
HAL Id: hal-01502145
https://hal.science/hal-01502145

Submitted on 5 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Filtering for Subgraph Isomorphism
Stéphane Zampelli, Yves Deville, Christine Solnon, Sébastien Sorlin, Pierre

Dupont

To cite this version:
Stéphane Zampelli, Yves Deville, Christine Solnon, Sébastien Sorlin, Pierre Dupont. Filtering for
Subgraph Isomorphism. 13th International Conference on Principles and Practice of Constraint Pro-
gramming (CP’2007), Sep 2007, Providence, United States. pp.728-742. �hal-01502145�

https://hal.science/hal-01502145
https://hal.archives-ouvertes.fr


Filtering for Subgraph Isomorphism

Stéphane Zampelli1, Yves Deville1, Christine Solnon2,
Sébastien Sorlin2, Pierre Dupont1

1 Université catholique de Louvain, Department of Computing Science and
Engineering, Place Sainte-Barbe 2, 1348 Louvain-la-Neuve (Belgium)

{sz,yde,pdupont}@info.ucl.ac.be
2 LIRIS, CNRS UMR 5205, University of Lyon I, 43 Bd du 11 Novembre, 69622

Villeurbanne Cedex (France)
{christine.solnon,sebastien.sorlin}@liris.cnrs.fr

Abstract. A subgraph isomorphism problem consists in deciding if there
exists a copy of a pattern graph in a target graph. We introduce in this
paper a filtering algorithm dedicated to this problem. The main idea is
to label every node with respect to its relationships with other nodes of
the graph, and to define a partial order on these labels in order to express
compatibility of labels for subgraph isomorphism. This partial order over
labels is used to filter domains. Labelings can also be strengthened by
adding information from the labels of the neighbors. Such a strength-
ening can be applied iteratively until a fixpoint is reached. Practical
experiments illustrate that our new filtering approach is more effective
on difficult instances of scale free graphs than state-of-the-art algorithms
and other CP approaches.

1 Introduction

Graphs are widely used in real-life applications to represent structured objects,
e.g., molecules, images, or biological networks. In many of these applications,
one looks for a copy of a pattern graph into a target graph [1]. This problem,
known as subgraph isomorphism, is NP-complete [2] in the general case.

There exists dedicated algorithms for solving subgraph isomorphism prob-
lems, such as [3, 4]. However, such dedicated algorithms can hardly be used to
solve more general problems, with additional constraints, or approximate sub-
graph isomorphism problems, such as the one introduced in [5].

An attractive alternative to these dedicated algorithms is Constraint Pro-
gramming (CP), which provides a generic framework for solving constraint sat-
isfaction problems (CSP). Indeed, subgraph isomorphism problems may be for-
mulated as CSP in a straightforward way [6, 7]. To make CP competitive with
dedicated approaches for these problems, [8] has introduced a global monomor-
phism constraint, and an associated filtering algorithm, together with redundant
Alldiff constraints. [5] has extended this work to approximate subgraph isomor-
phism, and has shown that CP is competitive with dedicated approaches.



Contribution. In this paper, we introduce a new filtering algorithm for the
subgraph isomorphism problem that exploits the global structure of the graph
to achieve a stronger partial consistency. This work takes inspiration from the
partition refinement procedure used in Nauty [9] and Saucy [10] for finding graph
automorphisms: the idea is to label every node by some invariant property, such
as node degrees, and to iteratively extend labels by considering labels of adjacent
nodes. Similar labelings are used in [11, 12] to define filtering algorithms for the
graph isomorphism problem: the idea is to remove from the domain of a variable
associated to a node v every node the label of which is different from the label
of v. The extension of such a label-based filtering to subgraph isomorphism
problems mainly requires to define a partial order on labels in order to express
compatibility of labels for subgraph isomorphism: this partial order is used to
remove from the domain of a variable associated to a node v every node the
label of which is not compatible with the label of v. We show that this extension
is more effective on difficult instances of scale free graphs than state-of-the-art
subgraph isomorphism algorithms and other CP approaches.

Outline of the paper. Section 2 presents the subgraph isomorphism problem
and related CP models. Section 3 describes the theoretical framework of our
filtering: it first introduces the concept of labeling, and shows how labelings can
be used for filtering; it then shows that labelings can be iteratively strengthened
by adding information from labels of neighbors. Section 4 introduces the prac-
tical framework and describes how to compute a label strengthening. An exact
algorithm as well as an approximate version are provided. Experimental results
are described in Section 5.

2 Subgraph Isomorphism

2.1 Definitions

An (undirected) graph G = (N,E) consists of a node set N and an edge set
E ⊆ N ×N , where an edge (u, v) is a couple of nodes.

