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Abstract. The grid environment presents numerous opportunities for
business applications as well as for scientific ones. Nevertheless the cur-
rent trends seem to lead to several independent specialized grids in op-
position to the early visions of one generic world wide grid. In such
a cross-grid context, the environment might be harder to manipulate
whereas more decisions must be handled from user-side. Our proposal is
a distance-based decision-making support designed to be usable, adapt-
able and accurate. Our main contribution is to ensure the profitability of
classical monitoring solutions by improving their usability. Our approach

is illustrated and validated with experiments in a real grid environment.
3

1 Introduction

The term Grid Islands has been proposed by GridBus project [1] to describe
the situation of several grid solutions cohabiting without any collaboration. In
their paper, De Assunao and al. analyze the lack of interoperability between grid
islands and the necessity of transparent and secure interlinks to build a large
World Wide Grid. Our vision of grid evolution is slightly different: Each spe-
cialized domain has so specific needs and constraints that it seems very difficult
to satisfy them in a generic environment. Consequently, the perspective of sev-
eral specialized and adapted grids is more realistic. In such a context the users
interact with several grids middlewares. This interaction is allowed by Service
Oriented Architectures, as WSRF-based grids are now usable with the standard
software equipment. Many proposals already address the security requirement.
But few works are interesting in the requirement of a usable decision-making sup-
port. It presents numerous challenges and requirements that must be mandatory
addressed, as illustrated in the next section.

1.1 Use Case

The figure 1 shows a cross-grid environment composed of nine sites distributed
throughout France. One VO is composed of two grids: Gridl and Grid2. One
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Fig. 1. Example of user decision-making in cross-grid context

member of this grid is a biologist located at Lille. He has to compute the signature
of a medical image. This classical task implies generally two resources: R1 an
image normalization service and R2 a signature computation service. These are
replicated on both grids. He knows the size of initial image, the size of the
intermediate one and the size of signature. Moreover, he knows that signature
computation is CPU expensive.

The task can be submitted either to Gridl or to Grid2. Assuming that grid
middlewares are able to automatically compose resources, R1 and R2 are linked
automatically. Another alternative is to handle the composition from user side
and to use R1 and R2 from different grids. This last possibility seems less efficient
as the user must retrieve the output from R1 and resend it to R2.

To make this decision, the user has access to the monitoring information
about the infrastructure: CPU speed and load of each resource, latency and
bandwidth between the resources... But using these data is difficult as the task
implies both computation and communication with different magnitude: While
the normalization is mainly communication expensive, the signature computa-
tion is mainly CPU expensive. Moreover the possible combinations of resources
are numerous and consequently confusing. Unfortunately in a cross-grid envi-
ronment the users can not rely on the classical grid decision-making units, such
as resource brokers or schedulers, as they are not designed to collaborate. Some
decisions must be handled from the user side.

In such a case, the user needs to rely on a usable decision-making support.

1.2 Grid Decision-Making Support

The decisions in grid environment concern all grid resources: data, databases,
services, hosts... And all users: end-users selecting resources to submit tasks,
administrators planning deployment, developers sizing software...

In SOA the number of services is meant to dramatically increase. In this
context, the optimization of the whole architecture relies on the optimization of



each service. Consequently the decision-making support will be needed at each
level of the architecture and must be adaptable to several contexts.

Several aspects must be taken into account: (1) The infrastructure topology
and condition: communication, computation and storage capabilities... (2) The
characteristics of the task: communication, computation and storage needs...
And (3) the objectives to be achieved: End-user response delay, load balancing,
optimization of financial costs...

Moreover, decision-making supports have some mandatory requirements:

Usability, Accuracy, and Profitability : They must be available under the
best conditions and the provided information must be as close as possi-
ble of user concerns, otherwise it will not be used. Furthermore, the ratio
profit/cost must be satisfactory.

Adaptability, Flexibility and Extensibility : They must be suitable what-
ever the user needs are or the infrastructures evolution is.

Scalability : They must be able to handle world-scale decisions as easily as
simple ones, particularly from the user point of view.

This article is organized as follows. First in Section 2 we present the existing
decision-making supports provided by grid environments and their limitations.
Second we describe our proposal in Section 3 and analyse some experimentations
in Section 4. Finally, we conclude with perspectives in Section 5.

