared) Fourier transform |Q| 2 of the kernel q. Then for a given frequency bandwidth b 2 > 0, we are looking for an estimator of the auxiliary quantity

γ <LS> b2 (u 0 ; ω 0 ) := 1 b 2 Q ω -ω 0 b 2 2 γ <LS> (ω; u 0 )dω, (11) 
which in turn, as b 2 → 0, is an approximation of the density γ <LS> (u 0 ; ω 0 ), since (K-2) implies |Q| 2 = 1. The rate of approximation (i.e. the "bias in frequency direction" of the following estimator) is established in Theorem 2, equation ( 27), below. Let us now set q ω0,b2 (t) = b 1/2 2 e iω0t q(b 2 t) such that the squared modulus of its Fourier transform writes as

|Q ω0,b2 (ω)| 2 = 1 b 2 Q( ω -ω 0 b 2 ) 2 .
Using that γ <LS> (ω; u 0 )dω is the Bartlett spectrum of N (•; u 0 ) as recalled in Section 2.3, we can thus rewrite (11) as

γ <LS> b2 (u 0 ; ω 0 ) = Var (N (q ω0,b2 ; u 0 )) . ( 12 
)
Since this variance is an approximation of Var N T (S -T u0 q ω0,b2 ) , where q ω0,b2 is shifted to be localized around T u 0 , we finally estimate γ <LS> b2 (u 0 ; ω 0 ) by the following moment estimator:

γ b2,b1 (u 0 ; ω 0 ) := E |N T (S -T u0 q ω0,b2 )| 2 ; w b1 -E N T (S -T u0 q ω0,b2 ); w b1 2 , ( 13 
)
where for the test function f = S -T u0 q ω0,b2 and taking ρ(x) = x and ρ(x) = |x| 2 successively, we have built estimators of E[ρ(N T (f ))] based on the empirical observations of N T and defined by

E[ρ (N T (f )) ; w b1 ] := ρ (N T (f (• -t))) w T b1 (t) dt (14) = 1 T ρ k f (t k,T -t) w b1 (t/T ) dt .
Note that in (13) the dependence of the estimator on u 0 , ω 0 appears in the choice of f = S -T u0 q ω0,b2 . By an obvious change of variable, this would be equivalent to let the kernel q ω0,b2 unshifted in time, hence take f = q ω0,b2 , and instead shift w T b1 (t) into w T b1 (t -T u 0 ), or, in absolute time, shift w b1 (u) into w b1 (u -u 0 ).

Remark 1. In practice N T is observed over a finite interval. In order to have estimators m b1 (u 0 ) and γ b2,b1 (u 0 ; ω 0 ) in ( 10) and ( 13) that only use observations within this interval, the supports of w and q must be bounded and some restriction imposed on b 1 , b 2 and T . Suppose for instance that N T is observed on [0, T ] (mimicking the usual convention for locally stationary time series of Dahlhaus (1996a)). The local mean density and Bartlett spectrum can then be estimated at corresponding absolute times u 0 ∈ (0, 1) and the restrictions on b 1 , b 2 and T read as follows. In (10), we must have

u 0 + b 1 Supp(w) ⊆ [0, 1],
and in ( 13), we must have u 0 + b 1 Supp(w) + (T b 2 ) -1 Supp(q) ⊆ [0, 1]. These two support conditions are always satisfied, eventually as T → ∞, provided that the kernels w and q are compactly supported and that b 1 → 0 and T b 2 → ∞.

In the sequel we will show that this is a sensible estimator of γ <LS> b2 (u 0 ; ω 0 ) sharing the usual properties of a nonparametric estimator constructed via kernel-smoothing over time and frequency: for sufficiently small bandwidths b 1 in time and b 2 in frequency this estimator becomes well localised around (u 0 ; ω 0 ).

The main results stated hereafter provide asymptotic expansions of its bias and variance behaviour, leading to consistency of this estimator under some asymptotic condition for b 1 and b 2 as T → ∞.

3 Bias and variance bounds

Main assumptions

The first assumption is akin but stronger than condition (6) above, being in fact equal to assumption (LS-1) of [START_REF] Roueff | Locally stationary Hawkes processes[END_REF]. It guarantees that, for all T ≥ 1, the locally stationary Hawkes process N T admits a (causal) local fertility function s → p <LS> (s; u) which is not only uniformly bounded, but has an exponentially decaying memory (as a function in the first argument, uniformly with respect to its second argument).

(LS-1) Assume that λ <LS> c ∞ < ∞ . ( 15 
)
Assume moreover that for all u ∈ R, p <LS> (•; u) is supported on R + and that there exists

a d > 0 such that ζ <LS> 1 (d) < 1 and ζ <LS> ∞ (d) < ∞ where ζ <LS> 1 (d) := sup u∈R p <LS> (•; u) d,1 = sup u∈R p <LS> (s; u) e d|s| ds (16) and ζ <LS> ∞ (d) := sup u∈R p <LS> (•; u) d,∞ = sup u∈R ess sup s∈R |p <LS> (s; u)|e d|s| . ( 17 
)
All the examples considered in [START_REF] Roueff | Locally stationary Hawkes processes[END_REF] satisfy this condition. It is also satisfied if the local fertility functions have a (uniformly) bounded compact support (cf. [START_REF] Hansen | Lasso and probabilistic inequalities for multivariate point processes[END_REF] in the stationary case).

(LS-2) Assume that, for some β ∈ (0, 1],

ξ (β) c := sup u =v |λ <LS> c (v) -λ <LS> c (u)| |v -u| β < ∞ .
(LS-3) Assume that, for some β ∈ (0, 1], ξ (β) 1 < ∞, where

ξ (β) (r) := sup u =v |p <LS> (r; v) -p <LS> (r; u)| |v -u| β .
Assumptions (LS-2) and (LS-3) can be interpreted as smoothness conditions respectively on λ <LS> c and on p <LS> (•; •) with respect to its second argument. Note also that Assumptions ( 16) and ( 17) imply in particular Assumption (LS-4) of [START_REF] Roueff | Locally stationary Hawkes processes[END_REF] which we recall here to be

ζ <LS> ∞ := ζ <LS> ∞ (0) = sup u∈R p <LS> (.; u) ∞ < ∞ , (18) 
ζ <LS> (β) := sup u∈R p <LS> (•; u) (β),1 < ∞ . ( 19 
)
This can be seen simply by noting that ζ <LS>

1 := ζ <LS> 1 (0) ≤ ζ <LS> 1 (d) and ζ <LS> ∞ ≤ ζ <LS> ∞ (d) for all d ≥ 0, with equality for d = 0. Similarly, ζ <LS> 1 (d) < ∞ for some d > 0 implies ζ <LS> (β)
< ∞ for all β > 0. Hereafter all the given bounds are uniform upper bounds in the sense that they hold uniformly over parameters λ <LS> c and p <LS> satisfying the set of conditions ( 6),(LS-2), (LS-3), and ( 18) and ( 19), as in Theorems 1, or the more restrictive set of conditions (LS-1), (LS-2) and (LS-3), as in Theorem 2 and 3. More specifically, we use the following conventions all along the paper. 

(d), ζ <LS> (β) , ζ <LS> ∞ (d), ξ (β) c , ξ (β) 1 , |λ <LS> c
| ∞ and the two kernel functions w and q.

The conditions C(b 1 , b 2 , T ) will be intersections of the following ones :

T ≥ 1 and b 1 ∈ (0, 1] , (20) b 1 , b 2 ∈ (0, 1] and T b 1 b 2 ≥ 1 , (21) b 1 ln(T ) ≤ 1 . ( 22 
)
Convention 2 (Constants A 1 , A 2 ). We use A 1 , A 2 to denote positive constants that can change from one expression to another but always satisfy A -1 1 1 and A 2 1, using Convention 1. In other words A 1 and A 2 are positive constants which can be bounded from below and from above, respectively, using the constants appearing in the assumptions and the chosen kernels w and q.

Convention 2 will be useful to treat exponential terms in a simplified way, that is, without considering unnecessary constants; for instance, we can write (e -A1T ) 2 ≤ e -A1T replacing 2A 1 by A 1 in the second expression without affecting the property A -1 1 1 required on A 1 .

Main results

We can now state the main results of this contribution, whose proofs can be found in Appendix C. For the bias and variance of the local mean density estimator m b1 (u 0 ) we establish the following result.

Theorem 1. Let the kernel w satisfy (K-1). Assume conditions ( 6),(LS-2), (LS-3), and ( 18) and ( 19) to hold. Then, for b 1 and T satisfying ( 20), the bias of the local density estimator satisfies, for all

u 0 ∈ R, E[ m b1 (u 0 )] -m <LS> 1 (u 0 ) b β 1 + T -β . ( 23 
)
If moreover (LS-1) holds, its variance satisfies

Var ( m b1 (u 0 )) (T b 1 ) -1 . (24) 
Hence, m b1 (u 0 ) is shown to be a (mean-square) consistent estimator of m <LS> 1 (u 0 ), and, optimizing the bias and variance bounds, we get the "usual" mean-square error rate T -2β 2β+1 for nonparametric curve estimation with an additive noise structure, achieved for a bandwidth b 1 ∼ T -1 2β+1 . We now treat the bias of the estimator γ b2,b1 (u 0 ; ω 0 ) which can be decomposed as the sum of 1) a bias in the time direction, namely, E γ b2,b1 (u 0 ; ω 0 ) -γ <LS> b2 (u 0 ; ω 0 ) and 2) a bias in the frequency direction, namely, γ <LS> b2

(u 0 ; ω 0 ) -γ <LS> (u 0 ; ω 0 ).
Theorem 2. Let the kernels w and q satisfy (K-1) and (K-2). Assume conditions (LS-1), (LS-2), and (LS-3) to hold. Then, for all b 1 , b 2 and T satisfying ( 21) and ( 22) and for all u 0 , ω 0 ∈ R, we have

E[ γ b2,b1 (u 0 ; ω 0 )] -γ <LS> b2 (u 0 ; ω 0 ) b β 1 + b 2β 1 b -1 2 + (T b 1 b 2 ) -1 . ( 25 
)
If moreover the squared modulus |Q(ω)| 2 of the Fourier transform of the kernel q satisfies

ω 2 |Q(ω)| 2 dω < ∞ and ω|Q(ω)| 2 dω = 0 , (26) 
the "bias in frequency direction" fulfills for b 2 ∈ (0, 1],

γ <LS> b2 (u 0 ; ω 0 ) -γ <LS> (u 0 ; ω 0 ) b 2 2 . ( 27 
)
Remark 2. Condition ( 26) is automatically satisfied if q is compactly supported, real valued and even, and admits an L 2 derivative, such as the triangle shape kernel.

