
HAL Id: hal-01502170
https://hal.science/hal-01502170

Submitted on 5 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bias correcting precipitation forecasts to improve the
skill of seasonal streamflow forecasts

Louise Crochemore, Maria-Helena Ramos, F. Pappenberger

To cite this version:
Louise Crochemore, Maria-Helena Ramos, F. Pappenberger. Bias correcting precipitation forecasts
to improve the skill of seasonal streamflow forecasts. Hydrology and Earth System Sciences, 2016, 20
(9), pp.3601-3618. �10.5194/hess-20-3601-2016�. �hal-01502170�

https://hal.science/hal-01502170
https://hal.archives-ouvertes.fr


Hydrol. Earth Syst. Sci., 20, 3601–3618, 2016
www.hydrol-earth-syst-sci.net/20/3601/2016/
doi:10.5194/hess-20-3601-2016
© Author(s) 2016. CC Attribution 3.0 License.

Bias correcting precipitation forecasts to improve the skill of
seasonal streamflow forecasts
Louise Crochemore1,a, Maria-Helena Ramos1, and Florian Pappenberger2,3

1Irstea, Hydrosystems and Bioprocesses Research Unit, 1 rue Pierre Gilles de Gennes, 92 761, Antony, France
2ECMWF, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, UK
3School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
anow at: Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden

Correspondence to: Louise Crochemore (louise.crochemore@smhi.se)

Received: 16 February 2016 – Published in Hydrol. Earth Syst. Sci. Discuss.: 24 February 2016
Revised: 29 July 2016 – Accepted: 14 August 2016 – Published: 6 September 2016

Abstract. Meteorological centres make sustained efforts to
provide seasonal forecasts that are increasingly skilful, which
has the potential to benefit streamflow forecasting. Seasonal
streamflow forecasts can help to take anticipatory measures
for a range of applications, such as water supply or hy-
dropower reservoir operation and drought risk management.
This study assesses the skill of seasonal precipitation and
streamflow forecasts in France to provide insights into the
way bias correcting precipitation forecasts can improve the
skill of streamflow forecasts at extended lead times. We ap-
ply eight variants of bias correction approaches to the pre-
cipitation forecasts prior to generating the streamflow fore-
casts. The approaches are based on the linear scaling and the
distribution mapping methods. A daily hydrological model
is applied at the catchment scale to transform precipitation
into streamflow. We then evaluate the skill of raw (without
bias correction) and bias-corrected precipitation and stream-
flow ensemble forecasts in 16 catchments in France. The skill
of the ensemble forecasts is assessed in reliability, sharp-
ness, accuracy and overall performance. A reference predic-
tion system, based on historical observed precipitation and
catchment initial conditions at the time of forecast (i.e. ESP
method) is used as benchmark in the computation of the
skill. The results show that, in most catchments, raw seasonal
precipitation and streamflow forecasts are often more skil-
ful than the conventional ESP method in terms of sharpness.
However, they are not significantly better in terms of reli-
ability. Forecast skill is generally improved when applying
bias correction. Two bias correction methods show the best
performance for the studied catchments, each method being

more successful in improving specific attributes of the fore-
casts: the simple linear scaling of monthly values contributes
mainly to increasing forecast sharpness and accuracy, while
the empirical distribution mapping of daily values is success-
ful in improving forecast reliability.

1 Introduction

Numerous activities with economic, environmental and po-
litical stakes benefit from knowing and anticipating future
streamflow conditions at different lead times. Streamflow
forecasting systems are frequently developed to take the lat-
est useful information content into account (e.g. last observed
discharges, soil moisture or snow cover) and to make use of
numerical weather model outputs to extend the range of skil-
ful predictions.

Seasonal forecasts have shown to perfectly fall within
a context of proactive risk management, for example,
for drought management (e.g. Wilhite et al., 2000; Dutra
et al., 2014; Mwangi et al., 2014; Wetterhall et al., 2015).
Extended-range forecasting systems can be valuable to help
decision makers in planning long-term strategies for water
storage (Crochemore et al., 2016) and to support adaptation
to climate change (Winsemius et al., 2014). Nevertheless,
several users still remain doubtful whether seasonal fore-
casts can be trustworthy or skilful enough to enhance deci-
sion making (Rayner et al., 2005). Lemos et al. (2002) list
the performance of seasonal forecasts, the misuse of seasonal
forecasts by end-users and the lack of consideration of end-
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users’ needs in the development of products as major obsta-
cles to the widespread use of seasonal forecasting in north-
east Brazil. It is therefore crucial to assess the potential of
available seasonal forecasting products and communicate on
the assets and shortcomings of the different approaches for
the water sector (Hartmann et al., 2002).

Seasonal forecasting methods in hydrology can be broadly
divided into two categories: statistical methods, which use a
statistical relationship between a predictor and a predictand
(e.g. Jenicek et al., 2016, and references therein), and dynam-
ical methods, which use seasonal meteorological forecasts
as input to a hydrological model. More recently, mixed ap-
proaches have been investigated to take advantage of initial
land surface conditions, seasonal predictions of atmospheric
variables and the predictability information contained in
large-scale climate features (see Robertson et al., 2013; Yuan
et al., 2015, and references therein). Ensemble Streamflow
Prediction (ESP; Day, 1985) is a dynamical method that is
widely used to forecast low flows and reservoir inflows at
long lead times (Faber and Stedinger, 2001; Nicolle et al.,
2014; Demirel et al., 2015). It consists in using historical
weather data as input to a hydrological model whose states
were initialized for the time of the forecast. The ESP method
is also used along with the reverse ESP method to deter-
mine the relative impacts of meteorological forcings and hy-
drological initial conditions on the skill of streamflow pre-
dictions (Wood and Lettenmaier, 2008; Shukla et al., 2013;
Yossef et al., 2013). An alternative dynamical method con-
sists in using seasonal forecasts from regional climate mod-
els (RCMs) (Wood et al., 2005). This approach yields better
results when seasonal predictability is enhanced by meteo-
rological forcings. Climate model outputs may also be more
suitable to capture the specific climate conditions at the time
of the forecast, whereas ESP-based methods will be limited
to the range of past observations and challenged by climate
non-stationarity.

The use of climate model outputs in hydrology has how-
ever some methodological implications. For instance, out-
puts are produced for coarse grid scales, which can lead to
errors in capturing forecast uncertainty and induce biases.
Post-processing (including bias correction and downscaling)
is usually a necessary first step prior to using climate model
outputs to model streamflow. A range of methods has been
proposed in the literature, with performance varying depend-
ing on the modelling chain and the studied area (Christensen
et al., 2008; Gudmundsson et al., 2012). Weather forecasting
has performed bias correction of numerical model outputs
through model output statistics (MOS) for decades. In hydro-
logic ensemble prediction systems, post-processing has be-
come more and more popular in the last decade, particularly
for medium-range ensemble forecasting (e.g. Weerts et al.,
2011; Zalachori et al., 2012; Verkade et al., 2013; Madadgar
et al., 2014; Roulin and Vannitsem, 2015). In seasonal fore-
casting, two popular bias correction methods are linear scal-
ing and distribution mapping (Yuan et al., 2015). Linear scal-

ing corrects the mean of the forecasts based on the difference
between observed and forecast means, whereas distribution
mapping matches the statistical distribution of forecasts to
the distribution of observations. These approaches focus on
increasing forecast skill and reliability by reducing errors in
the forecast mean and improving forecast spread.