2 Related Work

Decision-making in existing grid environment is mainly supported by monitoring
systems. The identification of relevant metrics for grid environment and measure-
ment methods has been made by the Network Measurements Working Group of
the Global Grid Forum in [2]. Recent developments in grid infrastructure have
lead to effective tools providing these measurements, such as the Monitoring and
Discovery Service of Globus [3], R-GMA [4], and SCALEA-G [5]. Most of them
are based on the Grid Monitoring Architecture (GMA). Another approach is
adopted by the Network Weather Service [6]. It is able to capture the condition
of both network and hosts. It can provide the raw measurements of the classical
metrics as well as forecasts.

An alternative to monitoring system providing several raw metric measure-
ments, is the concept of distance. Several Distance Vector protocols (RIP, IGRP,
EIGRP, OSPF,...) have been implemented for routing in packet-switched net-
works. Here, the concept of distance is mostly the number of hops between two
end-points. Since then, this concept has often been reused for very different
purposes such as data management, network topology discovering, resource bro-
kering, nodes clustering, etc. We do think that the popularity of this concept
comes from its similarity with our real world. So it constitutes a precious help
in the understanding of the network and in the elaboration of decision-making
processes. The Distance Map Services (DMS) such as IDMaps in [7] and Global
Network Positioning (GPN) [8] aim at providing an estimation of the distance



between all the hosts of a network while minimizing the number of measure-
ments. Most of them are limited to the latency which is the easiest and most
inexpensive metric to measure.

Both monitoring systems and DMS aim at efficiency and scalability. They
are too low-level to be really usable as a full support for decision-making: Their
users have to deal with raw metrics such as latencies or CPU loads which are far
from their actual concerns. In grid environment, the tasks and goals are more
complex. Furthermore, while DMS provide too limited information, monitoring
systems are highly resource expensive. Producing and providing the monitoring
information consume the monitored resource as well as communication resources.
It might be a waste if the monitoring data are not fully exploited.

Consequently, they are inadequate to fully support decision-making in grid
environment. There is a need for an advanced decision-making support, improv-
ing the usability while achieving a good adaptability and accuracy.

3 NDS: The Network Distance Service

Our proposal is a distance-based decision support. It provides distances adapt-
able to any given task. We call task an interaction between hosts of a network.
Generally, it corresponds to the invocation of one service. But it may be more
basic tasks such as data retrieval or storage. Such distances are meant to be
more usable than raw metrics and more relevant than the distance provided by
Distance Map Services. Basically, they are based on the composition of different
raw metrics provided by external monitoring systems. This computation is em-
bedded in a Web Service developed with Globus Toolkit 4: the Network Distance
Service.

3.1 Metric Model

According to the GGF NM-WG in [2], a metric is a quantity related to the
performance and reliability of the Internet. We call measures the actual values
related to metrics.

We note M the set of metrics. It includes the bandwidth (BW), the latency
(L), the CPU speed (CPUs), and the CPU availability (CPUa). The measure
of the network metric m from the host i to the host j is noted m, ;. The measure
of the host metric m for the host 7 is noted m;.

NDS must be able to use the measures provided by any monitoring tools.
Thus monitoring tools are accessed through command lines execution. Then, no
wrapper has to be developed and new metrics and tools are integrated through
a simple JNDI configuration file. The only requirement is that the monitoring
tools must by queryable from the execution host of NDS.



3.2 Compound Metric Model

In order to come closer to user concerns and to improve its usability, NDS
embeds two compound metrics related to the two basic kinds of grid task: data
transfers or computations.

DTC for Data Transfer Cost. It assesses the cost to transfer a piece of data of
size data_size from one host ¢ to another j. According to [9], “the Raw Band-
width model using NWS forecasts can be used effectively to rank alternative
candidate schedules”. Actually, we observe that data size does not influence
only distance, but also relevance of the different metrics: Latency is the key fac-
tor about small size data, whereas Bandwidth is the key factor about large ones.
Thus DT'C includes the 3 RTT needed to open and close TCP/IP connections.

data_size
DTC,L j(data,size) =3 X (LZ] + Lj 1) + —
’ ' ’ BW, ;

CTC for Computation Task Cost assesses of the cost to execute nb_cycles CPU
cycles on the host i. nb_cycles can be obtained either by calibration or compila-
tion technics. Its automatic extraction will be investigated in future work.

nb_cycles
CTC;(nb_cycles) = TPUs x CPUa

One can note that theses compound metrics are rather basic. Some advanced
characteristics are not taken into account, such as host architecture, OS, bus
frequency, buffer size, scheduler configuration, protocol, MTU, TCP/IP configu-
ration... Nevertheless, tools like NWS measure the metrics from the application
layer. Consequently they already take all the influencing characteristics into ac-
count without having to identify them.