We already observe here that for the estimator γ b2,b1 (u 0 ; ω 0 ) to be asymptotically unbiased, equations ( 25) and ( 27) require the following conditions on the choice of the two bandwidths b 1 and b 2 to be fulfilled:

T b 1 b 2 → ∞ , b 2 → 0 and b -1 2 b 2β 1 → 0 .
Note in particular that these conditions for an asymptotically unbiased estimator imply those required for the feasibility of the estimator in Remark 1 (b 1 → 0 and T b 2 → ∞).

We shall discuss possible compatible bandwidth choices below, following the treatment of the variance of this estimator.

Theorem 3. Let the kernels w and q satisfy (K-1) and (K-2). Assume conditions (LS-1), (LS-2) and (LS-3) to hold. Then, for all b 1 , b 2 , T satisfying ( 21), and for all u 0 , ω 0 ∈ R, we have

Var ( γ b2,b1 (u 0 ; ω 0 )) (T b 1 b 2 ) -1 + b 2β 1 b β 1 b -1 2 2 . ( 28 
)

Immediate consequences and related works

In order to optimize bandwidth choices in time and in frequency to derive an optimal rate of MSE-consistency of the estimator γ b2,b1 (u 0 ; ω 0 ) for a given time-frequency point (u 0 ; ω 0 ) we observe, by equations ( 25), ( 27) and ( 28), that the MSE satisfies

MSE ( γ b2,b1 (u 0 ; ω 0 )) b 4 2 + b 2β 1 + (T b 1 b 2 ) -1 + b 2β 1 b -1 2 2 . The MSE-rate T -4β 5β+2
is achieved by optimizing this upper bound, that is, by imposing 2 and the variance term (T b 1 b 2 ) -1 correspond to the usual bias and variance rates of a kernel estimator of a local spectral density estimator (see (Dahlhaus, 2009, Example 4.2) for locally stationary linear time series), it is clear that the obtained rate is sharp for this moment estimator under our assumptions. Note also that the MSE-rate T -4β 5β+2 corresponds to the minimax lower bound for evolutionary spectrum estimation established in (Neumann and von Sachs, 1997, Theorem 2.1) in the Sobolev space W β,2 ∞,∞ . Although insightful, the comparison is not completely rigorous as their model for establishing this lower bound is a benchmark for a class of non-stationary time series and the MSE they consider is integrated. Therefore, a particularly interesting problem for future work would be to derive (hopefully large) classes of locally stationary point processes on which our estimator achieves the minimax rate.

b 4 2 ∼ b 2β 1 ∼ (T b 1 b 2 ) -1 (leading to b 2β 1 b -1 2 2 ∼ b 6 2 ),
In the same line of thoughts about the performance of our kernel estimator, the question naturally arises about the data-driven choice of the bandwidths b 1 and b 2 . This question of bandwidth selection in the context of locally stationary time series has been addressed only recently, see [START_REF] Giraud | Aggregation of predictors for non stationary sub-linear processes and online adaptive forecasting of time varying autoregressive processes[END_REF]; [START_REF] Richter | Cross validation for locally stationary processes[END_REF] for adaptive prediction and parameter curve estimation, respectively. The problem of adaptive kernel estimation of the local spectral density for locally stationary time series has been more specifically addressed in van [START_REF] Van Delft | Data-adaptive estimation of time-varying spectral densities[END_REF], where a practical approach is derived and studied. It is mainly based on the central limit theorem established in (Dahlhaus, 2009, Example 4.2) for this estimator. This methodology could be adapted to the case of locally stationary point processes. A first step in this direction would be to establish a central limit theorem for our estimator γ b2,b1 (u 0 , ω 0 ) at a given time-frequency point, which is also left for future work. Note also that, in practical time frequency analysis, the bandwidths b 1 and b 2 are often chosen having in mind a physical interpretation. For instance, in our real data example of Section 4, on each day, transaction data is collected between 9:00 AM and 5:30 PM, hence over 8.5 hours. Our choice b 1 = .15 and b 2 = .005 corresponds to saying that we consider finance transactions data as roughly stationary over 8.5 × .15 ≈ 1 hour and 16 minutes of time, and that the spectrum obtained from such data has maximal frequency resolution .005 Hz (we may distinguish between two periodic behaviors present in the data only if their frequencies differ by at least this value).

To conclude this section, let us discuss whether our approach could be used for the parameter estimation of locally stationary Hawkes processes. In a fully non-parametric approach, one would be interested in estimating the two (possibly smooth or sparse) unknown functions that are the baseline intensity function u → λ <LS> c (u) and the local fertility function (s, u) → p <LS> (s; u). In a parametric approach, one would assume these functions to depend on an unknown finite dimensional parameter θ in a (known) form u → λ <LS> c (u|θ) and (s, u) → p <LS> (s; u|θ), and try to estimate θ. An intermediate approach, proposed in (Roueff et al., 2016, Section 5.1) to derive simple examples of locally stationary Hawkes processes, is to consider a parametric stationary model for the fertility function, say s → p <S> (s|θ) for θ ∈ Θ ⊂ R d , and to deduce a local one of the form (s, u) → p <LS> (s; u) = p <S> (s|θ(u)), where now θ is a Θ-valued function of the absolute time. In all these cases, the estimators m b1 and γ b2,b1 could be used as empirical moments to estimate λ <LS> c , p <LS> , θ, or the curve θ. Since our estimators are consistent, this method would in principle work whenever the unknown quantities to estimate can be deduced from the local mean density m <LS> 1 and local Bartlett spectrum γ <LS> through Relations ( 7) and (8), respectively. More direct methods to estimate the parameters of interest for non-stationary Hawkes processes have been proposed in Chen andHall (2013, 2016); [START_REF] Mammen | Nonparametric estimation of locally stationary Hawkes processe[END_REF]. In the first two references, only the baseline intensity is time varying, and a different asymptotic setting is considered, where this baseline intensity tends to infinity through a multiplicative constant. In the fully non-parametric case, an identifiability problem is pointed out in (Chen and Hall, 2016, Section 2.2). We do not have this problem in our asymptotic scheme, since ( 7) and ( 8) show that the base line intensity λ <LS> c (u) can be completely identified from the local mean density m <LS> 1 (u) and the local Bartlett spectrum γ <LS> (u; •) alone using the formula

λ <LS> c (u) = m <LS> 1 (u) m <LS> 1 (u) 2πγ <LS> (u; 0) 1/2 .
The model considered in [START_REF] Mammen | Nonparametric estimation of locally stationary Hawkes processe[END_REF] is a multivariate version of the locally stationary Hawkes process with the same asymptotic setting as ours, and additional assumptions on the (multivariate) fertility function. Both the baseline intensity and the (time varying) fertility function are estimated in a non-parametric fashion using a direct method based on localized mean square regression and a decomposition of the local fertility function on a B-spline base. Such methods should be more efficient than using the local mean density and Bartlett spectrum to build moment estimators of these parameters, since they rely on the intrinsic auto-regression structure of the underlying process. In contrast, as far as the time-frequency analysis is concerned, which is the main focus of our contribution, the estimator that we propose should be relevant to estimate the local Bartlett spectrum beyond the case of locally stationary Hawkes processes, namely, for any locally stationary point process for which the general formula ( 11) and (12) make sense.

Main ideas of the proofs

Local approximations of moments

An essential step for treating the bias terms is to be able to approximate, as T → ∞, in the neighborhood of uT , the first and second moments of N T by that of the local stationary approximation N (•; u) defined as in Section 2.3. We first state the two approximations that directly follow (Roueff et al., 2016, Theorem 4) with m = 1, 2.

Theorem 4. Let β ∈ (0, 1] and let (N T ) T ≥1 be a locally stationary Hawkes process satisfying conditions ( 6),(LS-2), (LS-3), ( 18) and ( 19). Let (N (•; u)) u∈R be the collection of stationary Hawkes process defined as in Section 2.3. Then, for all T ≥ 1, u ∈ R and all bounded integrable functions g, we have

E[N T (S -T u g)] -E[N (g; u)] |g| 1 + |g| (β),1 T -β , (29) 
Var N T (S -T u g)) -Var (N (g; u))

(|g| 1 + |g| ∞ ) |g| 1 + |g| (β),1 T -β . ( 30 
)
The control of the bias in Theorem 1 directly follows from (29). However it turns out that (30) is not sharp enough to control the bias of the local Bartlett spectrum and thus to obtain the expected convergence rate. The basic reason is that it involves L 1 (weighted) norms of g in the upper bound instead of L 2 norms. In order to recover the correct rates of convergence, we rely on the following new result where the L 1 (weighted) norms are indeed replaced by L 2 (weighted) norms, or, to be more precise, where the remaining weighted L 1 -norms are compensated by an exponentially decreasing term in T , and will thus turn out to be negligible.

Theorem 5. Let β ∈ (0, 1] and let (N T ) T ≥1 be a locally stationary Hawkes process satisfying conditions (LS-1),(LS-2) and (LS-3). Let (N (•; u)) u∈R be the collection of stationary Hawkes process defined as in Section 2.3. Then, for all bounded and compactly supported functions g, for all T ≥ 1 and u ∈ R,

|Var(N T (g))| |g| 2 2 + e -A1T |g| 2 d,1 , (31) 
Var N T (S -T u g)) -Var (N (g; u))

|g| 2 2 + e -A1T |g| 2 d,1 + |g| (β),2 |g| 2 + e -A1T |g| d,1 T -β . ( 32 
)
The proof of this theorem can be found in Appendix B. To obtain this new result, we crucially rely on the assumption (LS-1) where controls in exponentially weighted norms (based on sup u |p <LS> (•; u))| d,q for q = 1, ∞ and some d > 0) are assumed to strengthen the assumptions ( 6), ( 18) and ( 19).

