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Abstract

Locally stationary Hawkes processes have been introduced in order to generalise clas-
sical Hawkes processes away from stationarity by allowing for a time-varying second-order
structure. This class of self-exciting point processes has recently attracted a lot of inter-
est in applications in the life sciences (seismology, genomics, neuro-science,...), but also
in the modeling of high-frequency financial data. In this contribution we provide a fully
developed nonparametric estimation theory of both local mean density and local Bartlett
spectra of a locally stationary Hawkes process. In particular we apply our kernel estima-
tion of the spectrum localised both in time and frequency to two data sets of transaction
times revealing pertinent features in the data that had not been made visible by classical
non-localised approaches based on models with constant fertility functions over time.

Keywords: Time frequency analysis; Locally stationary time series; high frequency fi-
nancial data; Non-parametric kernel estimation; Self-exciting point processes.

1 Introduction

Many recent time series data modelling and analysis problems increasingly face the
challenge of occurring time-variations of the underlying probabilistic structure (mean,
variance-covariance, spectral structure,....). This is due to the availability of larger and
larger data stretches which can hardly any longer be described by stationary models.
Mathematical statisticians (Dahlhaus (1996b), Zhou and Wu (2009), Birr et al. (2014),
among others) have contributed with time-localised estimation approaches for many of
these time series data based on rigorous models of locally stationary approximations to
the non-stationary data. Often it has been only via these theoretical studies that well-
motivated and fully understood time-dependent estimation methods could be developed
which correctly adapt to the degree of deviation of the underlying data from a station-
ary situation (e.g. via the modelling of either a slow - or in contrast a rather abrupt –
change of the probabilistic structure over time). For many of these situations, the devel-
opment of an asymptotic theory of doubly-indexed stochastic processes has proven to be
useful: the underlying data stretch is considered to be part of a family of processes which
asymptotically approaches a limiting process which locally shows all the characteristics of
a stationary process (hence “the locally stationary approximation”). Accompanying esti-
mators ought to adapt to this behavior, e.g. by introduction of local bandwidths in time.
Many of these aforementioned approaches have been achieved in the context of classical
real-valued series in discrete time, e.g. for (linear) time series via time-varying MA(∞)
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representations which apply for a large class of models (see, e.g., Dahlhaus (2000)). Once
those are available, the development of a rigorous asymptotic estimation theory is achiev-
able.

This approach, however, is not directly applicable to the model of locally stationary
Hawkes processes, a class of self-exciting point processes introduced in Roueff et al. (2016)
with not only time-varying baseline intensity (such as in Chen and Hall (2013)) but also
time-varying fertility function. The fertility function describes the iterative probabilistic
mechanism for Hawkes processes to generate offsprings from each occurrence governed
by a conditional Poisson point process, given all previous generations. Often, a fertility
function p(t) with exponential decay over time t is assumed. The condition

∫
p < 1 ensures

a non-explosive accumulation of consecutive populations of the underlying process. When
this fertility function is made varying over time through a second argument, one can still
rely on the point process mechanism to derive locally stationary approximations.

In this paper we treat estimation of the first and second order structure of locally
stationary Hawkes processes on the real line, with a (time-dependent) fertility function
p(·; t) assumed to be causal, i.e. supported on R+. Whereas for estimating the local mean
density of the process it is sufficient to introduce a localisation via a short window (kernel)
in time, for estimating the second-order structure, i.e. the local Bartlett spectrum of the
process, one needs to localise both in time and frequency: this time-frequency analysis
will be provided via a pair of kernels which concentrate around a given point (t, ω) in
the time-frequency plane. Using an appropriate choice of bandwidths in time and in
frequency which tend to zero with rates calibrated to minimize the asymptotic mean-
square error between the time-frequency estimator and the true underlying local Bartlett
spectrum, one can show consisteny of our estimator of the latter one. Note that the use of
kernels for non-parametric estimation with counting process is not new. To the best of our
knowledge this was introduced first by Ramlau-Hansen (1983) for estimating regression
point process models such as those introduced in Aalen (1975), see also Andersen et al.
(1985) for a general account on the estimation of such processes.

Self exciting point processes have been recently used for modelling point processes re-
sulting from high frequency financial data such as price jump instants (see e.g. Bacry et al.
(2013)) or limit order book events (see e.g. Zheng et al. (2014)). In this paper we will
illustrate our time frequency analysis approach for point processes on transaction times
of two assets (which are Essilor International SA and Total SA).

The rest of the paper is organised as follows. In Section 2, we introduce all neces-
sary preparatory material to develop our estimation theory, including the definition of the
population quantities, i.e. local mean density and local Bartlett spectra that we wish to
estimate. Section 3 defines our kernel estimators and treats asymptotic bias and variance
developments of those under regularity assumptions to be given beforehand. Although
these developments are far from being direct and straightforward, the resulting rates of
convergence are completely intuitive from a usual nonparametric time-frequency estima-
tion point of view. Section 4 presents the analysis of our transaction data sets leading
to interesting observations that have not previously been revealed by a classical analysis
with time-constant fertility functions. In Section 5, we present, as a result of indepen-
dent interest in its own, the necessary new techniques of directly controlling moments of
non-stationary Hawkes processes. All proofs are deferred to the Appendix.

2 Preparatory material

In this preparatory section we prepare the ground for developing the presentation of our
asymptotic estimation theory of local Bartlett spectra. We do this by introducing a list
of useful conventions and definitions, as well as recalling the main concepts and results of
Roueff et al. (2016) in as much as they are necessary.
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2.1 Conventions and notation

We here set some general conventions and notation adopted all along the paper. Addi-
tional ones are introduced in relation with the main assumptions in Section 3.1.
A point process is identified with a random measure with discrete support, N =

∑
k δtk

typically, where δt is the Dirac measure at point t and {tk} the corresponding (locally
finite) random set of points. We use the notation µ(g) for a measure µ and a function g
to express

∫
g dµ when convenient. In particular, for a measurable set A, µ(A) = µ(1A)

and for a point process N , N(g) =
∑

k g(tk). The shift operator of lag t is denoted by
St. For a set A, St(A) = {x − t, x ∈ A} and for a function g, St(g) = g(· + t), so that
St(1A) = 1St(A). One can then compose a measure µ with St, yielding for a function g,
µ ◦ St(g) = µ(g(·+ t).

We also need some notation for the functional norms which we deal with in this work.
Usual Lp-norms are denoted by |h|p,

|h|p =

(∫
|h|p

)1/p

,

for p ∈ [1,∞) and |h|∞ is the essential supremum on R, |h|∞ = ess supt∈R
|h(t)| . We also

use the following weighted Lp norms which we define to be for any p ≥ 1, β > 0, a ≥ 0
and h : R → C,

|h|(β),p :=
∣∣h× | · |β

∣∣
p
=

(∫ ∣∣h(t) tβ
∣∣p dt

)1/p

, (1)

|h|a,p :=
∣∣∣h× ea|·|

∣∣∣
p
=

(∫
|h(t)|p ea p |t| dt

)1/p

, (2)

with the above usual essential sup extensions to the case p = ∞.
We denote the convolution product by ∗, that is, for any two functions h1 and h2,

h1 ∗ h2(s) =

∫
h1(s− t)h2(t)dt .

Finally we use for a random variable X the notation

‖X‖p := (E|X |p)1/p , for p ≥ 1 . (3)

2.2 From stationary to non-stationary and locally stationary Hawkes
processes

To start with, we first recall the definition of a stationary (linear) Hawkes process N
with immigrant intensity λc and fertility function p defined on the positive half-line. The
conditional intensity function λ(t) of such a process is driven by the fertility function
taken at the time distances to previous points of the process, i.e. λ(t) is given by

λ(t) = λc +

∫ t−

−∞

p(t− s) N(ds) = λc +
∑

ti<t

p(t− ti) . (4)

Here the first integral is to be read as the integral of the “fertility” function p with re-
spect to the counting process N , which is a sum of Dirac masses at (random) points
(ti)i∈Z. The existence of a stationary point processes with conditional intensity (4)
holds under the condition

∫
p < 1 and can be constructed as a cluster point process

(see (Daley and Vere-Jones, 2003, Example 6.3(c))).
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We extend the stationary Hawkes model defined by the conditional intensity (4) to the
non-stationary case by authorizing the immigrant intensity λc to be a function λc(t) of
time t and also the fertility function p to be time varying, replacing p(t− s) by the more
general p(t − s; t). To ensure a locally finite point process in this definition, we impose
the two conditions

ζ1 := sup
t∈R

∫
p(s; t) ds < 1 and |λc|∞ < ∞ . (5)

They yield the existence of a non-stationary point process N with a mean density function
which is uniformly bounded by |λc|∞ /(1− ζ1) (see (Roueff et al., 2016, Definition 1)).

As non-stationary Hawkes processes can evolve quite arbitrarily over time, the statis-
tical analysis of them requires to introduce local stationary approximations in the same
fashion as time varying autoregressive processes in time series, for which locally stationary
models have been successfully introduced (see Dahlhaus (1996b)). Thus, a locally sta-
tionary Hawkes process with local immigrant intensity λ<LS>

c (·) and local fertility function
p<LS>(·; ·) is a collection (NT )T≥1 of non-stationary Hawkes processes with respective im-
migrant intensity and fertility function given by λcT (t) = λ<LS>

c (t/T ) and varying fertility
function given by pT (·; t) = p<LS>(·; t/T ), see (Roueff et al., 2016, Definition 2) where this
model is called a locally stationary Hawkes process. For a given real location t, the scaled
location t/T is typically called an absolute location and denoted by u or v.

Note that the collection (NT )T≥1 of non-stationary Hawkes processes are defined using
the same time varying parameters λ<LS>

c and p<LS> but with the time varying arguments
scaled by T . As a result, the larger T is, the slower the parameters evolve along the time.

An assumption corresponding to (5) to guarantee that, for all T ≥ 1, the non-
stationary Hawkes process NT admits a uniformly bounded mean density function is
the following:

ζ<LS>
1 := sup

u∈R

∫
p<LS>(r;u) dr < 1 and

∣∣λ<LS>
c

∣∣
∞

< ∞ . (6)

Under this assumption, for each absolute location u ∈ R, the function r 7→ p<LS>(r;u)
satisfies the required condition for the fertility function of a stationary Hawkes process.
Hence, assuming (6), for any absolute location u, we denote by N(·;u) a stationary
Hawkes process with constant immigrant intensity λ<LS>

c (u) and fertility function r 7→
p<LS>(r;u). In the following subsection we will include this assumption (6) into a stronger
set of assumptions that we use for derivation of the results on asymptotic estimation
theory.

We also remark that, for any T ≥ 1, the conditional intensity function λT of the
non-stationary Hawkes process NT takes the form

λT (t) = λ<LS>
c (t/T ) +

∫ t−

−∞

p<LS> (t− s; t/T ) NT (ds)

= λ<LS>
c (t/T ) +

∑

ti,T<t

p<LS>(t− ti,T ; t/T ) ,

where (ti,T )i∈Z denote the points of NT . This latter formula can also be used to simu-
late locally stationary Hawkes processes on the real line. The examples for locally sta-
tionary Hawkes processes (with time varying Gamma shaped fertility functions) used
in (Roueff et al., 2016, Section 2.6) were simulated in this way.

First and second order statistics for point processes are of primary importance for
statistical inference. As for time series they are conveniently described in the stationary
case by a mean parameter for the first order statistics and a spectral representation, the
so called Bartlett spectrum (see (Daley and Vere-Jones, 2003, Proposition 8.2.I)), for the
covariance structure. The locally stationary approach allows us to define such quantities
as depending on the absolute time u as introduced in the following section.
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2.3 Local mean density and Bartlett spectrum

Consider a locally stationary Hawkes process (NT )T≥1 with local immigrant intensity
λ<LS>
c and local fertility function p<LS>(·; ·) satisfying condition (6). Although for a

given T , the first and second order statistics of NT can be quite involved, some intu-
itive asymptotic approximations are available as T grows to infinity. Namely, for any
absolute time u, the local statistical behavior of NT around real time Tu has to be well
approximated by that of a stationary Hawkes process with (constant) immigrant intensity
λ<LS>
c (u) and fertility function p<LS>(·;u). This stationary Hawkes process at absolute

location u is denoted in the following by N(·;u). Precise approximation results are pro-
vided in Roueff et al. (2016) and recalled in Section 3.4.1 below. Presently, we only need
to introduce how to define this local first and second order statistical structure.

We first introduce the local mean density function m<LS>
1 (u) defined at each abso-

lute location u, as the mean parameter of the stationary Hawkes process N(·;u). By
(Daley and Vere-Jones, 2003, Eq. (6.3.26) in Example 6.3(c)), it is given by

m<LS>
1 (u) =

λ<LS>
c (u)

1−
∫
p<LS>(·;u) . (7)

A convenient way to describe the covariance structure of a second order stationary point
process N on R is to rely on a spectral representation, the Bartlett spectrum, which
is defined as the (unique) non-negative measure Γ on the Borel sets such that, for any
bounded and compactly supported function f on R, (see (Daley and Vere-Jones, 2003,
Proposition 8.2.I))

Var
(
N(f)

)
= Γ(|F |2) =

∫
|F (ω)|2 Γ(dω) ,

where F denotes the Fourier transform of f ,

F (ω) =

∫
f(t) e−itω dt .