A subgraph isomorphism problem between a pattern graph Gp = (Np, Ep)
and a target graph Gt = (Nt, Et) consists in deciding whether Gp is isomorphic
to some subgraph of Gt. More precisely, one should find an injective function
f : Np → Nt such that ∀(u, v) ∈ Np ×Np, (u, v) ∈ Ep ⇒ (f(u), f(v)) ∈ Et. The
problem is also called subgraph monomorphism problem or subgraph matching
in the literature. The function f is called a subgraph matching function.

In the following, we assume Gp = (Np, Ep) and Gt = (Nt, Et) to be the
underlying instance of subgraph isomorphism problem. We also define Node =
Np ∪ Nt, Edge = Ep ∪ Et, np = #Np, nt = #Nt, n = #Node, dp and dt the
maximal degree of the graphs Gp and Gt, and d = max(dp, dt).

2



2.2 CP Models for Subgraph Isomorphism

A subgraph isomorphism problem can be formulated as a CSP in a straightfor-
ward way [6–8]. A variable xu is associated with every node u of the pattern
graph and its domain is the set of target nodes. A global Alldiff constraint [13]
ensures that the matching function is injective. Edge matching is ensured by a
set of binary constraints:

∀(u, v) ∈ Np ×Np, c2(xu, xv) ≡ ((u, v) ∈ Ep ⇒ (xu, xv) ∈ Et) .

3 Theoretical Framework

This section introduces a new filtering algorithm for subgraph isomorphism. We
will show in the next section how filtering can be achieved in practice from this
theoretical work.

3.1 Subgraph Isomorphism Consistent Labelings

Definition 1. A labeling l is defined by a triple (L,�, α) such that

– L is a set of labels that may be associated to nodes;
– �⊆ L× L is a partial order on L;
– α : Node → L is a total function assigning a label α(v) to every node v.

A labeling induces a compatibility relation between nodes of the pattern graph
and the target graph.

Definition 2. The set of compatible couples of nodes induced by a labeling
l = (L,�, α) is defined by CCl = {(u, v) ∈ Np ×Nt | α(u) � α(v)}

This compatibility relation can be used to filter the domain of a variable xu

associated with a node u of the pattern graph by removing from it every node v
of the target graph such that (u, v) 6∈ CCl.

The goal of this work is to find a labeling that filters domains as strongly as
possible without removing solutions to the subgraph isomorphism problem, i.e.,
if a node v of the pattern graph may be matched to a node u of the target graph
by a subgraph matching function, then the label of v must be compatible with
the label of u. This property is called subgraph isomorphism consistency.

Definition 3. A labeling l is subgraph isomorphism consistent (SIC) iff for any
subgraph matching function f , we have ∀v ∈ Np, (v, f(v)) ∈ CCl.

In the context of graph isomorphism, such as in [9], as opposed to subgraph
isomorphism studied here, an SIC labeling is often called an invariant. In this
case, the partial ordering is replaced by an equality condition: two nodes are
compatible if they have the same label.

Many graph properties, that are “invariant” to subgraph isomorphism, may
be used to define SIC labelings such as, e.g., the three following SIC labelings:

3



– ldeg = (N,≤, deg) where deg is the function that returns node degree;
– ldistancek

= (N,≤, distancek) where distancek is the function that returns
the number of nodes that are reachable by a path of length smaller than k;

– lcliquek
= (N,≤, cliquek) where cliquek is the function that returns the num-

ber of cliques of size k that contains the node.

1

2 3 4

5

6

Pattern graph Gp

A

CB D E

F

G

Target graph Gt

Fig. 1. Instance of subgraph isomorphism problem.

Example. Let us consider for example the subgraph isomorphism problem dis-
played in Fig. 1. Note that this instance has no solution as Gp cannot be mapped
into a subgraph of Gt. The labeling ldeg = (N,≤, deg) assigns the following labels
to nodes.

deg(A) = deg(B) = deg(D) = deg(2) = deg(4) = 4
deg(C) = deg(E) = deg(F ) = deg(G) = deg(1) = deg(3) = 3

deg(5) = deg(6) = 2

Hence, the set of compatible couples induced by this labeling is

CCldeg = {(u, v) | u ∈ {2, 4}, v ∈ {A,B, D}}
∪ {(u, v) | u ∈ {1, 3, 5, 6}, v ∈ {A,B, C, D, E, F,G}}

This set of compatible couples allows one to remove values C, E, F and G from
the domains of the variables associated with nodes 2 and 4.

3.2 Strengthening a Labeling

We propose to start from an elementary SIC labeling that is easy to compute such
as the ldeg labeling defined above, and to iteratively strengthen this labeling. The
strength of labelings is defined with respect to the induced compatible couples
as follows.

4



Definition 4. Let l and l′ be two labelings. l′ is strictly stronger than l iff
CCl′ ⊂ CCl, and l′ is equivalent to l iff CCl′ = CCl.

A stronger labeling yields a better filtering, as it contains less compatible couples.
To strengthen a labeling, the idea is to extend the label of a node by adding

information from the labels of its neighbors. This information is a multiset (as
several neighbors may have the same label). We shall use the following notations
for multisets.