Studies comparing different bias correction methods in
seasonal hydrological forecasting are still rare in the litera-
ture. However, we can find studies reviewing and compar-
ing methods to bias correct RCM outputs and quantify cli-
mate change impacts, although their efficiency in this con-
text is still a topic of discussion (Ehret et al., 2012; Muerth
et al., 2013; Teutschbein and Seibert, 2013). Teutschbein
and Seibert (2012) compared six methods, including linear
scaling and parametric distribution mapping, to bias correct
RCM simulations of precipitation and temperature in Swe-
den. The authors recommended using the distribution map-
ping method for current climate conditions. They also high-
lighted the need to assume that bias correction procedures
are stationary to correct future climate projections and evalu-
ate changes in flow regimes. In Norway, Gudmundsson et al.
(2012) proposed a comparison of 11 methods to bias correct
RCM precipitation, including distribution mapping based on
fitted theoretical or empirical distributions and linear scal-
ing. Their study highlighted the differences between the bias
corrections and the necessity to test methods prior to their
application. The authors recommended using non-parametric
methods since these methods were the most effective to re-
duce the bias and did not require any approximations of the
empirical distributions.

The European Centre for Medium-range Weather Fore-
casts (ECMWF) produces seasonal forecasts from GCM
simulations (Molteni et al., 2011). Weisheimer and Palmer
(2014) evaluated the reliability of the precipitation forecasts
issued by ECMWF System 4 on a scale ranging from “dan-
gerous” to “perfect”. Over the world, forecasts often fell
within the “marginally useful” category. In France, they were
ranked as “marginally useful” during wet winters and sum-
mers, “not useful” in dry winters and “dangerous” in dry
summers. Kim et al. (2012) also evaluated the skill of Sys-
tem 4 precipitation and temperature forecasts at the global
scale. Despite good overall performances, they identified sys-
tematic biases, e.g. a warm bias in the North Atlantic. Sev-
eral studies have proposed to bias correct ECMWF System
4 forecasts in different contexts. Di Giuseppe et al. (2013)
applied a spatially based precipitation bias correction to im-
prove malaria forecasts. Trambauer et al. (2015) applied a
linear scaling method to forecast hydrological droughts in
southern Africa. In the same context, Wetterhall et al. (2015)
applied a quantile mapping method to daily precipitation val-
ues, and showed that bias correction was able to improve the
skill of dry spell forecasts.

Despite these recent works, and to the knowledge of the
authors, only few studies have compared bias correction
methods and their impact on streamflow forecasting in a sys-
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tematic way, with a focus on understanding how the main
attributes of forecast performance are impacted by bias cor-
rection (see e.g. Hashino et al., 2007; Wood and Schaake,
2008). This paper aims to provide insights into the way bias
correcting seasonal precipitation forecasts can contribute to
the skill of seasonal streamflow predictions, notably in terms
of overall performance, reliability, sharpness and skilful lead
time. It investigates the potential of bias-corrected ECMWF
System 4 forecasts to improve streamflow forecasts at ex-
tended lead times over 16 catchments in France. An in-depth
comparison of eight variants of linear scaling and distribu-
tion mapping methods applied over the 1981–2010 period
is presented. Section 2 presents the catchment set, the fore-
cast and observed data, as well as the hydrological model
used. Section 3 presents the bias correction methods investi-
gated, as well as the calibration and evaluation frameworks
adopted. Results are presented in Sects. 4–6 for the quality
of the raw (uncorrected) and the bias-corrected forecasts. In
Sect. 7, conclusions and limitations are discussed.

2 Data and hydrological model

2.1 Seasonal forecasts and observed data

Daily seasonal precipitation forecasts come from ECMWF
System 4, which provides ensemble forecasts for the next 7
months at a TL255 (about 0.7◦) spatial resolution, for the pe-
riod running from 1981 to 2010 (Molteni et al., 2011). Fore-
casts are composed of 51 ensemble members for February,
May, August and November, and 15 members for the other
months. In this study, areal precipitation was computed for
each catchment and only the first 90 days of the forecast hori-
zon were considered.

Daily observed precipitation used for the calibration and
evaluation of the bias correction methods comes from the
8× 8 km grid resolution SAFRAN reanalysis of Météo-
France (Quintana-Seguí et al., 2008; Vidal et al., 2010). It
was also aggregated at the catchment scale. Mean areal po-
tential evapotranspiration was computed for each catchment
based on daily observed temperatures from the SAFRAN re-
analysis (Oudin et al., 2005). The multiannual mean potential
evapotranspiration was then computed in each catchment; i.e.
for a given day of the year, we computed the average poten-
tial evapotranspiration for this day over all available years
(1958–2010). Daily streamflow data at the outlet of each
catchment come from the French national archive (Banque
Hydro).

2.2 Studied catchments and hydrological model

The catchment set was selected from the database in Nicolle
et al. (2014). It comprises 16 catchments in France (Fig. 1)
with a dominant pluvial regime. Catchments show an average
solid fraction of precipitation below 10 % and are thus not
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Figure 1. Location of the studied catchments in France, identified
by their numbers (see Table 1).

heavily influenced by snow. Their main characteristics are
shown in Table 1.

We applied the conceptual, reservoir-based GR6J hydro-
logical model (Pushpalatha et al., 2011) at the daily time step.
The model has three reservoirs (one for the production func-
tion and two for the routing function), and one unit hydro-
graph to account for flow delays. The model inputs are daily
precipitation and potential evapotranspiration at the catch-
ment scale. The model output is the daily streamflow at the
catchment outlet. Here, the series of multiannual mean poten-
tial evapotranspiration corresponding to the forecast period
was systematically used as input to the hydrological model.
With this setup, we aimed to isolate the influence of precipi-
tation forecast inputs on the quality of streamflow forecasts.
This setup is also consistent with the fact that our catchment
set is dominated by a pluvial regime. The model was cal-
ibrated in each catchment with the Kling–Gupta efficiency
(Gupta et al., 2009) applied to root-squared flows. We ob-
tained an average KGE of 0.95 in calibration and 0.94 in val-
idation over the 16 catchments. The bias obtained in simula-
tion ranges from 0.95 to 1.02. When the model is applied to
forecast streamflow, the model states are initialized by run-
ning the model in simulation mode for the year preceding
the forecast date. The last observed streamflow is then used
to update the levels of the routing reservoirs before issuing
the forecast.
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Table 1. Number, name, surface and mean annual precipitation, potential evapotranspiration and streamflow for the studied catchments.