Moreover compound metrics are declared as easily as raw metrics: It is easy
to refine them or to add new ones assessing of any goals. Even non-functional
aspects like financial costs can be integrated as soon as the raw data are available.

3.3 NDS Queries

The NDS queries include three sections:

Set of hosts: The set of names of hosts involved in the decision. It can include
several named subsets and is noted H.

Task Properties Set: The set of task parameters involved in the distance com-
putation which are not monitoring metrics. It is a set of named values noted
TPS.

Distance Function: The real-valued function that gives the final value of the
distance between two nodes. We note it df.

It is a nonlinear combination of monitoring metrics and values in T'P.S. This
function is the core of distance computation. It must be relevant to the



aspects the user wants to assess. Generally its result must tend to zero when
the performances tend to perfection, as distances generally represent costs.

The next section shows some examples of NDS queries in concrete use cases.

4 Experiments

The experiments are made on Grid5000 [10]. This experimental platform allows
to reserve nodes to conduct distributed experiments. Its topology is shown in the
Figure 1. Its network is high-performance (GB/s) and shared among all users.
The nodes are not shared during reservation and heterogeneous architectures are
represented (AMD and Intel, 32 bits and 64 bits, simple and double core). The
raw metrics used by NDS in distance computations are provided by NWS.

Our approach is validated by comparing the execution time for all possible
decisions. These times are retrieved with a Fake Service: The Fake Client sends
in random bytes to the Fake Service; Then this one makes comp divisions of
double typed variables; Finally, out random bytes are returned to either the
client or another Fake Service. This allows to emulate a large range of resource.
All presented times are means of 10 experiments.

4.1 Selection

The problem presented in section 1.1 is to decide which instances of R1 and R2
optimize the execution time. This problem can be solved by computing and sort-
ing the distance representing the task performance. This distance must include
s1 = 10M B the size of the initial image, s2 = 100K B the size of the interme-
diate image, s3 = 1K B the size of the signature, ¢1 = 100 000 the number of
CPU cycles needed by the normalization, and ¢2 = 10 000 000 the number of
CPU cycles needed by the signature computation.
The corresponding NDS query is:

V = {cdient = {node-36.lille},
R1 = {gdx0039.orsay, grillon-20.nancy, helios51.sophia},
R2 = {node-2.lyon, paravent74.rennes, node-25.toulouse} }
TPS = {s1=10 000 000, s2=100 000, s3=1 000, ¢1=100 000, ¢2=10 000 000}
df = DTCclient,Rl (51) + CTCRI (02)
+(sameV ORr1,r2)?DTCri1,r2(52) : DT CRa client(52) + DT Ceient, r2(52)
+CTCra(c2) + DT Cra,client (53)

Where client, R1, and R2 into df represent the client host and the instances
of resources declared in V. In this example df represents the costs to achieve the
whole task using R1 and R2. Please note the use of the special test sameV O
returning true if the given parameters are members of a same VO. It is integrated
in NDS as a raw metric and implemented into a fake external tools that can
be replaced by a real one if available. It shows the expressivity of N DS which



uses the library Java math Expression Parser (JEP [11]) to parse df. It supports
classical mathematical operations and functions as well as Boolean tests and
character strings.
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Fig. 2. Experimental execution times and NDS distances according to R1 and R2

The figure 2 shows both the experimental execution times (in seconds) and
the distances given by NDS (in arbitrary units) according to the selection of
R1 and R2. One can note that the 9 alternate possibilities are almost perfectly
ranked by N DS and that the best solution was hard to guess as gdx0039. orsay
and node-2.1lyon are not in the same grid. Furthermore the important decision
is actually the selection of R1. Indeed the results are sensibly equal whatever
the selection of R2 is. This shows that first data transfer is the key factor of the
efficiency of the whole execution, which was hard to guess too.

An important observation is that NDS distances are not exactly directly
proportional to the real execution times. Consequently they can not be expressed
in physical units like seconds and they are not previsions and must be used for
ranking exclusively. Nevertheless, NDS distances can be used to support decisions
in a wide range of applications, for instance in deployment tasks.