Definition 5. Given an underlying set A, a multiset is a function m : A → N,
such that m(a) is the multiplicity (i.e., the number of occurrences) of a in m. The
multiset m can also be represented by the bag {a0, . . . , a0, a1, . . .} where elements
are repeated according to their multiplicity.

For example, the multiset m that contains 2 occurrences of a, 3 occurrences
of b, and 1 occurrence of c is defined by m(a)=2, m(b)=3, m(c)=1, and ∀x 6∈
{a, b, c},m(x)=0. This multiset may also be represented by {a, a, b, b, b, c}.

Given a partial order on a set A, we extend the partial order to multisets
over A as follows.

Definition 6. Given two multisets m and m′ over a set A, and a partial order
�⊆ A×A, we define m � m′ iff there exists a total injective mapping t : m → m′

such that ∀ai ∈ m,ai � t(ai).

In other words, m � m′ iff for every element of m there exists a different
element of m′ which is greater or equal. For example, if we consider the classical
ordering on N, we have {3, 3, 4} � {2, 3, 5, 5}, but {3, 3, 4} is not comparable
with {2, 5, 6}. Note that comparing two multisets is not trivial in the general
case, especially if the order relation on the underlying set A is not total. This
point will be handled in the next section.

We now define the labeling extension procedure.

Definition 7. Given a labeling l = (L,�, α), the neighborhood extension of l
is the labeling l′ = (L′,�′, α′) such that:

– every label of L′ is composed of a label of L and a multiset of labels of L,
i.e., L′ = L · (L → N);

– the labeling function α′ extends every label α(v) by the multiset of the labels
of the neighbors of v, i.e., α′(v) = α(v) ·m where ∀li ∈ L,
m(li) = #{u | (u, v) ∈ Edge ∧ α(u) = li};

– the partial order on the extended labels of L′ is defined by l1 ·m1 �′ l2 ·m2

iff l1 � l2 and m1 � m2.

The next theorem states that the neighborhood extension of a SIC labeling
is a stronger (or equal) SIC labeling.

Theorem 1. Let l = (L,�, α) be a labeling, and l′ = (L′,�′, α′) be its neigh-
borhood extension. If l is an SIC labeling, then (i) l′ is also SIC, and (ii) l′ is
stronger than or equal to l.

5



Proof. (i): Let f be a subgraph matching function and v ∈ Np. We show that
α′(v) �′ α′(f(v)), that is α(v) � α(f(v)) and m � m′, with m (resp. m′) the
multiset of the labels of the neighbors of v in Gp (resp. of f(v) in Gt):

– α(v) � α(f(v)) because l is SIC;
– m � m′ because m′ contains, for each neighbor u of v, the label α(f(u)) of

the node matched to u by the subgraph matching function f ; as l is SIC,
α(u) � α(f(u)), and thus m � m′.

(ii) : This is a direct consequence of the partial order on the extended labels in
L′ (Definition 7) : α(u) � α(v) is one of the conditions to have α′(u) � α′(v).
�

Example. Let us consider again the subgraph isomorphism problem displayed
in Fig. 1, and the labeling ldeg = (N,≤, deg) defined in 3.1. The neighborhood
extension of ldeg is the labeling l′ = (L′,�′, α′) displayed below. Note that we
only display compatibility relationships li � lj such that li is the label of a node
of the pattern graph and lj is the label of a node of the target graph as other
relations are useless for filtering purposes.

α′(A) = 4 · {3, 3, 4, 4}
α′(B) = α′(D) = 4 · {3, 3, 3, 4}
α′(2) = α′(4) = 4 · {2, 2, 3, 3} �′ 4 · {3, 3, 4, 4} and 4 · {3, 3, 3, 4}

α′(C) = 3 · {4, 4, 4}
α′(E) = α′(F ) = 3 · {3, 4, 4} �′ 4 · {3, 3, 4, 4}, 3 · {4, 4, 4} and 3 · {3, 4, 4}
α′(1) = α′(3) = 3 · {3, 4, 4} �′ 4 · {3, 3, 4, 4}, 3 · {4, 4, 4} and 3 · {3, 4, 4}

α′(G) = 3 · {3, 3, 4}
α′(5) = α′(6) = 2 · {4, 4} �′ 4 · {3, 3, 4, 4}, 3 · {4, 4, 4} and 3 · {3, 4, 4}

Hence, the set of compatible couples induced by this extended labeling is

CCl′ = {(u, v) | u ∈ {2, 4}, v ∈ {A,B, D}}
∪ {(u, v) | u ∈ {1, 3, 5, 6}, v ∈ {A,C, E, F}}

As compared to the initial labeling ldeg, this set of compatible couples allows
one to further remove values B, D and G from the domains of the variables
associated with nodes 1, 3, 5 and 6.

3.3 Iterative Labeling Strengthening

The strengthening of a labeling described in the previous section can be repeated
by relabeling nodes iteratively, starting from a given SIC labeling l.