No. River Gauging Surface Mean annual Mean annual Mean annual
station (km2) precipitation evapotranspiration flow

(mm year−1) (mm year−1) (mm year−1)

1 Andelle Vascœuil 377 952 628 332
2 Orne Saosnoise Montbizot (Moulin Neuf Cidrerie) 501 735 696 163
3 Briance Condat-sur-Vienne (Chambon Veyrinas) 605 1100 706 427
4 Ill Didenheim 668 956 664 309
5 Azergues Lozanne 798 931 689 296
6 Seiche Bruz (Carcé) 809 732 696 181
7 Petite Creuse Fresselines (Puy Rageaud) 853 899 680 316
8 Sèvre Nantaise Tiffauges (la Moulinette) 872 898 712 331
9 Vire Saint-Lô (Moulin des Rondelles) 882 958 629 448
10 Orge Morsang-sur-Orge 934 658 680 131
11 Serein Chablis 1119 842 675 220
12 Sauldres Salbris (Valaudran) 1220 803 684 240
13 Eyre Salle 1678 1025 785 323
14 Arroux Etang-sur-Arroux (Pont du Tacot) 1792 981 655 390
15 Meuse Saint-Mihiel 2543 948 639 372
16 Oise Sempigny 4320 805 639 250

3 Methods

3.1 Overview of the calibration approach

The leave-one-year-out cross-validation method (Arlot and
Celisse, 2010) was applied to calibrate the bias correction
methods in each catchment over independent periods within
the 1981–2010 period. Given a target application year, all
available years but the target year are used in the calibration
process. Results of the calibration are then applied to the tar-
get year and bias-corrected forecasts are evaluated against
observations.

In the calibration step, we considered two approaches:
(1) all days of the years within the calibration data set are
used, (2) the bias correction methods are calibrated for each
calendar month. Additionally, since we are dealing with fore-
casts issued up to 90 days ahead, and since forecast per-
formance varies with lead time, calibration also takes the
lead time into account. Lead times were grouped from 1 to
30 days, 31 to 60 days and 61 to 90 days ahead. The cal-
ibrated bias correction factors are then applied to the daily
values of the ensemble precipitation forecasts in the target
year. The hydrological model is forced by raw and bias-
corrected precipitation forecasts, which results in streamflow
ensemble forecasts.

3.2 Bias correction methods

We applied the linear scaling (LS) and the distribution map-
ping (DM) methods to the raw System 4 precipitation fore-
casts. Each method was applied on a monthly (-m) and a
yearly (-y) basis (Table 2).

LS consists in correcting the monthly mean values of the
forecasts to match the monthly mean values of the obser-
vations (see Teutschbein and Seibert, 2013, for details). A
scaling factor (or bias) is calculated considering the ratio be-
tween the observed and the forecast (ensemble mean) values.
The scaling factor obtained through calibration is then ap-
plied as a multiplicative factor to correct raw daily precipita-
tion forecasts.

DM consists in correcting the precipitation forecasts so
that their statistical distribution matches that of the observa-
tions. There are several ways to match forecast and observed
distributions or quantiles, and existing techniques mainly dif-
fer on how the cumulative distribution functions (CDF) are
considered. In some techniques, a parametric distribution is
fitted to the data sets, while in others the empirical distribu-
tions and linear interpolations between data points or esti-
mated quantiles are considered.

In this study, the calibration of the DM method was first
carried out considering empirical (EDM) and gamma-fitted
(GDM) distributions of observed and forecast (ensemble
mean) precipitation values averaged monthly. A third vari-
ant considered directly the empirical distribution of the daily
values of the ensemble members (EDMD). These variants are
listed in Table 2. After calibration, bias correction is applied
to the daily precipitation forecasts of each target period. In
the case of EDM and GDM, the monthly values are first cor-
rected based on the distribution mapping procedure. Then,
for a given month, the ratio of the corrected monthly value
and the non-corrected one is used to correct all daily values
within this month. In the case of EDMD, each daily precipita-
tion value of each forecast member is corrected individually.
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Table 2. Bias corrections applied to corresponding abbreviations, method used for calibration and description.

Abbreviation Calibration based on Description

LS-y the whole year
Linear scaling of monthly values

LS-m calendar months

EDM-y the whole year
Empirical distribution mapping of monthly values

EDM-m calendar months

GDM-y the whole year
Gamma distribution mapping of monthly values

GDM-m calendar months

EDMD-y the whole year
Empirical distribution mapping of daily values

EDMD-m calendar months

3.3 Evaluation framework

The quality of the forecasts was evaluated as a function of
lead time and for the winter (December–January–February),
the spring (March–April–May), the summer (June–July–
August) and the autumn (September–October–November)
seasons. Four criteria were used to assess reliability, sharp-
ness, accuracy and overall performance of the forecasts
(Gneiting et al., 2007; Eslamian, 2015; Musy et al., 2015).

3.3.1 Evaluation criteria

Reliability is a forecast attribute that refers to the statistical
consistency between observed frequencies and forecast prob-
abilities. In this study, it was evaluated with the probability
integral transform (PIT) diagram (Gneiting et al., 2007; Laio
and Tamea, 2007). The PIT diagram is the cumulative distri-
bution of the PIT values, which are defined by the values of
the predictive distribution function at the observations, com-
puted at each time step. In the case of a reliable forecast, the
observations uniformly fall within the predictive distribution
and the PIT diagram coincides with the 1 : 1 diagonal. If the
PIT diagram is systematically above (below) the diagonal,
the observed values are too frequently located in the lower
(upper) parts of the forecast distribution, suggesting a sys-
tematic bias of the forecasts towards overprediction (under-
prediction). If the PIT diagram tends to resemble a horizontal
line, observations fall too frequently in the tails of the fore-
cast distribution, indicating that forecasts are too narrow. On
the contrary, if the PIT diagram is closer to a vertical line,
too many observations fall in the midrange of the forecast
distribution, indicating that forecasts are too wide. We also
represented the bands at +0.1 and −0.1 from the bisector. In
order to numerically compare results among catchments, we
also computed the area between the curve of the PIT diagram
and the 1 : 1 diagonal, as proposed by Renard et al. (2010).
The smaller this area, the more reliable the ensemble.

Sharpness is a property of the forecasts only. It refers to the
concentration of the predictive distribution and indicates how
spread out the members of an ensemble forecast are. In this
study, sharpness was evaluated with the 90 % interquantile

range (IQR), i.e. the difference between the 95th and the 5th
percentiles of the forecast distribution. The final IQR score
is the average of the interquantile range at each time step
of the evaluation period. The narrower the IQR, the sharper
the ensemble. In this study, we considered that, given two
reliable systems, the sharpest one is the best (Gneiting et al.,
2007).

The accuracy of the forecasts is assessed with the mean
absolute error (MAE). The MAE computes the average (over
the evaluation period) of the absolute difference between
the forecast ensemble mean and the observed value. Smaller
MAE values correspond to more accurate forecasts.

Lastly, the continuous ranked probability score (CRPS)
evaluates the overall performance of the forecasts. It is de-
fined as the integral of the squared distance between the
cumulative distribution of the forecast members and a step
function for the observation (Hersbach, 2000). The CRPS
score is the average of this integral computed at each time
step of the evaluation period. The lower the CRPS, the better
the overall performance of the forecasts.

3.3.2 Skill scores

Forecast skill is evaluated by comparing the performance of
a given forecast system with the performance of a reference
forecast. The skill score is computed for a given lead time i.