Bias and approximate centering

To control all the error terms, we found useful to introduce a centered version of N T with a centering term corresponding to its asymptotic deterministic version. Recalling that N T behaves in a neighborhood of T u 0 as N (•; u 0 ) and that this process admits the mean intensity denoted by m <LS> 1 (u 0 ), we define, for any test function f ,

N T (f ; u 0 ) := N T (f ) -E[N (f ; u 0 )] = f (s) [N T (ds) -m <LS> 1 (u 0 ) ds] . (33) 
It is important to note that this "approximate" centering depends on an absolute location u 0 as it is a good approximation of E[N T (f )] only for f localized in a neighborhood of T u 0 . Let us apply this definition. By (10), since w T b1 integrates to 1, the error of the local mean density estimator can directly be expressed as

m b1 (u 0 ) -m <LS> 1 (u 0 ) = N T (S -T u0 w T b1 ; u 0 ) . ( 34 
)
Hence controlling the bias of this estimator directly amounts to evaluating the quality of the above centering.

The treatment of the bias of the local Bartlett spectrum is a bit more involved since, as often for spectral estimators, the empirical centering term requires a specific attention. This term appears inside the negated square modulus of the right-hand side of (13). To see why it is indeed a centering term, observe that, using w T b1 = 1, we can write γ b2,b1 (u 0 ; ω 0 ) = E ρ(N T (S -T u0 q ω0,b2 )); w b1 with now ρ defined, for any test function f , as the "centered" squared modulus

ρ(N T (f )) = N T (f ) -E [N T (f ); w b1 ] 2 .
Using that w b1 = 1, the centering in (33) can be introduced within this definition of ρ, leading to

ρ(N T (f )) = N T (f ; u 0 ) -E N T (f ; u 0 ); w b1 2 .
By comparison with the previous expression of γ b2,b1 (u 0 ; ω 0 ), we easily get an expression of the local Bartlett spectrum estimator based on this centered version of N T , namely,

γ b2,b1 (u 0 ; ω 0 ) = E |N T (f ; u 0 )| 2 ; w b1 -E N T (f ; u 0 ); w b1 2 , ( 35 
)
where analogously to (14), we denote, for the test function f = S -T u0 q ω0,b2 ,

E N T (f ; u 0 ) 2 ; w b1 := N T (f (• -t); u 0 ) 2 w T b1 (t) dt , (36) 
E N T (f ; u 0 ); w b1 := N T (f (• -t); u 0 ) w T b1 (t) dt .
In fact, using w = 1, f integrable and interchanging the order of integration, we immediately get the simplification

E N T (f ; u 0 ); w b1 = N T (f * w T b1 ; u 0 ) , (37) 
where we used the convolution product * . The advantage of the new expression (35) in contrast to the original ( 13) is that now we expect the negated square modulus to be of negligible order. To see why, consider for instance the bias in ( 25), for the control of which we need to bound, as the second term of ( 35),

E E N T (f ; u 0 ); w b1 2 = Var (N T (f * w T b1 )) + E N T (f * w T b1 ; u 0 ) 2 . ( 38 
)
(Here and in the following we repeatedly use the fact that N T and N T (•; u 0 ) have the same variance). Finally, the control of the bias term in ( 25) now requires to evaluate

E E |N T (S -T u0 q ω0,b2 ; u 0 )| 2 ; w b1 -γ <LS> b2 (u 0 ; ω 0 ) ,
which is again decomposed as a main term

Var N T (S -T u0 q ω0,b2 (• -t)) -γ <LS> b2 (u 0 ; ω 0 ) w T b1 (t) dt , (39) 
added to a negligible (because involving a squared bias) term

E[N T (S -T u0 q ω0,b2 (• -t); u 0 )] 2 w T b1 (t) dt . (40) 

Variance terms and exact centering

The variance of the local mean density estimator directly requires to control the variance of N T (f ) for given test functions f . This requires new deviation bounds for non-stationary Hawkes processes. By deviation bounds we here mean that we bound the moments of

N T (h) := N T (h) -E[N T (h)] , (41) 
where h is an appropriate test function. New results in this direction are gathered in Section 5, where the dependence structure of non-stationary Hawkes processes is investigated, leading to the appropriate control of such moments in Proposition 9. For instance the moment of order 2 directly provides the adequate bound for the variance of the local mean density estimator

Var ( m b1 (u 0 )) = Var N T (S -T u0 w T b1 ) = N T (h) 2 2 , ( 42 
)
where we use the notation introduced in (3). Now we turn our attention to the estimator of the local Bartlett spectrum. The control of the moments of N T will essentially be used to approximate γ b2,b1 (u 0 ; ω 0 ) by

γ b2,b1 (u 0 ; ω 0 ) := N T (S -T u0 q ω0,b2 (• -t)) 2 w T b1 (t) dt . ( 43 
)
In contrast to the centering used in N T (•; u) for controlling the bias (a centering with respect to E[N (h; u)]) for some absolute location u, here the term E[N T (h)] is no longer invariant as h is shifted. This is why this centering cannot be used as a direct decomposition of estimator γ b2,b1 (u 0 ; ω 0 ) as in ( 35). Instead we use a bound on the error of approximating γ b2,b1 (u 0 ; ω 0 ) by γ b2,b1 (u 0 ; ω 0 ), see Lemma 16.

Finally the variance of the local Bartlett estimator is obtained by controlling the variance of γ b2,b1 (u 0 ; ω 0 ) (Lemma 15), which in turn relies on a bound of

Cov N T (h 1 ) 2 , N T (h 2 ) 2
for test functions h 1 and h 2 , which is derived in Corollary 10.

Numerical experiments

The numerical experiments in [START_REF] Roueff | Locally stationary Hawkes processes[END_REF] show that the estimators m b1 and γ b2,b1 are able to reproduce the theoretical local mean density and local Bartlett spectrum on simulated locally stationary Hawkes processes. Here we consider a real data set containing the transaction times of the two assets ESSI.PA (Essilor International SA) and TOTF.PA (Total SA) over 61 days scattered in February, June and November 2013. We computed the local mean density and Bartlett spectrum estimators, say m (i) b1 and γ (i) b2,b1 for each day i ∈ {1, . . . , 61} over the regular opening hours of the Paris stock exchange market, that is between 9:00 a.m. and 5:30 p.m., Paris local time. The estimators are computed with the following kernels : w is the triangle kernel and q is the Epanechnikov kernel, both with supports [-.5, .5]. The chosen bandwidth parameters are given by b 1 = .15 , b 2 = .005 Hz .

The above unit for b 1 is absolute time, that is, 1 unit corresponds to the overall duration of observation T = 8.5 hours, hence in real time, b 1 = .15 * 8.5 hours, which makes 1 hour, 16 minutes and 30 seconds. We thus obtain for each asset 61 local mean density and local Bartlett spectrum estimates. Our goal here is to illustrate the time frequency analysis of such point processes data sets. The obtained results are quite different from one day to another, which can be expected on such real data. However, in the following, we propose to comment on the local mean densities and Bartlett spectra obtained for the two assets by averaging over the available 61 days,

m (Av) b1 = 1 61 61 i=1 m (i) b1
and γ

(Av) b2,b1 = 1 61 61 i=1 γ (i) b2,b1 .
Moreover we computed a Poisson-normalized local Bartlett spectrum of these averaged estimates defined by

γ (P n) b2,b1 (ω; u) = 2π γ (Av) b2,b1 (ω; u) m (Av) b1 (u) u ∈ R, ω ∈ R .
Note that, in the case of a nonhomogeneous Poisson process, the local mean density and Bartlett density satisfy

γ <LS> (ω; u) = m <LS> 1 (u) 2π .
This is indeed given by ( 8) with a local fertility function to be identically zero, p <LS> (•; u) ≡ 0.

In Figures 1 and2 we display the resulting estimators for the two assets ESSI.PA and TOTF.PA, respectively. Note that the scaling of the y-axis of the averaged local mean densities (top plots) is not the same. The transaction rate of ESSI.PA evolves around 0.1 transactions per second while that of the more liquid TOTF.PA around twice as much. The local Bartlett spectrum estimator γ b2,b1 (ω; u) is computed over frequencies ω ranging between 0 and .1 Hz. This means that only cyclic behaviors with periods larger than 10 seconds are visible. As for the local mean density plots, note that the color scales of the averaged local Bartlett spectra are different for the two assets.

It is interesting to observe that, despite these differences of orders of magnitude, the shapes of the averaged local mean densities and that of the averaged local Bartlett spectra bear some similarities. Namely the averaged mean density is decreasing in the morning, although a sharp increase occurs around 11:00 a.m. and a drop during the lunch break. It then increases steadily during the afternoon with a sharper increase around 3:30 p.m., which corresponds to the opening time of the New York stock exchange market. The maximal averaged mean density is reached at the closing time. As for the averaged Bartlett spectrum, it is interesting to note that the shape of the spectrum along the frequencies varies significantly along the day. During the increases of mean density preceding and following lunch break, the spectrum concentrates at low frequencies, while the spectrum, although still favoring low frequencies, is more balanced during the increase following the opening of the NYSE market. Finally, it is interesting to observe that the Poissonnormalized Bartlett spectra take the highest values during the two one hour long periods surrounding the lunch break. It indicates that, in contrast to these two periods, the increase of the (nonnormalized) Bartlett spectrum toward the end of the day can be interpreted merely as a consequence of the increase of the local mean density rather than a departure from the Poisson behavior. Also observe that the Poisson-normalized Bartlett spectra are always larger than 1. Assuming a locally stationary Hawkes process for this data, this could be interpreted, according to Formula (8), as 1 -P <LS> (ω; u) < 1 , where P <LS> (•; u) is the Fourier transform of the local fertility function p <LS> (•; u).

A sensible conclusion of this analysis is that it advocates for more involved models than a simple non-homogeneous Poisson process for transaction data. In particular, locally stationary Hawkes processes as assumed in this work are better adapted to such data sets, not only because the local Bartlett spectrum is not constant along the frequencies but also because its shape varies along the time, a feature that could not be obtained by using time varying baseline intensity with a fertility function constant over the time, as used in [START_REF] Chen | Inference for a non-stationary self-exciting point process with an application in ulta-high frequency financial data modeling[END_REF]. This conclusion is of particular interest in relation with Examples 2.3 (iii) and (iv) described in [START_REF] Dahlhaus | Volatility decomposition and estimation in timechanged price models[END_REF] for modeling the volatility of high frequency financial data.