Definition 8. Let l = (L,�, α) be an initial SIC labeling. We define the se-
quence of SIC labelings li = (Li,�i, αi) such that l0 = l and li+1 = neighborhood
extension of li (i ≥ 0).

6



A theoretical filter can be built on this sequence. Starting from an initial SIC
labeling function l = l0, we iteratively compute li+1 from li and filter domains
with respect to the set of compatible couples induced by li until either a domain
becomes empty (thus indicating that the problem has no solution) or reaching
some termination condition.

A termination condition is to stop iterating when the sequence reaches a
fixpoint, i.e., a step where any further relabeling cannot change the strength of
the labeling. We show in [14] that such a fixpoint is reached in O(np · nt) steps,
when both the set of compatible couples and the number of different labels are
not changed between two consecutive steps.

Example. Let us consider again the subgraph isomorphism problem displayed
in Fig. 1, and let us suppose that the sequence of SIC labelings is started from
l0 = ldeg = (N,≤, deg) as defined in 3.1. After the first iteration, the neighbor-
hood extension l1 of l0 is the labeling displayed in the example of section 3.2.
To improve reading, we rename these labels as follows:

α1(A) = 4 · {3, 3, 4, 4} renamed m1

α1(B) = α1(D) = 4 · {3, 3, 3, 4} renamed m2

α1(2) = α1(4) = 4 · {2, 2, 3, 3} renamed m3 �1 {m1,m2}
α1(C) = 3 · {4, 4, 4} renamed m4

α1(E) = α1(F ) = α1(1) = α1(3) = 3 · {3, 4, 4} renamed m5 �1 {m1,m4}
α1(G) = 3 · {3, 3, 4} renamed m6

α1(5) = α1(6) = 2 · {4, 4} renamed m7 �1 {m1,m4,m5}

From labeling l1, we compute the following extended labels and partial order:

α2(A) = m1 · {m2,m2,m4,m5} renamed n1

α2(B) = m2 · {m1,m4,m5,m6} renamed n2

α2(C) = m4 · {m1,m2,m2} renamed n3

α2(D) = m2 · {m1,m4,m5,m5} renamed n4

α2(E) = m5 · {m1,m2,m6} renamed n5

α2(F ) = m5 · {m2,m2,m6} renamed n6

α2(G) = m6 · {m2,m5,m5} renamed n7

α2(1) = α2(3) = m5 · {m3,m3,m5} renamed n8 �2 {n1, n3}
α2(2) = α2(4) = m3 · {m5,m5,m7,m7} renamed n9 �2 {n4}
α2(5) = α2(6) = m7 · {m3,m3} renamed n10 �2 {n1, n3, n5, n6}

The set of compatible couples induced by this labeling is

CCl2 = {(2, D), (4, D), (1, A), (1, C), (3, A), (3, C)}
∪ {(u, v) | u ∈ {5, 6}, v ∈ {A,C, E, F}}

This set of compatible couples allows one to remove values A and B from the
domains of the variables associated with nodes 2 and 4. Hence, the domains
of these two variables only contain one value (D), and thanks to the alldiff
constraint on the variables, an inconsistency is detected.

7



Algorithm 1: Filtering procedure
Input: two graphs Gp = (Np, Ep) and Gt = (Nt, Et) such that Np ∩Nt = ∅,

an initial SIC labeling l0 = (L0, α0,�0),
initial domains D : Np → P(Nt),
a limit k on the number of iterations

Output: filtered domains
for every node u ∈ Np do: D(u)← D(u) ∩ {v ∈ Nt|α0(u) �0 α0(v)}1

i← 12

while ∀u ∈ Np, D(u) 6= ∅ and i ≤ k and fixpoint not reached do3

for every node u ∈ Np ∪Nt do4

mi
u ← multiset containing an occurrence of αi−1(v), ∀(u, v) ∈ Ep ∪ Et5

αi(u)← αi−1(u) ·mi
u6

Li ← {αi(u)|u ∈ Np ∪Nt}; rename labels in Li and αi
7

�i← {(αi(u), αi(v)) | u ∈ Np ∧ v ∈ D(u) ∧ test(mi
u, mi

v,�i−1)}8

for every node u ∈ Np do: D(u)← D(u) ∩ {v ∈ Nt|αi(u) �i αi(v)}9

i← i + 110

return D11

4 Practical Framework

Algorithm 1 describes the overall filtering procedure. Starting from an initial
SIC labeling, that may be, e.g., ldeg, this procedure first filters domains with
respect to this initial labeling (line 1) and then iteratively extends this labeling
(lines 4–8) and filters domains with respect to the new extended labeling (line
9) until some domain becomes empty, or a maximum number of iterations have
been performed, or a fixpoint is reached.