For the stationary Hawkes processes N(·;u), the Bartlett spectrum admits a density given
by (see (Daley and Vere-Jones, 2003, Example 8.2(e)))

γ<LS>(u;ω) =
m<LS>

1 (u)

2π

∣∣1− P<LS>(ω;u)
∣∣−2

, (8)

where

P<LS>(ω;u) =

∫
p<LS>(t;u) e−itω dt .

Analagous to the first order structure, we call γ<LS>(u;ω) the local Bartlett spectrum
density at frequency ω and absolute location u. This local Bartlett spectrum density
plays a role similar to that of the local spectral density f(u, λ) introduced in (Dahlhaus,
1996b, Page 142) for locally stationary time series.

2.4 Estimators

As our approach is local in time and frequency, we rely on two kernels w and q which are
required to be compactly supported (see Remark 1 below). More precisely, we have the
following assumptions.

(K-1) Let w be a R → R+ bounded function with compact support such that
∫
w = |w|1 = 1.

(K-2) Let q be a R → C bounded function with compact support such that |q|2 =
√
2π.
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To localize in time let b1 > 0 be a given time bandwidth and define wb1 and wTb1 to be
the corresponding kernels in absolute time u and real time t, namely,

wb1 (u) := b−1
1 w(u/b1) and wTb1(t) := T−1wb1(t/T ) = (Tb1)

−1 w(t/(Tb1)) . (9)

Let now u0 be a fixed absolute time. For estimating the local mean density m<LS>
1 (u0)

given by equation (7), approximating the mean density function t 7→ m1T (t) of NT locally
in the neighborhood of Tu0 by m<LS>

1 (u0) we have, for b1 small,

m<LS>
1 (u0) ≈

∫
wTb1 (t− Tu0)m1T (t) dt ,

where we used
∫
wTb1 = 1 and that the support of t 7→ wTb1(t− Tu0) essentially lives in

the neighborhood of Tu0 for Tb1 small. Since the right-hand side of this approximation
is E

[
NT (S

−Tu0wTb1 )
]
, this suggests the following estimator of m<LS>

1 (u0),

m̂b1(u0) := NT (S
−Tu0wTb1) =

∫
wTb1(t− Tu0) NT (dt) . (10)

For estimation of the second order structure, i.e. the local Bartlett spectral density
γ<LS>(u0;ω0) for some given point (u0, ω0) of the time-frequency plane, we need also to
localise in frequency by a kernel which will be given by the (squared) Fourier transform
|Q|2 of the kernel q. Then for a given frequency bandwidth b2 > 0, we are looking for an
estimator of the auxiliary quantity

γ<LS>
b2

(u0;ω0) :=

∫
1

b2

∣∣∣∣Q
(
ω − ω0

b2

)∣∣∣∣
2

γ<LS>(ω;u0)dω, (11)

which in turn, as b2 → 0, is an approximation of the density γ<LS>(u0;ω0), since (K-2)
implies |Q|2 = 1. The rate of approximation (i.e. the “bias in frequency direction” of the
following estimator) is established in Theorem 2, equation (27), below. Let us now set

qω0,b2(t) = b
1/2
2 eiω0tq(b2t) such that the squared modulus of its Fourier transform writes

as

|Qω0,b2(ω)|2 =
1

b2

∣∣∣∣Q(
ω − ω0

b2
)

∣∣∣∣
2

.

Using that γ<LS>(ω;u0)dω is the Bartlett spectrum of N(·;u0) as recalled in Section 2.3,
we can thus rewrite (11) as

γ<LS>
b2

(u0;ω0) = Var (N(qω0,b2 ;u0)) . (12)

Since this variance is an approximation of Var
(
NT (S

−Tu0qω0,b2)
)
, where qω0,b2 is shifted

to be localized around T u0, we finally estimate γ<LS>
b2

(u0;ω0) by the following moment
estimator:

γ̂b2,b1(u0;ω0) := Ê
[
|NT (S

−Tu0qω0,b2)|2;wb1

]
−
∣∣∣Ê
[
NT (S

−Tu0qω0,b2);wb1

]∣∣∣
2

, (13)

where for the test function f = S−Tu0qω0,b2 and taking ρ(x) = x and ρ(x) = |x|2 succes-
sively, we have built estimators of E[ρ(NT (f))] based on the empirical observations of NT

and defined by

Ê[ρ (NT (f)) ;wb1 ] :=

∫
ρ (NT (f(· − t))) wTb1(t) dt (14)

=
1

T

∫
ρ

(
∑

k

f(tk,T − t)

)
wb1(t/T ) dt .
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Note that in (13) the dependence of the estimator on u0, ω0 appears in the choice of
f = S−Tu0qω0,b2 . By an obvious change of variable, this would be equivalent to let the
kernel qω0,b2 unshifted in time, hence take f = qω0,b2 , and instead shift wTb1 (t) into
wTb1 (t− Tu0), or, in absolute time, shift wb1(u) into wb1 (u− u0).

Remark 1. In practice NT is observed over a finite interval. In order to have estimators
m̂b1(u0) and γ̂b2,b1(u0;ω0) in (10) and (13) that only use observations within this interval,
the supports of w and q must be bounded and some restriction imposed on b1, b2 and T .
Suppose for instance that NT is observed on [0, T ] (mimicking the usual convention for
locally stationary time series of Dahlhaus (1996a)). The local mean density and Bartlett
spectrum can then be estimated at corresponding absolute times u0 ∈ (0, 1) and the re-
strictions on b1, b2 and T read as follows. In (10), we must have u0+ b1Supp(w) ⊆ [0, 1],
and in (13), we must have u0 + b1Supp(w) + (Tb2)

−1Supp(q) ⊆ [0, 1]. These two support
conditions are always satisfied, eventually as T → ∞, provided that the kernels w and q
are compactly supported and that b1 → 0 and Tb2 → ∞.

In the sequel we will show that this is a sensible estimator of γ<LS>
b2

(u0;ω0) sharing
the usual properties of a nonparametric estimator constructed via kernel-smoothing over
time and frequency: for sufficiently small bandwidths b1 in time and b2 in frequency this
estimator becomes well localised around (u0;ω0).

The main results stated hereafter provide asymptotic expansions of its bias and vari-
ance behaviour, leading to consistency of this estimator under some asymptotic condition
for b1 and b2 as T → ∞.

3 Bias and variance bounds

3.1 Main assumptions

The first assumption is akin but stronger than condition (6) above, being in fact equal to
assumption (LS-1) of Roueff et al. (2016). It guarantees that, for all T ≥ 1, the locally
stationary Hawkes process NT admits a (causal) local fertility function s 7→ p<LS>(s;u)
which is not only uniformly bounded, but has an exponentially decaying memory (as a
function in the first argument, uniformly with respect to its second argument).

(LS-1) Assume that ∣∣λ<LS>
c

∣∣
∞

< ∞ . (15)

Assume moreover that for all u ∈ R, p<LS>(·;u) is supported on R+ and that there
exists a d > 0 such that ζ<LS>

1 (d) < 1 and ζ<LS>
∞ (d) < ∞ where

ζ<LS>
1 (d) := sup

u∈R

∣∣p<LS>(·;u)
∣∣
d,1

= sup
u∈R

∫
p<LS>(s;u) ed|s|ds (16)

and
ζ<LS>
∞ (d) := sup

u∈R

∣∣p<LS>(·;u)
∣∣
d,∞

= sup
u∈R

ess sup
s∈R

{
|p<LS>(s;u)|ed|s|

}
. (17)

All the examples considered in Roueff et al. (2016) satisfy this condition. It is also sat-
isfied if the local fertility functions have a (uniformly) bounded compact support (cf.
Hansen et al. (2015) in the stationary case).

(LS-2) Assume that, for some β ∈ (0, 1],

ξ(β)c := sup
u6=v

|λ<LS>
c (v)− λ<LS>

c (u)|
|v − u|β < ∞ .
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(LS-3) Assume that, for some β ∈ (0, 1],
∣∣ξ(β)

∣∣
1
< ∞, where

ξ(β)(r) := sup
u6=v

|p<LS>(r; v) − p<LS>(r;u)|
|v − u|β .

Assumptions (LS-2) and (LS-3) can be interpreted as smoothness conditions respectively
on λ<LS>

c and on p<LS>(·; ·) with respect to its second argument. Note also that Assump-
tions (16) and (17) imply in particular Assumption (LS-4) of Roueff et al. (2016) which
we recall here to be

ζ<LS>
∞ := ζ<LS>

∞ (0) = sup
u∈R

∣∣p<LS>(.;u)
∣∣
∞

< ∞ , (18)

ζ<LS>
(β) := sup

u∈R

∣∣p<LS>(·;u)
∣∣
(β),1

< ∞ . (19)

This can be seen simply by noting that ζ<LS>
1 := ζ<LS>

1 (0) ≤ ζ<LS>
1 (d) and ζ<LS>

∞ ≤
ζ<LS>
∞ (d) for all d ≥ 0, with equality for d = 0. Similarly, ζ<LS>

1 (d) < ∞ for some d > 0
implies ζ<LS>

(β) < ∞ for all β > 0.

Hereafter all the given bounds are uniform upper bounds in the sense that they hold
uniformly over parameters λ<LS>

c and p<LS> satisfying the set of conditions (6),(LS-2),
(LS-3), and (18) and (19), as in Theorems 1, or the more restrictive set of conditions (LS-1),
(LS-2) and (LS-3), as in Theorem 2 and 3. More specifically, we use the following conven-
tions all along the paper.

Convention 1 (Symbol .). For two nonnegative sequences aT and bT indexed by T ≥ 1,
possibly depending on parameters λ<LS>

c , p<LS>, b1 and b2, we use the notation aT . bT
to denote that there exists a constant C such that, for all b1, b2 and T satisfying certain
conditions C(b1, b2, T ), we have aT ≤ C bT with C only depending on non-asymptotic

quantities and constants such as d, β, ζ<LS>
1 (d), ζ<LS>

(β) , ζ<LS>
∞ (d), ξ

(β)
c ,

∣∣ξ(β)
∣∣
1
, |λ<LS>

c |∞
and the two kernel functions w and q.

The conditions C(b1, b2, T ) will be intersections of the following ones :

T ≥ 1 and b1 ∈ (0, 1] , (20)

b1, b2 ∈ (0, 1] and Tb1b2 ≥ 1 , (21)

b1 ln(T ) ≤ 1 . (22)

Convention 2 (Constants A1, A2). We use A1, A2 to denote positive constants that can
change from one expression to another but always satisfy A−1

1 . 1 and A2 . 1, using
Convention 1. In other words A1 and A2 are positive constants which can be bounded
from below and from above, respectively, using the constants appearing in the assumptions
and the chosen kernels w and q.

Convention 2 will be useful to treat exponential terms in a simplified way, that is,
without considering unnecessary constants; for instance, we can write (e−A1T )2 ≤ e−A1T

replacing 2A1 by A1 in the second expression without affecting the property A−1
1 . 1

required on A1.

3.2 Main results

We can now state the main results of this contribution, whose proofs can be found in
Appendix C. For the bias and variance of the local mean density estimator m̂b1(u0) we
establish the following result.
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Theorem 1. Let the kernel w satisfy (K-1). Assume conditions (6),(LS-2), (LS-3),
and (18) and (19) to hold. Then, for b1 and T satisfying (20), the bias of the local
density estimator satisfies, for all u0 ∈ R,

∣∣E[m̂b1(u0)]−m<LS>
1 (u0)

∣∣ . bβ1 + T−β . (23)

If moreover (LS-1) holds, its variance satisfies

Var (m̂b1(u0)) . (Tb1)
−1 . (24)

Hence, m̂b1(u0) is shown to be a (mean-square) consistent estimator of m<LS>
1 (u0),

and, optimizing the bias and variance bounds, we get the “usual” mean-square error rate

T− 2β
2β+1 for nonparametric curve estimation with an additive noise structure, achieved for

a bandwidth b1 ∼ T− 1
2β+1 .

We now treat the bias of the estimator γ̂b2,b1(u0;ω0) which can be decomposed as the
sum of 1) a bias in the time direction, namely, E γ̂b2,b1(u0;ω0) − γ<LS>

b2
(u0;ω0) and 2) a

bias in the frequency direction, namely, γ<LS>
b2

(u0;ω0)− γ<LS>(u0;ω0).

Theorem 2. Let the kernels w and q satisfy (K-1) and (K-2). Assume conditions (LS-1),
(LS-2), and (LS-3) to hold. Then, for all b1, b2 and T satisfying (21) and (22) and for
all u0, ω0 ∈ R, we have

∣∣E[γ̂b2,b1(u0;ω0)]− γ<LS>
b2

(u0;ω0)
∣∣ . bβ1 + b2β1 b−1

2 + (Tb1b2)
−1 . (25)

If moreover the squared modulus |Q(ω)|2 of the Fourier transform of the kernel q satisfies
∫

ω2|Q(ω)|2dω < ∞ and

∫
ω|Q(ω)|2dω = 0 , (26)

the “bias in frequency direction” fulfills for b2 ∈ (0, 1],
∣∣γ<LS>

b2
(u0;ω0)− γ<LS>(u0;ω0)

∣∣ . b22 . (27)

Remark 2. Condition (26) is automatically satisfied if q is compactly supported, real
valued and even, and admits an L2 derivative, such as the triangle shape kernel.

We already observe here that for the estimator γ̂b2,b1(u0;ω0) to be asymptotically
unbiased, equations (25) and (27) require the following conditions on the choice of the
two bandwidths b1 and b2 to be fulfilled:

Tb1b2 → ∞ , b2 → 0 and b−1
2 b2β1 → 0 .

