
HAL Id: hal-01502161
https://hal.science/hal-01502161

Submitted on 5 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multilevel approach for computing the
limited-memory Hessian and its inverse in variational

data assimilation
K.L. Brown, I. Gejadze, A. Ramage

To cite this version:
K.L. Brown, I. Gejadze, A. Ramage. A multilevel approach for computing the limited-memory Hessian
and its inverse in variational data assimilation. SIAM Journal on Scientific Computing, 2016, 38 (5),
pp.A2934-A2963. �10.1137/15M1041407�. �hal-01502161�

https://hal.science/hal-01502161
https://hal.archives-ouvertes.fr


A MULTILEVEL APPROACH FOR COMPUTING THE

LIMITED-MEMORY HESSIAN AND ITS INVERSE IN

VARIATIONAL DATA ASSIMILATION

KIRSTY L. BROWN ∗, IGOR GEJADZE † , AND ALISON RAMAGE ∗

Abstract. Use of data assimilation techniques is becoming increasingly common across many
application areas. The inverse Hessian (and its square root) plays an important role in several
different aspects of these processes. In geophysical and engineering applications, the Hessian-vector
product is typically defined by sequential solution of a tangent linear and adjoint problem; for the
inverse Hessian, however, no such definition is possible. Frequently, the requirement to work in a
matrix-free environment means that compact representation schemes are employed. In this paper,
we propose an enhanced approach based on a new algorithm for constructing a multilevel eigenvalue
decomposition of a given operator, which results in a much more efficient compact representation
of the inverse Hessian (and its square root). After introducing these multilevel approximations, we
investigate their accuracy and demonstrate their efficiency (in terms of reducing memory requirements
and/or computational time) using the example of preconditioning a Gauss-Newton minimisation
procedure.

Key words. data assimilation, inverse Hessian, limited memory, preconditioning, multigrid

AMS subject classifications. 65K05, 65K10, 15A09, 15A29

1. Introduction and background material. Methods of data assimilation
(DA) have become an important tool for analysis of complex physical phenomena in
various fields of science and technology. These methods allow us to combine mathe-
matical models, data resulting from instrumental observations and prior information.
In particular, variational approaches have proven to be particularly useful for solving
high-dimensional DA problems arising in geophysical and engineering applications in-
volving complex fluid flow models. The problems of variational DA can be formulated
as optimal control problems (see, for example, [12, 28]) to find unknown model pa-
rameters such as initial and/or boundary conditions, right-hand sides in the model
equations (forcing terms), and distributed coefficients. Equivalently, variational DA
can be considered as a special case of the maximum a posteriori probability (MAP)
estimator in a Bayesian framework [10]. Variational DA, implemented in the form
of incremental 4D-Var [8, 37], is currently a preferred method for operational fore-
casting in meteorology and oceanography (more recently also in the form of ensemble
4D-Var ; see, for example, [29]).

The importance of the Hessian matrix and its inverse in variational DA for geo-
physical applications is underlined in [39], although this has been a well established
fact for decades in areas of statistics such as non-linear regression (see, for example,
[1]). Some relevant applications of the inverse Hessian are highlighted in §1.2. A spe-
cial feature of working with the Hessian for very high-dimensional problems is that
neither the Hessian nor its inverse can be directly accessed in matrix form. While the
Hessian-vector product can be computed by solving a sequence of the tangent linear
and adjoint problems, no such option exists for defining the inverse Hessian-vector
product (or the inverse square root Hessian-vector product, which is also relevant in
many applications). One obvious approach is therefore to consider limited-memory
schemes for computing and storing the inverse Hessian (or its square root). In this

∗Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, Scotland
†IRSTEA-Montpellier, 361 Rue Jean Francois Breton, BP 5095, France. (igor.gejadze@irstea.fr).

Questions, comments, or corrections to this document may be directed to that email address.

1

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407

mailto:igor.gejadze@irstea.fr


2 K.L. BROWN, I. GEJADZE and A. RAMAGE

context, the idea of a multilevel framework becomes relevant. This is due to the fact
that the inverse Hessian is, in essence, an approximation of the posterior covariance
matrix and, if the initial flow field is considered as a spatially distributed control, then
the correlations of different lengths between the flow field values can be described at
different levels of spatial discretisation.

Multigrid methods were initially developed for solving elliptic partial differential
equations (PDEs) [3, 5] and have since been extended for solving PDEs of different
types, see, for example, [41]. One key modern area of application of multigrid methods
is in solving PDE-constrained optimisation or inverse problems, see the review paper
[4]. Here the multigrid solver is applied directly to the optimality system, which
includes the original model, its adjoint and the optimality condition. Some elements
of the multigrid approach have been utilised previously in variational data assimilation
algorithms in meteorology and oceanography, but a complete multigrid algorithm has
been considered only recently in [11]. Multigrid methods can also used for solving
eigenvalue problems, which is most relevant to the work presented here. The usual
multigrid approach in this context is to treat the eigenvalue problem as a non-linear
equation and apply a non-linear multigrid solver [7, 21, 24]. Alternatively, an outer
eigenvalue solver such as Rayleigh quotient iteration can be employed, which requires
the solution of systems of linear equations with a shifted coefficient matrix using
multigrid as an inner solver [38]. A third approach uses a standard eigenvalue solver
(such as Lanczos [26] or Arnoldi [2]) with multigrid as a preconditioner. This type of
method is reviewed in [25].

In this paper we develop a general multilevel eigenvalue decomposition of a given
symmetric operator. Given its spectral decomposition, an operator A, say, can be
approximated by a finite number of its eigenvalues and eigenvectors. To achieve a
desired approximation quality (in terms of a specified distance between the exact and
approximated operators) a certain number of eigenpairs must be used, dependent on
the eigenvalue distribution. However, for high-dimensional problems, the computa-
tionally feasible number of eigenpairs (in terms of available storage, for example) may
be too small to achieve any useful approximation quality. Thus, a single level eigen-
value decomposition approach has its limitations. Our proposed multilevel eigenvalue
decomposition algorithm (see §2) involves an outer multilevel loop that provides an
incomplete eigenvalue decomposition (using Lanczos) of the operator at each level,
resulting in a final approximation involving eigenpairs associated with each discreti-
sation level. Note that, if A is not symmetric, the same technique could be applied
to ATA.

The multilevel technique described in §2 allows us to build limited-memory ap-
proximations to A−1 and A−1/2 which, within a fixed memory framework, are much
better than their single-level spectral counterparts. These approximations could be
used in many situations, for example, as preconditioners for solving systems of linear
equations, across multiple application areas: a specific example is given in §2.3.4. In
this paper, we use the technique as an efficient way of approximating the inverse Hes-
sian in variational data assimilation. For operational DA problems, we also introduce
a second idea, namely, decomposition of the Hessian into local sensor-based Hessians
(see §3). Although this is distinct from the multilevel eigenvalue decomposition, the
latter provides a framework for its practical implementation. In §4 we describe three
different implementations of the algorithm, before exploring their accuracy and effi-
ciency in §5.

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



MULTILEVEL APPROXIMATION TO INVERSE HESSIAN IN DATA ASSIMILATION 3

1.1. Data assimilation problem. We consider a non-linear evolution model
with an unknown initial state (the analysis), which must be retrieved using some prior
guess (the background) and incomplete observation data of the state evolution. Let X
be a Hilbert space of functions on a spatial domain Ω with associated inner product
〈·, ·〉X , and let Y = L2(0, T ;X) for some time interval [0, T ] with scalar product

〈f, g〉Y =

T∫

0

〈f(t), g(t)〉Xdt, ∀f, g ∈ Y.

We will model a physical process on Ω that is described by a function ϕ ∈ Y satisfying
the evolution equation





∂ϕ(t)
∂t

= F (ϕ(t)) + f(t), t ∈ [0, T ],

ϕ(0) = u,

(1.1)

where u ∈ X , f ∈ Y and F is a non-linear operator mapping X into X . We assume
that, for a given u ∈ X and f ∈ Y such that 〈f, f〉Y < ∞, there exists a unique
solution ϕ ∈ Y to (1.1). For a particular u, the model (1.1) can also be represented
in operator form via a control-to-state mapping R such that

ϕ = R(u).

The above framework is very general: as a concrete example of a specific evolution-
ary process, in the numerical experiments in §5 we use Burgers’ equation as a basic
prototype equation of atmospheric dynamics.

Let utrue be the true initial state in (1.1). We define the input data as follows.
Firstly, we have a prior guess, or background function, ub ∈ X such that ub = utrue+
ξb, where ξb ∈ X is the background error. Secondly, we have some observations
represented by a function ϕobs in a finite-dimensional space Yobs = L2(R

M ), called
the observation space. Introducing the bounded linear observation operator C : Y →
Yobs, we may write ϕobs = C(R(utrue)) + ξo, where ξo ∈ Yobs is the observation
error. Assuming that ξb and ξo are normally distributed, unbiased and mutually
uncorrelated, we define the covariance operators Vb(·) = E[〈·, ξb〉X ξb] and Vo(·) =
E[〈·, ξo〉Yobs

ξo], where E[·] is the expectation. We further assume that the operators
Vb and Vo are positive definite, hence invertible.

We now introduce the cost function

J(u) =
1

2
〈V −1

b (u− ub), u− ub〉X +
1

2
〈V −1

o (CR(u)− ϕobs), CR(u)− ϕobs〉Yobs
,

and formulate the following data assimilation (DA) problem with the aim of identify-
ing the initial state in (1.1): for a given f ∈ Y , find ū ∈ X such that the cost function
(1.1) is minimised over all u ∈ X , that is,

ū = arg min
u

J(u). (1.2)

We denote the error in the solution of this optimal control problem (the so-called
analysis error) by δu = ū−utrue, and assume δu is unbiased, that is, E[δu] = 0, with
the covariance operator Vδu defined by Vδu(·) = E[〈·, δu〉X δu].