Labeling extension (lines 4–8) is decomposed into three steps:

– lines 4–6: αi is computed from αi−1; this step is done in O(#Edge);
– line 7: labels of Li are renamed; this step is done in O(d ·#Node);
– line 8: the partial order �i is computed, i.e., for every couple of nodes (u, v)

such that u is a node of the pattern graph and v is a node of the target graph
which was compatible with u at step i − 1, we test for the compatibility of
the multisets mi

u and mi
v to determine if the labels of u and v are still

compatible at step i. Testing the compatibility of two mulisets is not trivial.
We show in 4.1 how to do this exactly in O(d5/2), so that line 8 has a time
complexity of O(np ·nt ·d5/2). We then show in 4.2 how to compute an order
inducing a weaker filtering in O(nt · d · (np + dt · log nt)). These two variants
are experimentally compared in Section 5.

The filtering step (line 9) is done in O(np · nt).

8



4.1 Exact computation of the partial order

Given two multisets mu and mv, and a partial order �, the function test(mu,mv,
�) determines if mu � mv, i.e., if there exists for each label occurrence in mu a
distinct label occurrence in mv which is greater or equal according to �.

Property 1. Let G = (N = (Nu, Nv), E) be the bipartite graph such that Nu

(resp. Nv) associates a different node with every label occurrence in the multiset
mu (resp. mv), and E contains the set of edges (i, j) such that i � j. We have
mu � mv iff there exists a matching that covers Nu in G.

Hopcroft [15] proposes an algorithm for solving this problem in O(|Nu| · |Nv| ·√
|N |). As the sizes of mu and mv are bounded by the maximal degree d, the

test function can be done in O(d5/2).

4.2 Computation of an approximated order

If � is a total order, the function test(mu,mv,�) can be implemented more
efficiently, by sorting each multiset and matching every label of mu with the
smallest compatible label of mv. In this case, the complexity of test is O(d·log d).

When � is not a total order, one may extend it into a total order ≤. This total
order can then be used in the test function to determine if mu ≤ mv. However,
the total order introduces new label compatibilities so that test(mu,mv,≤) may
return true while test(mu,mv,�) returns false. As a consequence, using this
approximated order may induce a weaker filtering.

In this section, we first introduce the theoretical framework that defines a new
neighborhood labeling extension based on a total order and proves its validity;
then we show how it can be achieved in practice.

Neighborhood labeling extension based on a total order. The next def-
inition gives a simple condition on the total order to ensure its consistency
with respect to the partial order, i.e., to ensure that test(mu,mv,�) = True ⇒
test(mu,mv,≤) = True.

Definition 9. Let l = (L,�, α) be a labeling. A consistent total order for l is a
total order ≤ on L such that ∀u ∈ np,∀v ∈ nt, α(u) � α(v) ⇒ α(u) ≤ α(v)

We extend the order ≤ on multisets like for partial orders in Definition 6, i.e.,
m ≤ m′ iff there exists an injective function t : m → m′ such that ∀ai ∈ m,ai ≤
t(ai). Hence, m � m′ ⇒ m ≤ m′. Let us note however that this extension of ≤
to multisets only induces a partial order on multisets as some multisets may not
be comparable.

We can then define a new neighborhood extension procedure, based on a
consistent total order.

9



Definition 10. Let l = (L,�, α) be a labeling, and ≤ be a consistent total order
for l. The neighborhood extension of l based on ≤ is the labeling l′≤ = (L′,�′≤
, α′) where L′ and α′ are defined like in Definition 7, and the order relation
�′≤⊆ L′ × L′ is defined by

l1 ·m1 �′≤ l2 ·m2 iff l1 � l2 ∧m1 ≤ m2

The next theorem shows that the neighborhood extension l′≤ based on ≤ may
be used in our iterative labeling process, and that it is stronger or equal to l.
However, it may be weaker than the neighborhood extension based on the partial
order �. Indeed, the total order induces more compatible couples of labels than
the partial order.

Theorem 2. Let l = (L,�, α), l′ = (L′,�′, α′), and l′≤ = (L′,�′≤, α′), be three
labelings such that l′ is the neighborhood extension of l and l′≤ is the neighborhood
extension of l based on a consistent total order ≤.

If l is an SIC labeling, then (i) l′≤ is SIC, (ii) l′≤ is stronger than (or equal
to) l, and (iii) l′ is stronger than (or equal to) l′≤.

Proof. (ii) and (iii): For labeling l′, we have l1 ·m1 �′ l2 ·m2 iff l1 � l2∧m1 � m2.
As ≤ is consistent w.r.t. �, we have m � m′ ⇒ m ≤ m′. Hence, CCl′ ⊆ CCl′≤

⊆
CCl. (i) is a direct consequence of (iii), as l′ is SIC (Theorem 1). �

Different consistent total orders may be derived from a given partial order,
leading to prunings of different strength: the less new couples of compatible
nodes are introduced by the total order, the better the filtering. However, we
conjecture in [14] that finding the best consistent total order is NP-hard. Hence,
we propose a heuristic algorithm that aims at computing a total order that
introduces few new compatible couples without guarantee of optimality. Let us
note Lp (resp. Lt) the set of labels associated with nodes of the pattern graph
Gp (resp. target graph Gt). We shall suppose without loss of generality1 that
Lp ∩ Lt = ∅. The idea is to sequence the labels of Lp ∪ Lt, thus defining a total
order on these labels, according to the following greedy principle: starting from
an empty sequence, one iteratively adds some labels of Lp ∪Lt at the end of the
sequence, and removes these labels from Lp and Lt, until Lp ∪ Lt = ∅.