Note in particular that these conditions for an asymptotically unbiased estimator imply
those required for the feasibility of the estimator in Remark 1 (b1 → 0 and Tb2 → ∞).

We shall discuss possible compatible bandwidth choices below, following the treatment
of the variance of this estimator.

Theorem 3. Let the kernels w and q satisfy (K-1) and (K-2). Assume conditions (LS-1),
(LS-2) and (LS-3) to hold. Then, for all b1, b2, T satisfying (21), and for all u0, ω0 ∈ R,
we have

Var (γ̂b2,b1(u0;ω0)) . (Tb1b2)
−1 + b2β1

(
bβ1 b

−1
2

)2
. (28)

3.3 Immediate consequences and related works

In order to optimize bandwidth choices in time and in frequency to derive an optimal
rate of MSE-consistency of the estimator γ̂b2,b1(u0;ω0) for a given time-frequency point
(u0;ω0) we observe, by equations (25), (27) and (28), that the MSE satisfies

MSE (γ̂b2,b1(u0;ω0)) . b42 + b2β1 + (Tb1b2)
−1 +

(
b2β1 b−1

2

)2
.
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The MSE-rate T− 4β
5β+2 is achieved by optimizing this upper bound, that is, by imposing

b42 ∼ b2β1 ∼ (Tb1b2)
−1 (leading to

(
b2β1 b−1

2

)2
∼ b62 ), and hence by setting b1 ∼ T− 2

2+5β

and b2 ∼ T− β
2+5β . The fact that this rate bound is obtained by balancing the two squared

bias terms b2β1 and b42 with the variance term (Tb1b2)
−1 indicates that all the other terms

appearing in the upper bounds (25) and (28) are negligible. Thus, since the bias terms bβ1
and b22 and the variance term (Tb1b2)

−1 correspond to the usual bias and variance rates of a
kernel estimator of a local spectral density estimator (see (Dahlhaus, 2009, Example 4.2)
for locally stationary linear time series), it is clear that the obtained rate is sharp for

this moment estimator under our assumptions. Note also that the MSE-rate T− 4β
5β+2

corresponds to the minimax lower bound for evolutionary spectrum estimation established
in (Neumann and von Sachs, 1997, Theorem 2.1) in the Sobolev space W β,2

∞,∞. Although
insightful, the comparison is not completely rigorous as their model for establishing this
lower bound is a benchmark for a class of non-stationary time series and the MSE they
consider is integrated. Therefore, a particularly interesting problem for future work would
be to derive (hopefully large) classes of locally stationary point processes on which our
estimator achieves the minimax rate.

In the same line of thoughts about the performance of our kernel estimator, the ques-
tion naturally arises about the data-driven choice of the bandwidths b1 and b2. This
question of bandwidth selection in the context of locally stationary time series has been
addressed only recently, see Giraud et al. (2015); Richter and Dahlhaus (2017) for adap-
tive prediction and parameter curve estimation, respectively. The problem of adaptive
kernel estimation of the local spectral density for locally stationary time series has been
more specifically addressed in van Delft and Eichler (2015), where a practical approach
is derived and studied. It is mainly based on the central limit theorem established in
(Dahlhaus, 2009, Example 4.2) for this estimator. This methodology could be adapted to
the case of locally stationary point processes. A first step in this direction would be to
establish a central limit theorem for our estimator γ̂b2,b1(u0, ω0) at a given time-frequency
point, which is also left for future work. Note also that, in practical time frequency anal-
ysis, the bandwidths b1 and b2 are often chosen having in mind a physical interpretation.
For instance, in our real data example of Section 4, on each day, transaction data is col-
lected between 9:00 AM and 5:30 PM, hence over 8.5 hours. Our choice b1 = .15 and
b2 = .005 corresponds to saying that we consider finance transactions data as roughly sta-
tionary over 8.5× .15 ≈ 1 hour and 16 minutes of time, and that the spectrum obtained
from such data has maximal frequency resolution .005 Hz (we may distinguish between
two periodic behaviors present in the data only if their frequencies differ by at least this
value).

To conclude this section, let us discuss whether our approach could be used for the
parameter estimation of locally stationary Hawkes processes. In a fully non-parametric
approach, one would be interested in estimating the two (possibly smooth or sparse)
unknown functions that are the baseline intensity function u 7→ λ<LS>

c (u) and the local
fertility function (s, u) 7→ p<LS>(s;u). In a parametric approach, one would assume these
functions to depend on an unknown finite dimensional parameter θ in a (known) form
u 7→ λ<LS>

c (u|θ) and (s, u) 7→ p<LS>(s;u|θ), and try to estimate θ. An intermediate
approach, proposed in (Roueff et al., 2016, Section 5.1) to derive simple examples of
locally stationary Hawkes processes, is to consider a parametric stationary model for the
fertility function, say s 7→ p<S> (s|θ) for θ ∈ Θ ⊂ Rd, and to deduce a local one of the
form (s, u) 7→ p<LS>(s;u) = p<S> (s|θ(u)), where now θ is a Θ-valued function of the
absolute time. In all these cases, the estimators m̂b1 and γ̂b2,b1 could be used as empirical
moments to estimate λ<LS>

c , p<LS>, θ, or the curve θ. Since our estimators are consistent,
this method would in principle work whenever the unknown quantities to estimate can be
deduced from the local mean density m<LS>

1 and local Bartlett spectrum γ<LS> through
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Relations (7) and (8), respectively. More direct methods to estimate the parameters of
interest for non-stationary Hawkes processes have been proposed in Chen and Hall (2013,
2016); Mammen (2017). In the first two references, only the baseline intensity is time
varying, and a different asymptotic setting is considered, where this baseline intensity
tends to infinity through a multiplicative constant. In the fully non-parametric case, an
identifiability problem is pointed out in (Chen and Hall, 2016, Section 2.2). We do not
have this problem in our asymptotic scheme, since (7) and (8) show that the base line
intensity λ<LS>

c (u) can be completely identified from the local mean density m<LS>
1 (u)

and the local Bartlett spectrum γ<LS>(u; ·) alone using the formula

λ<LS>
c (u) = m<LS>

1 (u)

(
m<LS>

1 (u)

2πγ<LS>(u; 0)

)1/2

.

The model considered in Mammen (2017) is a multivariate version of the locally stationary
Hawkes process with the same asymptotic setting as ours, and additional assumptions on
the (multivariate) fertility function. Both the baseline intensity and the (time varying)
fertility function are estimated in a non-parametric fashion using a direct method based
on localized mean square regression and a decomposition of the local fertility function on
a B-spline base. Such methods should be more efficient than using the local mean density
and Bartlett spectrum to build moment estimators of these parameters, since they rely
on the intrinsic auto-regression structure of the underlying process. In contrast, as far
as the time-frequency analysis is concerned, which is the main focus of our contribution,
the estimator that we propose should be relevant to estimate the local Bartlett spectrum
beyond the case of locally stationary Hawkes processes, namely, for any locally stationary
point process for which the general formula (11) and (12) make sense.

3.4 Main ideas of the proofs

3.4.1 Local approximations of moments

An essential step for treating the bias terms is to be able to approximate, as T → ∞, in the
neighborhood of uT , the first and second moments of NT by that of the local stationary
approximation N(·;u) defined as in Section 2.3. We first state the two approximations
that directly follow (Roueff et al., 2016, Theorem 4) with m = 1, 2.

Theorem 4. Let β ∈ (0, 1] and let (NT )T≥1 be a locally stationary Hawkes process satis-
fying conditions (6),(LS-2), (LS-3), (18) and (19). Let (N(·;u))u∈R be the collection of
stationary Hawkes process defined as in Section 2.3. Then, for all T ≥ 1, u ∈ R and all
bounded integrable functions g, we have

∣∣E[NT (S
−Tug)]− E[N(g;u)]

∣∣ .
(
|g|1 + |g|(β),1

)
T−β , (29)

∣∣Var
(
NT (S

−Tug))
)
−Var (N(g;u))

∣∣ . (|g|1 + |g|∞)
(
|g|1 + |g|(β),1

)
T−β . (30)

The control of the bias in Theorem 1 directly follows from (29). However it turns out
that (30) is not sharp enough to control the bias of the local Bartlett spectrum and thus to
obtain the expected convergence rate. The basic reason is that it involves L1 (weighted)
norms of g in the upper bound instead of L2 norms. In order to recover the correct rates
of convergence, we rely on the following new result where the L1 (weighted) norms are
indeed replaced by L2 (weighted) norms, or, to be more precise, where the remaining
weighted L1-norms are compensated by an exponentially decreasing term in T , and will
thus turn out to be negligible.

Theorem 5. Let β ∈ (0, 1] and let (NT )T≥1 be a locally stationary Hawkes process satis-
fying conditions (LS-1),(LS-2) and (LS-3). Let (N(·;u))u∈R be the collection of stationary
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Hawkes process defined as in Section 2.3. Then, for all bounded and compactly supported
functions g, for all T ≥ 1 and u ∈ R,

|Var(NT (g))| . |g|22 + e−A1T |g|2d,1 , (31)
∣∣Var

(
NT (S

−Tug))
)
−Var (N(g;u))

∣∣

.
{
|g|22 + e−A1T |g|2d,1 + |g|(β),2

(
|g|2 + e−A1T |g|d,1

)}
T−β . (32)

The proof of this theorem can be found in Appendix B. To obtain this new result, we
crucially rely on the assumption (LS-1) where controls in exponentially weighted norms
(based on supu |p<LS>(·;u))|d,q for q = 1,∞ and some d > 0) are assumed to strengthen
the assumptions (6), (18) and (19).

3.4.2 Bias and approximate centering

To control all the error terms, we found useful to introduce a centered version of NT with
a centering term corresponding to its asymptotic deterministic version. Recalling that
NT behaves in a neighborhood of T u0 as N(·;u0) and that this process admits the mean
intensity denoted by m<LS>

1 (u0), we define, for any test function f ,

NT (f ;u0) := NT (f)− E[N(f ;u0)] =

∫
f(s) [NT (ds)−m<LS>

1 (u0) ds] . (33)

It is important to note that this “approximate” centering depends on an absolute location
u0 as it is a good approximation of E[NT (f)] only for f localized in a neighborhood of
T u0. Let us apply this definition. By (10), since wTb1 integrates to 1, the error of the
local mean density estimator can directly be expressed as

m̂b1(u0)−m<LS>
1 (u0) = NT (S

−Tu0wTb1 ;u0) . (34)

Hence controlling the bias of this estimator directly amounts to evaluating the quality of
the above centering.

The treatment of the bias of the local Bartlett spectrum is a bit more involved since,
as often for spectral estimators, the empirical centering term requires a specific attention.
This term appears inside the negated square modulus of the right-hand side of (13). To
see why it is indeed a centering term, observe that, using

∫
wTb1 = 1, we can write

γ̂b2,b1(u0;ω0) = Ê
[
ρ(NT (S

−Tu0qω0,b2));wb1

]

with now ρ defined, for any test function f , as the “centered” squared modulus

ρ(NT (f)) =
∣∣∣NT (f)− Ê [NT (f);wb1 ]

∣∣∣
2

.

Using that
∫
wb1 = 1, the centering in (33) can be introduced within this definition of ρ,

leading to

ρ(NT (f)) =
∣∣∣NT (f ;u0)− Ê

[
NT (f ;u0);wb1

]∣∣∣
2

.

By comparison with the previous expression of γ̂b2,b1(u0;ω0), we easily get an expression
of the local Bartlett spectrum estimator based on this centered version of NT , namely,

γ̂b2,b1(u0;ω0) = Ê
[
|NT (f ;u0)|2;wb1

]
−
∣∣∣Ê
[
NT (f ;u0);wb1

]∣∣∣
2

, (35)
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where analogously to (14), we denote, for the test function f = S−Tu0qω0,b2 ,

Ê
(∣∣NT (f ;u0)

∣∣2 ;wb1

)
:=

∫ ∣∣NT (f(· − t);u0)
∣∣2 wTb1(t) dt , (36)

Ê
(
NT (f ;u0);wb1

)
:=

∫
NT (f(· − t);u0) wTb1 (t) dt .