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



4 K.L. BROWN, I. GEJADZE and A. RAMAGE

Assuming that the operator F is continuously Fréchet differentiable, for functions
v ∈ X and ψ ∈ Y , the tangent linear model associated with (1.1) is given by





∂ψ(t)
∂t = F ′(ϕ(t))ψ(t),

ψ(0) = v

(1.3)

(see, for example, [16]) where ϕ(t) ≡ ϕ(t, u) depends on u. Recalling the control-to-
state operator R(u), and defining the associated tangent linear operator R′(u) for a
given u ∈ X by

R′(u)v = lim
τ→0

R(u+ τv) −R(u)

τ
, ∀v ∈ X, (1.4)

[30], we may write model (1.3) as ψ = R′(u)v.
A key role in variational DA is assigned to the Hessian of the following auxiliary

DA problem (see [16]): find v ∈ X such that the cost function

J1(v) =
1

2
〈V −1

b v, v〉X +
1

2
〈V −1

o CR(u)v, CR(u)v〉Yobs
(1.5)

is minimised over all v ∈ X . Defining the adjoint R′∗(u) of the tangent linear operator
R′(u) by

〈v,R′∗(u)v∗〉X = 〈R′(u)v, v∗〉Y , ∀v ∈ X , ∀v∗ ∈ Y, (1.6)

we may write the Hessian in operator form as

H(u) = V −1
b +R′∗(u)C∗V −1

o CR′(u), (1.7)

where C∗ is adjoint to C. We denote the Hessian byH(u) to emphasise its dependence
on u through ϕ in R′ and R′∗. Note that, for functions v ∈ X , ψ ∈ Y and ψ∗ ∈ Y ,
the adjoint model v = R′∗(u)ψ can be written in PDE form as





−
∂ψ∗(t)
∂t

− F ′∗(ϕ(t))ψ∗(t) = ψ(t), t ∈ (0, T )

ψ∗(T ) = 0,
v = ψ∗(0),

(1.8)

where F ′∗ is adjoint to F ′.

1.2. The role of the Hessian and its inverse. The Hessian (1.7) and its
inverse play important roles in different aspects of data assimilation. The first is as
a coefficient matrix (and preconditioner) in incremental 4D-Var [8]. Here each step
of an outer iterative Gauss-Newton process is of the form ui+1 = ui +αi δui, with ui
a discrete approximation of the unknown initial state at iteration i, descent step αi

and update (descent direction) δui. As the update satisfies

H(ui)δui = −G(ui), (1.9)

where G(ui) is the gradient of the cost function, a system of linear equations involving
H has to be solved at each step. Given a Hessian-vector product evaluation routine,
the systems in (1.9) are usually solved iteratively using, for example, the conjugate
gradient (CG) algorithm [23]. An approximation of H−1, if available at a reasonable

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



MULTILEVEL APPROXIMATION TO INVERSE HESSIAN IN DATA ASSIMILATION 5

cost, can therefore be used to precondition equation (1.9) to accelerate convergence
of this inner iteration. This is the application studied in our numerical experiments
(see §5.5).

In addition, H−1 is involved in several aspects of statistical post-processing and
characterisation of the optimal solution. Firstly, for linear and moderately non-linear
DA problems, H−1 can be used as an approximation of the analysis error covari-
ance matrix [16, 36, 39]. For example, confidence intervals for the components of
the analysis vector can be defined by the corresponding diagonal elements (variance)
of H−1(ū). A column ci of H−1(ū) which includes the ith diagonal element can be
obtained by solving the equation H(ū)ci = ei (where ei is a Euclidean unit vector).
If the number of requested diagonal elements is significant, it would be much less
expensive to evaluate H−1(ū) once and keep it in some limited-memory form, than to
retrieve necessary diagonal elements using the Hessian-vector product rule. We note
also that, as the Hessian H(ū) is equivalent to the Fisher information matrix (up to
a constant multiplier), the diagonal elements of the inverse Hessian can also be used
in the context of optimal experimental design involving such optimality criteria as
l-optimality, for example. Secondly, the analysis probability density function (pdf) is
defined by the analysis ū and the analysis error covariance. Random functions from
the Gaussian distribution N (ū,H−1(ū)) can therefore be used as ‘particles’ of the en-
semble of initial states, which may be useful for ensemble forecasting [14, 40]. These
functions can be generated using u = H−1/2(ū)ξ, where ξ ∼ N (0, I), or using the
eigenvalues of H(ū) [13]. However, in highly non-linear cases the ‘particles’ generated
using H are unlikely to belong to the true posterior distribution, thus one must solve
perturbed DA problems. This approach is referred to as the fully non-linear ensem-
ble method [16], or randomised maximum likelihood method [6]. In these cases, an
approximation of H−1/2 can be used for preconditioning the non-linear minimisation
process to accelerate convergence, often with impressive results. Lastly, the analysis
error δu and the data errors ξb and ξo are related via the approximate error equation

H(ū)δu = V −1
b ξb +R′∗(ū)C∗ξo

[18]. This equation can be considered as a meta-model for investigating the effects of
non-Gaussian data errors on the analysis error pdf. Specifically, if the model depends
on parameters θ ∈ Θ, where Θ is the parameter space, an important problem is to
quantify the sensitivity of the analysis error to uncertainty ξθ in these parameters.
This can be done using the relationship

H(ū)δu = R′∗(ū)C∗V −1
o CD(ū)ξθ,

where D(ū) : Θ → Y . Once again, H must be inverted to obtain δu.
The applications listed above all involve either solving multiple systems of linear

equations involving H, or having access to the inverse operator H−1. In practice,
an explicit discrete representation of H is never required, since the Hessian-vector
product can be obtained by successively applying operators in formula (1.7. The
development of feasible methods for generation, storage and subsequent use of H−1

or H−1/2 in this framework are not well understood: this is the prime motivation for
our interest in the development of efficient algorithms for computing and managing
the inverse Hessian such as those presented in this paper.

1.3. First-level preconditioning. In DA problems, it is common to transform
the Hessian (1.7) to a new operator with a more favourable eigenvalue distribution

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



6 K.L. BROWN, I. GEJADZE and A. RAMAGE

using so-called first-level preconditioning with V
1/2
b . This results in the preconditioned

Hessian

H(u) = (V
1/2
b )∗H(u)V

1/2
b = I + (V

1/2
b )∗R′∗(u)C∗V −1

o CR′(u)V
1/2
b . (1.10)

The action of applying H(u) to a given function v ∈ X is defined by the successive
solutions of the following problems:

{
∂ψ(t)
∂t

= F ′(ϕ(t, u))ψ(t),

ψ(0) = V
1/2
b v,

(1.11a)

{
−
∂ψ∗(t)
∂t

− F ′∗(ϕ(u, t))ψ∗(t) = −C∗V −1
o Cψ(t), t ∈ (0, T )

ψ∗(T ) = 0,
(1.11b)

H(u)v = v − V
1/2
b ψ∗(0). (1.11c)

It can be seen from (1.10) that all eigenvalues of H(ū) are greater than or equal
to one (a detailed analysis of the conditioning of H(ū) can be found in [20]). Further-
more, it has been observed that, for many practical DA problems, only a relatively
small percentage of the eigenvalues are distinct enough from unity to contribute sig-
nificantly to the Hessian. This suggests using limited-memory representations of the
discrete Hessian, where this structure in the spectrum of H is exploited. Specifically,
a few leading eigenvalue/eigenvector pairs {λi, wi} are computed (typically using the
Lanczos method [9, 26] as H is available in vector-product form) and Hα is replaced
by the approximation

Hα(u) ≃ I +

n∑

i=1

(λαi − 1)wiw
∗

i (1.12)

where α is a real number (for example, α = −1 or α = −1/2), and the summation
bound n is much smaller than the dimension of the discrete Hessian H .

Although first-level preconditioning can be very helpful, it may not be sufficient
in certain circumstances. Firstly, the number of eigenvalues of H which are essen-
tially distinct from unity depends on the observation impact, which is proportional to
the number of observations and their accuracy. Taking into account the size of state
and observation vectors used in modern realistic DA applications (usually 109 − 1012

in length for state and 106 − 109 for observation vectors), the value of m in (1.12)
required to obtain a limited-memory approximation of reasonable quality may still
be prohibitively large in terms of memory. Furthermore, in forecasting problems, any
computational result has a lifespan, that is, a time period when this result remains
usable. Given that each Lanczos iteration requires evaluating a Hessian-vector prod-
uct (which involves running both the tangent linear and the adjoint models), the
time needed for calculating even a small fraction of the spectrum could easily exceed
the lifespan of the resulting approximation. We are therefore interested in gaining
additional savings in memory and computing time over and above those afforded by
approximation (1.12). For the remainder of the paper, we will consider only the pro-
jected HessianH(ū) given by (1.10), that is, we assume that first-level preconditioning
has already been applied. In what follows, we develop a new approximation to H−1,
based on a multilevel structure, which requires less memory or less computational
time than (1.12).

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



MULTILEVEL APPROXIMATION TO INVERSE HESSIAN IN DATA ASSIMILATION 7

2. Multilevel eigenvalue decomposition algorithm. In this section we de-
scribe an algorithm for constructing a multilevel approximation to the inverse (and
its square root) of a general symmetric positive definite operator A associated with
problem (1.1) (for example, H(ū) in (1.10)). Such approximations have many differ-
ent practical uses, for example, as preconditioners for linear systems of equations, as
representations of covariance matrices or in error/confidence interval analysis.

The key idea can be summarised as follows. Consider a limited-memory approx-
imation to A−1 of the form in (1.12) (with α = −1). If we assume that A is only
available in operator-vector product form, that is, we can evaluate Av for some dis-
crete function v on the underlying computational grid, the eigenvalues required can be
calculated using the Lanczos method. Given a sequence of nested grids, a conceptual
outline of the recursive multilevel process is as follows:

1. represent A on the coarsest grid level;
2. use a local preconditioner to improve the eigenvalue distribution;
3. build a limited memory approximation to its inverse, which forms the basis

of the local preconditioner at the next coarsest level;
4. move up one grid level and repeat.

As proof of concept, we describe the ideas in a one-dimensional setting, with com-
mensurate numerical examples in §5. However, the concept is equally valid for two-
and three-dimensional problems.

2.1. Multilevel grid structure. We consider the spatial domain Ω = [0, 1] and
construct a sequence of grids for discretising the DA problem described in §1.1. We
suppose that the base grid on which the problem is defined has a uniform distribution
ofm0 = m+1 grid points, and use this as our finest grid (denoted by grid level k = 0).
We form the next grid by removing a grid point from in between each pair of existing
points, to give a grid at level k = 1 with m1 = m/2 + 1 uniformly-spaced points.
Continuing this refinement leads to a sequence of grids at levels k = 0, 1, 2, . . . , kc
(where kc is the coarsest grid level), with the grid at level k containing mk = m/2k+1
grid points.

2.2. Grid transfer operators. We introduce the prolongation operator Sk,k−i,
0 ≤ i ≤ k, which maps (interpolates) a discrete function vk defined at grid level k to
a finer grid level k − i (or to the same grid for i = 0). That is, the operator satisfies

vk−i = Sk,k−i vk, Sk,k = Ik, (2.1)

where Ik is the identity operator at grid level k. Similarly, the restriction operator
S∗

k,k−i maps a discrete function vk−i defined at grid level k − i to a coarser grid level
k. That is,

ṽk = S∗

k,k−i vk−i, S∗

k,k = Ik, (2.2)

where S∗

k,k−i is the adjoint operator to Sk,k−i. Combining operators (2.1) and (2.2)
gives ṽk = S∗

k,k−iSk,k−i vk, so ṽk = vk only if

S∗

k,k−iSk,k−i = Ik. (2.3)

In other words, for ṽk = vk we require Sk,k−i to be an orthonormal projection: we
will refer to this situation as perfect interpolation.