To choose the labels added in the sequence at each iteration, our heuristic is
based on the fact that the new couples of compatible nodes are introduced by
new couples of compatible labels (ep, et) such that ep ∈ Lp and et ∈ Lt. Hence,
the goal is to sequence as late as possible the labels of Lp. To this aim, we first
compute the set of labels et ∈ Lt for which the number of labels ep ∈ Lp, ep � et

is minimal. To break ties, we then choose a label et such that the average number
of labels e′t ∈ Lt, ep � e′t, for every label ep ∈ Lp, ep � et, is minimal. Then, we
introduce in the sequence the selected label et, preceded by every label ep ∈ Lp

such that ep � et.
The time complexity of this heuristic algorithm is in O(nt · log nt · dp · dt).

1 If a label e both belongs to Lp and Lt, it is always possible to rename e into e′ in
Lt (where e′ is a new label), and to add a relation e′′ � e′ for every label e′′ ∈ Lp

such that e′′ � e.

10



Practical computation of an approximate partial order. In practice, one
has to compute a total order ≤i−1 that approximates the partial order �i−1 at
each iteration i of Algorithm 1. This must be done between lines 7 and 8. Then
each call to the test function, line 8, is performed with the total order ≤i−1

instead of the partial order �i−1.
In this case, the time complexity of the computation of �i (line 8) is in

O(nt · np · d · log d). This complexity can be reduced to O(nt · np · d) by first
sorting all the multisets. When adding the time complexity of the computation
of the total order by our heuristic algorithm, we obtain an overall complexity in
O(nt · d · (np + dt · log nt)).

4.3 Filtering within a Branch and Propagate framework

In this section, we introduce two optimizations that may be done when filtering
is integrated within a branch and propagate search, where a variable assignment
is done at each step of the search.

A first optimization provides an entailment condition for the filtering. If the
initial labeling l0 is such that the maximum label of the pattern graph is smaller
or equal to the minimum label of the target graph, every label of nodes of the
pattern graph is compatible with all the labels of nodes of the target graph so
that no domain can be reduced by our filtering procedure.

A second optimization is done when, during the search, the variable associ-
ated with a pattern node is assigned to a target node. In this case, the neighbor-
hood extension procedure is modified by forcing the two nodes to have a same
new label which is not compatible with other labels as follows:

Definition 11. Let l = (L,�, α) be an SIC labeling, and let (u, v) ∈ Np × Nt

such that v ∈ xu. The propagation of xu = v on l is the new labeling l′ = (L′,�′
, α′) such that

– L′ = L ∪ {luv} where luv is a new label such that luv 6∈ L;
– �′=� ∪{(luv, luv)} so that the new label luv is not comparable with any other

label except itself;
– α′(u) = α′(v) = luv and ∀w ∈ Nodes \ {u, v}, α′(w) = α(w)

This labeling l′ is used as a starting point of a new sequence of labeling exten-
sions. Note that this propagation is done every time a domain is reduced to a
singleton.

5 Experimental Results

Considered instances. We evaluate our approach on graphs that are ran-
domly generated using a power law distribution of degrees P (d = k) = k−λ:
this distribution corresponds to scale-free networks which model a wide range of
real networks, such as social, Internet, or neural networks [16]. We have made
experiments with different values of λ, ranging between 1 and 5, and obtained

11



similar results. Hence, we only report experiments on graphs generated with the
standard value λ = 2.5.

We have considered 6 classes of instances, each class containing 20 different
instances. For each instance, we first generate a connected target graph which
node degrees are bounded between dmin and dmax. Then, a connected pattern
graph is extracted from the target graph by randomly selecting a percentage pn

(resp. pe) of nodes (resp. edges).
All instances of classes A, B, and C are non directed feasible instances that

have been generated with dmin = 5, dmax = 8, and pn = pe = 90%. Target
graphs in A (resp. B and C) have 200 (resp. 600 and 1000) nodes.

All instances of class D are directed feasible instances that have been gen-
erated with dmin = 5, dmax = 8, and pn = pe = 90%. Target graphs have 600
nodes. Edges of target graphs have been randomly directed. To solve these di-
rected instances, the filtering procedure is adapted by extending labelings with
two multisets that respectively contain labels of successors and predecessors.