Deviation bounds for non-stationary Hawkes processes

We now derive new results required for treating the variance of the studied estimators. In contrast to Poisson processes, we can not rely on the independence of the process on disjoint sets. To the best of our knowledge, the most advanced results on deviation bounds of Hawkes processes are to be found in [START_REF] Reynaud-Bouret | Some non asymptotic tail estimates for Hawkes processes[END_REF] and only apply to stationary Hawkes processes with compactly supported fertility functions. Here we consider non-stationary Hawkes processes with exponentially decreasing local fertility functions. The generalization to non-stationary processes requires a specific approach rather than a mere adaption of Reynaud-Bouret and Roy ( 2006).

Although we are here motivated by the study of the variance of the local mean density and Bartlett estimators, we believe that the results contained in this section are of broader interest, as they can serve more generally to understand the dependence structure of nonstationary Hawkes processes.

Setting

Recall that (5) is our minimal condition for defining the non-stationary Hawkes process N with immigrant intensity function λ c (•) and varying fertility function p(•; •). The cluster construction of a Hawkes process relies on conditioning on the realization of a so-called center process, N c a Poisson point process (PPP) with intensity λ c on R, which describes spontaneous appearing of the immigrants. At each center point t c of N c , a point process N (•|t c ) is generated as a branching process whose conditional distribution given N c only depends on t c and is entirely determined by the time varying fertility function p(•; •). This distribution is described through its conditional Laplace functional in [START_REF] Roueff | Locally stationary Hawkes processes[END_REF], section 6.1) under the additional assumption

ζ ∞ < ∞ with ζ q = sup t∈R |p(•; t)| q for all q ∈ [1, ∞] . ( 44 
)
The following result directly follows from these derivations. A detailed proof is available in Appendix D for sake of completeness.

Proposition 6. Suppose that ( 5) and ( 44) hold and set

r 1 = -log ζ 1 2(1 -ζ 1/2 1 + ζ ∞ ζ -1/2 1 ) . ( 45 
)
Then, for all h : R → R satisfying |h| 1 ≤ 1 and |h| ∞ ≤ 1,

E e (1-ζ 1/2 1 )r1|N (h)| ≤ exp |λ c | ∞ ζ -1/2 1 r 1 . ( 46 
)
Consequently, for all q > 0, there exists a positive constant B q only depending on

|λ c | ∞ , ζ 1 and ζ ∞ such that, for all h : R → R satisfying |h| 1 ≤ 1 and |h| ∞ ≤ 1, N (h) q ≤ B q . ( 47 
)
The moment bound (47) will be useful but far from sufficient to bound the variance of our estimators efficiently. To see why, let us suppose temporarily that N is a homogeneous Poisson process with unit rate and consider h = n -1 ½ [0,n] -1 for some positive integer n. Then the above bound with p = 2 gives Var(N (h)) ≤ B 2 2 although we know that in this very special case we have Var(N (h)) = n -1 , hence the bound is not sharp at all as n → ∞. In the following we provide new deviation bounds applying to non-stationary Hawkes processes which allows one to recover the expected order of magnitude for the variance. To this end we rely on stronger conditions than the ones used in [START_REF] Roueff | Locally stationary Hawkes processes[END_REF].

Define moreover, using the exponentially weighted norm notation in (2), for all d ≥ 0, and

q ∈ [1, ∞], ζ q (d) = sup t∈R |p(•; t)| d,q .
We strengthen the basic conditions ( 6) and ( 44) into the following one.

(NS-1) We have |λ c | ∞ < ∞. Moreover, for all t ∈ R, p(•; t) is supported on R + and there

exists d > 0 such that ζ 1 (d) < 1 and ζ ∞ (d) < ∞.
The version of (NS-1) in the locally stationary case is (LS-1) in the sense that the locally stationary Hawkes process (N T ) T ≥1 satisfies (LS-1) if and only if, for all T ≥ 1, the nonstationary Hawkes process N T satisfied (NS-1). Therefore all the results below relying on (NS-1) apply to the locally stationary Hawkes processes satisfying (LS-1). We recall that this assumption means that the local fertility functions satisfy some uniform exponential decreasing.

New deviation bounds

The deviations bounds are based on the following exponential bound control on component point processes N (•|t c ) defined above.

Proposition 7. Suppose that (NS-1) holds for some d > 0. Then we have, for all a ∈ (0, d), for all

t c ∈ R, E [t,∞) e a(s-t) N (ds|t c ) ≤ C a with C a := 1 + ζ ∞ (d) (d -a)(1 -ζ 1 (d)) . ( 48 
)
Proof. Let g : R → R + and define, for all h : R → R + ,

[E g (h)](s) = g(s) + h(u)p(u -s; u) du .
Following (Roueff et al., 2016, Proposition 7 and Eq. ( 34)), we have that, for all t ∈ R,

E [N (g|t c )] = lim n→∞ [E n g (g)](t) , (49) 
where E n g denotes the n-th self-composition of E g . In the following, we take some a ∈ (0, d) and set g t (s) = e a(s-t) ½ [t,∞) (s) = g 0 (s -t) .

Observe that, using that p(; u) is supported on [0, ∞) under (NS-1), for all h : R → R + ,

[E gt (h)](t) ≤ g t (t) + ∞ t h(u)p(u -t; u) du ≤ 1 + ∞ t h(u)e d(t-u) e d(u-t) p(u -t; u) du ≤ 1 + ∞ t h(u)e d(t-u) ζ ∞ (d) du = 1 + ζ ∞ (d) |h(t + •)| -d,1 .
Applying this to h = E n-1 gt (g t ) we get, for all n ≥ 1,

[E n gt (g t )](t) ≤ 1 + ζ ∞ (d) [E n-1 gt (g t )](t + •) -d,1 (50) 
Similarly, we also get that, for all h : R → R + ,

|[E gt (h)](t + •)| -d,1 ≤ |g 0 | -d,1 + ζ 1 (d) |h(t + •)| -d,1 .
Observing that |g 0 | -d,1 = (d -a) -1 and iterating the last inequality, we finally obtain that, for all n ≥ 1,

[E n gt (g t )](t + •) -d,1 ≤ 1 d -a (1 + ζ 1 (d) + • • • + ζ 1 (d) n ) ≤ 1 (d -a)(1 -ζ 1 (d))
.

Inserting this bound in ( 50) and letting n go to ∞ as in ( 49) with g = g t , we get the claimed result.

Define the past and future σ-fields at time t respectively as

F t = σ (N c (A), N (B|t c ) : A ∈ B((-∞, t]), B ∈ B(R), t c ≤ t) ⊃ σ (N (A) : A ∈ B((-∞, t]))
and

G t = σ (N (A) : A ∈ B((t, -∞))) .
The following result provides a uniform exponential control on the time-dependence of N .

Proposition 8. Suppose that (NS-1) holds for some d > 0 and that λ c is bounded. Let

p ∈ [1, ∞), t < u and Y be a centered L 1 G u -measurable random variable. Then, for all a ∈ (0, d), for all q ∈ (p, ∞], if Y is L q , E[Y |F t ] p ≤ Y q |λ c | ∞ C a a -1 e -a(u-t) 1/p-1/q ,
where C a is defined in ( 48).

Proof. In the following, we denote by t c k the points of the Poisson process N c , that is,

N c = k δ t c k . Define ∆ t c = inf {δ > 0 : N ([t c + δ, ∞)|t c ) = 0} .
In other words, ∆ t c is the size of the cluster N (•|t c ), that is the distance between the most left point (which is t c ) and most right point. Since ∆ t c is a point among the points of N (•|t c )), we have

e a∆ t c ≤ [t,∞) e a(s-t) N (ds|t c ) ,
and a direct consequence of Proposition 7 is that, for all a ∈ (0, d),

E[e a∆ t c ] ≤ C a . ( 51 
)
Now let us define the position of the last point generated by all clusters started before time t, namely,

∆ t = sup t c k + ∆ t c k : t c k ≤ t . We observe that ∆ t is F t -measurable. Moreover, if t < u and Y is a centered L 1 G u - measurable random variable, then we have E[Y |F t ] = 0 on {∆ t < u}. The Hölder inequality then yields for 1 ≤ p < q ≤ ∞ E[Y |F t ] p = E[Y |F t ]½ {∆t≥u} p ≤ E[Y |F t ] q P(∆ t ≥ u) 1/p-1/q .
Since E[Y |F t ] q ≤ Y q , it only remains to prove that

P(∆ t ≥ u) ≤ C 0 e -λ0(u-t) . ( 52 
) Observe that M = k δ t c k ,∆ t c
k is a marked Poisson point process such that, given N c , the marks ∆ t c k are independent and for each k the conditional distribution of ∆ t c k only depends on t c k . Hence M is a Poisson point process with points valued in R × R + and

{∆ t ≥ u} = {M ({(t c , δ) ∈ (-∞, t] × R + : t c + δ ≥ u}) > 0} .
We thus get that

P(∆ t ≥ u) = 1-exp - t -∞ P(t c + ∆ t c ≥ u)λ c (t c ) dt c ≤ |λ c | ∞ t -∞ P(∆ t c ≥ u-t c ) dt c ,
where we used that 1 -e -x ≤ x for all x ≥ 0. Using (51) and the exponential Markov inequality, it follows that -u) .

P(∆ t ≥ u) ≤ |λ c | ∞ C a t -∞ e a(t c -u) dt c = |λ c | ∞ C a a -1 e a(t
We can now derive a Burkhölder-type inequality.

Proposition 9. Suppose that (NS-1) holds for some d > 0. Let p ∈ [2, ∞). Then there exists a positive constant B p such that, for all bounded functions h with support included in [j, j + n] for some j ∈ Z and n ∈ N,

N (h) -E[N (h)] p ≤ A |h| ∞ √ n .
where A is a positive constant only depending on d,

|λ c | ∞ , ζ 1 , ζ ∞ , ζ ∞ (d) and ζ 1 (d), e.g.,
for any a ∈ (0, d) and q > p,

A := (B 1 + B p )(B 1 + B q ) |λ c | ∞ C a a -1 1/p-1/q e -a(1/p-1/q) 1 -e -a(1/p-1/q) ,
where B p is defined in Proposition 6 and C a in (48).