To construct a multilevel representation of A−1 and A−1/2, we will also need the
projection of the operator A at a finer (or coarser) grid level. Let Ak be a discrete

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



8 K.L. BROWN, I. GEJADZE and A. RAMAGE

representation of A defined at grid level k and suppose we want to find its projection
at a finer grid level k − i (we will denote this projection by Pk−i(Ak)). Given that
a discrete function vk at level k has been obtained by projecting the corresponding
fine grid function vk−i, 0 < i ≤ k using the grid transfer operators described above,
we consider what happens when Ak is applied to this projection. Specifically, we

decompose the fine grid function vk−i into two parts, and write vk−i = v
(A)
k−i + v

(B)
k−i

with

v
(A)
k−i = (Ik−i − Sk,k−iS

∗

k,k−i)vk−i, v
(B)
k−i = Sk,k−iS

∗

k,k−ivk−i.

Projecting each component separately to grid level k gives a corresponding coarse grid

function of the form vk = v
(A)
k + v

(B)
k where

v
(A)
k = S∗

k,k−iv
(A)
k−i = S∗

k,k−i(Ik−i − Sk,k−iS
∗

k,k−i)vk−i

= (S∗

k,k−i − (S∗

k,k−iSk,k−i)S
∗

k,k−i)vk−i, (2.4)

and

v
(B)
k = S∗

k,k−iv
(B)
k−i = (S∗

k,k−iSk,k−i)S
∗

k,k−ivk−i.

If we now assume perfect interpolation, that is, Sk,k−i satisfies (2.3), then (2.4) simpli-

fies to v
(A)
k = 0. In other words, v

(A)
k−i contains modes of vk−i which are not supported

on the coarser grid k and, therefore, should not be transferred to this level at all.

However, the second component v
(B)
k−i must be projected to grid level k, the operator

Ak applied, and the result projected back to grid level k − i. Combining these two
steps gives

Pk−i(Ak)vk−i = v
(A)
k−i + Sk,k−iAkS

∗

k,k−iv
(B)
k−i

= (Ik−i − Sk,k−iS
∗

k,k−i)vk−i + Sk,k−iAkS
∗

k,k−ivk−i

= (Sk,k−i(Ak − Ik)S
∗

k,k−i + Ik−i)vk−i.

We therefore define the projection of Ak at a finer grid level k − i, 0 ≤ i ≤ k using

Pk−i(Ak) = Sk,k−i(Ak − Ik)S
∗

k,k−i + Ik−i, 0 < i ≤ k, (2.5)

Pk(Ak) = Ak.

Note that we will also need the adjoint of Pk−i(Ak). It is easy to see P ∗

k−i(Ak) =
Pk−i(A

∗

k).
In a similar way, we define the projection of an operator Ak−i at a coarser grid

level k, 0 ≤ i ≤ kc using

Qk(Ak−i) = S∗

k,k−i(Ak−i − Ik−i)Sk,k−i + Ik, 0 < i ≤ kc, (2.6)

Qk(Ak) = Ak,

with corresponding adjoint Q∗

k(Ak−i) = Qk(A
∗

k−i).
Finally, we note that in the case of perfect interpolation the operator Pk−i(Ak) in

(2.5) has the important property that Pk−i(Ak) = Pk−i(A
1/2
k )Pk−i((A

1/2
k )∗). Also, the

expression (2.6) simplifies to Qk(Ak−i) = S∗

k,k−iAk−iSk,k−i. However, Qk(Ak−i) 6=

Qk(A
1/2
k−i)Qk((A

1/2
k−i)

∗).

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



MULTILEVEL APPROXIMATION TO INVERSE HESSIAN IN DATA ASSIMILATION 9

2.3. Multilevel algorithm. We now develop an algorithm for constructing a
multilevel limited-memory representation of A−1 (and A−1/2) in operator-vector prod-
uct form, that is, as A−1v or A−1/2v. This is achieved by separating the eigensystem
of operator A into the subsystems associated with different representation levels. We
assume that the operator-vector product is available at the finest grid level k = 0, that
is, we have available A0v0 for some fine grid function v0. In §2.3.1 we describe our
algorithm based on a sequence of coarser grids k = 1, 2, . . . , kc, where kc is the coars-
est level. One key ingredient of this algorithm is a sequence of local preconditioners
applied at each grid level: these are described in detail in §2.3.2.

2.3.1. Structure of the algorithm. We begin by representing the finest grid
operator A0 on level k as Qk(A0) using (2.6), then precondition this to obtain

Q̃k(A0) = B∗

k,k+1Qk(A0)Bk,k+1. (2.7)

The level k preconditioner Bk,k+1 will be chosen so that the eigenvalues of Q̃k(A0) are
closer to unity than those of Qk(A0): details of how this is done follow in §2.3.2. We
then use the Lanczos method to compute a specified number, nk say, of the largest
eigenvalues of Q̃k(A0) (measured in a log-squared sense, see §5.4), together with their
associated eigenvectors. The resulting nk eigenpairs {λik, U

i
k}, i = 1, . . . , nk, are then

used to construct a limited memory approximation to Q̃k(A0), namely,

Q̂k(A0) = Ik +

nk∑

i=1

(λik − 1)U i
k(U

i
k)

T . (2.8)

Note that, as in (1.12), an approximation to Q̃k(A0) raised to any chosen power α is

readily available. This means that Q̂−1
k (A0), Q̂

1/2
k (A0) and, most importantly for the

preconditioners defined in the next section, Q̂
−1/2
k (A0), are easily computed.

The accuracy of approximation (2.8) is clearly critically affected by the number
of eigenvectors which are calculated and stored at each grid level. To facilitate later
investigation of how these values should be chosen, we introduce the notation

Ne = (n0, n1, . . . , nkc
), N̂e =

kc∑

k=0

nk (2.9)

for the vector containing these values for a particular approximation and the sum of
its entries.

2.3.2. Level k preconditioners. The algorithm above involves a precondi-
tioner Bk,k+1 for Qk(A0) local to the current grid level. The motivation for our choice
of Bk,k+1 is the assumption that Qk+1(A0) is a good approximation to Qk(A0), so we
can use the projection of the former to grid level k to precondition the latter. That
is, we expect that the eigenvalues of the preconditioned operator

Pk(Q
−1/2
k+1 (A0))Qk(A0)Pk(Q

−1/2
k+1 (A0))

to be clustered around 1. Furthermore, it can be seen from (2.7) and (2.8) that

Q−1
k (A0) = Bk,k+1Q̃

−1
k (A0)B

∗

k,k+1 ≈ Bk,k+1Q̂
−1
k (A0)B

∗

k,k+1 (2.10a)

and so

Q
−1/2
k (A0) = Bk,k+1Q̃

−1/2
k (A0) ≈ Bk,k+1Q̂

−1/2
k (A0). (2.10b)

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



10 K.L. BROWN, I. GEJADZE and A. RAMAGE

Note that with this notation, preconditioner Bk,k+1 is applied on level k, using infor-
mation projected from level k + 1.

The above considerations are valid for grid levels k = 0, . . . , kc−1. On the coarsest
grid level k = kc, grid level kc + 1 does not exist, so we set Bkc,kc+1 = Ikc

. Note also
that on the finest grid level k = 0 we can use A0 directly, that is, Q0(A0) ≡ A0. In
practice, moving from the coarsest to the finest grid, we accumulate the eigenpairs
{λk, Uk}, k = kc, . . . , 0, in (2.8) which allows us to define the required products

A−1
0 v0 and A

−1/2
0 v0 via a recursive algorithm as follows. At a general grid level k, the

preconditioner is constructed in a recursive way using information from the previous
(coarser) grid levels via

Bk,k+1 =

{
Pk(Bk+1,k+2Q̂

−1/2
k+1 (A0)) k = 0, 1, . . . , kc − 1;

Ikc
, k = kc;

, (2.11a)

B∗

k,k+1 =

{
Pk(Q̂

−1/2
k+1 (A0)B

∗

k+1,k+2), k = 0, 1, . . . , kc − 1;

Ikc
, k = kc;

(2.11b)

where

Q̂
−1/2
k (A0) = Ik +

nk∑

i=1

((λik)
−1/2 − 1)U i

k(U
i
k)

∗

(cf. (2.8)).

2.3.3. Summary. Using the above definitions, an operator representing the mul-
tilevel eigenvalue decomposition algorithm can be constructed as follows:

Algorithm 2.1. Multilevel Eigenvalue Decomposition Algorithm

[Λ0,U0]=MLEVD(A0,Ne)

for k = kc, kc − 1, . . . , 0
compute by the Lanczos method and store in memory:

{λik, U
i
k}, i = 1, . . . , nk of Q̃k(A0) in (2.7)

using Bk,k+1 and B∗

k,k+1 from (2.11)

end

The input to this algorithm is A0 (available in the form of an operator-vector
product A0v0 at the finest level) together with the vector Ne in (2.9) containing the
number of eigenpairs to be calculated at each grid level. At a given level k (6= kc),
the algorithm uses the eigenpairs obtained at the previous (coarser) levels. The final
output is a pair of vectors [Λ0, U0] containing the multilevel eigenstructure of A0,
which can be represented as follows:

Λ0 =
[
λ1kc

, . . . , λ
nkc

kc
, λ1kc−1, . . . , λ

nkc−1

kc−1 , . . . , λ
1
0, . . . , λ

n0

0

]
,

U0 =
[
U1
kc
, . . . , U

nkc

kc
, U1

kc−1, . . . , U
nkc−1

kc−1 , . . . , U1
0 , . . . , U

n0

0

]
. (2.12)

Given [Λ0, U0], for any function vk the products Q−1
k (A0)vk and Q

−1/2
k (A0)vk can be

recovered using (2.10), which in turn involves (2.11). In particular, for any fine grid
function v0 we can evaluate

A−1
0 v0 ≈ Q−1

0 (A0) = B0,1Q̂
−1
0 (A0)B

∗

0,1v0, (2.13a)

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



MULTILEVEL APPROXIMATION TO INVERSE HESSIAN IN DATA ASSIMILATION 11

A
−1/2
0 v0 ≈ Q

−1/2
0 (A0) = B0,1Q̂

−1/2
0 (A0)v0, (2.13b)

were B0,1 and B∗

0,1 are defined in (2.11).
Using the notation in (2.9), we see that the vector Λ0 in (2.12) contains a total

of N̂e entries. As the grid at level k contains mk = m/2k + 1 points, the vector U0

has a total of

kc∑

k=0

nkmk =

(
kc∑

k=0

nk

2k

)
m+ N̂e

entries. In what follows, we use the term “memory ratio” for the quantity

r =

kc∑

k=0

nk

2k
(2.14)

as this gives a useful estimate of the ratio of the amount of storage required to m
(where the finest grid has m+1 points). An investigation of this storage requirement
in practice for various eigenvalue combinations Ne is given in §5.