Skilli = 1−
ScoreSyst

i

ScoreRef
i

(1)

When the skill score is superior (inferior) to zero, the forecast
system is more (less) skilful than the reference. When it is
equal to zero, the system and the reference have equivalent
skill.

The skill scores were computed for the probabilistic
scores. They are noted PITSS, IQRSS and CRPSS. The refer-
ence precipitation forecast is based on past observations and
is representative of the catchment climatology: for a given
day and year, it is the ensemble of precipitation values ob-
served on that same Gregorian day in other years of the
observation period (1958–2010). Two reference streamflow
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forecasts are used. The first is the ESP, which corresponds to
the streamflow ensemble obtained when the reference precip-
itation ensemble is used as input to the hydrological model.
The ESP is a commonly used method in seasonal forecasting.
It allows applying the same hydrological modelling setup
to both the precipitation forecasts and the reference precip-
itation ensemble. Therefore, differences in performance are
mainly due to differences between the precipitation inputs
to the model. The second reference is based on past stream-
flow observations (on the same day as the given forecast day,
in a 36- to 52-year period running up to 2010) to evaluate
performance. This reference ensemble does not use any pre-
cipitation forecasts or hydrological models.

Finally, several studies have shown that the ensemble size
induces a bias when computing skill scores with ensembles
of different sizes. This bias usually leads to an underestima-
tion of the skill of the forecast system when the system has
fewer members than the reference. Ferro et al. (2008) pro-
vide a synthesis of previous studies on the influence of en-
semble size on probability scores and propose a correction
factor to remove the bias in the computation of CRPS skill
scores. This correction was applied to compute the CRPSS
in this study. Since the ensemble size of System 4 precipita-
tion forecasts varies with the month, we used the ensemble
size averaged over 1 year.

3.3.3 Gain in lead time from bias correcting seasonal
forecasts

To investigate the gain in performance brought by bias cor-
rection methods, we use the raw (uncorrected) forecasts as
reference in the computation of the skill scores. An indicator
of forecast performance can be derived: the lead time up to
which bias-corrected forecasts have more skill than raw fore-
casts. Nicolle et al. (2014) defined an indicator named UFL
(useful forecasting lead time) as the first “lead time beyond
which model performance is not at least 20 % better than
benchmark performance”. Here, we considered the lead time
beyond which the 7-day moving average of the skill score
becomes negative. UFL values were then grouped into four
categories: (1) none: no improvement over the forecast ref-
erence; (2) < 30: gain up to 30 days; (3) < 60: gain greater
than 30 days and up to 60 days; and (4) > 60: gain greater
than 60 days.

4 Quality of the raw seasonal forecasts

4.1 Performance of raw precipitation forecasts

Figure 2 presents the evolution of IQRSS and CRPSS with
lead time, for winter (DJF) and summer (JJA). Each line cor-
responds to a catchment. Skill in sharpness and overall per-
formance is very similar in winter and in summer (as well
as in spring and autumn, not shown). Precipitation forecasts
are overall sharper than historical precipitation in the large
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Figure 2. Skill of raw weekly precipitation forecasts as a function
of the lead time for all catchments and for the winter (DJF) and
summer (JJA) seasons. The skill is computed based on the IQR (top)
and the CRPS (bottom) and the reference is historical precipitation.
Each column corresponds to a target season. Each line represents
the skill score in a catchment for forecast horizons within the target
season.

majority of catchments and up to long lead times. Some ex-
ceptions appear for lead times longer than 3 weeks, and es-
pecially in winter (wetter season in the majority of catch-
ments). In terms of overall performance, precipitation fore-
casts clearly have skill up to 2–3 weeks ahead for 7-day aver-
aged areal precipitation. At longer lead times, they are equiv-
alent or perform slightly worse than historical precipitation.

Figure 3 shows the PIT diagrams for lead times of 30 and
90 days, for winter and summer. Grey lines represent the re-
liability of historical precipitation and coloured lines repre-
sent the reliability of System 4 precipitation forecasts in each
catchment. Dotted lines represent the ±0.1 tolerance bands
from the diagonal. The two seasons yield very similar results
(also observed in spring and autumn, not shown). In all catch-
ments and for both lead times, historical precipitation is reli-
able, as expected. Seasonal precipitation forecasts also show
some reliability, but tend to overpredict precipitation in both
seasons and at both lead times. The jump observed at a PIT
value of 0 in most of the curves shows that observations are
too often falling in the lower tail of the forecast distribution.
This effect tends to decrease with increasing lead time. This
is an indication that forecasts are too narrow and overpredict
the lowest observations. It can also indicate a difficulty of the
system to forecast null precipitation.

4.2 Performance of raw streamflow forecasts

Streamflow forecasts are generated by using raw precipita-
tion forecasts as input to the hydrological model. Forecast
skill is evaluated using the ESP method as reference (Fig. 4).
Differences in forecast skill between the winter and sum-
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Figure 3. PIT diagram of raw precipitation forecasts (coloured
lines) and historical precipitation (grey lines) for lead times of 30
days (top) and 90 days (bottom). Each column corresponds to a tar-
get season. Each line represents the PIT diagram in a catchment for
forecast horizons within the target season. Dotted lines represent the
±0.1 tolerance bands from the diagonal.

mer seasons are more noticeable when evaluating streamflow
forecasts rather than precipitation forecasts. Streamflow fore-
casts generated from raw precipitation forecasts are sharper
than ESP up to 12 weeks ahead in most catchments (IQRSS
above zero in Fig. 4). Approximately, only four catchments
stand out in both seasons with lower skill than ESP (six in
spring and one in autumn, not shown). However, even in
these catchments, sharpness can be improved using seasonal
precipitation forecasts for lead times up to 3 weeks in win-
ter (as well as in spring and autumn, not shown). Concerning
overall performance (CRPSS in Fig. 4), skill can be observed
for lead times up to 4 weeks in some catchments. At longer
lead times, ESP and raw streamflow forecasts are equivalent
in most catchments for the winter season. In summer, as well
as in spring and autumn (not shown), the difference in skill at
longer lead times is more pronounced and most catchments
have a negative skill in terms of overall performance.