Proof. We can assume |h| ∞ = 1 without loss of generality. We write

h = n i=1 h i with h i = h½ [j+i-1,j+i) .
Then |h i | ∞ ≤ 1 and |h i | 1 ≤ 1 for all i and, defining

X i = N (h i ) -E[N (h i )], from
Proposition 6, we have, for all q ≥ 1,

X i q ≤ B q + B 1 . (53) 
Then N (h) -E[N (h)] = n i=1 X i and, applying (Dedecker et al., 2007, Proposition 5.4, Page 123), we have

N (h) -E[N (h)] p ≤ 2p n i=1 b i,n 1/2 , (54) 
where, denoting

M i = F j+i , b i,n = max 1≤ℓ≤n X i ℓ k=i E[X k |M i ] p/2 .
Observing that X k is centered and G j+k-1 -measurable, Proposition 8, gives that, for any q > p,

E[X k |M i ] p ≤ X k q |λ c | ∞ C a a -1 e -a(k-i+1) 1/p-1/q .
The Hölder inequality, the last two displays and (53) yield, for all q > p,

b i,n ≤ (B 1 + B p )(B 1 + B q ) |λ c | ∞ C a a -1 1/p-1/q e -a(1/p-1/q) 1 -e -a(1/p-1/q) .
Applying this in (54), we get the claimed bound.

Another consequence of Proposition 8 is the following useful covariance bound.

Corollary 10. Suppose that (NS-1) holds for some d > 0 and that λ c is bounded. Let h 1 and h 2 be two bounded integrable functions. Let γ satisfy one of the following assertions.

(i) There exist t ∈ R such that Supp(h 1 ) ⊂ (-∞, t] and Supp(h

2 ) ⊂ [t + γ, ∞)].
(ii) There exist t ∈ R such that Supp(h 2 ) ⊂ (-∞, t] and Supp(h

1 ) ⊂ [t + γ, ∞)].
(iii) γ = 0.

Then for all q > 4, there exists C q > 0 and α q > 0 both only depending on q, |λ c | ∞ , and a and C a in Proposition 8 such that

Cov N (h 1 ) 2 , N (h 2 ) 2 ≤ C q N (h 1 ) 2 q N (h 2 ) 2 q e -αqγ , (55) 
where

N (h) = N (h) -E[N (h)].
Proof. In the case (iii), the bound (55) actually holds with q = 4 by the Cauchy-Schwarz inequality and thus also holds with q > 4 by Jensen's inequality. We now consider the case (i) (the last one (ii) being obtained by inverting h 1 and h 2 ).

We have in this case, denoting

Y = N (h 2 ) 2 -E N (h 2 ) 2 , Cov N (h 1 ) 2 , N (h 2 ) 2 = E N (h 1 ) 2 (E[Y |F t ]) ≤ N (h 1 ) 2 4 E[Y |F t ] 2 4 .
The Jensen Inequality and q > 4 give that N (h 1 )

4 ≤ N (h 1 )
q and the proof is concluded by using Proposition 8 to bound E[Y |F t ] 4 .

Let q ω0,b2 = b 1/2 2 e iω0t q(b 2 t) and w T b1 = (T b 1 ) -1 w(u/(T b 1 )), where the kernels w and q satisfy |w| 1 = |q| 2 = 1. Then, we have, for all b 1 , b 2 ∈ (0, 1] and T > 0,

|q ω0,b2 | (β),1 = b -1/2-β 2 |q| (β),1 , (58) 
|q ω0,b2 | 1 = b -1/2 2 |q| 1 , (59) 
|q ω0,b2 | 2 = 1 , (60) 
|q ω0,b2 | ∞ = b 1/2 2 |q| ∞ , (61) 
|q ω0,b2 | (β),2 = b -β 2 |q| (β),2 , (62) 
|w T b1 | 1 = 1 , ( 63 
) |w T b1 | ∞ = (b 1 T ) -1 |w| ∞ , (64) 
|w T b1 | (β),1 = (b 1 T ) β |w| (β),1 , (65) 
|q ω0,b2 * w T b1 | 1 ≤ b -1/2 2 |q| 1 , (66) 
|q ω0,b2 * w T b1 | 2 ≤ |w T b1 | 2 |q ω0,b2 | 1 ≤ b -1/2 2 (b 1 T ) -1/2 |w| 2 |q| 1 , (67) 
|q ω0,b2 * w T b1 | ∞ ≤ (b 1 T ) -1 b -1/2 2 |w| ∞ |q| 1 , (68) 
|q ω0,b2 * w T b1 | (β),1 ≤ 2 (β-1)+ b -1/2 2 (b 1 T ) β |q| 1 |w| (β),1 + b -1/2-β 2 |q| (β),1 . (69) 
If q and w have compact supports both included in [-ã, ã] for some ã > 0, we have

|w T b1 | a,1 = |w| aT b1,1 ≤ e a ãT b1 |w| 1 , (70) 
|q ω0,b2 | a,1 = b -1/2 2 |q| a/b2,1 ≤ b -1/2 2 e a ãb -1 2 |q| 1 , (71) 
|q ω0,b2 * w T b1 | a,1 ≤ |w T b1 | a,1 |q ω0,b2 | a,1 ≤ b -1/2 2 e a ã(T b1+b -1 2 ) |q| 1 . (72) 
Proof. All these bounds are straightforward. We use the usual L p bounds for convolution |h ⋆ g| 1 ≤ |h| 1 |g| 1 and |h ⋆ g| 2 ≤ |h| 2 |g| 1 . When necessary, the weights are handled by using |s| β ≤ 2 (β-1)+ (|s -t| β + |t| β ) and e a|s| ≤ e a|t| e a|s-t| .

Lemma 12. Let T, b 1 , b 2 satisfy ( 21) and ( 22). Then for all a 1 , a 2 > 0, we have

exp(a 2 (T b 1 + b -1 2 ) -a 1 T ) ≤ max 1, exp 2a 2 e 1/a1 .
In particular, under Convetion 2, we have exp

(A 2 (T b 1 + b -1 2 ) -A 1 T ) 1. Proof. First note that, by (21), b -1 2 ≤ T b 1 and thus exp(a 2 (T b 1 + b -1 2 ) -a 1 T ) ≤ exp(2a 2 T (b 1 -a 1 )) .
If b 1 ≤ a 1 this upper bound is at most 1 and otherwise, using that b 1 ≤ 1 and then ( 22), we have that T (b 1 -a 1 ) ≤ T ≤ e 1/b1 ≤ e 1/a1 .

B Proof of Theorem 5 B.1 A useful lemma

The following lemma prepares the ground for deriving appropriate bounds used in the proof of Theorem 5.

Lemma 13. Let ϕ : R 2 → R + and f :

R → R + with f ∈ L 1 ∩ L 2 . Let moreover f ∞ : R → R + satisfying, for all s ∈ R, f ∞ (s) ≤ f (s) + f ∞ (t) ϕ(s -t; t) dt . ( 74 
)
Let us consider the following conditions depending on some a ≥ 0 and M ∈ (0, ∞].

(C-1) ζ 1 (a) := sup t ϕ(u; t) e a|u| du < 1. (C-2) ζ ∞ (a) := sup u,t ϕ(u; t)e a|u| < ∞. (C-3) ϕ(u) := sup |t|≤M ϕ(u; t) satisfies ζ1 := ϕ(u) du < 1. If M < ∞, we define f ∞ : R → R + by f ∞ (s) := |t|>M f ∞ (t) ϕ(s -t; t) dt . Then the following assertions hold. (i) Condition (C-1) with a ≥ 0 implies |f ∞ | a,1 |f | a,1 . (ii) Condition (C-1) with a > 0 implies, for any β ∈ (0, 1], |f ∞ | (β),1 |f | (β),1 + |f | 1 . (iii) Condition (C-3) with M = ∞ implies |f ∞ | 2 |f | 2 . (iv) Conditions (C-2) with a > 0 and (C-3) with M = ∞ imply |f ∞ | (β),2 |f | (β),2 +|f | 2 . (v) Conditions (C-1) with a > 0, (C-2) with a = 0 and (C-3) with M < ∞ imply |f ∞ | 2 |f | 2 + e -a M |f | a,1 .
(vi) Conditions (C-1) and (C-2) with a > 0 and (C-3) with M < ∞ imply, for any

β ∈ (0, 1], |f ∞ | (β),2 |f | (β),2 + e -aM/2 |f | a,1 + |f | 2 .
Here " . . . Proof. Using (73) to deal with weighted L p -norms, the bound (74) easily yields, for all a ≥ 0 and β ∈ (0, 1],

|f ∞ | a,1 ≤ |f | a,1 + ζ 1 (a) |f ∞ | a,1 , (75) 
|f ∞ | (β),1 ≤ |f | (β),1 + sup t |ϕ(•; t)| (β),1 |f ∞ | 1 + ζ 1 (0) |f ∞ | (β),1 . (76) 
The bound (75) yields (i). Moreover, using, for any β ∈ (0, 1], C a,β := sup x≥0 x β e -ax ≤ sup x≥0 x e -ax ≤ (ea) -1 , we get that

sup t |ϕ(•; t)| (β),1 = sup t ϕ(r; t) |r| β dr ≤ ζ 1 (a)(ea) -1 .
Using this in ( 76) and (i) with a = 0, we get (ii).

The definition of ϕ in the case M = ∞ allows us to bound the second term of the bound in (74) by

f ∞ (t) ϕ(s -t; t) dt ≤ f ∞ * ϕ(s) . (77) 
Using this, we get in turn that

|f ∞ | 2 ≤ |f | 2 + |f ∞ * ϕ| 2 ≤ |f | 2 + |f ∞ | 2 |ϕ| 1 ,
which under Condition (C-3) yields (iii).