We conclude this section by noting that Algorithm 2.1 can be generalised by using
Q̃k(Ak−i) instead of Q̃k(A0) in (2.7), where Ak−i, 1 ≤ i ≤ k is a direct representation
of A0 on grid level k. In particular, for the case of interest here (with A0 ≡ H(u)),
we can define H directly on a given level k using

Hk(uk) = Ik +Qk((V
1/2
b )∗)R′∗

k(uk)Qk(C
∗V −1

o C)R′

k(uk)Qk(V
1/2
b ), (2.15)

where Rk(uk) and R∗

k(uk) are the tangent linear (1.4) and adjoint (1.6) operators

discretised on level k. Note that, as V
1/2
b and C∗V −1

o C are defined at the finest grid
level, appropriate projections are still required in (2.15). This approach allows the
PDE problems defining the Hessian-vector product to be solved at any level k − i,
while solving the eigenproblem at level k. This may help to reduce computational
time, although the multilevel approximation will become less accurate (given the same
allocated memory). We have not included an investigation of this approach in this
paper.

2.3.4. Example of constructing a limited-memory inverse. For any sym-
metric positive definite operator A, the MLEVD algorithm in §2.3.3 can be applied
to obtain a multilevel limited-memory approximation of A−1 or A−1/2 (as in (2.13)).
This approach can be particularly useful in the case where A is a matrix representing
a discretised differential operator, especially when the matrix A is defined as a matrix-
vector product and solving multiple systems of equations involving A is expected. In
this section, we illustrate the usefulness of the technique by considering the particular
example of approximating the inverse of a covariance matrix.

Consider a random vector v of length m, resulting from the discretisation of a
continuous function of one variable, and a multivariate Gaussian distribution N (v̄, V ).
Here v̄ is the mean vector and V is the covariance matrix which, due to the high
dimension of v, we assume is available in the matrix-vector product form V v. An
example of such a product defined via the solution of the heat conduction equation

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



12 K.L. BROWN, I. GEJADZE and A. RAMAGE

-0.5 0 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

co
rr

el
at

io
n

50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

ln
(λ
)

spectrum of V

spectrum of Ṽ −1V with single level preconditioner

spectrum of Ṽ −1V with multilevel preconditioner

Fig. 2.1. The correlation function for V (left) and the eigenvalues of V (solid line), and

Ṽ −1V with single-level (dotted line) and multi-level (dot-dash line) preconditioners (right).

can be seen in [31]. Checking the statistical hypothesis that a vector vk from an
observed sample belongs to N (v̄, V ) relies on computing the Mahalanobis distance

DM = (vk − v̄)TV −1(vk − v̄).

As V −1 is not readily available, obtaining u = V −1(vk− v̄) is usually done by solving
the system of linear equations V u = vk − v̄ using an iterative method. This system
itself needs a good preconditioner for V in order to accelerate iterative convergence,
that is, we require a matrix Ṽ −1 such that the eigenvalue spectrum of Ṽ −1V facilitates
faster convergence, either by clustering the eigenvalues, or reducing the condition
number. In the numerical results below, we use both of these measures to evaluate
preconditioner performance.

In this example, V is a 401 × 401 covariance matrix with unit diagonal, charac-
terised by the uniform correlation function Ṽ (i, i − j) = Ṽ (i − j) (shown on the left
of Figure 2.1). The eigenvalues of V (plotted on a natural log scale) are represented
by the solid line in the plot on the right of Figure 2.1. We compare them with the
preconditioned spectrum of Ṽ −1V for two different preconditioners, both of which
require the same amount of storage, as characterised by fixing the memory ratio r in
(2.14) (we use r = 16 here). For the first preconditioner, all of the memory is deployed
on the coarsest grid (with m = 401 grid points): this corresponds to a single-level
degenerate case of the MLEVD approximation with Ne = (r, 0, . . . , 0). The result-
ing preconditioned spectrum is represented by the dashed line in the right plot in
Figure 2.1. In the second case, we use four discretisation levels for the MLEVD algo-
rithm, with Ne = (4, 8, 16, 32), showing the resulting spectrum as the dash-dot line in
the same plot. It is clear that this multilevel preconditioner outperforms the classical
(one-level) spectral preconditioner here in terms of clustering the eigenvalues. Further
results for different values of r and Ne are summarised in Table 2.1. As well as the
condition number of Ṽ −1V (which should be compared to the unpreconditioned value
of 1.6e+ 5), the normalised Riemann distance D between V and Ṽ is also tabulated
(this is based on a comparison between the log-squared eigenvalues of the matrices,
see §5.4). In each case, a slash is used to distinguish values obtained using the multi-
level and single level approaches. Again, the multilevel MLEVD-based preconditioner
is more effective.

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



MULTILEVEL APPROXIMATION TO INVERSE HESSIAN IN DATA ASSIMILATION 13

Memory ratio r Ne Distance D Cond. number

4 (1,2,4,8) / (4,0,0,0) 0.84 / 0.96 5.48e+4 / 1.59e+5
8 (2,4,8,16) / (8,0,0,0) 0.71 / 0.92 5.82e+3 / 1.41e+5
12 (3,6,12,24) / (12,0,0,0) 0.61 / 0.86 1.28e+3 / 7.68e+4
16 (4,8,16,32) / (16,0,0,0) 0.54 / 0.81 4.31e+2 / 3.84e+4

Table 2.1

Comparison of multilevel and single level preconditioners for various values of memory ratio r

and eigenvalue combinations Ne.

3. Hessian decomposition. In the remainder of the paper, we focus on a spe-
cific application for the MLEVD algorithm, namely, the approximation of the inverse
Hessian matrix (1.10) in variational data assimilation. Before we describe the spe-
cific algorithms proposed, we introduce a decomposition of the Hessian into a set of
elementary Hessians which will prove to be useful later.

Using the factorisation

V −1
o = V −1/2

o Ī V −1/2
o ,

where Ī is the identity on the M -dimensional space Yobs and V
−1/2
o : Yobs → Yobs is

the spectral square-root of Vo, the preconditioned Hessian in (1.10) can be rewritten
in the form

H(u) = I + (V
1/2
b )∗R′∗(u)C∗V −1/2

o Ī V −1/2
o CR′(u)V

1/2
b . (3.1)

Now let I be a set of indices of the diagonal elements of Ī, and suppose that I is
partitioned into L disjoint subsets Il, l = 1, . . . , L. Defining the diagonal matrices Ī l

such that

Ī li,i =

{
1, i ∈ Il

0, i /∈ Il , i = 1, . . . ,M,

the identity can be written as

Ī =
L∑

l=1

Ī l.

Combining this with (3.1), after some algebraic manipulation we obtain a Hessian
decomposition as follows:

H(u) = I +
L∑

l=1

(H l(u)− I), (3.2)

where

H l(u) = I + (V
1/2
b )∗R′∗(u)C∗V −1/2

o Ī l V −1/2
o CR′(u)V

1/2
b . (3.3)

For a specific partition of I, each elementary Hessian H l(u) can be presented in
the limited-memory form (1.12) with the number of leading eigenpairs nl required for
its accurate representation less than n, since

L∑

l=1

nl ≈ n.

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



14 K.L. BROWN, I. GEJADZE and A. RAMAGE

In particular, it is possible to define a partition of Il such that nl ≈ n/L, with the
number of Lanczos iterations and, correspondingly, the amount of CPU time needed
for computing the eigenpairs of a single H l proportionally reduced. We also note that
the elementary Hessians can be computed in parallel, so that the amount of CPU
time required for computing the full limited-memory Hessian should not exceed the
largest time spent on computing a single H l.

To define an optimal partition, we may use the fact that the influence of the
observations made by sensors located within a given spatial subdomain is also spa-
tially localised. For example, suppose we have a set of S sensors and let x(t) =
(x1(t), x2(t), . . . , xS(t))

T , where xs(t) ∈ Ω represents the position of sensor s at time
t. Note that if xs(t) = xs(0) for all t ∈ [0, T ], then sensor s is stationary. Assuming
that observations are recorded with a certain time period, we introduce an observation
operator C : Y → Yobs such that

Cϕ(t, x) = ϕ(tj , xs(tj)), s = 1, . . . , S, j = 1, . . . , N,

where N is the number of observation nodes in time. The adjoint to C, C∗ : Yobs → Y ,
is given by

C∗ϕ(tj , xs(tj)) =

S∑

s=1

N∑

j=1

ϕ(tj , xs(tj))δ(x − xs(tj))δ(t− tj),

where δ is the Dirac delta function. We also assume that the observation covariance
matrix Vo is block-diagonal with S diagonal blocks of dimension N . We now divide
the spatial domain Ω into a set of disjoint subdomains Ωl, l = 1, . . . L and define Il

to be the set of indices i = (s− 1)N + j such that xs(tj) ∈ Ωl, that is,

Il = {i ∈ N, i = (s− 1)N + j : xs(tj) ∈ Ωl}.

As long as the subdomains Ωl are non-overlapping and cover the whole domain, de-
composition (3.2)-(3.3) is defined for this partition. We will use this Hessian decompo-
sition in §4 as part of a preconditioner for inner iterations of a Gauss-Newton method.
In this context, we refer to an elementary Hessian H l as a local Hessian.

For a Hessian defined directly at a given level k (as per (2.15)), it is easy to see
that the local Hessian decomposition is

Hk(uk) = Ik +

L∑

l=1

(H l
k(uk)− Ik), (3.4)

where

H l
k(uk) = Ik +Qk((V

1/2
b )∗)R′∗

k(uk)Qk(C
∗V −1/2

o Ī l V −1/2
o C)R′

k(uk)Qk(V
1/2
b ). (3.5)

For a specific partition of I, powers of each elementary Hessian H l
k(uk) can be ap-

proximated in limited-memory form as

(Ĥ l
k)

α(uk) ≃ Ik +

nl

k∑

i=1

((λlk,i)
α − 1)U l

k,i(U
l
k,i)

∗ (3.6)

using the leading nl
k eigenpairs {λlk,i, U

l
k,i}, i = 1, . . . , nl

k (cf. (1.12)) where the length

of each eigenvector U l
k,i is equal to mk.