4.2 Deployment

Another problem is to decide how many instances of a resources must be deployed
and where. In graph theory, this problem is called the k-medians problem:
Given a set V of points in a metric space endowed with a metric distance
function df, and given a desired number k of resulting clusters, partition .S into
non-overlapping clusters C, ..., Cy and determine their “centres”

w={p1,...,ux} CV so that criterion = Z min?zl df (i, pt;) is minimized.
i€y
In our scenario, k is the number of instances of the resource, while 1, ..., g
are their optimal locations. We show in [12] how the distance produced by NDS



can be validated to be “metric distance”. NDS embeds an algorithm to com-
pute and compare the criterion of each possible solution. It was used to make
decisions about the placement of R1 and R2.
We assume that the resources clients have been identified on 19 nodes of 7
sites of Grid5000: Lyon (3 nodes), Rennes (2 nodes), Orsay (2 nodes), Sophia-Antipolis
(4 nodes), Toulouse (2 nodes), Nancy (2 nodes) and Lille (1 nodes). Moreover
we assume the client requests distribution uniform and the resource deployable
on any of the 19 nodes.
The corresponding NDS query is:

V = {client = {sagittaire-18.1yon, ... (all of the 19 hosts) },
location = {sagittaire-18.1yon, ... (all of the 19 hosts)}}
TPS = {in,out, comp}
df = DTCclient,location(in) + CTClocation (COmp) + DTClocation,client(OUt)

The provided distances assesses a resource invocation from all nodes to all
nodes with in bytes of input, comp CPU cycles of computation, and out bytes of
output. It allows executing the k-medians algorithm and making the deployment
decisions to optimize global resource access time, as stated below.

Deployment of R1: TPS = {in = 10 000 000, out = 100 000, comp = 100 000}

Fig. 3. Experimental execution times (in seconds) according to the deployment of R1
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The Figure 3 shows k-medians algorithms results in two forms: First and
according to k the best case of (1) the mean experimental execution times from
all of the 19 nodes to their closest resource and (2) the distance-based k-server
criteria. Obviously as R1 is communication expensive, deploying numerous in-
stances allows to come closer to the clients and consequently to improve the
performance. But NDS highlights two particular values k = 2 and k = 6 where
the tangent line changes: The speed-up is very impressive from k =1 to k = 2,
good from k = 2 to k = 6, and null afterwards. This is perfectly assessed by



NDS and allows the user to decide how many instances he will deploy according
to the gain and cost to add a new resource.

Second, the table shows the experimental result with k& = 2 of four place-
ments: recommended by NDS thanks to the k-medians algorithm, and experi-
mental best, median and worst. The mean execution time from all the 19 nodes
shows that the NDS recommendation achieves a good accuracy, especially re-
garding the median and worst decisions which might possibly be made by intu-
itive means.

Deployment of R2: TPS = {in = 100 000, out = 1 000, comp = 10 000 000}.

Fig. 4. Execution times (in seconds) according to the deployment of R2
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In Figure 4 one can see that the replication of R2 does not lead to any speed-
up, which is perfectly assessed by NDS. Indeed as R2 is mainly computation
expensive, it does not need to be brought close to each client. Then one can decide
to deploy only one instance. Moreover, the NDS placement recommendation is
perfect while a average decision might lead to a loss of more than 15%.

Global deployment results and discussion: We have tested the NDS rec-
ommendations with {in,out,comp} € {{1 000,100 000,10 000 000}3},Vk €
[1,19]. They achieve a global mean accuracy of 94.26%.

The main limitation of NDS in deployment problems, is the necessity to fix
the TPS values. This can be avoided by computing the integral of df over the
values of TPS according to their distribution. Moreover, the change in speed-up
can be highlighted by the derivative of the k-medians criterion with respect to
k. This is a part of our future work.

The purpose of this experiment is to show the adaptability and usability of
our service: A large variety of complex and concrete user problems can be ac-
curately solved with actually simple queries. NDS does not directly address the
scalability. Actually NDS can handle as many host as necessary, but the under-
lying monitoring system has to be exhaustive and thus might present scalability
issues. Nevertheless, NDS improve the usability of this system and thus ensure
its profitability.



5 Conclusion and Future Work

We have presented a novel distance-based decision-making support called the
Network Distance Service. It is designed for dynamic SOA-based grids and is par-
ticularly useful in cross-grid environments where some decisions must be handled
from user-side.

The NDS provides an uniform and high level access to monitoring infor-
mation, making the expression of the need at same time easy and accurate. It
allows the computation of distances adapted to any task in a wide range of ap-
plication. Its accuracy and usability have been shown with concrete experiments
for classical decision-making problems in a real platform. Our main contribution
is to ensure the profitability of monitoring systems by improving the usability
of the produced data. NDS can be used either by users through a JAVA GUI or
by other services through WSDL API. Moreover NDS can easily solve complex
problems thanks to embedded algorithms.

Finally, this work opens numerous perspectives on how integral and derivative
of distances can be exploited and how parameters like task CPU cycles can be
extracted and included into WSDM. Moreover, a scalable software architecture
to deliver monitoring data in cross-grid environment must be studied.
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