Similarly to (76) and with the definition of ϕ in the case M = ∞, we have

|f ∞ | (β),2 ≤ |f | (β),2 + |ϕ| (β),1 |f ∞ | 2 + |ϕ| 1 |f ∞ | (β),2 .
Note that in the case M = ∞, |ϕ| (β),1 1 as a consequence of (C-2) with a > 0. Thus, using (iii) to bound |f ∞ | 2 , under Condition (C-3), we get (iv). Assertions (v) and (vi) are obtained similarly as (iii) and (iv) but with an additional step to deal with a finite M . Namely we have in this case

f ∞ (t) ϕ(s -t; t) dt ≤ f ∞ * ϕ(s) + f ∞ (s) .
It follows that the same bounds as in (iii) and (iv) applies but with f replaced by f + f ∞ . Hence to obtain the bounds in (v) and (vi), we only need to show that, under the corresponding conditions, we have

f ∞ 2 e -a M |f | a,1 , (78) 
f ∞ (β),2 e -a M/2 |f | a,1 . (79) 
Observe that, by definition of f ∞ , we have Finally, we prove (79). First we note that, using (73), for q = 1, ∞, we have

f ∞ 1 = |t|>M f ∞ (t) ϕ(s -t; t) ds dt ≤ ζ 1 (0) |t|>M f ∞ (t) dt , f ∞ ∞ = sup s |t|>M f ∞ (t) ϕ(s -t; t) dt ≤ ζ ∞ (0) |t|>M f ∞ (t) dt . Using f ∞ 2 ≤ f ∞ ∞ f ∞ 1 1/2 , |t|>M f ∞ (t) dt ≤ e -aM |f ∞ | a,
f ∞ (β),q ≤ sup t |ϕ(•; t)| (β),q |t|>M f ∞ (t) dt + sup t |ϕ(•; t)| q |t|>M f ∞ (t) |t| β dt .
The bound (79) then follows similarly as (78) by using f

∞ (β),2 ≤ f ∞ (β),∞ f ∞ (β),1 1/2
and (with the constant C a/2,β defined as above)

|t|>M f ∞ (t) |t| β dt ≤ C a/2,β e -a M/2 |f ∞ | a,1 ≤ 2(ea) -1 e -a M/2 |f ∞ | a,1 .
This concludes the proof.

B.2 Preliminaries

In these preliminaries, we only require ( 5) and ( 44) to hold as they are sufficient to define a non-stationary Hawkes process. Under (LS-1), for any given T ≥ 1, these conditions are satisfied by the parameters of the non-pstationary Hawkes process N = N T , with immigrant intensity λ cT (t) = λ <LS> c (t/T ) and varying fertility function p T (u; t) = p <LS> (u; t/T ).

Let g ∈ L 1 ∩ L ∞ , hence g ∈ L 2 , too. Since N c is a Poisson point process with intensity λ c and the clusters N (•|t c ) can be seen as conditionally independent marks of this Poisson process, we have 

Var(N (g)) = Var (N (g|t c )) λ c (t c ) dt c + (E[N (g|t c )]) 2 λ c (t c ) dt c ( 
∀ s ∈ R, E(h)(s) = g(s) + h(t) p(t -s; t) dt . (81) 
And the operator Ẽ is defined similarly but with g replaced by the function

g(s) = (E[N (g|t)]) 2 p(t -s; t) dt .
By the first condition in ( 5), E and Ẽ are strictly contracting and thus admit a unique fixed point. We denote this fixed point by g ∞ (resp. g∞ ) in the following. Hence, to summarize, the computation of Var(N (g)) boils down to the formula

Var(N (g)) = g∞ (t)λ c (t c ) dt c + (g ∞ (t)) 2 λ c (t c ) dt c , (82) 
where g ∞ and g∞ are the unique fixed points of the L 1 → L 1 operators E and Ẽ, with E defined by ( 81) and Ẽ defined similarly but with g(s) replaced by

g(s) = (g ∞ (t)) 2 p(t -s; t) dt . (83) 

B.3 Decomposition of the approximation

The framework introduced in Section B.2 applies under the assumptions of Theorem 5 for computing both Var N T (S -T u g)) and Var (N (g; u)). For simplicity and without loss of generality we take u = 0 in the following and thus wish to approximate Var (N T (g))) with Var (N <S> (g)), with N <S> (g) := N (g; 0). Then Var (N T (g))) and Var (N (g; 0)) satisfy Eq. ( 82) by adapting the definitions of E, g ∞ , g and g∞ to the corresponding p(t -s; t) and λ c . Namely, to compute Var (N T (g))), we apply these equations and definitions with p(t -s; t) = p <LS> (t -s; t/T ) and λ c (t c ) = λ <LS> c (t c /T ), while to compute Var (N (g; 0))), we apply them with p(t -s; t) = p <S> (t -s) := p <LS> (t -s; 0) and λ c (t c ) = λ <S> c := λ <LS> c (0). To distinguish between these two cases, we use the corresponding notation

E (T ) , g (T )
∞ , g(T ) and g(T ) ∞ in the first case and E <S> , g <S> ∞ , g<S> and g<S> ∞ in the second case. Applying (82) then yields the bound

|Var(N T (g))| ≤ λ <LS> c ∞ g(T ) ∞ 1 + g (T ) ∞ 2 2 , ( 84 
)
and the approximation bound

Var(N T (g)) -Var(N <S> (g)) ≤ (A) + (B) + (C) + (D) with (A) = g <S> ∞ (t c ) 2 λ <LS> c t c T -λ <S> c dt c , (B) = λ <LS> c ∞ g (T ) ∞ (t c ) 2 -g <S> ∞ (t c ) 2 dt c , (C) = g<S> ∞ (t c ) λ <LS> c t c T -λ <S> c dt c , (D) = λ <LS> c ∞ g(T ) ∞ (t c ) -g<S> ∞ (t c ) dt c .
Note that in (A) and (C), using (LS-2) we can bound |λ <LS> c

(t c /T )-λ <S> c | = |λ <LS> c (t c /T )- λ <LS> c (0)| ≤ ξ (β) c T -β |t c | β .
Hence, these four terms can be bounded using the previously introduced weighted norms, and we get

Var(N T (g)) -Var(N <S> (g)) T -β g <S> ∞ 2 (β/2),2 + g<S> ∞ (β),1 + g (T ) ∞ 2 -g <S> ∞ 2 1 + g(T ) ∞ -g<S> ∞ 1 . (85) 
To bound these norms, we successively apply Lemma 13 in various settings.

B.4 Successive applications of Lemma 13

Norms involving g <S> ∞ :

We apply Lemma 13 with

f = |g|, ϕ(u; t) = ϕ(u) = p <S> (-u) = p <LS> (-u; 0) and f ∞ = |g <S> ∞ |.
In this setting Eq. ( 74) is inherited from the fact that g <S> ∞ is a fixed point of E <S> . Conditions (C-1), (C-2) and (C-3) hold with a = d > 0 and M = ∞ as consequences of (LS-1). Assertions (iii) and (iv) of Lemma 13 then respectively give

g <S> ∞ 2
|g| 2 (86)

g <S> ∞ (β/2),2 |g| (β/2),2 + |g| 2 . ( 87 
)
Norms involving g (T )

∞ : We apply Lemma 13 with f = |g|, ϕ(s -t; t) = p <LS> (t - s; t/T ) and

f ∞ = |g <S> ∞ |.
In this setting Eq. ( 74) is inherited from the fact that g

(T )
∞ is a fixed point of E (T ) . Conditions (C-1) and (C-2) hold with a = d > 0 as consequences of (LS-1). To check (C-3), we need to choose an appropriate M < ∞. From (LS-1) and (LS-3), we have ϕ(u) ≤ p <LS> (-u; 0) + M T β ξ (β) (-u) and thus

ζ1 ≤ ζ <LS> 1 (0) + M T β ξ (β) 1 . Since ζ <LS> 1 (0) ≤ ζ <LS> 1 (d) < 1 and ξ (β)
1 < ∞, we can define ε > 0 small enough, depending only on these two constants (hence ε -1 1), such that, if we set M = εT then we have ζ1 ≤ ζ <LS> 1 (0) 1/2 < 1 and (C-3) follows. Assertions (v) and (vi) of Lemma 13 then respectively give

g (T ) ∞ 2 |g| 2 + e -dεT |g| d,1 (88) 
g (T ) ∞ (β),2 |g| (β),2 + e -dεT /2 |g| d,1 + |g| 2 . ( 89 
)
Norms involving g<S>

∞ : Applying Lemma 13 (ii) with f = |g <S> | and f ∞ = |g <S> ∞ | and φ(u; t) = p <S> (-u), we get that |g <S> ∞ | (β),1 |g <S> | (β),1 + |g <S> | 1 . By definition of g<S> (adapted from (83) with p(s -t; t) := p <S> (s -t) and g ∞ replaced by g <S> ∞ ), we have |g <S> | 1 = |g <S> ∞ | 2 2 |p <S> | 1 and, using (73), |g <S> | (β),1 = |g <S> ∞ | 2 (β/2),2 |p <S> | 1 + |g <S> ∞ | 2 2 |p <S> | (β),1 . By (LS-1), we have |p <S> | 1 , |p <S> | (β),1
1. Hence we finally get that g<S>

∞ (β),1 g <S> ∞ 2 2 + g <S> ∞ 2 (β/2),2 . (90) 
Hence, using (93), we get that

|f | 1 ≤ T -β g (T ) ∞ 2 (β/2),2 + g(T ) ∞ 1 ξ (β) 1 + g <S> ∞ 2 -g (T ) ∞ 2 1 p <S> 1 . Since |p <S> | 1 , ξ (β)
1 1 under (LS-1) and (LS-3), Lemma 13 (i) with a = 0 thus yields g<S>

∞ -g(T ) ∞ 1 T -β g (T ) ∞ 2 (β/2),2 + g(T ) ∞ (β),1 + g <S> ∞ 2 -g (T ) ∞ 2 1 . (96) 

B.5 Conclusion of the proof

We can now gather the obtained bounds to conclude the proof of Theorem 5.

The bounds ( 84), ( 91) and ( 88) gives (31) (recall that ε -1 1).

Finally we prove (32). Using (85), and (96), we first obtain that

Var(N T (g)) -Var(N <S> (g)) T -β (I) + g (T ) ∞ 2 -g <S> ∞ 2 1 , with (I) := g <S> ∞ 2 (β/2),2 + g<S> ∞ (β),1 + g (T ) ∞ 2 (β/2),2 + g(T ) ∞ (β),1
.

The bounds ( 90) and ( 92) and then ( 86), ( 87), ( 88), (89) (with β/2 instead of β) further give

(I) g <S> ∞ 2 (β/2),2 + g <S> ∞ 2 2 + g (T ) ∞ 2 (β/2),2 + g (T ) ∞ 2 2 |g| 2 2 + |g| 2 (β/2),2 + e -A1T |g| 2 d,1
. Using the Hölder inequality and then (95), ( 86) and (88), we get

g (T ) ∞ 2 -g <S> ∞ 2 1 ≤ g (T ) ∞ -g <S> ∞ 2 g (T ) ∞ 2 + g <S> ∞ 2 T -β |g| (β),2 + e -A1T |g| d,1 + |g| 2 |g| 2 + e -A1T |g| d,1 .
Using that the products can be bounded by the sum of squares, the previous displays yield Var(N T (g)) -Var(N <S> (g))

T -β |g| 2 (β/2),2 + |g| 2 2 + e -A1T |g| 2 d,1 + |g| (β),2 |g| 2 + e -A1T |g| d,1 . 
Now, by the Hölder inequality, we have |g|

2 (β/2),2 ≤ |g| 2 |g| (β),2
, hence the first term inside the curly brackets can be removed by increasing the multiplicative constant by a factor 2 and we finally get (32), which concludes the proof of the theorem.