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



MULTILEVEL APPROXIMATION TO INVERSE HESSIAN IN DATA ASSIMILATION 15

The calculation of a single local Hessian H l
k in (3.5) is a relatively inexpensive

task which requires much less computational time than computing the global Hessian
because each local Hessian deviates from the identity operator I only within the area
of influence surrounding the subdomain Ωl, with the size of this area depending on the
transport mechanisms supported by the dynamical model. The number of eigenpairs
used to describe this deviation could be relatively small, therefore a smaller number
of Lanczos iterations may also be needed to evaluate the leading eigenvalues of H l

k,
with the corresponding eigenvectors being different from zero only within the local
area of influence. Thus, a compact storage scheme for the eigenvectors can be utilised.
To make further computational savings, the local Hessians H l

k can be computed at
discretisation level k = k′ > 0, as opposed to on the finest grid k = 0. Finally, if the
local Hessians are computed in parallel, then a very significant reduction in computing
time can be achieved. Specifically, if the eigenvalue analysis for eachH l

k can be carried
out on an individual processor, the time needed for computing all L eigenpair sets will
be reduced to the maximum time taken to compute the eigenpairs of an individual
local Hessian. We also observe that, for computing H l

k, a local area model rather than
the global model has to be run, and it is also possible that only some sensors from
the whole observation array, or from only some areas of the computational domain,
will be of interest so H l

k need not be calculated for every Ωl: these ideas are not
investigated further in this paper.

4. Approximating the inverse Hessian. In this section we use the multilevel
eigenvalue decomposition in Algorithm 2.1 to build various approximations to the
inverse HessianH−1, whereH is defined in (1.10). We describe three different possible
algorithms, which may be useful depending on the constraints in place in terms of
available computing time and memory. Some numerical experiments illustrating their
relative accuracy and usefulness in practice are given in §5.

4.1. Algorithm 1. This involves using a straightforward application of the mul-
tilevel decomposition in Algorithm 2.1 to H0, resulting in an eigenstructure [Λ0, U0]

which can be used to evaluate H−1
0 v0 and H

−1/2
0 v0 via (2.13). For a given optimal

solution ū0, the Hessian-vector product H0v0 is defined by (1.11) discretised at the
finest grid level k = 0. Appropriate values for the parameters in Ne are discussed in
§5. The algorithm can be outlined as follows:

Algorithm 4.1.

define Ne

compute [Λ0, U0] = MLEVD(H0, Ne)

4.2. Algorithm 2. In this approach, we assume that memory restrictions are
not important, but that computing time is limited. To this end we utilise the Hessian
decomposition idea as described in §3. This requires the choice of L further parame-
ters, nl

k, l = 1, ..., L, which determine the number of eigenpairs used in Ĥ l
k (the limited

memory approximation to H l
k in (3.5)). The algorithm can be outlined as follows:

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



16 K.L. BROWN, I. GEJADZE and A. RAMAGE

Algorithm 4.2.

define Ne, level k
′ ≥ 0, partition Il, nl

k′ , l = 1, . . . , L
for l = 1, . . . , L:

compute {λik′ , U i
k′}l, i = 1, . . . , nl

k′ of H l
k′ in (3.5)

compute [Λ0, U0] = MLEVD(P0(Ĥk′ ), Ne) where Ĥk′ is in form (3.4) based on

Ĥ l
k′ from (3.6)

4.3. Algorithm 3. Although Algorithm 2 (in parallel form) requires less com-
putational time than Algorithm 1, it requires more storage. In this third approach,
we aim to alleviate this by reducing the memory requirements of Algorithm 2. We do
that by applying MLEVD to the local inverse Hessians to obtain a reduced memory
representation of the local Hessians before they are used in (3.4). The number of
eigenpairs used in these additional approximations must now be specified: at level k,
we denote these using a vector N l

k with an entry for the number of eigenvalues used
on each (local) level, in an analogous way to (2.9) as

N l
k = (nl

k, n
l
k+1, . . . , n

l
kc
).

The algorithm can be outlined as follows:

Algorithm 4.3.

define Ne, level k
′, partition Il, nl

k′ , N l
k′ , l = 1, . . . , L

for l = 1, . . . , L:
compute {λik′ , U i

k′}l, i = 1, . . . , nl
k′ of H l

k′ in (3.5)

compute [Λk′ , Uk′ ]l = MLEVD((Ĥ l
k′ )−1, N l

k′), where (Ĥ l
k′)−1 is the limited-memory

inverse (1.12) of H l
k′ based on {λik′ , U i

k′}l

compute [Λ0, U0] = MLEVD(P0(Ĥk′ )), Ne) where Ĥk′ is in form (3.4) based on

multilvel approximations to Ĥ l
k′ as defined by {Λk′ , Uk′}l via (2.10a)

Note that the last step involves use of the recursive functions from (2.11), with
recursion starting from level k′.

5. Numerical Experiments. In this section we provide some implementation
details and report the results of some numerical experiments which illustrate the
performance of the three algorithms presented in the previous section. We begin by
describing the model problems used in the rest of the section.

5.1. Model problems. As a test problem, we use as a model a one-dimensional
Burgers’ equation with a non-linear viscous term. Specifically, we consider

∂ϕ

∂t
+

1

2

∂

∂x
(ϕ2) =

∂

∂t

(
µ(ϕ)

∂ϕ

∂x

)
, ϕ = ϕ(x, t), t ∈ (0, T ), x ∈ (0, 1) (5.1)

with the Neumann boundary conditions ∂
∂x(ϕ(0, t)) = ∂

∂x (ϕ(1, t)) = 0 and viscosity
coefficient

µ(ϕ) = µ0 + µ1

(
∂ϕ

∂x

)2

where µ0 and µ1 are positive constants (in all computations we use µ0 = 10−4 and
µ1 = 10−5). The corresponding analytic expressions for the tangent linear and adjoint

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



MULTILEVEL APPROXIMATION TO INVERSE HESSIAN IN DATA ASSIMILATION 17

models are presented in Appendix A. Burgers’ equation is often considered for testing
data assimilation algorithms as a simple model describing elements of atmospheric
flow motion [15].

We use an implicit time discretisation and the power law first-order finite volume
scheme for spatial discretisation [35]. At each time step, we perform non-linear it-
erations to converge on non-linear coefficients. The tangent linear (1.3) and adjoint
(1.8) models are obtained by using the automatic differentiation engine Tapenade [22],
applied to the FORTRAN code implementing the above presented model.

We use two different initial states, defined by

u1true(x) = 0.1 + 0.35

[
1 + sin

(
4πx+

3π

2

)]
, 0 < x < 1 (5.2a)

u2true(x) =





0.5[1− cos (8πx)], 0 < x ≤ 0.4,
0.5[cos (4π(x− 1))− 1], 0.6 ≤ x < 1,
0 otherwise

(5.2b)

The corresponding flow evolutions are presented in Figure 5.1.

ϕ ϕ

Fig. 5.1. Flow evolution for initial states (5.2): u1

true (left) and u2

true (right).

We also consider two different configurations of the sensors which provide the
observations to be assimilated. For this one-dimensional problem, Scheme A has
seven stationary sensors, fixed at points 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, and 0.7 in [0, 1].
In Scheme B, there is one moving sensor which traverses the domain [0, 1] from left to
right twice during the observation time (see below for implementation details). This is
to emulate satellite observations. The combinations used in our four model problems
are detailed in Table 5.1.

5.2. Miscellaneous implementation details. The multilevel structure com-
prises four grids, with 401 grid points on the finest grid level (k = 0) and 51 points
on the coarsest grid level (k = 3). We use cubic splines to implement the prolon-
gation operator Sk,k−i in (2.1), with the subroutine for its adjoint operator S∗

k,k−i

(restriction) again obtained by using automatic differentiation. For test cases MP1
and MP2 (stationary sensors positioned as listed above), each local Hessian H l cor-
responds to one sensor located at x = xl. For test cases MP3 and MP4 (moving

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



18 K.L. BROWN, I. GEJADZE and A. RAMAGE

Model problem Observation scheme Initial condition

MP1 A u1true
MP2 A u2true
MP3 B u1true
MP4 B u2true

Table 5.1

Details of the four model problems studied.

sensor), the spatial domain Ω = (0, 1) is divided into six subdomains confined by
points (0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) and each local Hessian takes into account only
measurements inside subdomain Ωl.

The background error covariance matrix Vb is defined under the assumption that
the background error belongs to the Sobolev spaceW 2

2 [0, 1] (see [17], Section 5.1). For
each sensor configuration, the background error standard deviation can be seen later
in Figure 5.3, where the correlation radius is uniform in space and equal to 0.2. The
observation error is Gaussian, uncorrelated, and has standard deviation σo = 0.016.
Thus, Vo is diagonal with uniform variance (Vo)i,i = σ2

o .
The eigenvalue problems are solved using standard ARPACK [27] to implement

the implicitly restarted Lanczos method. We note, that although calculating the
eigenvalues of Q̃k(A0) by the Lanczos method has to be performed in double pre-
cision, single precision storage of the results would be sufficient in practice because
all eigenpairs calculated at level k are involved in preconditioning of Q̃k−1(A0), so
round-off errors introduced at level k are largely compensated for at level k − 1.

5.3. Preliminary results. In what follows, we interpret the inverse Hessian as
a posterior covariance matrix. By the standard deviation (sd), here we mean a vector
of the square roots of the diagonal elements of the inverse Hessian (variance). The
correlation matrix V̄ is the inverse Hessian matrix symmetrically scaled to have unit
diagonal. That is, it has entries

V̄ij =
H−1

ij

H
−1/2
ii H

−1/2
jj

.

Figure 5.2 shows a plot of the correlation matrix for MP1 before (left) and after
(right) first-level preconditioning is applied. Note that the (unit) diagonal entries
have been omitted here to show the detail of the matrix structure. Although first-level
preconditioning reduces a lot of the off-diagonal entries, what remains still deviates
significantly from the identity, so there is scope for further preconditioning.

Figure 5.3 shows the standard deviation (as defined above), plotted as a function
of x on [0,1]. The top plots correspond to MP1 (stationary sensors), and the bottom
plots to MP3 (moving sensor). In the left plots, the background sd is shown (labelled
bg), along with the analysis sd based on Hk, k = 0, ..., 4. The sd which corresponds to
k = 0 (H0 is the Hessian (1.7) defined on the finest discretisation level) can be used as a
reference function value for comparing with sd estimates based on Hk, k > 0 (defined
in an analogous way to Hk in (2.15)). To make a meaningful comparison, we consider
Hk projected to the finest representation level, that is, P0(Hk). The right plots in
Figure 5.3 correspond to the equivalent sd values where first-level preconditioning has
been applied.

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



MULTILEVEL APPROXIMATION TO INVERSE HESSIAN IN DATA ASSIMILATION 19

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Fig. 5.2. Correlation matrix for MP1 before (left) and after (right) first-level precondi-
tioning has been applied. Unit diagonal entries have been omitted.