In fact, using
∫
w = 1, f integrable and interchanging the order of integration, we imme-

diately get the simplification

Ê
(
NT (f ;u0);wb1

)
= NT (f ∗ wTb1 ;u0) , (37)

where we used the convolution product ∗. The advantage of the new expression (35) in
contrast to the original (13) is that now we expect the negated square modulus to be
of negligible order. To see why, consider for instance the bias in (25), for the control of
which we need to bound, as the second term of (35),

E

[∣∣∣Ê
(
NT (f ;u0);wb1

)∣∣∣
2
]
= Var (NT (f ∗ wTb1 )) +

∣∣E
[
NT (f ∗ wTb1 ;u0)

]∣∣2 . (38)

(Here and in the following we repeatedly use the fact that NT and NT (·;u0) have the
same variance). Finally, the control of the bias term in (25) now requires to evaluate

E

[
Ê
[
|NT (S

−Tu0qω0,b2 ;u0)|2;wb1

]]
− γ<LS>

b2
(u0;ω0) ,

which is again decomposed as a main term
∫ (

Var
(
NT (S

−Tu0qω0,b2(· − t))
)
− γ<LS>

b2
(u0;ω0)

)
wTb1(t) dt , (39)

added to a negligible (because involving a squared bias) term
∫ ∣∣E[NT (S

−Tu0qω0,b2(· − t);u0)]
∣∣2 wTb1(t) dt . (40)

3.4.3 Variance terms and exact centering

The variance of the local mean density estimator directly requires to control the variance
of NT (f) for given test functions f . This requires new deviation bounds for non-stationary
Hawkes processes. By deviation bounds we here mean that we bound the moments of

NT (h) := NT (h)− E[NT (h)] , (41)

where h is an appropriate test function. New results in this direction are gathered in
Section 5, where the dependence structure of non-stationary Hawkes processes is investi-
gated, leading to the appropriate control of such moments in Proposition 9. For instance
the moment of order 2 directly provides the adequate bound for the variance of the local
mean density estimator

Var (m̂b1(u0)) = Var
(
NT (S

−Tu0wTb1)
)
=
∥∥∥NT (h)

∥∥∥
2

2
, (42)

where we use the notation introduced in (3).
Now we turn our attention to the estimator of the local Bartlett spectrum. The control

of the moments of NT will essentially be used to approximate γ̂b2,b1(u0;ω0) by

γ̃b2,b1(u0;ω0) :=

∫ ∣∣∣NT (S
−Tu0qω0,b2(· − t))

∣∣∣
2

wTb1(t) dt . (43)
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In contrast to the centering used in NT (·;u) for controlling the bias (a centering with
respect to E[N(h;u)]) for some absolute location u, here the term E[NT (h)] is no longer
invariant as h is shifted. This is why this centering cannot be used as a direct decom-
position of estimator γ̂b2,b1(u0;ω0) as in (35). Instead we use a bound on the error of
approximating γ̂b2,b1(u0;ω0) by γ̃b2,b1(u0;ω0), see Lemma 16.

Finally the variance of the local Bartlett estimator is obtained by controlling the
variance of γ̃b2,b1(u0;ω0) (Lemma 15), which in turn relies on a bound of

Cov

(∣∣∣NT (h1)
∣∣∣
2

,
∣∣∣NT (h2)

∣∣∣
2
)

for test functions h1 and h2, which is derived in Corollary 10.

4 Numerical experiments

The numerical experiments in Roueff et al. (2016) show that the estimators m̂b1 and γ̂b2,b1
are able to reproduce the theoretical local mean density and local Bartlett spectrum on
simulated locally stationary Hawkes processes. Here we consider a real data set containing
the transaction times of the two assets ESSI.PA (Essilor International SA) and TOTF.PA
(Total SA) over 61 days scattered in February, June and November 2013. We computed

the local mean density and Bartlett spectrum estimators, say m̂
(i)
b1

and γ̂
(i)
b2,b1

for each day
i ∈ {1, . . . , 61} over the regular opening hours of the Paris stock exchange market, that is
between 9:00 a.m. and 5:30 p.m., Paris local time. The estimators are computed with the
following kernels : w is the triangle kernel and q is the Epanechnikov kernel, both with
supports [−.5, .5]. The chosen bandwidth parameters are given by

b1 = .15 , b2 = .005Hz .

The above unit for b1 is absolute time, that is, 1 unit corresponds to the overall duration
of observation T = 8.5 hours, hence in real time, b1 = .15∗8.5 hours, which makes 1 hour,
16 minutes and 30 seconds. We thus obtain for each asset 61 local mean density and local
Bartlett spectrum estimates. Our goal here is to illustrate the time frequency analysis of
such point processes data sets. The obtained results are quite different from one day to
another, which can be expected on such real data. However, in the following, we propose
to comment on the local mean densities and Bartlett spectra obtained for the two assets
by averaging over the available 61 days,

m̂
(Av)
b1

=
1

61

61∑

i=1

m̂
(i)
b1

and γ̂
(Av)
b2,b1

=
1

61

61∑

i=1

γ̂
(i)
b2,b1

.

Moreover we computed a Poisson-normalized local Bartlett spectrum of these averaged
estimates defined by

γ̂
(Pn)
b2,b1

(ω;u) =
2π γ̂

(Av)
b2,b1

(ω;u)

m̂
(Av)
b1

(u)
u ∈ R, ω ∈ R .

Note that, in the case of a nonhomogeneous Poisson process, the local mean density and
Bartlett density satisfy

γ<LS>(ω;u) =
m<LS>

1 (u)

2π
.

This is indeed given by (8) with a local fertility function to be identically zero, p<LS>(·;u) ≡
0.
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In Figures 1 and 2 we display the resulting estimators for the two assets ESSI.PA and
TOTF.PA, respectively. Note that the scaling of the y-axis of the averaged local mean
densities (top plots) is not the same. The transaction rate of ESSI.PA evolves around 0.1
transactions per second while that of the more liquid TOTF.PA around twice as much.
The local Bartlett spectrum estimator γ̂b2,b1(ω;u) is computed over frequencies ω ranging
between 0 and .1 Hz. This means that only cyclic behaviors with periods larger than 10
seconds are visible. As for the local mean density plots, note that the color scales of the
averaged local Bartlett spectra are different for the two assets.

It is interesting to observe that, despite these differences of orders of magnitude, the
shapes of the averaged local mean densities and that of the averaged local Bartlett spectra
bear some similarities. Namely the averaged mean density is decreasing in the morning,
although a sharp increase occurs around 11:00 a.m. and a drop during the lunch break.
It then increases steadily during the afternoon with a sharper increase around 3:30 p.m.,
which corresponds to the opening time of the New York stock exchange market. The
maximal averagedmean density is reached at the closing time. As for the averaged Bartlett
spectrum, it is interesting to note that the shape of the spectrum along the frequencies
varies significantly along the day. During the increases of mean density preceding and
following lunch break, the spectrum concentrates at low frequencies, while the spectrum,
although still favoring low frequencies, is more balanced during the increase following
the opening of the NYSE market. Finally, it is interesting to observe that the Poisson-
normalized Bartlett spectra take the highest values during the two one hour long periods
surrounding the lunch break. It indicates that, in contrast to these two periods, the
increase of the (nonnormalized) Bartlett spectrum toward the end of the day can be
interpreted merely as a consequence of the increase of the local mean density rather than
a departure from the Poisson behavior. Also observe that the Poisson-normalized Bartlett
spectra are always larger than 1. Assuming a locally stationary Hawkes process for this
data, this could be interpreted, according to Formula (8), as

∣∣1− P<LS>(ω;u)
∣∣ < 1 ,

where P<LS>(·;u) is the Fourier transform of the local fertility function p<LS>(·;u).
A sensible conclusion of this analysis is that it advocates for more involved models than

a simple non-homogeneous Poisson process for transaction data. In particular, locally
stationary Hawkes processes as assumed in this work are better adapted to such data
sets, not only because the local Bartlett spectrum is not constant along the frequencies
but also because its shape varies along the time, a feature that could not be obtained by
using time varying baseline intensity with a fertility function constant over the time, as
used in Chen and Hall (2013). This conclusion is of particular interest in relation with
Examples 2.3 (iii) and (iv) described in Dahlhaus and Tunyavetchakit (2016) for modeling
the volatility of high frequency financial data.

5 Deviation bounds for non-stationary Hawkes pro-

cesses

We now derive new results required for treating the variance of the studied estimators.
In contrast to Poisson processes, we can not rely on the independence of the process
on disjoint sets. To the best of our knowledge, the most advanced results on deviation
bounds of Hawkes processes are to be found in Reynaud-Bouret and Roy (2006) and only
apply to stationary Hawkes processes with compactly supported fertility functions. Here
we consider non-stationary Hawkes processes with exponentially decreasing local fertility
functions. The generalization to non-stationary processes requires a specific approach
rather than a mere adaption of Reynaud-Bouret and Roy (2006).
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Although we are here motivated by the study of the variance of the local mean density
and Bartlett estimators, we believe that the results contained in this section are of broader
interest, as they can serve more generally to understand the dependence structure of non-
stationary Hawkes processes.

5.1 Setting

Recall that (5) is our minimal condition for defining the non-stationary Hawkes process N
with immigrant intensity function λc(·) and varying fertility function p(·; ·). The cluster
construction of a Hawkes process relies on conditioning on the realization of a so-called
center process, Nc a Poisson point process (PPP) with intensity λc on R, which describes
spontaneous appearing of the immigrants. At each center point tc of Nc, a point process
N(·|tc) is generated as a branching process whose conditional distribution given Nc only
depends on tc and is entirely determined by the time varying fertility function p(·; ·). This
distribution is described through its conditional Laplace functional in (Roueff et al., 2016,
section 6.1) under the additional assumption

ζ∞ < ∞ with ζq = sup
t∈R

|p(·; t)|q for all q ∈ [1,∞] . (44)

The following result directly follows from these derivations. A detailed proof is available
in Appendix D for sake of completeness.

Proposition 6. Suppose that (5) and (44) hold and set

r1 =
− log ζ1

2(1− ζ
1/2
1 + ζ∞ζ

−1/2
1 )

. (45)

Then, for all h : R → R satisfying |h|1 ≤ 1 and |h|∞ ≤ 1,

E

[
e(1−ζ

1/2
1

)r1|N(h)|
]
≤ exp

(
|λc|∞ ζ

−1/2
1 r1

)
. (46)

Consequently, for all q > 0, there exists a positive constant Bq only depending on |λc|∞,
ζ1 and ζ∞ such that, for all h : R → R satisfying |h|1 ≤ 1 and |h|∞ ≤ 1,

‖N(h)‖q ≤ Bq . (47)

The moment bound (47) will be useful but far from sufficient to bound the variance of
our estimators efficiently. To see why, let us suppose temporarily that N is a homogeneous
Poisson process with unit rate and consider h = n−1

1[0,n] − 1 for some positive integer
n. Then the above bound with p = 2 gives Var(N(h)) ≤ B2

2 although we know that in
this very special case we have Var(N(h)) = n−1, hence the bound is not sharp at all as
n → ∞. In the following we provide new deviation bounds applying to non-stationary
Hawkes processes which allows one to recover the expected order of magnitude for the
variance. To this end we rely on stronger conditions than the ones used in Roueff et al.
(2016).

Define moreover, using the exponentially weighted norm notation in (2), for all d ≥ 0,
and q ∈ [1,∞],

ζq(d) = sup
t∈R

|p(·; t)|d,q .

We strengthen the basic conditions (6) and (44) into the following one.

(NS-1) We have |λc|∞ < ∞. Moreover, for all t ∈ R, p(·; t) is supported on R+ and there
exists d > 0 such that ζ1(d) < 1 and ζ∞(d) < ∞.

16



The version of (NS-1) in the locally stationary case is (LS-1) in the sense that the locally
stationary Hawkes process (NT )T≥1 satisfies (LS-1) if and only if, for all T ≥ 1, the non-
stationary Hawkes process NT satisfied (NS-1). Therefore all the results below relying on
(NS-1) apply to the locally stationary Hawkes processes satisfying (LS-1). We recall that
this assumption means that the local fertility functions satisfy some uniform exponential
decreasing.

5.2 New deviation bounds

The deviations bounds are based on the following exponential bound control on component
point processes N(·|tc) defined above.

Proposition 7. Suppose that (NS-1) holds for some d > 0. Then we have, for all
a ∈ (0, d), for all tc ∈ R,

E

[∫

[t,∞)

ea(s−t) N(ds|tc)
]
≤ Ca with Ca := 1 +

ζ∞(d)

(d− a)(1− ζ1(d))
. (48)

Proof. Let g : R → R+ and define, for all h : R → R+,

[Eg(h)](s) = g(s) +

∫
h(u)p(u− s;u) du .

Following (Roueff et al., 2016, Proposition 7 and Eq. (34)), we have that, for all t ∈ R,

E [N(g|tc)] = lim
n→∞

[En
g (g)](t) , (49)

where En
g denotes the n-th self-composition of Eg. In the following, we take some a ∈ (0, d)

and set
gt(s) = ea(s−t)

1[t,∞)(s) = g0(s− t) .

Observe that, using that p(;u) is supported on [0,∞) under (NS-1), for all h : R → R+,

[Egt(h)](t) ≤ gt(t) +

∫ ∞

t

h(u)p(u− t;u) du

≤ 1 +

∫ ∞

t

h(u)ed(t−u)ed(u−t)p(u− t;u) du

≤ 1 +

∫ ∞

t

h(u)ed(t−u)ζ∞(d) du

= 1 + ζ∞(d) |h(t+ ·)|−d,1 .

Applying this to h = En−1
gt (gt) we get, for all n ≥ 1,

[En
gt(gt)](t) ≤ 1 + ζ∞(d)

∣∣[En−1
gt (gt)](t+ ·)

∣∣
−d,1

(50)

Similarly, we also get that, for all h : R → R+,

|[Egt(h)](t+ ·)|−d,1 ≤ |g0|−d,1 + ζ1(d) |h(t+ ·)|−d,1 .

Observing that |g0|−d,1 = (d − a)−1 and iterating the last inequality, we finally obtain
that, for all n ≥ 1,

∣∣[En
gt(gt)](t+ ·)

∣∣
−d,1

≤ 1

d− a
(1 + ζ1(d) + · · ·+ ζ1(d)

n) ≤ 1

(d− a)(1− ζ1(d))
.

Inserting this bound in (50) and letting n go to ∞ as in (49) with g = gt, we get the
claimed result.
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Define the past and future σ-fields at time t respectively as

Ft = σ (Nc(A), N(B|tc) : A ∈ B((−∞, t]), B ∈ B(R), tc ≤ t)

⊃ σ (N(A) : A ∈ B((−∞, t]))

and
Gt = σ (N(A) : A ∈ B((t,−∞))) .