PIT diagrams are shown for each catchment, for the win-
ter and summer seasons and for lead times of 30 and 90 days
(Fig. 5). In winter and spring (not shown), ESP and raw
streamflow forecasts show good reliability, although the
curves above the diagonal indicate that forecasts are slightly
overpredicting streamflow. Streamflow forecasts for the au-
tumn season (not shown) also show good reliability, but with
a tendency to underpredict streamflow. In summer (Fig. 5,
right), streamflow forecasts from both ESP and raw fore-
casts, show problems in forecast reliability. The jumps ob-
served at the origin and at the end of the PIT curves, result-
ing in relatively flat curves, indicate narrow ensemble fore-
casts. In most catchments, 20–60 % of observed values fall
in the lowest interval of the forecast distribution or below
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Figure 4. Skill of weekly streamflow forecasts from raw precipi-
tation forecasts as a function of the lead time for all catchments
and for the winter (DJF) and summer (JJA) seasons. The skill is
computed based on the IQR (top) and the CRPS (bottom) and the
reference is ESP. Each column corresponds to a target season. Each
line represents the skill score in a catchment for forecast horizons
within the target season.
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Figure 5. PIT diagram of streamflow forecasts from raw precipita-
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30 days (top) and 90 days (bottom). Each column corresponds to a
target season. Each line represents the PIT diagram in a catchment
for forecast horizons within the target season. Dotted lines represent
the ±0.1 tolerance bands from the diagonal.

it. Although reliability is slightly improved with lead time,
streamflow forecasts remain underdispersive at 90 days of
lead time. This could be the result of at least two factors act-
ing alone or jointly: a difficulty of the hydrological model to
reach the lowest streamflow values in the simulations of the
recession periods, and the influence of not considering un-
certainties in the hydrological initial conditions at the time
of forecasting.
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Figure 6. Bias in precipitation for catchments 2, 4, 7 and 14, over the 1981–2010 period. The bias is shown for the whole year (top line)
and for each calendar month. The bias is only shown for lead times between 31 and 60 days. Blue-shaded areas represent a tendency of
overpredicting precipitation, and red-shaded areas represent a tendency of underpredicting precipitation. The top left graph represents the
bias of raw precipitation forecasts, and each of the other graphs represents the bias after applying one of the bias correction methods.

4.3 Summary of the quality of raw seasonal forecasts

Skill in the overall performance of System 4 raw precipita-
tion forecasts, at the catchment scale and over a reference
forecast based on past observed precipitation, was observed
up to 2–3 weeks in the studied catchments. When looking at
streamflow forecasts generated from raw precipitation fore-
casts, skill over the traditional ESP method was observed up
to 4 weeks, but only in few catchments. The asset of System
4 raw precipitation forecasts and related streamflow forecasts
over historical precipitation and ESP, respectively, resides
mainly in their sharpness. However, the evaluation of fore-
cast quality shows also that forecasts are often too narrow
and suffer from underprediction or overprediction. Improv-
ing forecast reliability while maintaining forecast sharpness
is clearly a challenge.

5 Bias correction of seasonal precipitation forecasts

5.1 Overview of the effectiveness of the bias correction
methods

Forecast bias, i.e. the ratio between the mean observation
and the average forecast ensemble mean, was computed for
each catchment over the 1981–2010 period. The bias was
computed for each calendar month, but also considering the
whole year. Figure 6 shows these biases, before and after
applying the bias correction methods. It illustrates the re-
sults obtained in four catchments at the month-2 lead time
(i.e. forecasts issued for day 31 to day 60). The effectiveness
of each bias correction method can be observed: a value of
1 corresponds to unbiased forecasts (white); values greater
than 1 indicate underprediction (red) and values smaller than
1 indicate overprediction (blue). A bias equal to 0.25 (4)
can be interpreted as the mean forecast being 4 times larger
(smaller) than the mean observation. Overall, when looking
at all monthly lead times of the forecast range, we observed
that the biases vary more with the calendar month of the fore-
cast horizon than with lead time. For this reason, we only
show the month-2 lead time.

Hydrol. Earth Syst. Sci., 20, 3601–3618, 2016 www.hydrol-earth-syst-sci.net/20/3601/2016/
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Figure 7. Fraction of catchments (%) in each UFL value category, i.e. fraction of catchments in which bias corrections increase the lead
time up to which seasonal precipitation forecasts have skill with respect to raw seasonal precipitation forecasts. Each row corresponds to
an evaluation criterion and each column corresponds to a season. Colour shades indicate the UFL category, i.e. the lead time up to which
precipitation forecasts are improved.

In general, seasonal forecasts tend to overpredict precip-
itation over the year in most catchments. Overprediction
tends to occur near the end of the winter (rainy) season and
throughout the spring season. Conversely, precipitation tends
to be underpredicted from the end of the summer (dry) sea-
son and until the beginning, and sometimes throughout, the
autumn season. The four selected catchments illustrate the
variety of conditions we encountered in the bias correction
analysis. In catchment 2, precipitation could be considered
unbiased when carrying the analysis over the year. However,
this result hides monthly underpredicting and overpredicting
biases which compensate over the year. In this catchment,
forecasts tend to overpredict from February to June and un-
derpredict from July to October. The yearly result may also
be a reflection of the lack of important biases in the months
of December and January, which are, climatologically, the
rainiest months. This type of variation in bias was also ob-
served in catchments 6, 11, 12 and 13. In catchment 4, pre-
cipitation forecasts are strongly overpredicting observations
in all calendar months and thus over the year. This catch-
ment stands out because in no other catchment do we ob-

serve a similarly strong and systematic bias. This catchment
is the one located at the easternmost part of France. Its main
river (l’Ill) is a tributary of the Rhine River. It has its sources
in the Jura Mountains and receives several tributaries from
the Vosges Mountains. In catchment 7, precipitation is over-
predicted over the year, with the strongest biases concen-
trated during the rainy season, approximately from Novem-
ber to April. The same behaviour is found in catchments 5, 10
and 15. Interestingly, catchments with a clear overprediction,
i.e. catchments following the patterns depicted in Fig. 6 for
catchments 4 and 7, correspond to the catchments in which
System 4 raw precipitation and streamflow forecasts showed
low skill in sharpness and/or overall performance. Lastly,
catchment 14 is representative of catchments 1, 3, 8, 9 and
16 in the database. Forecasts slightly underpredict precipita-
tion over the year, with a tendency to underpredict precipita-
tion in all seasons but the spring season, when precipitation
is slightly overpredicted.

Figure 6 also presents the remaining biases after the ap-
plication of the eight bias correction methods. All correc-
tion methods are effective to correct biases of precipitation

www.hydrol-earth-syst-sci.net/20/3601/2016/ Hydrol. Earth Syst. Sci., 20, 3601–3618, 2016
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Figure 8. Fraction of catchments (%) in each UFL value category, i.e. fraction of catchments in which bias corrections increase the lead time
up to which seasonal streamflow forecasts have skill with respect to seasonal streamflow forecasts generated from raw seasonal precipitation
forecasts. Each row corresponds to an evaluation criterion and each column corresponds to a season. Colour shades indicate the UFL category,
i.e. the lead time up to which streamflow forecasts are improved.

forecasts over the year. However, results for the methods cal-
ibrated on a yearly basis (LS-y, EDM-y, GDM-y, EDMD-
y) show that the absence of bias over the year is mainly
achieved through an effect of compensation between over
and underprediction among the calendar months. Particu-
larly EDM-y and GDM-y methods show a strong pattern of
monthly biases, even after bias correction, towards overpre-
diction of precipitation in winter and spring and underpre-
diction in summer and autumn. When looking at monthly
biases, monthly calibrated methods perform much better by
construction. LS-m and EDMD-m are particularly effective
in all catchments. Forecasts corrected with EDM-m tend to
slightly underpredict precipitation, while forecasts corrected
with GDM-m tend to overpredict precipitation.