These results substantiate the key idea of our approach, namely, that the inverse
Hessian at level k−1 projected to level k could be a good preconditioner for the Hessian
at level k. Also, comparing the top and bottom subplots, an important difference
between the impact made by stationary and moving sensors is apparent. A stationary
sensor injects all information at one point, then the information is propagated over
the spatial domain solely by the adjoint model. As a result, the variance at sensor
location point tends towards the observation error variance σ2

o . In contrast, a moving
sensor injects a single piece of information at the current location point, which does
not result in a sharp reduction of the local variance, then it moves to another point,
thus spreading information throughout the domain. In this case the distribution of
information is less dependent on the model transport, which itself depends on the
discretisation of operators R′(ū) and R′∗(ū). Thus, the coarse grid approximations
to the analysis variance should be better than in case of stationary sensors, as can
be observed in Figure 5.3. Furthermore, the difference in the moving sensor case has
a low-frequency nature, which can be accommodated by a relatively low number of
eigenpairs. This explains why our approach is more efficient for an observation scheme
involving moving sensors, which will be apparent in the numerical results presented
in §5.5.

5.4. Investigating approximation accuracy. In the first set of experiments,
we apply Algorithm 1 described in §4.1 to H(≡ H0) and use the resulting multi-
level eigenvalue decomposition (2.12) to build a low-memory approximation to H−1

in recursive form (2.13), which we will denote by H̃−1. To assess the accuracy of
our approximations, we measure the difference between two matrices in terms of the
Riemann distance. That is, for two symmetric positive definite n× n matrices A and
B, we define

δ(A,B) =
∥∥ln(B−1A)

∥∥
F
=

(
n∑

i=1

ln2λi

)1/2

, (5.3)

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



20 K.L. BROWN, I. GEJADZE and A. RAMAGE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.015

0.03

0.045

0.06

0.075

0.09

0.105

0.12

0.135

0.15

st
an

da
rd

 d
ev

ia
tio

n

bg

k=0

k=1

k=2

k=3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

st
an

da
rd

 d
ev

ia
tio

n

k=0

k=1

k=2

k=3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.015

0.03

0.045

0.06

0.075

0.09

0.105

0.12

0.135

0.15

st
an

da
rd

 d
ev

ia
tio

n

bg

k=0

k=1

k=2

k=3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

st
an

da
rd

 d
ev

ia
tio

n

k=0

k=1

k=2

k=3

Fig. 5.3. Standard deviation before (left) and after (right) first-level preconditioning is
applied. The top plots correspond to MP1 (stationary sensors), and the bottom plots to MP3
(moving sensor).

where λi, i = 1, . . . , n are the eigenvalues of B−1A (see, for example, [32]). The
Riemann distance can be considered as a symmetric measure of the difference between
two Gaussian probability distributions having equal modes. Since the inverse Hessian
is an approximation of the analysis error covariance matrix, it is very natural to use
this measure in the current context. We will compare matrices after we have applied
the first-level preconditioning described in §1.3: it is easily shown that the Riemann
distance remains unchanged on applying symmetric preconditioning to A and B, so
the distance between two symmetric positive definite matrices in the original and
projected spaces is the same.

The accuracy of a given approximation will clearly be critically dependent on
the number of eigenvalues calculated at each grid level (that is, the choice of Ne =
(n0, n1, n2, n3)). Ideally, we would like to be able to identify the ’optimal’ combi-
nation Ne for a given problem but this is non-trivial, particularly as the definition
of optimality is itself dependent on the problem constraints. For example, one may
want the best approximation which can be stored given a set amount of memory,
or perhaps the approximation which ensures the biggest reduction in CPU time for
computing H̃−1v. Here we will focus on the former approach, and assume that there
is a fixed memory ratio r (see (2.14)) allowed for a particular problem. Within this

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



MULTILEVEL APPROXIMATION TO INVERSE HESSIAN IN DATA ASSIMILATION 21

fixed-memory framework, we measure the normalised Riemann distance

D =
δ(H−1, H̃−1)

δ(H−1, I)
(5.4)

where I is an appropriately-sized identity matrix. By evaluating D for approximations
constructed using all possible eigenvalue combinations Ne for a given memory ratio
r, we can identify the best combinations Ne for this fixed memory problem.

Let us consider case MP1. If H̃−1 is constructed from 64 eigenpairs of H−1

(corresponding to memory ratio r = 64), a good approximation with D = 2.98e − 4
is achieved. However, if available memory is restricted to r = 8, so only 8 eigenpairs
at level 0 can be stored, the resulting approximation is very poor (D = 7.71e − 1).
However, if H̃−1 is constructed using the multilevel eigenvalue decomposition, much
better approximations can be achieved. The eigenvalues of H−1 and H̃−1 for MP1
with two representative eigenvalue combinations for r = 8 are illustrated in Figure 5.4.
In each subplot, the first 70 eigenvalues of H−1 are plotted as blue circles (the rest

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5.4. A comparison of eigenvalues of H−1 (blue circles) and H̃−1 (red crosses) for
two different eigenvalue combinations for MP1. Left: Ne = (0, 6, 13, 14), D = 3.95e − 1.
Right: Ne = (0, 0, 29, 6), D = 3.39e − 1.

of the eigenvalues are close to one and have not been plotted). The corresponding
eigenvalues of H̃−1 for two different Ne are plotted as red crosses. The values of Ne

used have been chosen to represent typical behavior: we observe that even when no
information is retained at the finest grid levels, the overall shape of the eigenvalue
distribution of H−1 is still captured by the multilevel approximation.

As stated above, it is difficult to characterise a single ‘best possible’ eigenvalue
combination. However, certain traits can be identified. Plots of the minimum distance
achieved for various memory ratios r are shown in Figure 5.5 for our four different test
problems. In each subplot, the dashed line shows the minimum distance achieved for
a given r, and the solid line shows the average over the 5% of eigenvalue combinations
satisfying (2.14) which resulted in the smallest distances. The dotted line shows the
equivalent distance achieved using only fine grid vectors. The key observation here is
that when there is only room to store a small number of fine grid vectors in memory,
using a multilevel approximation clearly gives much better accuracy. Although we
did not identify an ‘optimal’ way of choosing Ne, our experiments did show that
eigenvalue combinations which have no or very few eigenpairs on the finest level(s)
appear to perform best. Based on this, we suggest the ansatz of doubling the number
of eigenpairs calculated at each level (from fine to coarse grids). For example, the

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



22 K.L. BROWN, I. GEJADZE and A. RAMAGE

0 5 10 15 20

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

di
st

an
ce

average minimum

true minimum

fine grid only

doubling strategy

0 5 10 15 20

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

di
st

an
ce

0 5 10 15 20

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

di
st

an
ce

0 5 10 15 20

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

di
st

an
ce

Fig. 5.5. Distance D (5.4) plotted against memory ratio r for model problems MP1 (top left),
MP2 (top right), MP3 (bottom left) and MP4 (bottom right).

combinations which correspond to r = 8 are as follows: Ne = (0, 0, 24, 48) and Ne =
(2, 4, 8, 16). The distances achieved using this strategy for various values of r are
displayed in Figure 5.5 using red crosses. Although these combinations do not always
give rise to the minimum distance, they usually give reasonable approximations. This
doubling strategy will be adopted in the next section.

5.5. Using H̃−1 as a preconditioner for Gauss-Newton. In the second set
of experiments, we use our multilevel approximation to H−1 in a typical application.
Specifically, we recall the case mentioned in §1.2 of incremental 4D-Var, where the
solution of a system of linear equations of the form (1.9) with coefficient matrix H has
to be approximated at each step of a Gauss-Newton process. This is typically achieved
using a few CG iterations. In realistic DA applications, the number of Gauss-Newton
(outer) iterations as well as the number of CG (inner) iterations is limited by the
time available in the forecast window. More details of approximate Gauss-Newton
methods for large-scale data assimilation problems can be found in [19].

After first-level preconditioning, system (1.9) takes the form

H(ui)δvi = −(V
1/2
b )∗G(ui), (5.5)

where δvi = V
1/2
b δui. As we are assuming that this preconditioning is always applied,

we will refer to this case as ‘unpreconditioned Gauss-Newton. The convergence of the
CG method applied to (5.5) can be further accelerated by preconditioning the system

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



MULTILEVEL APPROXIMATION TO INVERSE HESSIAN IN DATA ASSIMILATION 23

Precond. Algorithm Ne k′ nl
k′ N l

k′

P2a 2 (200,0,0,0) 1 8 -
P2b 2 (0,8,16,32) 1 8 -
P2c 2 (0,4,8,16) 1 8 -
P3a 3 (0,8,16,32) 1 8 (0,0,8,0)
P3b 3 (0,8,16,32) 2 8 (0,0,0,8)

Table 5.2

Description of parameters used in multilevel preconditioners.

again using H̃−1 to improve the resulting eigenspectrum, in other words, by solving

H̃−1(ui)H(ui)δvi = −H̃−1(ui)(V
1/2
b )∗G(ui).

Here the preconditioner H̃−1(ui) is computed once per Gauss-Newton step (before it-
erating with CG): this is an important difference from the approach presented in [11],
where the multigrid cycle is applied as a preconditioner for each CG iteration. In what
follows, we apply incremental 4D-Var to the Burgers’ test problems, and investigate
the effect of preconditioning using multilevel approximations H̃−1 built using Algo-
rithms 2 and 3. The Gauss-Newton stopping tolerance is 10−4, and 5 CG iterations
are carried out for each linear solve. In each simulation, the multilevel preconditioner
is not switched on until after the first few (five in our examples) Gauss-Newton iter-
ations have been carried out. This is to ensure convergence of the outer iteration as
our problem involves strongly nonlinear constraints, in the form of Burgers’ equation
(see, for example, [33]).

Details of the specific algorithms and eigenvalue combinations used for the pre-
conditioners tested are given in Table 5.2. Preconditioners P2a, P2b and P2c use
Algorithm 2 with different values of Ne in the multilevel representation of the inverse
Hessian H−1 defined by (3.3). For each elementary Hessian Ĥ l

k′ , the Hessian-vector
product is defined at level k′ = 1, m = 201, with nl

k′ = 8 eigenpairs used for its
limited-memory representation. Preconditioners P3a and P3b use Algorithm 3 with
one Ne (such that r = 12) in the multilevel representation of H−1. For case P3a, the
Hessian-vector product is again defined at level k′ = 1, with nl

k′ = 8 eigenpairs used

for limited-memory representation of (Ĥ l
k′)−1. The multilevel representation of Ĥ l

k′ is
then built according to N l

k′ , that is, at level k = 2. For case P3b, the Hessian-vector
product is defined at level k′ = 2, m = 101, with nl

k′ = 8 eigenpairs used for limited-

memory representation of (Ĥ l
k′ )−1. The multilevel representation of Ĥ l

k′ is then built
at level k = 3 (the coarsest level). For each test case, the minimisation problem (1.2)
was solved 25 times with perturbed data ub and ϕobs as described in [16, §5.2], and
the resulting ensemble averaged values characterising the convergence rate and the
solution accuracy are presented in convergence diagrams shown in Figures 5.6-5.9.