C Proof of main results

C.1 Proof of Theorem 1 (local mean density estimation)

For treating the bias, expressed as (34), we apply (29) in Theorem 4 with g = w T b1 . Using the norm estimates of equations ( 63) and ( 65), we immediately get

E[ m b1 (u 0 )] -m 1 (u 0 ) T -β 1 + |w T b1 | (β),1 b β 1 + T -β .
For treating the variance, expressed as (42), we use Proposition 9 with h( 64) and the obvious bound on the support of the kernel, Supp(w T b1 ) T b 1 . We immediately get (24), which concludes the proof.

•) = w T b1 (•-T u 0 ) along with |h| ∞ = |w T b1 | ∞ = (T b 1 ) -1 by (
Term (IIIa): Applying the bound (31) of Theorem 5, we get that, setting here g = q ω0,b2 * w T b1 , Var (N T (g)) |g| 2 2 + e -aT |g| 2 d,1 . Now, from ( 67) and ( 72), this bound reads

Var (N T (g)) b -1 2 (T b 1 ) -1 + e -A1T +A2(T b1+b -1 2 ) .
By Lemma 12 and since T b 1 b 2 ≥ 1, the first term dominates and we get (iii), which concludes the proof.

We now provide a proof for the second part of the theorem controlling the bias.

Proof of ( 27). This bound requires the usual control of the kernel-regularization of a smooth function as can be seen from ( 11). Namely, the function to consider is ω → γ <LS> (ω; u 0 ) and the kernel is

ω → b -1 2 |Q ((ω -ω 0 )/b 2 )| 2 which integrates to 1 since |Q| 2 = |q| 2 / √ 2π = 1 by (K-2
) and the Parseval theorem. Using the formula (8) to express ω → γ <LS> (ω; u 0 ) and the usual conditions on the kernel (26), it is thus sufficient to prove that, for all ω ∈ R,

m <LS> 1 (u 0 ) 2π |1 -P <LS> (ω; u 0 )| -2 -|1 -P <LS> (ω 0 ; u 0 )| -2 + C (ω -ω 0 ) (ω -ω 0 ) 2 ,
where C is any constant (possibly depending on ω 0 and u 0 but not on depending on ω).

As already seen, we have

m <LS> 1 (u 0 ) ≤ λ <LS> c ∞ /(1 -ζ <LS> 1
) 1 , so that, we can consider the ratio m <LS> 1 (u 0 )/(2π) as a constant. For the remaining term involving the function ω → |1 -P <LS> (ω; u 0 )| -2 , we first observe that P <LS> (ω; u 0 ) -P <LS> (ω 0 ; u 0 ) = p <LS> (t; u 0 )(e -iωt -e -iω0t ) dt = p(ω 0 ; u 0 ) (ω -ω 0 ) + p <LS> (t; u 0 )e -iω0t e -i(ω-ω0)t -1 -i(ω -ω 0 )t dt , with p(ω 0 ; u 0 ) := i t p <LS> (t, u 0 ) e -iω0t dt . In the latter display, the first term is of the form C(ω -ω 0 ) with |C| 1 and the second term is of order (ω -ω 0 ) 2 . This comes respectively from

|p(ω 0 ; u 0 )| ≤ |t| p <LS> (t; u 0 )dt ≤ ζ <LS> 1 + ζ <LS> (2) and p <LS> (t, u 0 )e -iω0t e -i(ω-ω0)t -1 -i(ω -ω 0 )t dt ≤ ζ <LS> (2) (ω -ω 0 ) 2 .
To conclude the proof we argue that the form C(ω -ω 0 ) + R(ω) with C 1 and R(ω) (ω -ω 0 ) 2 satisfied by P <LS> (ω; u 0 )-P <LS> (ω 0 ; u 0 ) is inherited by |1-P <LS> (ω; u 0 )| -2 -|1 -P <LS> (ω 0 ; u 0 )| -2 . This follows from 6)) and from the identity valid for all complex numbers z, z ′ inside the unit disk

|1 -P <LS> (ω; u 0 )| -1 ≤ (1 -ζ <LS> 1 ) -1 ∈ (1, ∞) (using (
1 |1 -z| 2 - 1 |1 -z ′ | 2 = |1 -z| 2 -|1 -z ′ | 2 |1 -z ′ | 4 + |1 -z| 2 -|1 -z ′ | 2 2 |1 -z ′ | 4 |1 -z| 2
Let ℓ denote the length of the support of q ω0,b2 , which clearly satisfies for b 2 ∈ (0, 1],

ℓ b -1 2 . ( 101 
)
Then with h 1 = q ω0,b2 (• -t) and h 2 = q ω0,b2 (• -t ′ ), setting γ := (|t -t ′ | -ℓ) + , we have one of the assertions (i), (ii) or (iii) which is satisfied. Hence Corollary 10 gives that, for some q > 4,

Cov N T (h 1 ) 2 , N T (h 2 ) 2 ≤ C q N T (h 1 ) 2 q N T (h 2 ) 2 q e -αq(|t-t ′ |-ℓ)+ . ( 102 
)
Further we apply Proposition 9 with ( 61) and ( 101) and get, for i = 1, 2, N T (h i )

2 q |q ω0,b2 | ∞ 2 ℓ 1 . Hence we finally get Var |N T (S -T u0 q ω0,b2 (• -t))| 2 w T b1 (t) dt e -αq(|t-t ′ |-ℓ)+ w T b1 (t) w T b1 (t ′ ) dt dt ′ ≤ |w T b1 * w T b1 | ∞ e -αq(|u|-ℓ)+ du .
Now, by ( 101) we have e -αq(|u|-ℓ)+ du b -1 2 and by ( 63) and ( 64 where γ b2,b1 (u 0 ; ω 0 ) and γ b2,b1 (u 0 ; ω 0 ) are respectively defined by ( 13) and ( 43). where we used the test function f = S -T u0 q ω0,b2 . Developing the first square modulus and using for the second that |a + b| 2 ≤ 2|a| 2 + 2|b| 2 , and since w T b1 = 1, we obtain

| γ b2,b1 (u 0 ; ω 0 ) -γ b2,b1 (u 0 ; ω 0 ) -2ℜ(B T )| ≤ A T + 2C T + 2D T , (104) 
where we set, denoting by f * the complex conjugate of f , Note that A T and D T have been treated in the proof of Theorem 2 as the (deterministic) terms (II) and (IIIb). The assumptions in Theorem 2 are weaker than that of this lemma.

Hence we can directly use (ii) of the proof of Theorem 2 and obtain that

A T , D T b 2β 1 b -1 2 .
The bound (98) in Lemma 14 immediately gives C T 2 = N T (S -T u0 q ω0,b2 * w T b1 ) Since T b 1 b 2 ≥ 1 in (21), the second term within the squared parentheses is at most of the same order as the term outside the squared parentheses and can thus be discarded.

Hence we obtain Theorem 3.

D Proof of Proposition 6

This proof uses the notation and definitions of [START_REF] Roueff | Locally stationary Hawkes processes[END_REF] Recall that a holomorphic function h on U is infinitely differentiable on U . We denote by Ō (U ) the set of R × U → R functions h such that, for all t ∈ R, z → h(t, z) belongs to O (U ). For any p ∈ [1, ∞], we further denote by Ōp (U ) the subset of functions h ∈ Ō (U ) such that the function t → sup z∈K h(t, z) has finite L p -norm on R for all compact sets K ⊂ U . We denote 

R ∞ := r ∞ -e r∞ ζ ∞ r 1 ∈ (0, r ∞ ) . ( (106) 
) 107 
Let K ⊂ U be a compact set and g ∈ B Ō (R 1 ; K, 1) ∩ B Ō (R ∞ ; K, ∞).

Corollary 12 and Eq. ( 33) in [START_REF] Roueff | Locally stationary Hawkes processes[END_REF] give that if g ∈ B Ō (R 1 ; K, 1) ∩ B Ō (R ∞ ; K, ∞), with R 1 , R ∞ defined by ( 106) and (107), we have, for all z ∈ K,

L(g(•, z)) := E e N (g(•,z)) = exp exp Φ ∞ g (t c , z) -1 λ c (t c ) dt c ,
where Φ ∞ g is defined in (Roueff et al., 2016, Definition 3) as as element of B Ō (r 1 ; K, 1) ∩ B Ō (r ∞ ; K, ∞).

Let now h : R → R + be a bounded and integrable function and set g(t, z) = z h(t). Let U = R and K = [-r, r] for some r > 0. The previous display and the bound |e a -1| ≤ |a|e |a| give that

sup |z|≤r E e z N (h) ≤ exp |λ c | ∞ e |Φ ∞ g | Ō,K,∞ Φ ∞ g Ō,K,1
≤ exp (|λ c | ∞ e r∞ r 1 ) .