The following result provides a uniform exponential control on the time-dependence of N .

Proposition 8. Suppose that (NS-1) holds for some d > 0 and that λc is bounded. Let
p ∈ [1,∞), t < u and Y be a centered L1 Gu-measurable random variable. Then, for all
a ∈ (0, d), for all q ∈ (p,∞], if Y is Lq,

‖E[Y |Ft]‖p ≤ ‖Y ‖q
(
|λc|∞ Ca a

−1e−a(u−t)
)1/p−1/q

,

where Ca is defined in (48).

Proof. In the following, we denote by tck the points of the Poisson process Nc, that is,

Nc =
∑

k

δtck .

Define
∆tc = inf {δ > 0 : N([tc + δ,∞)|tc) = 0} .

In other words, ∆tc is the size of the cluster N(·|tc), that is the distance between the most
left point (which is tc) and most right point. Since ∆tc is a point among the points of
N(·|tc)), we have

ea∆tc ≤
∫

[t,∞)

ea(s−t) N(ds|tc) ,

and a direct consequence of Proposition 7 is that, for all a ∈ (0, d),

E[ea∆tc ] ≤ Ca . (51)

Now let us define the position of the last point generated by all clusters started before
time t, namely,

∆t = sup
{
tck +∆tc

k
: tck ≤ t

}
.

We observe that ∆t is Ft-measurable. Moreover, if t < u and Y is a centered L1 Gu-
measurable random variable, then we have E[Y |Ft] = 0 on {∆t < u}. The Hölder
inequality then yields for 1 ≤ p < q ≤ ∞

‖E[Y |Ft]‖p =
∥∥∥E[Y |Ft]1{∆t≥u}

∥∥∥
p
≤ ‖E[Y |Ft]‖q

(
P(∆t ≥ u)

)1/p−1/q
.

Since ‖E[Y |Ft]‖q ≤ ‖Y ‖q, it only remains to prove that

P(∆t ≥ u) ≤ C0e
−λ0(u−t) . (52)

Observe that M =
∑

k δtck,∆tc
k
is a marked Poisson point process such that, given Nc,

the marks ∆tck
are independent and for each k the conditional distribution of ∆tck

only
depends on tck. Hence M is a Poisson point process with points valued in R× R+ and

{∆t ≥ u} = {M({(tc, δ) ∈ (−∞, t]× R+ : tc + δ ≥ u}) > 0} .
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We thus get that

P(∆t ≥ u) = 1−exp

(
−
∫ t

−∞

P(tc +∆tc ≥ u)λc(t
c) dtc

)
≤ |λc|∞

∫ t

−∞

P(∆tc ≥ u−tc) dt
c ,

where we used that 1 − e−x ≤ x for all x ≥ 0. Using (51) and the exponential Markov
inequality, it follows that

P(∆t ≥ u) ≤ |λc|∞ Ca

∫ t

−∞

ea(t
c−u) dtc = |λc|∞ Ca a

−1ea(t−u) .

We can now derive a Burkhölder-type inequality.

Proposition 9. Suppose that (NS-1) holds for some d > 0. Let p ∈ [2,∞). Then there
exists a positive constant Bp such that, for all bounded functions h with support included
in [j, j + n] for some j ∈ Z and n ∈ N,

‖N(h)− E[N(h)]‖p ≤ A |h|∞
√
n .

where A is a positive constant only depending on d, |λc|∞, ζ1, ζ∞, ζ∞(d) and ζ1(d), e.g.,
for any a ∈ (0, d) and q > p,

A := (B1 +Bp)(B1 +Bq)
(
|λc|∞ Ca a

−1
)1/p−1/q e−a(1/p−1/q)

1− e−a(1/p−1/q)
,

where Bp is defined in Proposition 6 and Ca in (48).

Proof. We can assume |h|∞ = 1 without loss of generality. We write

h =

n∑

i=1

hi with hi = h1[j+i−1,j+i) .

Then |hi|∞ ≤ 1 and |hi|1 ≤ 1 for all i and, defining Xi = N(hi) − E[N(hi)], from
Proposition 6, we have, for all q ≥ 1,

‖Xi‖q ≤ Bq +B1 . (53)

Then N(h) − E[N(h)] =
∑n

i=1 Xi and, applying (Dedecker et al., 2007, Proposition 5.4,
Page 123), we have

‖N(h)− E[N(h)]‖p ≤
(
2p

n∑

i=1

bi,n

)1/2

, (54)

where, denoting Mi = Fj+i,

bi,n = max
1≤ℓ≤n

∥∥∥∥∥Xi

ℓ∑

k=i

E[Xk|Mi]

∥∥∥∥∥
p/2

.

Observing that Xk is centered and Gj+k−1–measurable, Proposition 8, gives that, for any
q > p,

‖E[Xk|Mi]‖p ≤ ‖Xk‖q
(
|λc|∞ Ca a

−1e−a(k−i+1)
)1/p−1/q

.

The Hölder inequality, the last two displays and (53) yield, for all q > p,

bi,n ≤ (B1 +Bp)(B1 +Bq)
(
|λc|∞ Ca a

−1
)1/p−1/q e−a(1/p−1/q)

1− e−a(1/p−1/q)
.

Applying this in (54), we get the claimed bound.
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Another consequence of Proposition 8 is the following useful covariance bound.

Corollary 10. Suppose that (NS-1) holds for some d > 0 and that λc is bounded. Let h1

and h2 be two bounded integrable functions. Let γ satisfy one of the following assertions.

(i) There exist t ∈ R such that Supp(h1) ⊂ (−∞, t] and Supp(h2) ⊂ [t+ γ,∞)].

(ii) There exist t ∈ R such that Supp(h2) ⊂ (−∞, t] and Supp(h1) ⊂ [t+ γ,∞)].

(iii) γ = 0.

Then for all q > 4, there exists Cq > 0 and αq > 0 both only depending on q, |λc|∞, and
a and Ca in Proposition 8 such that

∣∣∣∣Cov
(∣∣∣N(h1)

∣∣∣
2

,
∣∣∣N(h2)

∣∣∣
2
)∣∣∣∣ ≤ Cq

∥∥∥N(h1)
∥∥∥
2

q

∥∥∥N(h2)
∥∥∥
2

q
e−αqγ , (55)

where N(h) = N(h)− E[N(h)].

Proof. In the case (iii), the bound (55) actually holds with q = 4 by the Cauchy–Schwarz
inequality and thus also holds with q > 4 by Jensen’s inequality.

We now consider the case (i) (the last one (ii) being obtained by inverting h1 and h2).

We have in this case, denoting Y =
∣∣∣N(h2)

∣∣∣
2

− E

[∣∣∣N(h2)
∣∣∣
2
]
,

∣∣∣∣Cov
(∣∣∣N(h1)

∣∣∣
2

,
∣∣∣N(h2)

∣∣∣
2
)∣∣∣∣ = E

[∣∣∣N(h1)
∣∣∣
2

(E[Y |Ft])

]

≤
∥∥∥N(h1)

∥∥∥
2

4
‖E[Y |Ft]‖24 .

The Jensen Inequality and q > 4 give that
∥∥∥N(h1)

∥∥∥
4
≤
∥∥∥N(h1)

∥∥∥
q
and the proof is

concluded by using Proposition 8 to bound ‖E[Y |Ft]‖4.
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A Useful lemmas

In the following lemmas, we have gathered some simple bounds that we will repeatedly
use in the sequel.

Lemma 11. Let a, β > 0 and p ∈ [1,∞]. For any function g and any t ∈ R, we have

|g(· − t)|(β),p ≤ 2(β−1)+
(
|g|(β),p + |t|β |g|p

)
, (56)

|g(· − t)|a,1 ≤ ea|t| |g|a,1 . (57)
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Let qω0,b2 = b
1/2
2 eiω0tq(b2t) and wTb1 = (Tb1)

−1 w(u/(Tb1)), where the kernels w and q
satisfy |w|1 = |q|2 = 1. Then, we have, for all b1, b2 ∈ (0, 1] and T > 0,

|qω0,b2 |(β),1 = b
−1/2−β
2 |q|(β),1 , (58)

|qω0,b2 |1 = b
−1/2
2 |q|1 , (59)

|qω0,b2 |2 = 1 , (60)

|qω0,b2 |∞ = b
1/2
2 |q|∞ , (61)

|qω0,b2 |(β),2 = b−β
2 |q|(β),2 , (62)

|wTb1 |1 = 1 , (63)

|wTb1 |∞ = (b1T )
−1 |w|∞ , (64)

|wTb1 |(β),1 = (b1T )
β |w|(β),1 , (65)

|qω0,b2 ∗ wTb1 |1 ≤ b
−1/2
2 |q|1 , (66)

|qω0,b2 ∗ wTb1 |2 ≤ |wTb1 |2 |qω0,b2 |1 ≤ b
−1/2
2 (b1T )

−1/2 |w|2 |q|1 , (67)

|qω0,b2 ∗ wTb1 |∞ ≤ (b1T )
−1b

−1/2
2 |w|∞ |q|1 , (68)

|qω0,b2 ∗ wTb1 |(β),1 ≤ 2(β−1)+
(
b
−1/2
2 (b1T )

β |q|1 |w|(β),1 + b
−1/2−β
2 |q|(β),1

)
. (69)

If q and w have compact supports both included in [−ã, ã] for some ã > 0, we have

|wTb1 |a,1 = |w|aTb1,1
≤ ea ãTb1 |w|1 , (70)

|qω0,b2 |a,1 = b
−1/2
2 |q|a/b2,1 ≤ b

−1/2
2 ea ãb−1

2 |q|1 , (71)

|qω0,b2 ∗wTb1 |a,1 ≤ |wTb1 |a,1 |qω0,b2 |a,1 ≤ b
−1/2
2 ea ã(Tb1+b−1

2
) |q|1 . (72)

Proof. All these bounds are straightforward. We use the usual Lp bounds for convolution
|h ⋆ g|1 ≤ |h|1 |g|1 and |h ⋆ g|2 ≤ |h|2 |g|1. When necessary, the weights are handled by
using

|s|β ≤ 2(β−1)+(|s− t|β + |t|β) and ea|s| ≤ ea|t|ea|s−t| . (73)

Lemma 12. Let T, b1, b2 satisfy (21) and (22). Then for all a1, a2 > 0, we have

exp(a2(Tb1 + b−1
2 )− a1T ) ≤ max

(
1, exp

(
2a2e

1/a1

))
.

In particular, under Convetion 2, we have exp(A2(Tb1 + b−1
2 )−A1T ) . 1.

Proof. First note that, by (21), b−1
2 ≤ Tb1 and thus

exp(a2(Tb1 + b−1
2 )− a1T ) ≤ exp(2a2T (b1 − a1)) .

If b1 ≤ a1 this upper bound is at most 1 and otherwise, using that b1 ≤ 1 and then (22),
we have that T (b1 − a1) ≤ T ≤ e1/b1 ≤ e1/a1 .

B Proof of Theorem 5

B.1 A useful lemma

The following lemma prepares the ground for deriving appropriate bounds used in the
proof of Theorem 5.
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Lemma 13. Let ϕ : R
2 → R+ and f : R → R+ with f ∈ L1 ∩ L2. Let moreover

f∞ : R → R+ satisfying, for all s ∈ R,

f∞(s) ≤ f(s) +

∫
f∞(t) ϕ(s− t; t) dt . (74)

Let us consider the following conditions depending on some a ≥ 0 and M ∈ (0,∞].

(C-1) ζ1(a) := sup
t

∫
ϕ(u; t) ea|u| du < 1.

(C-2) ζ∞(a) := sup
u,t

ϕ(u; t)ea|u| < ∞.

(C-3) ϕ(u) := sup
|t|≤M

ϕ(u; t) satisfies ζ̃1 :=

∫
ϕ(u) du < 1.

If M < ∞, we define f∞ : R → R+ by f∞(s) :=

∫

|t|>M

f∞(t) ϕ(s − t; t) dt . Then the

following assertions hold.

(i) Condition (C-1) with a ≥ 0 implies |f∞|a,1 . |f |a,1.
(ii) Condition (C-1) with a > 0 implies, for any β ∈ (0, 1], |f∞|(β),1 . |f |(β),1 + |f |1.
(iii) Condition (C-3) with M = ∞ implies |f∞|2 . |f |2.
(iv) Conditions (C-2) with a > 0 and (C-3) with M = ∞ imply |f∞|(β),2 . |f |(β),2+ |f |2.
(v) Conditions (C-1) with a > 0, (C-2) with a = 0 and (C-3) with M < ∞ imply

|f∞|2 . |f |2 + e−aM |f |a,1.
(vi) Conditions (C-1) and (C-2) with a > 0 and (C-3) with M < ∞ imply, for any

β ∈ (0, 1], |f∞|(β),2 . |f |(β),2 + e−aM/2 |f |a,1 + |f |2.
Here “. . . . ” means “≤ C . . . ” with a positive constant C possibly depending on a, ζ1(a),
ζ∞(a), ζ̃1 or β only (thus neither depending on M nor on f).