5.2 Impact of bias correction on the useful forecasting
lead time

Skill scores of bias-corrected precipitation and related
streamflow forecasts were computed using raw forecasts as
reference. For each variable (precipitation and streamflow),

each evaluation criterion, each bias correction method, catch-
ment and season, we obtained the corresponding UFL (useful
forecasting lead time) and evaluated the proportion of catch-
ments falling in each UFL group (as defined in Sect. 3.3.3).
Results are shown in Figs. 7 and 8 for precipitation and
streamflow forecasts, respectively.

In Fig. 7, the two bias correction methods that stand out re-
garding overall performance (CRPS), in all seasons, are LS
and EDMD. When looking more closely at improvements in
the PIT criterion, as measured by the UFL, EDMD clearly
stands out from the other methods. The proportion of catch-
ments with skill improvement over raw precipitation fore-
casts is almost always 100 %, and skill is often extended up
to 60 days and more. The other methods are quite equiva-
lent to each other, although LS performs slightly better, with
greater improvements in larger proportions of catchments,
especially in winter and spring, for reliability (PIT), accu-
racy (MAE) and overall performance (CRPS). In terms of
sharpness (IQR), the best performing method varies with the
season. Precipitation forecasts in spring are sharper when
corrected with methods calibrated monthly, while forecasts

Hydrol. Earth Syst. Sci., 20, 3601–3618, 2016 www.hydrol-earth-syst-sci.net/20/3601/2016/
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Figure 9. Skill of weekly precipitation forecasts corrected with
EDMD-m as a function of the lead time for all catchments and for
the winter (DJF) and summer (JJA) seasons. The skill is computed
based on the IQR (top) and the CRPS (bottom) and the reference
is historical precipitation. Each column corresponds to a target sea-
son. Each line represents the skill score in a catchment for forecast
horizons within the target season.

in summer and autumn are sharper with methods calibrated
yearly.

Figure 8 shows that LS and EDMD methods are able to ex-
tend the lead time of bias-corrected streamflow forecasts fur-
ther than other methods, and for a higher proportion of catch-
ments in the large majority of seasons and criteria. Again,
EDMD methods yield the best improvements in reliability.
LS yields results slightly better than EDMD in sharpness and
accuracy. EDM and GDM clearly have lower performance,
except in some cases in sharpness and for spring and sum-
mer.

5.3 Summary of the comparison of bias correction
methods

In general, LS and EDMD bias correction methods show
good performance for precipitation and streamflow forecasts,
although in a distinct way. While EDMD clearly improves
forecast reliability, LS shows better performance in improv-
ing sharpness and accuracy. Since streamflow forecasts gen-
erated from raw System 4 precipitation forecasts are already,
in most of the studied catchments, sharper than the ESP ref-
erence, but lack reliability (as shown in Figs. 4 and 5), it
seems appropriate to give priority to a correction method
that improves reliability, while providing good overall per-
formance. Therefore, in the following, we will only consider
the monthly calibrated version of EDMD (EDMD-m) to fur-
ther investigate the skill of bias-corrected seasonal forecasts.
The monthly version is chosen to ensure that monthly biases
are removed and that the correction will perform relatively
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Figure 10. PIT diagram of precipitation forecasts corrected with
EDMD-m (coloured lines) and historical precipitation (grey lines)
for lead times of 30 days (top) and 90 days (bottom). Each column
corresponds to a target season. Each line represents the PIT diagram
in a catchment for forecast horizons within the target season. Dotted
lines represent the ±0.1 tolerance bands from the diagonal.

equally in all seasons, while avoiding the “mis-estimation”
of forecast skill (Hamill and Juras, 2006).

6 Skill scores of bias-corrected seasonal forecasts

6.1 Performance of bias-corrected precipitation
forecasts

Figure 9 (for sharpness and overall performance) and Fig. 10
(for reliability) present the skill of seasonal precipitation
forecasts bias corrected with EDMD-m. Skill scores are com-
puted with historical precipitation as the reference. In order
to better evaluate the impact of bias correction on forecast
skill, the y axes in Fig. 9 are the same as in Fig. 2. The com-
parison of these two figures shows that bias correcting the
raw forecasts reduces the differences in skill between catch-
ments. After bias correction, catchments present very simi-
lar evolutions of the skill with the lead time. In some catch-
ments, the values of IQR are lower, but bias-corrected fore-
casts remain sharper than the reference (i.e. skill scores are
mostly greater than zero). In the catchments where the raw
forecasts performed worse than historical precipitation (i.e.
skill scores lower than zero in Fig. 2), bias-corrected fore-
casts become sharper and gain skill. Forecast skill in overall
performance (CRPSS) is observed up to 2–3 weeks ahead.
Skill is improved in catchments that performed worse than
the reference prior to bias correction (i.e. skill scores lower
than zero in Fig. 2). Figure 9 illustrates these findings for
winter (DJF) and summer (JJA), but results are similar for
spring and autumn (not shown).
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Figure 11. Skill of streamflow forecasts obtained from precipitation
forecasts corrected with EDMD-m as a function of the lead time for
all catchments and for the winter (DJF) and summer (JJA) seasons.
The skill is computed based on the IQR (top) and the CRPS (bot-
tom) and the reference is ESP. Each column corresponds to a target
season. Each line represents the skill score in a catchment for fore-
cast horizons within the target season.

Figure 10 shows that the most remarkable improvement in
performance due to bias correction is achieved in reliability.
While precipitation forecasts had a tendency to overpredict
prior to bias correction, bias-corrected precipitation is reli-
able in all catchments. Figure 10 shows the results for winter
and summer, and for lead times of 30 and 90 days, but con-
clusions are similar in the other seasons and lead times (not
shown). Even though a slight tendency to overpredict precip-
itation remains in winter for short lead times, the improve-
ments are noticeable. The EDMD-m bias correction was able
to address the jump at the origin of the PIT curves observed
in Fig. 3 for the raw forecasts.

6.2 Performance of bias-corrected streamflow forecasts

The quality of the streamflow forecasts generated from the
precipitation forecasts corrected with EDMD-m is investi-
gated in Figs. 11 and 12 (IQRSS and CRPSS) and in Fig. 13
(PIT diagrams). These figures can be compared to Figs. 4
and 5 for raw streamflow forecasts. As seen with precipi-
tation forecasts, bias correction also reduces the differences
in streamflow forecast skill between catchments and sea-
sons (Fig. 11). Again, this translates into a loss in skill in
catchments with the sharpest ensemble forecasts before bias
correction, but also in a gain in skill in catchments where
raw streamflow forecasts had negative skill. Overall, after
bias correction, streamflow forecasts are sharper than ESP in
most catchments and for most lead times. In terms of over-
all performance (CRPSS), the skill of streamflow forecasts
was largely improved, especially in catchments that had very
low skill prior to bias correction (i.e. CRPSS values well be-
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Figure 12. Skill of EDMD-m debiased streamflow forecasts as a
function of the lead time for all catchments and for the winter (DJF)
and summer (JJA) seasons. The skill is computed based on the IQR
(top) and based on the CRPS (right) and the reference is historical
streamflow. Each column corresponds to the target season of fore-
cast lead times. Each plotted line represents the performance of a
catchment.

low zero in Fig. 4). In winter, autumn and spring, skill over
the ESP reference is observed up to 4 weeks ahead in sev-
eral catchments (even up to 5 weeks ahead in spring and au-
tumn), while in summer, it is observed up to 2–3 weeks. At
longer lead times, streamflow forecasts show an overall per-
formance equivalent or slightly lower than the performance
of the ESP method. Some studies use past streamflow obser-
vations (referred to as streamflow climatology) as the ref-
erence forecast to assess the skill of streamflow forecasts
(e.g. Trambauer et al., 2015; Wetterhall et al., 2015). Fig-
ure 12 shows the skill in overall performance and sharpness
when streamflow climatology is used as reference. Stream-
flow forecasts generated from bias-corrected precipitation
forecasts are sharper and present better overall performance
than streamflow climatology, even for lead times of up to
12 weeks in some catchments. This was expected because
ensembles based on hydrological modelling benefit from
knowledge of initial hydrologic conditions. In one catchment
(catchment 1), skill scores are systematically higher than the
scores of the other catchments. In this catchment, streamflow
climatology is very wide, with interannual variability of the
same order of magnitude as interseasonal variability.