Each subplot of a diagram shows two major convergence indicators: the aver-
aged deviation norm ‖ui − u∞‖2 (where ui is the iterate after i iterations and u∞ is
the final estimate ū) and the gradient norm ‖G(ui)‖2, plotted in log10-scale against
computational time measured in two different units. These are the number of the
cost-function/gradient evaluations and the number of Hessian-vector product eval-
uations (denoted by NG and NHV P , respectively) at the finest discretisation level
needed to carry out the whole solution procedure (that is, the cost of constructing
and applying any preconditioning is included in these figures). The former coincides

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



24 K.L. BROWN, I. GEJADZE and A. RAMAGE

ensemble mean of NG

0 5 10 15 20 25 30 35

lo
g
10

of
d
ev
ia
ti
on

n
or
m

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

none
P2a
P2b
P2c
P3a
P3b

ensemble mean of NHV P

0 50 100 150 200 250

lo
g
10

of
d
ev
ia
ti
on

n
or
m

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

ensemble mean of NG

0 5 10 15 20 25 30 35

lo
g
10

of
gr
ad

ie
n
t
n
or
m

-6

-5

-4

-3

-2

-1

0

1

2

3

4

ensemble mean of NHV P

0 50 100 150 200 250

lo
g
10

of
gr
ad

ie
n
t
n
or
m

-6

-5

-4

-3

-2

-1

0

1

2

3

4

Fig. 5.6. Convergence diagram for MP1.

with the actual number of the cost-function/gradient evaluations, the latter also in-
cludes the maximum time spent on evaluating an individual Ĥ l (we assume that Ĥ l

are evaluated in parallel).
To assess preconditioner performance, as compared to unpreconditioned Gauss-

Newton, the convergence diagrams should be interpreted together as follows. Sup-
pose that one cost-function/gradient evaluation takes time tG, and one Hessian-vector
product evaluation takes time tHV P .

Let us denote ǫ = log10 ‖ui−u∞‖2, then the relative accuracy of ui is 10
ǫ×100%.

For a given relative accuracy the number of cost-function/gradient evaluations NG

required to achieve it with a given preconditioner can be read from the top left subplot
as the abscissa of the point where the level line ǫ crosses the relevant curve. The value
of the gradient norm ε = log10 ‖G(ui)‖2 which corresponds to this ǫ can then be read
from the lower left subplot as the value at this abscissa. The number of required
Hessian-vector products NHV P is available from the top right subplot in a similar
way. The resulting values NG and NHV P can then be used to evaluate the total time
required as ttotal = NG × tG + NHV P × tHV P . Since one unpreconditioned Gauss-
Newton iteration takes a time of t = tG+NCG× tHV P , this total amount of time can
be spent on i∗ unpreconditioned iterations where

i∗(ρ) =
ttotal
t

=
ρNG +NHV P

ρ+NCG

and ρ = tG/tHV P . Once i∗ has been identified, the accuracy ǫ∗ achieved by unpre-
conditioned Gauss-Newton in the same time as the preconditioned version gives an

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



MULTILEVEL APPROXIMATION TO INVERSE HESSIAN IN DATA ASSIMILATION 25

ensemble mean of NG

0 5 10 15 20 25 30

lo
g
10

of
d
ev
ia
ti
on

n
or
m

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

none
P2a
P2b
P2c
P3a
P3b

ensemble mean of NHV P

0 50 100 150 200 250

lo
g
10

of
d
ev
ia
ti
on

n
or
m

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

ensemble mean of NG

0 5 10 15 20 25 30

lo
g
10

of
gr
ad

ie
n
t
n
or
m

-1

0

1

2

3

4

ensemble mean of NHV P

0 50 100 150 200 250

lo
g
10

of
gr
ad

ie
n
t
n
or
m

-1

0

1

2

3

4

Fig. 5.7. Convergence diagram for MP2.

accuracy of ǫ, can be read off from the top left subplot as the value from the curve
labelled ‘none at the point NG = i∗. The difference ǫ − ǫ∗ reflects the accuracy gain
due to preconditioning, achieved in the time i∗×tG. The value of the gradient norm ε∗

achieved by unpreconditioned Gauss-Newton in the same time as the preconditioned
version gives the gradient norm ε can also be read from the bottom left subplot as
the value of the corresponding graph at NG = i∗. The difference ε− ε∗ provides the
convergence gain due to preconditioning, achieved in the time i∗ × tG. Alternatively,
the same procedure can be replicated starting from a desired gradient norm reduction
defined by ε, in which case the bottom right subplot will be involved.

Some results of such analysis with ρ = 1 and ǫ = −2 are summarised in Table 5.3,
which shows the relative accuracy achieved by unpreconditioned GN by time precon-
ditioned GN achieved relative accuracy 1%. For case MP2, when the values cannot
be identified from the figures shown, the table fields are empty, and where the values
have been obtained by extrapolation, they are marked as approximate. The larger
the value in Table 5.3, the less accuracy has been achieved by using unpreconditioned
Gauss-Newton method, and the more efficient the chosen multilevel preconditioner
has been. Note that ρ ≈ 1 relates to the case where computational time for solving
the original non-linear model and the tangent linear model is comparable. Similar
tables can be obtained for different values of ρ and ǫ.

These results demonstrate that, given a fixed computational time, the optimal
solution accuracy gain due to multilevel preconditioning is about an order of magni-
tude. Therefore, the suggested approach may be considered as an important resource
for parallelisation of the minimisation process itself. It is clear that for the variants

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



26 K.L. BROWN, I. GEJADZE and A. RAMAGE

ensemble mean of NG

0 5 10 15 20 25 30 35

lo
g
10

of
d
ev
ia
ti
on

n
or
m

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

none
P2a
P2b
P2c
P3a
P3b

ensemble mean of NHV P

0 50 100 150 200 250 300

lo
g
10

of
d
ev
ia
ti
on

n
or
m

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

ensemble mean of NG

0 5 10 15 20 25 30 35

lo
g
10

of
gr
ad

ie
n
t
n
or
m

-4

-3

-2

-1

0

1

2

3

ensemble mean of NHV P

0 50 100 150 200 250 300

lo
g
10

of
gr
ad

ie
n
t
n
or
m

-4

-3

-2

-1

0

1

2

3

Fig. 5.8. Convergence diagram for MP3.

Precond. case MP1 case MP2 case MP3 case MP4

P2a 15.8% 15.7% 12.5% 12.0%
P2b 13.1% 17.5% 12.5% 12.0%
P2c 6.3% - 10.0% 10.0%
P3a 10.0% 20.0% 12.5% 12.0%
P3b ≈ 3.0% - 9.0% ≈ 7.0%

Table 5.3

Relative accuracy achieved by unpreconditioned GN by time preconditioned GN achieved relative
accuracy 1%.

using Algorithm 2, the performance with P2a and P2b is quite similar, that is, P2b
essentially replicates the performance of the full eigenvalue decomposition based P2a,
with much-reduced memory requirements (r = 12 as opposed to r = 200). With MP1,
the performance of preconditioner P2c (r = 6) degrades, as not enough information
has been retained at the local level (although it still represents a significant improve-
ment over the unpreconditioned version). However, in case MP3 preconditioner P2c
performs nearly as well as P2b. As discussed in §5.3, there is a difference between sta-
tionary and moving sensors in terms of their influence on the inverse Hessian structure
in that, in the case of moving sensors, a much better quality multilevel representation
can be achieved within the same memory allowance. The performance of P2c in cases
MP3 and MP4 certainly confirms this. For Algorithm 3, as expected, the additional
level of approximation in P3a means that it does not perform quite as well as P2a in

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



MULTILEVEL APPROXIMATION TO INVERSE HESSIAN IN DATA ASSIMILATION 27

ensemble mean of NG

0 5 10 15 20 25 30

lo
g
10

of
d
ev
ia
ti
on

n
or
m

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

none
P2a
P2b
P2c
P3a
P3b

ensemble mean of NHV P

0 50 100 150 200 250 300 350

lo
g
10

of
d
ev
ia
ti
on

n
or
m

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

ensemble mean of NG

0 5 10 15 20 25 30

lo
g
10

of
gr
ad

ie
n
t
n
or
m

-4

-3

-2

-1

0

1

2

3

ensemble mean of NHV P

0 50 100 150 200 250 300 350

lo
g
10

of
gr
ad

ie
n
t
n
or
m

-4

-3

-2

-1

0

1

2

3

Fig. 5.9. Convergence diagram for MP4.

cases MP1 and MP2, but it is still a very competitive method. With preconditioner
P3b in cases MP1 and MP2, however, it appears that the local Hessian calculations
have been done on too coarse a grid so too much information has been lost. At the
same time, P3b performs very well in cases MP3 and MP4 (with convergence curves
almost indistinguishable from those of P2a), which is another indication that this type
of preconditioning could be very useful in assimilating satellite data.

It is interesting to note that in case MP2, method P3a performs better than
P2a, which on the surface seems out of line with the other results. However, from
Figure 5.1(right) it can be seen that the flow solution for initial state u2true contains
much stronger field gradients than in case u1true. This is combined with singular-type
data from stationary sensors in case MP1, which explains slower convergence of the
Gauss-Newton process in comparison to all other cases. For linear model equations,
the Gauss-Newton method must converge in one iteration if the inner problem (1.9)
is solved exactly. In the case of non-linear model equations, many Gauss-Newton
iterations are needed, and solving the inner problem too accurately has rather a
negative impact on the Gauss-Newton convergence rate. This explains the better
performance with a less accurate approximation as preconditioner, as seen with P3a
in case MP2.

6. Conclusion. The inverse Hessian of the auxiliary DA problem (1.5) plays
an important part in different aspects of variational DA. The Hessian-vector product
is defined by sequential solution of the tangent linear and adjoint problems; for the
inverse Hessian (or its square-root), no such definition is possible. In high dimensions,

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



28 K.L. BROWN, I. GEJADZE and A. RAMAGE

the requirement to work in a matrix-free environment means that compact represen-
tation schemes are of significant interest. The simplest one, based on the eigenvalue
decomposition of the projected Hessian after first-level preconditioning, is however not
good enough. Here we have introduced the novel concept of a multilevel eigenvalue
decomposition, which results in a much more efficient compact representation of the
inverse Hessian (and its square root). At a given level, the eigensystem of an operator
preconditioned by its own approximation from the next coarser level is computed,
ascending from the coarsest to the finest level. The numerical results in §5.4 demon-
strated that, given a specified memory allowance, the inverse Hessian approximation
accuracy is greatly improved as compared to a one-level eigenvalue decomposition
scheme. We also believe that a similar algorithm can be utilised beyond the appli-
cation considered here, for example, for any symmetric operator resulting from the
discretisation of a PDE, or for image compression and restoration. In such cases, the
resulting low-memory representations of the inverse operator could be particularly
useful for preconditioning in problems with multiple right-hand sides.