All instances of classes E and F are non directed instances that have been
generated with dmin = 20, dmax = 300, and pn = 90%. Target graphs have
300 nodes. Instances of class E are feasible ones that have been generated with
pe = 90%. Instances of class F are non feasible ones: for these instances, pattern
graphs are extracted from target graphs by randomly selecting 90% of nodes and
90% of edges, but after this extraction, 10% of new edges have been randomly
added.

For all experimentations reported below, each run searches for all solutions
of an instance.

Comparison of different variants of our filtering algorithm. Algorithm 1
has been implemented in Gecode (http://www.gecode.org), using CP(Graph)
and CP(Map) [17, 18] which provide graph and function domain variables. The
global subgraph isomorphism constraint has been combined with c2 constraints
(as defined in Section 2.2) and a global AllDiff constraint which are propagated
by forward checking.

Table 1 compares different variants of Algorithm 1, obtained by either com-
puting an exact partial order or an approximated one (as described in 4.1 and
4.2), and by considering different limits k on the number of iterations. In all
variants, the initial labeling l0 is the labeling ldeg defined in 3.1. Note that the
order of ldeg is a total order so that in this case the exact and approximated
variants are equivalent for k = 1.

Let us first compare the exact and approximated variants. The number of
failed nodes with Approx./k = 2 is greater than Exact/k = 2, but it is smaller
than with Exact/k = 1. This shows us that the total order computed by our
heuristic algorithm is a quite good approximation of the partial order. When
considering CPU-times, we note that Approx./k = 2 is significantly quicker
than Exact/k = 2.

Table 1 also shows that the best performing variant differs when considering
different classes of instances. Instances of class D are best solved when k = 0,

12



Solved instances (%) Average time Average failed nodes
Exact Approx. Exact Approx. Exact Approx.

k=0 k=1 k=2 k=2 k=4 k=8 k=0 k=1 k=2 k=2 k=4 k=8 k=0 k=1 k=2 k=2 k=4 k=8

A 100 100 100 100 100 100 2.2 0.6 23.4 1.3 1.9 3.2 440 14 0 13 0 0

B 100 100 100 100 100 100 61.4 5.6 144.2 24.5 28.7 59.6 1314 8 0 3 0 0

C 45 100 45 100 100 100 439.2 26.3 495.8 101.8 110.4 227.8 1750 13 0 2 0 0

D 100 100 100 100 100 100 0.7 2.6 99.6 7.5 24.7 56.3 2 0 0 0 0 0

E 80 60 0 75 80 85 126.7 98.6 - 35.2 18.8 36.7 4438 159 - 39 13 7

F 23 20 0 38 63 68 186.4 109.9 - 45.0 10.5 3.9 18958 3304 - 2323 481 107

Table 1. Comparison of different variants of Algorithm 1: Exact (resp. Approx.) refers
to the implementation of test described in 4.1 (resp. 4.2); k gives the maximum number
of iterations. Each line successively reports the percentage of instances that have been
solved within a CPU time limit of 600s on an Intel Xeon 3,06 Ghz with 2Go of RAM;
the average run time for the solved instances; and the average number of failed nodes
in the search tree for the solved instances.

i.e., with the simple ldeg labeling: these instances are easy ones, as adding a
direction on edges greatly narrows the search space. Instances of classes A, B
and C are more difficult ones, as they are not directed; these instances are best
solved when k = 1, i.e., after one iteration of the exact labelling extension.
Instances of classes E and F, which have significantly higher node degrees, are
very difficult ones. For these instances, and more particularly for those of class F
which are not feasible ones and which appear to be even more difficult, iterative
labeling extensions actually improve the solution process and the best results
are obtained when k = 8.

As a conclusion, these experimentations show us that (1) the approximated
variant offers a good compromise between filtering’s strength and time, and (2)
the optimal limit k on the number of iterations depends on the difficulty of
instances. The best average results are obtained with Approx./k = 4.

Comparison with state-of-the-art approaches. We now compare the vari-
ant Approx./k=4 of Algorithm 1 with a state-of-the-art algorithm coming from
a C++ library called vflib [4], and with CP. We consider two different CP
models:

– c2 is the model using c2 constraints described in Section 2.2;
– c2 + c3 is the model that additionnaly uses c3 constraints introduced in [8].

These two models are combined with a global Alldiff constraint. For c2 and Alld-
iff constraints, two levels of consistency are considered, i.e., Forward Checking
(denoted by FC) and Arc Consistency (denoted by AC). Propagation of c3 fol-
lows [8]. All CP models have been implemented in Gecode using CP(Graph) and
CP(Map).

Table 2 compares all these approaches and shows us that, except for easy
instances of class D which are best solved by vflib, all other classes of instances
are best solved by Approx./k=4. When comparing the different CP models, we
note that adding redundant c3 constraints significantly improves the solution

13



Solved instances (%) Average time Average failed nodes
vflib c2 c2+c3 App. vflib c2 c2+c3 App. vflib c2 c2+c3 App.