The PIT diagrams in Fig. 13 show that the reliability
of streamflow forecasts is also improved after bias correct-
ing precipitation forecasts. In winter (DJF) and spring (not
shown), streamflow forecasts are now reliable and equiva-
lent to ESP, although forecasts still show a slight tendency
to overpredict streamflows. In autumn (not shown), stream-
flow forecasts are also reliable in most catchments, but with a
tendency to underpredict streamflows. Summer (JJA) stream-
flow forecasts are also more reliable after bias correction,
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Figure 13. PIT diagram of streamflow forecasts obtained from pre-
cipitation forecasts bias corrected with EDMD-m (coloured lines)
and ESP (grey lines) for lead times of 30 days (top) and 90 days
(bottom). Each column corresponds to a target season. Each line
represents the PIT diagram in a catchment for forecast horizons
within the target season. Dotted lines represent the ±0.1 tolerance
bands from the diagonal.

but they still depict poor reliability and show that there is
room for improvement. As shown by other studies in en-
semble forecasting (Zalachori et al., 2012; Verkade et al.,
2013; Roulin and Vannitsem, 2015), a simple bias correction
of meteorological inputs is obviously not enough to achieve
streamflow forecast reliability. In our case, the difficulties of
the hydrological model in reaching lower streamflow values
remain. This highlights the need for taking into account other
sources of hydrological modelling uncertainties and includ-
ing additional post-processing, directly targeting streamflow
forecasts.

6.3 How improvements in precipitation forecasts
propagate to streamflow forecasts

We have seen that the use of reliable precipitation forecasts
as input to a hydrological model does not automatically gen-
erate reliable streamflow forecasts. In order to further un-
derstand how improvements in precipitation forecasts prop-
agate to streamflow forecasts, we compared the skill scores
of EDMD-m bias-corrected precipitation forecasts with the
skill scores of the streamflow forecasts generated from this
bias-corrected precipitation. We focused the analysis on the
four catchments previously selected as representative of the
database, i.e. catchments 2, 4, 7 and 14.

Figure 14 presents the CRPSS, IQRSS and the PITSS (PIT
area) in these four catchments, when raw forecasts are used
as reference. The reference forecast for the computation of
the skill scores of the bias-corrected forecasts is the raw fore-
cast. The skill thus represents a measure of the improvement
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Figure 14. Skill scores of streamflow forecasts after correction with
EDMD-m against skill scores of precipitation forecasts after cor-
rection with EDMD-m. The skill score of forecasts corrected with
EDMD-m is computed using raw forecasts as reference. It is then
averaged over lead times of 10–90 days to obtain a single value.
Results are shown for all four seasons in four selected catchments
(catchments 2, 4, 7 and 14). Skill scores were obtained based on
the CRPS (top), the IQR (middle) and the PIT diagram area (bot-
tom). The 1 : 1 diagonal corresponds to an equivalent performance
increase in precipitation and streamflow.

due to bias correction. Skill scores were averaged over lead
times of 10–90 days.

In overall performance (CRPSS), bias correcting precipi-
tation forecasts either led to a gain in skill in both precipita-
tion and streamflow forecasts, as in catchments 4 and 7 and
in some seasons in catchment 2, or to a skill equivalent to the
skill prior to bias correction, as in catchment 14. Since catch-
ments 4 and 7 were the ones with the most biased forecasts
(cf. Fig. 6), there was more room for improvement in these
catchments. Catchment 14 had the smallest bias of the four
catchments. Bias correction had thus little impact on precip-
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itation forecasts, and therefore also on streamflow forecasts.
Interestingly, the improvement achieved in streamflow is al-
ways superior to the improvement achieved in precipitation,
or equivalent when there was no gain in skill. It seems there-
fore that a small improvement in the overall performance of
precipitation inputs (as measured by the CRPS) can translate
in a greater improvement in streamflow forecasts.

If we look at the skill in sharpness (IQRSS) and in reliabil-
ity (PITSS), we observe different behaviours. In sharpness,
a loss in skill was observed in catchments 2 and 14, while
a gain was observed in catchments 4 and 7. When a gain
was achieved, the gain is superior in streamflow forecasts
than in precipitation forecasts. In reliability, skill was always
improved by bias correcting the precipitation forecasts, with
skill scores always superior to 0.3. The gain in streamflow is
mainly positive, but not always, as in the case of precipitation
forecasts. Although the majority of skill scores are superior
to 0.1, some values are below zero. The gain in reliability
from the application of bias correction to precipitation fore-
casts is, in general, superior in precipitation forecasts than in
streamflow forecasts.

Based on our results, we can say that in catchments with
small biases, here represented by catchments 2 and 14, over-
all performance was mainly stable from precipitation to
streamflow forecasts. However, in these catchments, a gain in
reliability was generally associated with a loss in sharpness.
In catchments with greater biases, here represented by catch-
ments 4 and 7, overall performance, sharpness and reliability
were improved for both precipitation and streamflow fore-
casts by simply bias correcting the precipitation forecasts.

6.4 Example of forecast hydrographs in a selected
catchment

Figure 15 presents the hydrographs of the forecasts ob-
tained from historical streamflow (HistQ), ESP and seasonal
forecasts bias corrected with LS-m and EDMD-m, from
April 2004 to April 2007 in catchment 7. We show forecasts
for lead times from 31 to 60 days. Ensemble forecasts are
represented by the median forecasts and two prediction in-
tervals: the 50 % interval (between the 25th and 75th per-
centiles; dark grey zone) and the 90 % interval (between the
5th and 95th percentiles; light grey zone). Observed stream-
flow is also shown. In this catchment, seasonal forecasts had
a strong bias and bias correction methods performed well.

The hydrograph for historical streamflow (HistQ plot) rep-
resents the interannual variability in the catchment, except
that the forecast year is excluded for cross validation. Visu-
ally, the observations fall within the forecast ranges in most
cases. The actual coverage of the 90 and 50 % prediction in-
tervals is 97 and 66 %, respectively, which indicates forecast
overdispersion and poor sharpness. Accuracy of the median
forecast (50th percentile) is, in general, good with a MAE of
3.8 m3 s−1, although visually, we observe that too high and
low peak flows are not well reproduced.