Proof. Using (73) to deal with weighted Lp-norms, the bound (74) easily yields, for all
a ≥ 0 and β ∈ (0, 1],

|f∞|a,1 ≤ |f |a,1 + ζ1(a) |f∞|a,1 , (75)

|f∞|(β),1 ≤ |f |(β),1 +
(
sup
t

|ϕ(·; t)|(β),1
)
|f∞|1 + ζ1(0) |f∞|(β),1 . (76)

The bound (75) yields (i). Moreover, using, for any β ∈ (0, 1], Ca,β := supx≥0 x
β e−ax ≤

supx≥0 x e−ax ≤ (ea)−1, we get that

sup
t

|ϕ(·; t)|(β),1 = sup
t

∫
ϕ(r; t) |r|β dr ≤ ζ1(a)(ea)

−1 .

Using this in (76) and (i) with a = 0, we get (ii).
The definition of ϕ in the case M = ∞ allows us to bound the second term of the bound
in (74) by ∫

f∞(t) ϕ(s− t; t) dt ≤ f∞ ∗ ϕ(s) . (77)

Using this, we get in turn that

|f∞|2 ≤ |f |2 + |f∞ ∗ ϕ|2 ≤ |f |2 + |f∞|2 |ϕ|1 ,

which under Condition (C-3) yields (iii).
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Similarly to (76) and with the definition of ϕ in the case M = ∞, we have

|f∞|(β),2 ≤ |f |(β),2 + |ϕ|(β),1 |f∞|2 + |ϕ|1 |f∞|(β),2 .

Note that in the case M = ∞, |ϕ|(β),1 . 1 as a consequence of (C-2) with a > 0. Thus,

using (iii) to bound |f∞|2, under Condition (C-3), we get (iv).
Assertions (v) and (vi) are obtained similarly as (iii) and (iv) but with an additional step
to deal with a finite M . Namely we have in this case

∫
f∞(t) ϕ(s− t; t) dt ≤ f∞ ∗ ϕ(s) + f∞(s) .

It follows that the same bounds as in (iii) and (iv) applies but with f replaced by f +
f∞. Hence to obtain the bounds in (v) and (vi), we only need to show that, under the
corresponding conditions, we have

∣∣f∞

∣∣
2
. e−aM |f |a,1 , (78)

∣∣f∞

∣∣
(β),2

. e−aM/2 |f |a,1 . (79)

Observe that, by definition of f∞, we have

∣∣f∞

∣∣
1
=

∫

|t|>M

f∞(t)

(∫
ϕ(s− t; t) ds

)
dt ≤ ζ1(0)

∫

|t|>M

f∞(t) dt ,

∣∣f∞

∣∣
∞

= sup
s

∫

|t|>M

f∞(t) ϕ(s− t; t) dt ≤ ζ∞(0)

∫

|t|>M

f∞(t) dt .

Using
∣∣f∞

∣∣
2
≤
(∣∣f∞

∣∣
∞

∣∣f∞

∣∣
1

)1/2
,

∫

|t|>M

f∞(t) dt ≤ e−aM |f∞|a,1 and the bound in (i)

to bound |f∞|a,1 with |f |a,1, we get (78).
Finally, we prove (79). First we note that, using (73), for q = 1,∞, we have

∣∣f∞

∣∣
(β),q

≤
(
sup
t

|ϕ(·; t)|(β),q
)(∫

|t|>M

f∞(t) dt

)
+

(
sup
t

|ϕ(·; t)|q
)(∫

|t|>M

f∞(t) |t|β dt

)
.

The bound (79) then follows similarly as (78) by using
∣∣f∞

∣∣
(β),2

≤
(∣∣f∞

∣∣
(β),∞

∣∣f∞

∣∣
(β),1

)1/2

and (with the constant Ca/2,β defined as above)

∫

|t|>M

f∞(t) |t|β dt ≤ Ca/2,βe
−aM/2 |f∞|a,1 ≤ 2(ea)−1e−aM/2 |f∞|a,1 .

This concludes the proof.

B.2 Preliminaries

In these preliminaries, we only require (5) and (44) to hold as they are sufficient to
define a non-stationary Hawkes process. Under (LS-1), for any given T ≥ 1, these con-
ditions are satisfied by the parameters of the non-pstationary Hawkes process N = NT ,
with immigrant intensity λcT (t) = λ<LS>

c (t/T ) and varying fertility function pT (u; t) =
p<LS>(u; t/T ).

Let g ∈ L1∩L∞, hence g ∈ L2, too. Since Nc is a Poisson point process with intensity
λc and the clusters N(·|tc) can be seen as conditionally independent marks of this Poisson
process, we have

Var(N(g)) =

∫
Var (N(g|tc)) λc(t

c) dtc +

∫
(E[N(g|tc)])2 λc(t

c) dtc (80)
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From [Corollary 8 and Proposition 11]Roueff et al. (2016) applied to the function (s, z) 7→
s g(z), we obtain that the applications t 7→ E[N(g|t)] and t 7→ Var(N(g|t)) are fixed points
of two L1 → L1 operators h 7→ E(h) and h 7→ Ẽ(h) defined as follows. The operator E is
defined by

∀ s ∈ R, E(h)(s) = g(s) +

∫
h(t) p(t− s; t) dt . (81)

And the operator Ẽ is defined similarly but with g replaced by the function

g̃(s) =

∫
(E[N(g|t)])2 p(t− s; t) dt .

By the first condition in (5), E and Ẽ are strictly contracting and thus admit a unique
fixed point. We denote this fixed point by g∞ (resp. g̃∞) in the following.

Hence, to summarize, the computation of Var(N(g)) boils down to the formula

Var(N(g)) =

∫
g̃∞(t)λc(t

c) dtc +

∫
(g∞(t))2 λc(t

c) dtc , (82)

where g∞ and g̃∞ are the unique fixed points of the L1 → L1 operators E and Ẽ , with E
defined by (81) and Ẽ defined similarly but with g(s) replaced by

g̃(s) =

∫
(g∞(t))2 p(t− s; t) dt . (83)

B.3 Decomposition of the approximation

The framework introduced in Section B.2 applies under the assumptions of Theorem 5 for
computing both Var

(
NT (S

−Tug))
)
and Var (N(g;u)). For simplicity and without loss of

generality we take u = 0 in the following and thus wish to approximate Var (NT (g))) with
Var (N<S> (g)), with N<S> (g) := N(g; 0). Then Var (NT (g))) and Var (N(g; 0)) satisfy
Eq. (82) by adapting the definitions of E , g∞, g̃ and g̃∞ to the corresponding p(t − s; t)
and λc. Namely, to compute Var (NT (g))), we apply these equations and definitions with
p(t−s; t) = p<LS>(t−s; t/T ) and λc(t

c) = λ<LS>
c (tc/T ), while to compute Var (N(g; 0))),

we apply them with p(t − s; t) = p<S> (t − s) := p<LS>(t − s; 0) and λc(t
c) = λ<S>

c :=
λ<LS>
c (0). To distinguish between these two cases, we use the corresponding notation

E(T ), g
(T )
∞ , g̃(T ) and g̃

(T )
∞ in the first case and E<S> , g<S>

∞ , g̃<S> and g̃<S>
∞ in the second

case.
Applying (82) then yields the bound

|Var(NT (g))| ≤
∣∣λ<LS>

c

∣∣
∞

(∣∣∣g̃(T )
∞

∣∣∣
1
+
∣∣∣g(T )

∞

∣∣∣
2

2

)
, (84)

and the approximation bound
∣∣Var(NT (g))−Var(N<S> (g))

∣∣ ≤ (A) + (B) + (C) + (D)

with

(A) =

∫ (
g<S>
∞ (tc)

)2
∣∣∣∣λ

<LS>
c

(
tc

T

)
− λ<S>

c

∣∣∣∣ dtc ,

(B) =
∣∣λ<LS>

c

∣∣
∞

∫ ∣∣∣∣
(
g(T )
∞ (tc)

)2
−
(
g<S>
∞ (tc)

)2
∣∣∣∣ dtc ,

(C) =

∫
g̃<S>
∞ (tc)

∣∣∣∣λ
<LS>
c

(
tc

T

)
− λ<S>

c

∣∣∣∣ dtc ,

(D) =
∣∣λ<LS>

c

∣∣
∞

∫ ∣∣∣g̃(T )
∞ (tc)− g̃<S>

∞ (tc)
∣∣∣ dtc .
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Note that in (A) and (C), using (LS-2) we can bound |λ<LS>
c (tc/T )−λ<S>

c | = |λ<LS>
c (tc/T )−

λ<LS>
c (0)| ≤ ξ

(β)
c T−β |tc|β . Hence, these four terms can be bounded using the previously

introduced weighted norms, and we get

∣∣Var(NT (g))−Var(N<S> (g))
∣∣ . T−β

(∣∣g<S>
∞

∣∣2
(β/2),2

+
∣∣g̃<S>

∞

∣∣
(β),1

)

+

∣∣∣∣
(
g(T )
∞

)2
−
(
g<S>
∞

)2
∣∣∣∣
1

+
∣∣∣g̃(T )

∞ − g̃<S>
∞

∣∣∣
1
. (85)

To bound these norms, we successively apply Lemma 13 in various settings.

B.4 Successive applications of Lemma 13

Norms involving g<S>
∞

: We apply Lemma 13 with f = |g|, ϕ(u; t) = ϕ(u) =
p<S> (−u) = p<LS>(−u; 0) and f∞ = |g<S>

∞ |. In this setting Eq. (74) is inherited from
the fact that g<S>

∞ is a fixed point of E<S> . Conditions (C-1), (C-2) and (C-3) hold with
a = d > 0 and M = ∞ as consequences of (LS-1).
Assertions (iii) and (iv) of Lemma 13 then respectively give

∣∣g<S>
∞

∣∣
2
. |g|2 (86)

∣∣g<S>
∞

∣∣
(β/2),2

. |g|(β/2),2 + |g|2 . (87)

Norms involving g
(T )
∞ : We apply Lemma 13 with f = |g|, ϕ(s − t; t) = p<LS>(t −

s; t/T ) and f∞ = |g<S>
∞ |. In this setting Eq. (74) is inherited from the fact that g

(T )
∞ is

a fixed point of E(T ). Conditions (C-1) and (C-2) hold with a = d > 0 as consequences
of (LS-1). To check (C-3), we need to choose an appropriate M < ∞. From (LS-1)

and (LS-3), we have ϕ(u) ≤ p<LS>(−u; 0) +
(
M
T

)β
ξ(β)(−u) and thus

ζ̃1 ≤ ζ<LS>
1 (0) +

(
M

T

)β ∣∣∣ξ(β)
∣∣∣
1
.

Since ζ<LS>
1 (0) ≤ ζ<LS>

1 (d) < 1 and
∣∣ξ(β)

∣∣
1
< ∞, we can define ε > 0 small enough,

depending only on these two constants (hence ε−1 . 1), such that, if we set M = εT then
we have ζ̃1 ≤ ζ<LS>

1 (0)1/2 < 1 and (C-3) follows.
Assertions (v) and (vi) of Lemma 13 then respectively give

∣∣∣g(T )
∞

∣∣∣
2
. |g|2 + e−dεT |g|d,1 (88)

∣∣∣g(T )
∞

∣∣∣
(β),2

. |g|(β),2 + e−dεT/2 |g|d,1 + |g|2 . (89)

Norms involving g̃<S>
∞

: Applying Lemma 13 (ii) with f = |g̃<S> | and f∞ = |g̃<S>
∞ |

and φ(u; t) = p<S> (−u), we get that |g̃<S>
∞ |(β),1 . |g̃<S> |(β),1 + |g̃<S> |1. By definition

of g̃<S> (adapted from (83) with p(s − t; t) := p<S> (s − t) and g∞ replaced by g<S>
∞ ),

we have |g̃<S> |1 = |g<S>
∞ |22 |p<S> |1 and, using (73), |g̃<S> |(β),1 = |g<S>

∞ |2(β/2),2 |p<S> |1 +
|g<S>

∞ |22 |p<S> |(β),1. By (LS-1), we have |p<S> |1, |p<S> |(β),1 . 1. Hence we finally get
that

∣∣g̃<S>
∞

∣∣
(β),1

.
∣∣g<S>

∞

∣∣2
2
+
∣∣g<S>

∞

∣∣2
(β/2),2

. (90)
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Norms involving g̃
(T )
∞ : We proceed as in the previous case and get that

∣∣∣g̃(T )
∞

∣∣∣
1
.

∣∣g̃(T )
∣∣
1
and

∣∣∣g̃(T )
∞

∣∣∣
(β),1

.
∣∣g̃(T )

∣∣
(β),1

+
∣∣g̃(T )

∣∣
1
.

Now g̃(T ) is defined as in (83) with p(s − t; t) := p<LS>(s − t; t/T ) and g∞ replaced by

g
(T )
∞ . We thus have

∣∣g̃(T )
∣∣
1
≤ ζ<LS>

1 (0)
∣∣∣g(T )

∞

∣∣∣
2

2
and, using (73),

∣∣∣g̃(T )
∣∣∣
(β),1

≤ ζ<LS>
1 (0)

∣∣∣g(T )
∞

∣∣∣
2

(β/2),2
+

(
sup
r

∣∣p<LS>(·; r)
∣∣
(β),1

) ∣∣∣g(T )
∞

∣∣∣
2

2
.