FC AC FC AC k=4 FC AC FC AC k=4 FC AC FC AC k=4

A 35 100 100 100 100 100 251.4 57.1 38.7 26.9 22.3 1.9 - 165239 19 67 0 0

B 0 0 0 0 0 100 - - - - - 28.7 - - - - - 0

C 0 0 0 0 0 100 - - - - - 110.4 - - - - - 0

D 100 100 100 5 0 100 0.8 7.9 81.7 542.7 - 24.7 - 2402 0 0 0 0

E 0 0 5 33 20 80 - - 362.0 319.5 397.6 18.8 - - 154 21 7 13

F 0 0 0 10 5 63 - - - 381.7 346.5 10.5 - - - 52 14 481

Table 2. Comparison of state-of-the-art approaches. Each line successively reports the
percentage of instances that have been solved within a CPU time limit of 600s on an
Intel Xeon 3,06 Ghz with 2Go of RAM; the average run time for the solved instances;
and the average number of failed nodes in the search tree for the solved instances.

process except for the easy instances of class D which are better solved with
simpler models.

6 Conclusion

We introduced a new filtering algorithm for the subgraph isomorphism problem
that exploits the global structure of the graph in order to achieve a stronger par-
tial consistency. This work extends a filtering algorithm for graph isomorphism
[12] where a total order defined on some graph property labelling is strengthened
until a fixpoint. The extension to subgraph isomorphism has been theorically
founded. The order is partial and can also be iterated until a fixpoint. However,
using such a partial order is ineffective. Instead, one can map this partial order
to a total order. Performing such a mapping is hard, and can be efficiently ap-
proximated throught a heuristic algorithm. Experimental results show that our
propagators are efficient against state-of-the-art propagators and algorithms.

Future work includes the development of dynamic termination criteria for
the iterative labeling, the experimental study of other degree distributions, the
analysis of alternative initial labelings.

Acknowledgments

The authors want to thank the anonymous reviewers for the helpful comments.
This research is supported by the Walloon Region, project Transmaze (WIST516207).

References

1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. IJPRAI 18(3) (2004) 265–298

2. Garey, M., Johnson, D.: Computers and Intractability. Freeman and Co., New
York (1979)

14



3. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1) (1976)
31–42

4. Cordella, L., Foggia, P., Sansone, C., Vento, M.: An improved algorithm for match-
ing large graphs. In: 3rd IAPR-TC15 Workshop on Graph-based Representations
in Pattern Recognition, Cuen (2001) 149–159

5. Zampelli, S., Deville, Y., Dupont, P.: Approximate constrained subgraph matching.
In: Principles and Pratice of Constraint Programming. Volume 3709 of Lecture
Notes in Computer Science. (2005) 832–836

6. Régin, J.: Développement d’Outils Algorithmiques pour l’Intelligence Artificielle.
Application à la Chimie Organique. PhD thesis (1995)

7. Rudolf, M.: Utilizing constraint satisfaction techniques for efficient graph pattern
matching. In: Theory and Application of Graph Transformations. Number 1764 in
Lecture Notes in Computer Science, Springer (1998) 238–252

8. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern
matching. Mathematical. Structures in Comp. Sci. 12(4) (2002) 403–422

9. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30 (1981)
45–87

10. P. T. Darga, M. H. Liffiton, K.A.S., Markov, I.L.: Exploiting structure in symmetry
detection for cnf. In: Proc. Design Automation Conference (DAC), IEEE/ACM
(2004) 530–534

11. Sorlin, S., Solnon, C.: A global constraint for graph isomorphism problems. In: 6th
International Conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimisation Problems (CP-AI-OR 2004). Vol-
ume 3011 of LNCS., Springer-Verlag (2004) 287–301

12. Sorlin, S., Solnon, C.: A new filtering algorithm for the graph isomorphism prob-
lem. 3rd International Workshop on Constraint Propagation and Implementation,
CP2006 (2006)

13. Regin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proc.
12th Conf. American Assoc. Artificial Intelligence. Volume 1., Amer. Assoc. Arti-
ficial Intelligence (1994) 362–367

14. Zampelli, S., Deville, Y., Solnon, C., Sorlin, S., Dupont, P.: Filtering for subgraph
matching. Technical Report INGIRR2007-03, Université Catholique de Louvain
(2007)

15. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipar-
tite graphs. SIAM J. Comput. 2(4) (1973) 225–231

16. Barabasi, A.L.: Linked: How Everything Is Connected to Everything Else and
What It Means. Plume (2003)

17. Dooms, G., Deville, Y., Dupont, P.: Cp(graph): Introducing a graph computa-
tion domain in constraint programming. In: Principles and Pratice of Constraint
Programming. Volume 3709 of Lecture Notes in Computer Science. (2005) 211–225

18. Deville, Y., Dooms, G., Zampelli, S., Dupont, P.: Cp(graph+map) for approximate
graph matching. 1st International Workshop on Constraint Programming Beyond
Finite Integer Domains, CP2005 (2005) 33–48

15