The forecasts obtained with the ESP method use past ob-
servations of precipitation as input to the hydrological model
rather than seasonal meteorological forecasts. They show
visible improvements in sharpness, notably during low-flow
periods. The 90 and 50 % prediction intervals actually cover
92 and 60 % of the observations, respectively. Accuracy of
the median forecasts seems equal or lower than observed
with HistQ, which is consistent with an MAE of 4.1 m3 s−1.

The hydrographs representing the streamflow forecasts ob-
tained from bias-corrected System 4 precipitation forecasts
show forecasts that are sometimes even sharper than ESP
forecasts, as seen, for instance, for the rising limb in 2005.
In some situations, as in the peak event in August 2004, pre-
diction intervals of bias-corrected forecasts, particularly in
the EDMD-m case, are closer to observations than ESP fore-
casts. In general, visual differences in quality between sea-
sonal streamflow forecasts obtained from precipitation fore-
casts corrected with LS-m and EDMD-m are hardly notice-
able. For instance, the accuracy of their median forecasts
is identical with an MAE of 4.3 m3 s−1. However, the 90
and 50 % prediction intervals of EDMD-m forecasts actually
cover, respectively, 89 and 51 % of the observations, which
indicates better performance in terms of reliability compar-
atively to LS-m, for which the actual coverage of these pre-
diction intervals is 85 and 46 %, respectively.

7 Conclusions

We assessed the quality of ECMWF System 4 precipitation
forecasts for seasonal streamflow forecasting in 16 catch-
ments in France. We evaluated areal precipitation forecasts
over the catchments and streamflow forecasts generated from
inputting precipitation forecasts to a lumped hydrological
model. Results show that, in most catchments, raw (uncor-
rected) System 4 precipitation forecasts are sharper than pre-
cipitation climatology (i.e. ensemble forecasts built from past
observed precipitation) in all seasons. However, raw precipi-
tation forecasts show poor reliability and a tendency to over-
predict precipitation. Likewise, streamflow forecasts gener-
ated from raw System 4 precipitation are sharper, but less re-
liable than forecasts based on the ESP approach (i.e. ensem-
ble forecasts obtained from running the hydrological model
with current initial conditions and past observed precipita-
tion). Yet, in overall performance, raw precipitation forecasts
yield improvements up to 2 weeks in all catchments over
precipitation climatology, and streamflow forecasts yield im-
provements up to 3–4 weeks over ESP in some catchments.

An in-depth analysis of the biases of System 4 seasonal
precipitation forecasts showed strong monthly biases some-
times hidden at the scale of the year, depending on the catch-
ment. Bias correction methods calibrated over the whole year
were therefore less efficient when evaluating forecasts over
calendar months. In the majority of catchments, the empirical
distribution mapping of daily values (EDMD) or the simple
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Figure 15. Hydrographs obtained with historical streamflow, ESP, seasonal forecasts corrected with LS-m and seasonal forecasts corrected
with EDMD-m in catchment 7 from 1 April 2004 to 1 April 2007. The vertical axis is logarithmic. The blue line represents the observed
streamflow. The grey shaded areas present the forecasts issued in the previous month, i.e. 31–60 days prior to the observations.

linear scaling method (LS) applied to raw precipitation fore-
casts showed more effectiveness in correcting the yearly but
also the monthly biases. These methods also gave the highest
increase in overall performance for streamflow forecasting.
Empirical distribution mapping of daily values calibrated for
each calendar month (EDMD-m) was particularly efficient to
increase reliability of precipitation and streamflow forecasts,
while linear scaling (LS-m) led to higher improvements in
sharpness and accuracy.

In general, improving forecast reliability, while maintain-
ing (or not diminishing too much) forecast sharpness, is a
challenge for bias correction methods. The EDMD-m bias
correction method was further investigated to better under-
stand its impact on the skill of bias-corrected seasonal fore-
casts. Overall, the application of bias correction reduced
the differences in forecast performance between seasons and
catchments for precipitation and streamflow forecasts. Also,
bias correction ensured that precipitation and streamflow
forecasts were at least equivalent in performance to the his-
torical precipitation and the ESP method, respectively, up

to 3 months ahead. In catchments with greater biases, over-
all performance, sharpness and reliability were improved for
both precipitation and streamflow forecasts by simply bias
correcting the precipitation forecasts. Overall performance
was mainly stable in catchments with small biases. How-
ever, in these catchments, a gain in reliability was generally
associated with a loss in sharpness. The evaluation of fore-
casts after bias correction, for the purposes of operational
applications on water and risk management, may therefore
involve a trade off between sharpness and reliability. Fur-
thermore, while precipitation forecast reliability is improved
with bias correction, the evaluation of streamflow forecast re-
liability shows that there is still room for improvement. No-
tably, bias correction of precipitation inputs was not enough
to achieve good reliability in summer streamflow forecasts.
This highlighted the need for adding a step of streamflow
post-processing to the forecasting system.

This study compared eight simple bias correction methods
to correct precipitation seasonal forecasts and investigated
how they impact the skill of streamflow forecasts. The catch-

www.hydrol-earth-syst-sci.net/20/3601/2016/ Hydrol. Earth Syst. Sci., 20, 3601–3618, 2016



3616 L. Crochemore et al.: Bias correcting precipitation forecasts

ments studied were not influenced by snowmelt flows and
thus only precipitation was considered in the bias correction
procedures. In other contexts, it may be interesting to also
include bias correction of temperature forecasts, with appro-
priate methods to consider space–time interdependencies of
the meteorological variables. The explicit consideration of
temperature forecasts could also benefit the skill of low flow
forecasts in summer, when evapotranspiration can play a cru-
cial role.

Several other approaches for post-processing and bias cor-
rection exist, for instance, based on MOS techniques, space–
time disaggregation schemes or Bayesian model averaging
(Gneiting et al., 2005; Raftery et al., 2005; Liu et al., 2013;
Hemri et al., 2014). These could be investigated to contribute
to the comprehensive comparison of options for bias correct-
ing precipitation and temperature forecasts prior to seasonal
streamflow forecasting.

Lastly, other forecasting methods selecting historical pre-
cipitation based on climate indicators have been investigated
in the literature for seasonal hydrological forecasting in re-
gions where strong correlations have been observed, e.g. in
the United States or in Australia (Hamlet and Lettenmaier,
1999; Werner et al., 2004; van Dijk et al., 2013). In France,
weak correlations have often shown that climate indicators
may not be adapted to forecast precipitation at the seasonal
scale. However, the use of indicators derived from seasonal
forecasts could potentially improve the selection of past pre-
cipitation scenarios, which might enhance the skill of ESP
methods to forecast streamflow.

8 Data availability

ECMWF data are available under a range of licences.
For more information please visit http://www.ecmwf.int.
SAFRAN meteorological reanalysis data come from Météo-
France and are available under licence conditions. Stream-
flow data are made available by the French Ministère de
l’Écologie et du Développement Durable, and can be down-
loaded from http://www.hydro.eaufrance.fr.
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