By (LS-1), we have supr |p<LS>(·; r)|(β),1 . 1. Hence we finally get that

∣∣∣g̃(T )
∞

∣∣∣
1
.
∣∣∣g(T )

∞

∣∣∣
2

2
, (91)

∣∣∣g̃(T )
∞

∣∣∣
(β),1

.
∣∣∣g(T )

∞

∣∣∣
2

2
+
∣∣∣g(T )

∞

∣∣∣
2

(β/2),2
. (92)

Norms involving g
(T )
∞ − g<S>

∞
: Using that g

(T )
∞ and g<S>

∞ are fixed points of E(T )

and E<S> , we find that g∞ := g<S>
∞ − g

(T )
∞ satisfies

g∞(s) =

∫
g(T )
∞ (t)

(
p<S> (t− s)− p<LS>(t− s; t/T )

)
dt+

∫
g∞(t) p<S> (t− s) dt .

Hence taking absolute values f∞ := |g<S>
∞ − g

(T )
∞ | satisfies (74) with

f(s) :=

∫
|g(T )

∞ (t)|
∣∣p<LS>(t− s; t/T )− p<S> (t− s)

∣∣ dt .

and ϕ(u; t) = p<S> (−u). As previously Conditions (C-1), (C-2) and (C-3) hold with
a = d > 0 and M = ∞ as consequences of (LS-1). Assertion (iii) of Lemma 13 then gives

that
∣∣∣g<S>

∞ − g
(T )
∞

∣∣∣
2
. |f |2 with f as in the previous display. By (LS-3), we further have

that ∣∣p<LS>(t− s; t/T )− p<S> (t− s)
∣∣ ≤ T−β ξ(β)(t− s) |t|β , (93)

and thus

|f |2 = T−β
∣∣∣
(
|g(T )

∞ (·)| | · |β
)
∗ ξ(β)

∣∣∣
2
≤ T−β

∣∣∣g(T )
∞

∣∣∣
(β),2

∣∣∣ξ(β)
∣∣∣
1
. (94)

Hence, with (89), we finally obtain that
∣∣∣g<S>

∞ − g(T )
∞

∣∣∣
2
. T−β

(
|g|(β),2 + e−dεT/2 |g|d,1 + |g|2

)
. (95)

Norms involving g̃
(T )
∞ − g̃<S>

∞
: We apply the same line of reasoning as in the

previous case. Using that g̃
(T )
∞ and g̃<S>

∞ are fixed point of Ẽ(T ) and Ẽ<S> , we find that

f∞ := |g̃<S>
∞ − g̃

(T )
∞ | satisfies (74) with

f(s) :=
∣∣∣g̃<S> (s)− g̃(T )(s)

∣∣∣+
∫ ∣∣∣g̃(T )

∞ (t)
∣∣∣
∣∣p<S> (t− s)− p<LS>(t− s; t/T )

∣∣ dt ,

and ϕ(u; t) = p<S> (−u). By definition of g̃<S> and g̃(T ) (both adapted from (83)), we
further have

∣∣∣g̃<S> (s)− g̃(T )(s)
∣∣∣ ≤

∫ ∣∣∣g(T )
∞ (t)

∣∣∣
2 ∣∣p<S> (t− s)− p<LS>(t− s; t/T )

∣∣ dt

+

∫ ∣∣∣∣
(
g<S>
∞ (t)

)2 −
(
g(T )
∞ (t)

)2∣∣∣∣ p<S> (t− s) dt .
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Hence, using (93), we get that

|f |1 ≤ T−β

(∣∣∣g(T )
∞

∣∣∣
2

(β/2),2
+
∣∣∣g̃(T )

∞

∣∣∣
1

) ∣∣∣ξ(β)
∣∣∣
1
+

∣∣∣∣
(
g<S>
∞

)2 −
(
g(T )
∞

)2∣∣∣∣
1

∣∣p<S>
∣∣
1
.

Since |p<S> |1 ,
∣∣ξ(β)

∣∣
1
. 1 under (LS-1) and (LS-3), Lemma 13 (i) with a = 0 thus yields

∣∣∣g̃<S>
∞ − g̃(T )

∞

∣∣∣
1
. T−β

(∣∣∣g(T )
∞

∣∣∣
2

(β/2),2
+
∣∣∣g̃(T )

∞

∣∣∣
(β),1

)
+

∣∣∣∣
(
g<S>
∞

)2 −
(
g(T )
∞

)2∣∣∣∣
1

. (96)

B.5 Conclusion of the proof

We can now gather the obtained bounds to conclude the proof of Theorem 5.
The bounds (84), (91) and (88) gives (31) (recall that ε−1 . 1).
Finally we prove (32). Using (85), and (96), we first obtain that

∣∣Var(NT (g))−Var(N<S> (g))
∣∣ . T−β(I) +

∣∣∣∣
(
g(T )
∞

)2
−
(
g<S>
∞

)2
∣∣∣∣
1

,

with (I) :=
∣∣g<S>

∞

∣∣2
(β/2),2

+
∣∣g̃<S>

∞

∣∣
(β),1

+
∣∣∣g(T )

∞

∣∣∣
2

(β/2),2
+
∣∣∣g̃(T )

∞

∣∣∣
(β),1

.

The bounds (90) and (92) and then (86), (87), (88), (89) (with β/2 instead of β) further
give

(I) .
∣∣g<S>

∞

∣∣2
(β/2),2

+
∣∣g<S>

∞

∣∣2
2
+
∣∣∣g(T )

∞

∣∣∣
2

(β/2),2
+
∣∣∣g(T )

∞

∣∣∣
2

2

. |g|22 + |g|2(β/2),2 + e−A1T |g|2d,1 .

Using the Hölder inequality and then (95), (86) and (88), we get
∣∣∣∣
(
g(T )
∞

)2
−
(
g<S>
∞

)2
∣∣∣∣
1

≤
∣∣∣g(T )

∞ − g<S>
∞

∣∣∣
2

(∣∣∣g(T )
∞

∣∣∣
2
+
∣∣g<S>

∞

∣∣
2

)

. T−β
(
|g|(β),2 + e−A1T |g|d,1 + |g|2

)(
|g|2 + e−A1T |g|d,1

)
.

Using that the products can be bounded by the sum of squares, the previous displays
yield

∣∣Var(NT (g))−Var(N<S> (g))
∣∣

. T−β
{
|g|2(β/2),2 + |g|22 + e−A1T |g|2d,1 + |g|(β),2

(
|g|2 + e−A1T |g|d,1

)}
.

Now, by the Hölder inequality, we have |g|2(β/2),2 ≤ |g|2 |g|(β),2, hence the first term inside
the curly brackets can be removed by increasing the multiplicative constant by a factor 2
and we finally get (32), which concludes the proof of the theorem.

C Proof of main results

C.1 Proof of Theorem 1 (local mean density estimation)

For treating the bias, expressed as (34), we apply (29) in Theorem 4 with g = wTb1 . Using
the norm estimates of equations (63) and (65), we immediately get

E[m̂b1(u0)]−m1(u0) . T−β
(
1 + |wTb1 |(β),1

)
. bβ1 + T−β .

For treating the variance, expressed as (42), we use Proposition 9 with h(·) = wTb1(·−Tu0)
along with |h|∞ = |wTb1 |∞ = (Tb1)

−1 by (64) and the obvious bound on the support of
the kernel, Supp(wTb1 ) . Tb1. We immediately get (24), which concludes the proof.
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C.2 Proof of Theorem 2 (Bias of spectral estimator)

The proof of this theorem requires to show two bounds, namely, the bound of the bias in
time direction, (25), and the bound of the bias in frequency direction, (27). These two
bounds are proved quite independently.

Proof of (25). The derivations of Section 3.4.2, namely (35), (36) and (37), show that we
can decompose E

[
γ̂b2,b1(u0;ω0)− γ<LS>

b2
(u0;ω0)

]
as (I) + (II)− (III), where

(I) =

∫ (
Var

(
NT (S

−Tu0qω0,b2(· − t))
)
− γ<LS>

b2
(u0;ω0)

)
wTb1(t) dt

(II) =

∫ ∣∣E[NT (S
−Tu0qω0,b2(· − t);u0)]

∣∣2 wTb1(t) dt

(III) = Var
(
NT (S

−Tu0qω0,b2 ∗ wTb1 )
)

︸ ︷︷ ︸
+
∣∣E
[
NT (S

−Tu0qω0,b2 ∗ wTb1 ;u0)
]∣∣2

︸ ︷︷ ︸
(IIIa) (IIIb)

correspond to (39), (40) and (38), respectively. We will show now that

(i) the term (I) is of order bβ1 ;

(ii) the terms (II) and (IIIb) are of order b2β1 b−1
2 ;

(iii) the term (IIIa) is of order (Tb1b2)
−1 ;

which will conclude the proof of (25).
Term (I): By (32) in Theorem 5 with g = qω0,b2(·− t), and recalling from equations (60),

(62), (71), (56) and (57) that |g|2 = 1, |g|(β),2 . b−β
2 + |t|β and

|g|d,1 ≤ ed|t| |qω0,b2 |d,1 . ed|t| b
−1/2
2 eA2b

−1

2 . ed|t| eA2b
−1

2 ,

we have for all t ∈ R,

∣∣Var
(
NT (S

−Tu0qω0,b2(· − t))
)
−Var (N (qω0,b2 ;u0))

∣∣ . T−β
(
b−β
2 + |t|β + eA2|t|eA2b

−1

2
−A1T

)

where we have used that 1 . b−β
2 . eb

−1

2 and that |t|β . e|t|.
By (12), we can use this to bound the integrand in the definition of (I) and thus get,
using (63), (65) and (70),

(I) . T−β
(
b−β
2 + (Tb1)

β + e−A1T+A2(Tb1+b−1

2
)
)

.

By (21) and applying Lemma 12, we have that the main term between the parentheses is
the second one, hence we get (i).
Term (II): applying (29) in Theorem 4 with g = qω0,b2(·−t) and using (58), (59) and (56),
we get

∣∣E[NT (S
−Tu0qω0,b2(· − t);u0)]

∣∣ . T−β
(
b
−1/2
2 (1 + |t|β) + b

−1/2−β
2

)

. T−β
(
b
−1/2
2 |t|β + b

−1/2−β
2

)
. (97)

(Since b2 ≤ 1) Taking the square and integrating this with respect to wTb1(t)dt, and

using (65), (63) and T ≥ 1, we get (II) . b2β1 b−1
2 as claimed in (ii).

Term (IIIb): This term is treated similarly as (II) but using directly the bounds (66)
and (69) inserted into (29) and taking the square. The same order is obtained and (ii)
follows.
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Term (IIIa): Applying the bound (31) of Theorem 5, we get that, setting here g =
qω0,b2 ∗ wTb1 ,

Var (NT (g)) . |g|22 + e−aT |g|2d,1 .

Now, from (67) and (72), this bound reads

Var (NT (g)) . b−1
2 (Tb1)

−1 + e−A1T+A2(Tb1+b−1

2
) .

By Lemma 12 and since Tb1b2 ≥ 1, the first term dominates and we get (iii), which
concludes the proof.

We now provide a proof for the second part of the theorem controlling the bias.

Proof of (27). This bound requires the usual control of the kernel-regularization of a
smooth function as can be seen from (11). Namely, the function to consider is ω 7→
γ<LS>(ω;u0) and the kernel is ω 7→ b−1

2 |Q ((ω − ω0)/b2)|2 which integrates to 1 since
|Q|2 = |q|2 /

√
2π = 1 by (K-2) and the Parseval theorem. Using the formula (8) to

express ω 7→ γ<LS>(ω;u0) and the usual conditions on the kernel (26), it is thus sufficient
to prove that, for all ω ∈ R,

m<LS>
1 (u0)

2π

∣∣|1− P<LS>(ω;u0)|−2 − |1− P<LS>(ω0;u0)|−2 + C (ω − ω0)
∣∣ . (ω − ω0)

2 ,

where C is any constant (possibly depending on ω0 and u0 but not on depending on ω).
As already seen, we have

m<LS>
1 (u0) ≤

∣∣λ<LS>
c

∣∣
∞

/(1− ζ<LS>
1 ) . 1 ,

so that, we can consider the ratio m<LS>
1 (u0)/(2π) as a constant. For the remaining term

involving the function ω 7→ |1− P<LS>(ω;u0)|−2, we first observe that

P<LS>(ω;u0)− P<LS>(ω0;u0) =

∫
p<LS>(t;u0)(e

−iωt − e−iω0t) dt

= p̃(ω0;u0) (ω − ω0) +

∫
p<LS>(t;u0)e

−iω0t
(
e−i(ω−ω0)t − 1− i(ω − ω0)t

)
dt ,

with p̃(ω0;u0) :=
∫
i t p<LS>(t, u0) e−iω0t dt . In the latter display, the first term is of

the form C(ω − ω0) with |C| . 1 and the second term is of order (ω − ω0)
2. This comes

respectively from

|p̃(ω0;u0)| ≤
∫

|t| p<LS>(t;u0)dt ≤ ζ<LS>
1 + ζ<LS>

(2)

and
∣∣∣∣
∫

p<LS>(t, u0)e
−iω0t

(
e−i(ω−ω0)t − 1− i(ω − ω0)t

)
dt

∣∣∣∣ ≤ ζ<LS>
(2) (ω − ω0)

2 .