Here r 1 and r ∞ should be taken as small as possible provided that (105) holds and g ∈ B Ō (R 1 ; K, 1) ∩ B Ō (R ∞ ; K, ∞), with R 1 , R ∞ defined by ( 106) and ( 107). The specific choice of g and K here gives g ∈ B Ō (R 1 ; K, 1)

∩ B Ō (R ∞ ; K, ∞) if r |h| 1 ≤ R 1 and r |h| ∞ ≤ R ∞ .
So we conclude that Let us set r ∞ = (-log ζ 1 )/2 so that (105) reduces to

0 < r 1 < (-log ζ 1 )ζ 1/2 1 ζ -1 ∞ /2 .
In the particular case where |h| 1 ≤ 1 and |h| ∞ ≤ 1, the condition on r then reads as

r < min(r 1 (1 -ζ 1/2 1 ), (-log ζ 1 )/2 -r 1 ζ ∞ ζ -1/2 1 ) = r 1 (1 -ζ 1/2 1 ) ,
where the last equality holds for the choice of r 1 given by (45). We thus get, for all r < r 1 (1 -ζ 

Convention 1 (

 1 Symbol ). For two nonnegative sequences a T and b T indexed by T ≥ 1, possibly depending on parameters λ <LS> c , p <LS> , b 1 and b 2 , we use the notation a T b T to denote that there exists a constant C such that, for all b 1 , b 2 and T satisfying certain conditions C(b 1 , b 2 , T ), we have a T ≤ C b T with C only depending on non-asymptotic quantities and constants such as d, β, ζ <LS> 1

  and hence by setting b 1 ∼ T -2 2+5β and b 2 ∼ T -β 2+5β . The fact that this rate bound is obtained by balancing the two squared bias terms b 2β 1 and b 4 2 with the variance term (T b 1 b 2 ) -1 indicates that all the other terms appearing in the upper bounds (25) and (28) are negligible. Thus, since the bias terms b β 1 and b 2

  " means "≤ C . . . " with a positive constant C possibly depending on a, ζ 1 (a), ζ ∞ (a), ζ1 or β only (thus neither depending on M nor on f ).

  1 and the bound in (i) to bound |f ∞ | a,1 with |f | a,1 , we get (78).

  ), we have |w T b1 * w T b1 | ∞ (b 1 T ) -1 . Hence we get (100) and the proof is concluded. Lemma 16. Under the conditions of Theorem 3, we have, for all u 0 ∈ R, ω 0 ∈ R, and b 1 , b 2 , T as in (21), γ b2,b1 (u 0 ; ω 0 ) -γ b2,b1 (u 0 ; ω 0 ) 2 b 2β 1 b -1 2 + (T b 1 b 2 )

Proof.

  By definitions (33) and (41), we have, for any integrable test function f , N T(f ) = N T (f ; u 0 )-E[N T (f ; u 0 )]. Thus, (35) and (37) yield the following expression for γ b2,b1 (u 0 ; ω 0 )N T (f (• -t)) + E[N T (f (• -t); u 0 )] 2 w T b1 (t) dt-N T (f * w T b1 ) + E[N T (f * w T b1 ; u 0 )] 2 ,

A

  T := E[N T (f (• -t); u 0 )] 2 w T b1 (t) dt , B T := N T (f (• -t))E[N T (f * (• -t); u 0 )] w T b1 (t) dt , C T := N T (f * w T b1 ) 2 and D T := E[N T (f * w T b1 ; u 0 )] 2 .

T

  left with treating B T . Note that we can rewrite B T as B T = N T (f * h), where h is the (deterministic) function t → E[N T (f * (• -t); u 0 )] w T b1 (t). Now, by (97), we have, for all t ∈ R,|h(t)| b -1/2 2 T -β b -β 2 + |t| β w T b1 (t) . Applying (99) with a T = b -β b -β 2 + (b 1 T ) β (T b 1 b 2 ) b 1 b 2 ) -1/2 , for T b 1 b 2 ≥ 1.Inserting the previous bounds on A T , B T , C T and D T in (104) yieldsγ b2,b1 (u 0 ; ω 0 ) -γ b2,b1 (u 0 ; ω 0 ) 2 b -1/2 2 b β 1 (T b 1 b 2 ) -1/2 + b 2β 1 b -1 2 + (T b 1 b 2 ) -1 . b 1 b 2 ) -1/2 ≤ b 2β 1 b -1 2 + (T b 1 b 2 ) -1 , we get (103).C.4 Proof of Theorem 3 (variance of spectral estimator)Lemmas 15 and 16, together with the definition of γ b2,b1 (u 0 ; ω 0 ) in (43), directly give that Var ( γ b2,b1 (u 0 ; ω0 )) 1 T b 1 b 2 + b 2β 1 b -1 2 + (T b 1 b 2 ) -1 2 .

  , Section 2.1), the essential of which we now briefly recall. Let m be a positive integer and U be an open subset of C m . Define O (U ) as the set of holomorphic functions from U to R. We denote, for all h ∈ O (U ) and compact sets K ⊂ U , |h| O,K = sup z∈K |h(z)| .

.

  |h| Ō,K,p := sup z∈K |h(•, z)| pWe also denote by B Ō (r; K, p) the set of all functions g ∈ Ōp (U ) such that |g| Ō,K,p < r.Consider now anyr ∞ ∈ (0, -log ζ 1 ) and r 1 ∈ 0, r ∞ e -r∞ ζ = r 1 (1 -ζ 1 e r∞ ) ∈ (0, r 1 ) ,

  sup |z|≤r E e z N (h) ≤ exp (|λ c | ∞ e r∞ r 1 ) ,for any r 1 and r ∞ satisfying (105) and r satisfyingr < min r 1 (1 -ζ 1 e r∞ ) |h| 1 , r ∞ -e r∞ ζ ∞ r 1 |h| ∞ .

  Letting r tend to r 1 (1 -ζ 1/2 1 ), we also get the result for r = r 1 (1 -ζ 1/2 1 ) which corresponds to (46) for a non-negative h. To conclude, if h is signed we use that |N (h)| ≤ N (|h|) and apply the previous bound to |h|.

Figure 1 :Figure 2 :

 12 Figure 1: Averaged local mean density (top) and Bartlett spectrum, nonnormalized (middle) and Poisson-normalized (bottom), for ESSI.PA transaction data.

  80)From[Corollary 8 and Proposition 11]Roueff et al. (2016) applied to the function (s, z) → s g(z), we obtain that the applications t → E[N (g|t)] and t → Var(N (g|t)) are fixed points of two L 1 → L 1 operators h → E(h) and h → Ẽ(h) defined as follows. The operator E is defined by
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A Useful lemmas

In the following lemmas, we have gathered some simple bounds that we will repeatedly use in the sequel. 

Norms involving g(T ) ∞ : We proceed as in the previous case and get that g(T )

∞ 1 g(T ) 1 and g(T ) ∞ (β),1 g(T ) (β),1 + g(T ) 1 . Now g(T ) is defined as in (83) with p(s -t; t) := p <LS> (s -t; t/T ) and g ∞ replaced by g (T )

∞ . We thus have g(T )

1

and, using (73),

.

By (LS-1), we have sup r |p <LS> (•; r)| (β),1 1. Hence we finally get that

Norms involving g

∞ and g <S> ∞ are fixed points of E (T ) and E <S> , we find that g

Hence taking absolute values

and ϕ(u; t) = p <S> (-u). As previously Conditions (C-1), (C-2) and (C-3) hold with a = d > 0 and M = ∞ as consequences of (LS-1). Assertion (iii) of Lemma 13 then gives that g <S> ∞ -g

|f | 2 with f as in the previous display. By (LS-3), we further have that

and thus

Hence, with (89), we finally obtain that

We apply the same line of reasoning as in the previous case. Using that g(T ) ∞ and g<S> ∞ are fixed point of Ẽ(T ) and Ẽ<S> , we find that

and ϕ(u; t) = p <S> (-u). By definition of g<S> and g(T ) (both adapted from ( 83)), we further have

C.2 Proof of Theorem 2 (Bias of spectral estimator)

The proof of this theorem requires to show two bounds, namely, the bound of the bias in time direction, (25), and the bound of the bias in frequency direction, ( 27). These two bounds are proved quite independently.

Proof of ( 25). The derivations of Section 3.4.2, namely ( 35), ( 36) and ( 37), show that we can decompose E γ b2,b1 (u 0 ; ω 0 ) -γ <LS> b2 (u 0 ; ω 0 ) as (I) + (II) -(III), where

correspond to (39), ( 40) and ( 38), respectively. We will show now that (i) the term (I) is of order b β 1 ; (ii) the terms (II) and (IIIb) are of order b 2β 1 b -1 2 ; (iii) the term (IIIa) is of order (T b 1 b 2 ) -1 ; which will conclude the proof of (25). Term (I): By (32) in Theorem 5 with g = q ω0,b2 (• -t), and recalling from equations ( 60), ( 62), ( 71), ( 56) and ( 57 we have for all t ∈ R,

where we have used that 1 b -β 2 e b -1 2 and that |t| β e |t| . By (12), we can use this to bound the integrand in the definition of (I) and thus get, using (63), ( 65) and ( 70),

.

By ( 21) and applying Lemma 12, we have that the main term between the parentheses is the second one, hence we get (i).

Term (II): applying (29) in Theorem 4 with g = q ω0,b2 (•-t) and using ( 58), ( 59) and ( 56), we get

(Since b 2 ≤ 1) Taking the square and integrating this with respect to w T b1 (t)dt, and using ( 65), ( 63) and T ≥ 1, we get (II) b 2β 1 b -1 2 as claimed in (ii). Term (IIIb): This term is treated similarly as (II) but using directly the bounds ( 66) and ( 69) inserted into (29) and taking the square. The same order is obtained and (ii) follows.

The numerator of the first term of this sum can be expressed as a sum of terms depending on the difference |z -z ′ |, and this applies to the numerator of the second term, too (as it is the square of the first numerator):

C.3 Additional lemmas

As explained in Section 3.4.3, the treatment of the variance is done via the introduction of the "truly" centered process N T . Here we provide three lemmas, two concerned with useful bounds for this centered process and the third one which controls the quality of the approximation of the estimator based on the centered process.

Lemma 14. Let p ≥ 1. Under the conditions of Theorem 3, we have, for all u 0 ∈ R, ω 0 ∈ R, and b 1 , b 2 , T as in ( 21),

where N T is defined in (41). Let moreover h : R → C be such that, for all t ∈ R, we have N T (S -T u0 q ω0,b2 * h)

Proof. We apply Proposition 9, and get

for some generic constant A and with a positive integer upper bound n on the length of the support of S -T u0 q ω0,b2 * w T b1 , denoted by Supp(S -T u0 q ω0,b2 * w T b1 ). Observing that Supp(S -T u0 q ω0,b2 * w T b1 ) ⊂ Supp(S -T u0 q ω0,b2 ) + Supp(w T b1 ), that the length of Supp(q ω0,b2 ) is of order b -1 2 and that the length of Supp(w T b1 ) is of order T b 1 , we have n b -1 2 + T b 1 T b 1 . We thus obtain the bound ( 98) with ( 68). The bound (99) is obtained similarly but this time we rely on the bound

(Recall that n is length of the support of w T b1 .) With ( 68 Proof. We can write the left-hand side of (100) as