We have also considered the application of our compact inverse Hessian approx-
imations as preconditioners for a Gauss-Newton minimisation procedure. Here we
introduced a further novel decomposition principle, namely, allowing the Hessian to
be represented by the sum of elementary Hessians, which can be evaluated (and com-
pressed) in parallel. The numerical results in Section 5.5 show that, given a fixed
execution time, a much more accurate approximation can be computed as compared
to using unpreconditioned Gauss-Newton method. The new multilevel method there-
fore offers an important parallelisable resource applicable directly to minimisation
problems. This offers a significant advantage over the multigrid approach in [11],
which is intrinsically sequential.

The applicability of our method in the context of present day operational 4D-Var
systems depends, in theory, on the eigenvalue structure of the associated Hessians
(local and global). In practice, it will also depend on many different factors which
are difficult to assess at this stage. As an intermediate step, we intend to test our
method with a global shallow water equations (SWE) model defined on a sphere
[34]. This will allow us to consider a few features which are not involved with the
current Burgers’ model. In particular, the SWE model is a full two-dimensional model
which includes 3 state variables and also supports long wave transport (rather than
advection/diffusion). We are hopeful that our new approach will also work well in
this more realistic situation.

Appendix A. The tangent linear model R′(u)v = ψ for Burgers’ equation (5.1)
is given by





∂ψ

∂t
= −

∂(ϕψ)

∂x
+

∂

∂x

(
µ(ϕ)

∂ψ

∂x

)
+

∂

∂x

(
µ′(ϕ)ψ

∂ϕ

∂x

)
,

∂ψ

∂x

∣∣∣∣
x=0,1

= 0,

ψ|t=0 = v,

where ϕ = ϕ(u, x, t), ψ = ψ(x, t), x ∈ [0, 1], t ∈ [0, T ]. The associated adjoint model

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



MULTILEVEL APPROXIMATION TO INVERSE HESSIAN IN DATA ASSIMILATION 29

R′∗(u)ψ = v is





−
∂ψ∗

∂t
= ϕ

∂ψ∗

∂x
+

∂

∂x

(
µ(ϕ)

∂ψ∗

∂x

)
− µ′(ϕ)

∂ϕ

∂x

∂ψ∗

∂x
+ ψ,

(
µ(ϕ)

∂ψ∗

∂x
+ ϕψ∗

) ∣∣∣∣
x=0,1

= 0,

ψ∗|t=T = 0,
ψ∗|t=0 = v,

where ϕ = ϕ(u, x, t), ψ∗ = ψ∗(x, t), ψ = ψ(x, t), x ∈ [0, 1], t ∈ [T, 0].

Acknowledgements. The corresponding author acknowledges initial funding
for this project through the UK Natural Environment Research Council (NERC grant
NE/J018201/1) and also thanks Prof. Achi Brandt from the Weizmann Institute of
Science, Israel for joint work on using multigrid methods for solving control problems.

REFERENCES

[1] T. Amemiya, Non-linear regression models. in Handbook of Econometrics, North-Holland Pub-
lishing Company, Amsterdam, 2002.

[2] W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue
problem, Quarterly of Applied Mathematics, 9 (1951), pp. 17–29.

[3] N.S. Bakhvalov, On the convergence of a relaxation method with natural constraints on the
elliptic operator, USSR Comp. Math. Math. Phys., 6 (1966), pp. 101–113.

[4] A. Borzi and V. Schulz, Multigrid methods for pde optimization, SIAM Review, 51 (2009),
pp. 361–395.

[5] A. Brandt, Multi-level adaptive solutions to boundary value problems, Math. Comp., 31 (1977),
pp. 333–390.

[6] Y. Chen and D. Oliver, Ensemble randomized maximum likelihood method as an iterative
ensemble smoother, Math. Geosci., 44 (2012), pp. 1–26.

[7] S. Costiner and S. Ta’asan, Adaptive multigrid techniques for large-scale eigenvalue prob-
lems: solutions of the schrodinger problem in two and three dimensions, Phys. Rev., 44
(1995), pp. 3704–3717.

[8] P. Courtier, J.N. Thepaut, and A. Hollingsworth, A strategy for operational implemen-
tation of 4d-var, using an incremental approach, Quart. J. Roy. Meteor. Soc., 120 (1994),
pp. 1367–1387.

[9] J. Cullum and R. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Com-
putations: Vol. I: Theory, Classics in Applied Mathematics, SIAM, Philadelphia, 2002.

[10] M. Dashti, K.J.H. Law, A.M. Stuart, and J. Voss, Map estimators and posterior consis-
tency in bayesian nonparametric inverse problems, Inverse Problems, 29 (2013), p. 095017.

[11] L. Debreu, E. Neveu, E. Simon, F.-X. Le Dimet, and A. Vidard, Multigrid solvers and
multigrid preconditioners for the solution of variational data assimilation problems, Quart.
J. Roy. Meteor. Soc., 142 (2016), pp. 515–528.

[12] F.-X. Le Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of
meteorological observations: theoretical aspects, Tellus A, 38 (1986), pp. 97–110.

[13] M. Ehrendorfer and J.J. Tribbia, Optimal prediction of forecast error covariances through
singular vectors, J. Atmos. Sci., 54 (1997), pp. 286–313.

[14] E.S. Epstein, The role of initial uncertainties in prediction, J. Appl. Meteor., 8 (1969), pp. 190–
198.

[15] D. Furbish, M.Y. Hussaini, F.-X. Le Dimet, P. Ngnepieba, and Y. Wu, On discretization
error and its control in variational data assimilation, TELLUS A, 60 (2008), pp. 979–991.

[16] I. Gejadze, F.-X. Le Dimet, and V. Shutyaev, On analysis error covariances in variational
data assimilation, SIAM J. Sci. Comput., 30 (2008), pp. 1847–1874.

[17] , On optimal solution error covariances in variational data assimilation problems, J.
Comput. Phys., 229 (2010), pp. 2159–2178.

[18] , Computation of the analysis error covariance in variational data assimilation problems
with nonlinear dynamics, J. Comput. Phys., 230 (2011), pp. 7923–7943.

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407



30 K.L. BROWN, I. GEJADZE and A. RAMAGE

[19] S. Gratton, A.S. Lawless, and N.K. Nichols, Approximate Gauss-Newton methods for
nonlinear least squares problems, SIAM J. Optim., 18 (2007), pp. 106–132.

[20] S.A. Haben, A.S. Lawless, and N.K. Nichols, Conditioning and preconditioning of the vari-
ational data assimilation problem, Computers & Fluids, 46 (2011), pp. 252–256.

[21] W. Hackbusch, On the computation of approximate eigenvalues and eigenfunctions of elliptic
operators by means of a multigrid method, SIAM J. Numer. Anal., 16 (1979), pp. 201–215.

[22] L. Hascoet and V. Pascual, Tapenade 2.1 User’s Guide, INRIA Technical Report, Sophia
Antipolis, 2004.

[23] M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J.
Res. Natl Bur. Stand., 49 (1952), pp. 409–436.

[24] T. Hwang and I.D. Parsons, A multigrid method for the generalized symmetric eigenvalue
problem: part i - algorithm and implementation, Int. J. Numer. Meth. Eng., 35 (1992),
pp. 1663–1676.

[25] A.V. Knyazev and K. Neymeyr, Efficient solution of symmetric eigenvalue problems using
multigrid preconditioners in the locally optimal block conjugate gradient method, ETNA:
Electronic transactions on Numerical Analysis, 15 (2003), pp. 38–55.

[26] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential
and integral operators, J. Res. Natl Bur. Std., 45 (1950), pp. 225–282.

[27] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK users guide: Solution of large scale
eigenvalue problems by implicitly restarted Arnoldi methods., 1997.

[28] J.-L. Lions, Contrôle Optimal des Systèmes Gouvernés par des Équations aux Dérivées Par-
tielles, Dunod, Paris, 1968.

[29] C. Liu, Q. Xiao, and B. Wang, An ensemble-based four-dimensional variational data assim-
ilation scheme. part i: Technical formulation and preliminary test., Mon. Weather Rev.,
136 (2008), pp. 3363–3373.

[30] G.I. Marchuk, V.I. Agoshkov, and V.P. Shutyaev, Adjoint Equations and Perturbation
Algorithms in Nonlinear Problems, CRC Press Inc., New-York, 1996.

[31] I. Mirouze and A.T. Weaver, Representation of correlation functions in variational assimila-
tion using an implicit diffusion operator, Q.J.R. Meteorol. Soc., 136 (2010), pp. 1421–1443.

[32] M. Moakher, A differential geometric approach to the geometric mean of symmetric positive-
definite matrices, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 735–747.

[33] L. Nazareth, Recent approaches to solving large residual nonlinear least squares problems,
SIAM Review, 22 (1980), pp. 1–11.

[34] B. Neta, F.X. Giraldo, and I.M. Navon, Analysis of the turkel-zwas scheme for the two-
dimensional shallow water equations in spherical coordinates, J. Comput. Phys, 133 (1997),
pp. 102–112.

[35] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation,
New-York, 1980.

[36] F. Rabier and P. Courtier, Four-dimensional assimilation in the presence of baroclinic in-
stability, Quart. J. Roy. Meteorol. Soc., 118 (1992), pp. 649–672.

[37] F. Rabier, H. Järvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons, The ecmwf op-
erational implementation of four-dimensional variational assimilation. i: Experimental
results with simplified physics, Quart. J. Roy. Meteorol. Soc., 126 (1992), pp. 1142–1170.

[38] G.L.G. Sleijpen and H.A. Van der Vorst, A jacobi-davidson iteration method for linear
eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 401–425.

[39] W.C. Thacker, The role of the Hessian matrix in fitting models to measurements, J. Geophys.
Res., 94 (1989), pp. 6177–6196.

[40] Z. Toth and E. Kalnay, Ensemble forecasting at NMC: The generation of perturbations, Bull.
Amer. Meteor. Soc., (1993), pp. 2317–2330.

[41] U. Trottenberg, C.W. Oosterlee, and A. Schller, Multigrid, Academic Press, London,
2001.

Author-produced version of the article published in SIAM Journal on Scientific Computing, 2016, N°38(5), p. A2934-A2963
The original publication is available at http://epubs.siam.org
DOI: 10.1137/15M1041407