To conclude the proof we argue that the form C(ω −ω0) +R(ω) with C . 1 and R(ω) .
(ω−ω0)

2 satisfied by P<LS>(ω;u0)−P<LS>(ω0;u0) is inherited by |1−P<LS>(ω;u0)|−2−
|1− P<LS>(ω0;u0)|−2. This follows from

|1− P<LS>(ω;u0)|−1 ≤ (1− ζ<LS>
1 )−1 ∈ (1,∞)

(using (6)) and from the identity valid for all complex numbers z, z′ inside the unit disk

1

|1− z|2 − 1

|1− z′|2 =
|1− z|2 − |1 − z′|2

|1− z′|4 +

(
|1− z|2 − |1− z′|2

)2

|1− z′|4 |1− z|2
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The numerator of the first term of this sum can be expressed as a sum of terms depending
on the difference |z − z′|, and this applies to the numerator of the second term, too (as it
is the square of the first numerator):

|1− z|2 − |1− z′|2 = 2ℜ(z − z′)ℜ(1− z′) + 2ℑ(z − z′)ℑ(1 − z′) + |z − z′|2 .

C.3 Additional lemmas

As explained in Section 3.4.3, the treatment of the variance is done via the introduction

of the “truly” centered process NT . Here we provide three lemmas, two concerned with
useful bounds for this centered process and the third one which controls the quality of the
approximation of the estimator based on the centered process.

Lemma 14. Let p ≥ 1. Under the conditions of Theorem 3, we have, for all u0 ∈ R,
ω0 ∈ R, and b1, b2, T as in (21),

∥∥∥NT (S
−Tu0qω0,b2 ∗ wTb1 )

∥∥∥
p
. (Tb1b2)

−1/2
, (98)

where NT is defined in (41). Let moreover h : R → C be such that, for all t ∈ R, we have

|h(t)| ≤
(
aT + bT |t|β

)
wTb1 (t) ,

for two positive constants aT and bT (possibly depending on T , b1 and b2). Then we have,
for all u0 ∈ R, ω0 ∈ R, and b1, b2, T as in (21),

∥∥∥NT (S
−Tu0qω0,b2 ∗ h)

∥∥∥
p
. (aT + bT (b1T )

β) (Tb1b2)
−1/2

. (99)

Proof. We apply Proposition 9, and get
∥∥∥NT (S

−Tu0qω0,b2 ∗ wTb1)
∥∥∥
p
≤ A |qω0,b2 ∗ wTb1 |∞

√
n ,

for some generic constant A and with a positive integer upper bound n on the length
of the support of S−Tu0qω0,b2 ∗ wTb1 , denoted by Supp(S−Tu0qω0,b2 ∗ wTb1). Observing
that Supp(S−Tu0qω0,b2 ∗ wTb1 ) ⊂ Supp(S−Tu0qω0,b2) + Supp(wTb1), that the length of
Supp(qω0,b2) is of order b−1

2 and that the length of Supp(wTb1 ) is of order Tb1, we have
n . b−1

2 + Tb1 . Tb1. We thus obtain the bound (98) with (68).
The bound (99) is obtained similarly but this time we rely on the bound

|qω0,b2 ∗ h|∞ ≤ aT |qω0,b2 ∗ wTb1 |∞ + bT |qω0,b2 |1 |wTb1 |∞ nβ .

(Recall that n is length of the support of wTb1 .) With (68), n . Tb1, (61) and (65) we

get |qω0,b2 ∗ h|∞ . b
−1/2
2 (b1T )

−1(aT + bT (b1T )
β), which yields (99).

Lemma 15. Under the conditions of Theorem 3, we have, for all u0 ∈ R, ω0 ∈ R, and
b1, b2, T as in (21),

Var

(∫
|NT (S

−Tu0qω0,b2(· − t))|2wTb1(t) dt

)
. (Tb1b2)

−1 . (100)

Proof. We can write the left-hand side of (100) as

∫∫
Cov

(
|NT (f(· − t))|2, |NT (f(· − t′))|2

)
wTb1 (t) wTb1(t

′) dt dt′ .
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Let ℓ denote the length of the support of qω0,b2 , which clearly satisfies for b2 ∈ (0, 1],

ℓ . b−1
2 . (101)

Then with h1 = qω0,b2(· − t) and h2 = qω0,b2(· − t′), setting γ := (|t − t′| − ℓ)+, we have
one of the assertions (i), (ii) or (iii) which is satisfied. Hence Corollary 10 gives that, for
some q > 4,

∣∣∣∣Cov
(∣∣∣NT (h1)

∣∣∣
2

,
∣∣∣NT (h2)

∣∣∣
2
)∣∣∣∣ ≤ Cq

∥∥∥NT (h1)
∥∥∥
2

q

∥∥∥NT (h2)
∥∥∥
2

q
e−αq(|t−t′|−ℓ)+ . (102)

Further we apply Proposition 9 with (61) and (101) and get, for i = 1, 2,
∥∥∥NT (hi)

∥∥∥
2

q
.

(
|qω0,b2 |∞

)2
ℓ . 1 . Hence we finally get

Var

(∫
|NT (S

−Tu0qω0,b2(· − t))|2wTb1(t) dt

)
.

∫∫
e−αq(|t−t′|−ℓ)+wTb1(t) wTb1(t

′) dt dt′

≤ |wTb1 ∗ wTb1 |∞
∫

e−αq(|u|−ℓ)+ du .

Now, by (101) we have
∫
e−αq(|u|−ℓ)+ du . b−1

2 and by (63) and (64), we have |wTb1 ∗ wTb1 |∞ .

(b1T )
−1. Hence we get (100) and the proof is concluded.

Lemma 16. Under the conditions of Theorem 3, we have, for all u0 ∈ R, ω0 ∈ R, and
b1, b2, T as in (21),

‖γ̂b2,b1(u0;ω0)− γ̃b2,b1(u0;ω0)‖2 . b2β1 b−1
2 + (Tb1b2)

−1
, (103)

where γ̂b2,b1(u0;ω0) and γ̃b2,b1(u0;ω0) are respectively defined by (13) and (43).

Proof. By definitions (33) and (41), we have, for any integrable test function f , NT (f) =
NT (f ;u0)−E[NT (f ;u0)]. Thus, (35) and (37) yield the following expression for γ̂b2,b1(u0;ω0)

∫ ∣∣∣NT (f(· − t)) + E[NT (f(· − t);u0)]
∣∣∣
2

wTb1(t) dt−
∣∣∣NT (f ∗ wTb1 ) + E[NT (f ∗ wTb1 ;u0)]

∣∣∣
2

,

where we used the test function f = S−Tu0qω0,b2 . Developing the first square modulus
and using for the second that |a+ b|2 ≤ 2|a|2 + 2|b|2, and since

∫
wTb1 = 1, we obtain

|γ̂b2,b1(u0;ω0)− γ̃b2,b1(u0;ω0)− 2ℜ(BT )| ≤ AT + 2CT + 2DT , (104)

where we set, denoting by f∗ the complex conjugate of f ,

AT :=

∫ ∣∣E[NT (f(· − t);u0)]
∣∣2 wTb1 (t) dt ,

BT :=

∫
NT (f(· − t))E[NT (f

∗(· − t);u0)]wTb1 (t) dt ,

CT :=
∣∣∣NT (f ∗ wTb1)

∣∣∣
2

and DT :=
∣∣E[NT (f ∗ wTb1 ;u0)]

∣∣2 .

Note that AT and DT have been treated in the proof of Theorem 2 as the (deterministic)
terms (II) and (IIIb). The assumptions in Theorem 2 are weaker than that of this lemma.
Hence we can directly use (ii) of the proof of Theorem 2 and obtain that

AT , DT . b2β1 b−1
2 .
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The bound (98) in Lemma 14 immediately gives

‖CT ‖2 =
∥∥∥NT (S

−Tu0qω0,b2 ∗ wTb1)
∥∥∥
2

4
. (Tb1b2)

−1
.

and we are left with treating BT . Note that we can rewrite BT as BT = NT (f ∗h), where
h is the (deterministic) function t 7→ E[NT (f

∗(· − t);u0)]wTb1 (t). Now, by (97), we have,
for all t ∈ R,

|h(t)| . b
−1/2
2 T−β

(
b−β
2 + |t|β

)
wTb1(t) .

Applying (99) with aT = b
−1/2
2 (b2T )

−β and bT = b
−1/2
2 T−β in Lemma 14, it follows that

‖BT ‖2 . b
−1/2
2 T−β

(
b−β
2 + (b1T )

β
)
(Tb1b2)

−1/2 . b
−1/2
2 bβ1 (Tb1b2)

−1/2 ,

for Tb1b2 ≥ 1.
Inserting the previous bounds on AT , BT , CT and DT in (104) yields

‖γ̂b2,b1(u0;ω0)− γ̃b2,b1(u0;ω0)‖2 . b
−1/2
2 bβ1 (Tb1b2)

−1/2 + b2β1 b−1
2 + (Tb1b2)

−1 .

Using that 2b
−1/2
2 bβ1 (Tb1b2)

−1/2 ≤ b2β1 b−1
2 + (Tb1b2)

−1, we get (103).

C.4 Proof of Theorem 3 (variance of spectral estimator)

Lemmas 15 and 16, together with the definition of γ̃b2,b1(u0;ω0) in (43), directly give that

Var (γ̂b2,b1(u0;ω0)) .
1

Tb1b2
+
(
b2β1 b−1

2 + (Tb1b2)
−1
)2

.

Since Tb1b2 ≥ 1 in (21), the second term within the squared parentheses is at most of
the same order as the term outside the squared parentheses and can thus be discarded.
Hence we obtain Theorem 3.

D Proof of Proposition 6

This proof uses the notation and definitions of (Roueff et al., 2016, Section 2.1), the
essential of which we now briefly recall. Let m be a positive integer and U be an open
subset of Cm. Define O (U) as the set of holomorphic functions from U to R. We denote,
for all h ∈ O (U) and compact sets K ⊂ U ,

|h|O,K = sup
z∈K

|h(z)| .

Recall that a holomorphic function h on U is infinitely differentiable on U . We denote by
Ō (U) the set of R × U → R functions h such that, for all t ∈ R, z 7→ h(t, z) belongs to
O (U). For any p ∈ [1,∞], we further denote by Ōp (U) the subset of functions h ∈ Ō (U)
such that the function t 7→ supz∈K h(t, z) has finite Lp-norm on R for all compact sets
K ⊂ U . We denote

|h|Ō,K,p :=

∣∣∣∣sup
z∈K

|h(·, z)|
∣∣∣∣
p

.

We also denote by BŌ (r;K, p) the set of all functions g ∈ Ōp (U) such that |g|Ō,K,p < r.
Consider now any

r∞ ∈ (0,− log ζ1) and r1 ∈
(
0, r∞e−r∞ζ−1

∞

)
. (105)
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and set

R1 := r1 (1− ζ1e
r∞) ∈ (0, r1) , (106)

R∞ := r∞ − er∞ζ∞r1 ∈ (0, r∞) . (107)

Let K ⊂ U be a compact set and g ∈ BŌ (R1;K, 1) ∩BŌ (R∞;K,∞).
Corollary 12 and Eq. (33) in Roueff et al. (2016) give that if g ∈ BŌ (R1;K, 1) ∩

BŌ (R∞;K,∞), with R1, R∞ defined by (106) and (107), we have, for all z ∈ K,

L(g(·, z)) := E

[
eN(g(·,z))

]
= exp

∫ (
exp

(
Φ∞

g (tc, z)
)
− 1
)
λc(t

c) dtc ,

where Φ∞
g is defined in (Roueff et al., 2016, Definition 3) as as element of BŌ (r1;K, 1)∩

BŌ (r∞;K,∞).
Let now h : R → R+ be a bounded and integrable function and set g(t, z) = z h(t).

Let U = R and K = [−r, r] for some r > 0. The previous display and the bound
|ea − 1| ≤ |a|e|a| give that

sup
|z|≤r

∣∣∣E
[
ez N(h)

]∣∣∣ ≤ exp

(
|λc|∞ e

|Φ∞

g |
Ō,K,∞

∣∣Φ∞
g

∣∣
Ō,K,1

)
≤ exp (|λc|∞ er∞ r1) .

Here r1 and r∞ should be taken as small as possible provided that (105) holds and
g ∈ BŌ (R1;K, 1) ∩ BŌ (R∞;K,∞), with R1, R∞ defined by (106) and (107). The
specific choice of g and K here gives g ∈ BŌ (R1;K, 1) ∩BŌ (R∞;K,∞) if

r |h|1 ≤ R1 and r |h|∞ ≤ R∞ .

So we conclude that

sup
|z|≤r

∣∣∣E
[
ez N(h)

]∣∣∣ ≤ exp (|λc|∞ er∞ r1) ,

for any r1 and r∞ satisfying (105) and r satisfying

r < min

(
r1 (1− ζ1e

r∞)

|h|1
,
r∞ − er∞ζ∞r1

|h|∞

)
.

Let us set r∞ = (− log ζ1)/2 so that (105) reduces to

0 < r1 < (− log ζ1)ζ
1/2
1 ζ−1

∞ /2 .

In the particular case where |h|1 ≤ 1 and |h|∞ ≤ 1, the condition on r then reads as

r < min(r1(1− ζ
1/2
1 ), (− log ζ1)/2− r1ζ∞ζ

−1/2
1 ) = r1(1− ζ

1/2
1 ) ,

where the last equality holds for the choice of r1 given by (45). We thus get, for all

r < r1(1 − ζ
1/2
1 ),

E

[
er N(h)

]
≤ exp

(
|λc|∞ ζ

−1/2
1 r1

)
.

Letting r tend to r1(1−ζ
1/2
1 ), we also get the result for r = r1(1−ζ

1/2
1 ) which corresponds

to (46) for a non-negative h. To conclude, if h is signed we use that |N(h)| ≤ N(|h|) and
apply the previous bound to |h|.
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