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Abstract – It has been recently established that the size of the defects created under ion irradi- 
ation follows a scaling law (SaND A. E. et al., EPL, 103 (2013) 46003; YI X. et al., EPL, 110 
(2015) 36001). A critical constraint associated with its application to phenomena occurring over a 
broad range of irradiation conditions is the limitation on the energy of incident particles. Incident  
neutrons or ions, with energies exceeding a certain energy threshold, produce a complex hierarchy 
of collision subcascade events, which impedes the use of the defect cluster size scaling law derived 
for an individual low-energy cascade. By analyzing the statistics of subcascade sizes and energies, 
we show that defect clustering above threshold energies can be described by a product of two 
scaling laws, one for the sizes of subcascades and the other for the sizes of defect clusters formed 
in subcascades. The statistics of subcascade sizes exhibits a transition at a threshold energy, 
where the subcascade morphology changes from a single domain below the energy threshold, to  
several or many sub-domains above the threshold. The number of sub-domains then increases in 
proportion to the primary knock-on atom energy. The model has been validated against direct 
molecular-dynamics simulations and applied to W, Fe, Be, Zr and sixteen other metals, enabling 
the prediction of full statistics of defect cluster sizes with no limitation on the energy of cascade 
events. We find that populations of defect clusters produced by the fragmented high-energy cas- 
cades are dominated by individual Frenkel pairs and relatively small defect clusters, whereas the 
lower-energy non-fragmented cascades produce a greater proportion of large defect clusters. 
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Introduction. – Changes in physical and mechanical 
properties of materials, exposed to neutron and ion ir- 
radiation in nuclear reactors, fusion devices, or particle 
accelerators, result from the generation of defects, their 
clustering, the formation of dislocation loops and disloca- 
tions, and the subsequent evolution of radiation-induced 
microstructure driven by diffusion and interactions be- 
tween the defects. In alloys, including those formed due 
to transmutation nuclear reactions [1], chemical segrega- 
tion also occurs, resulting in the formation of helium bub- 
bles [2–4], chromium or rhenium precipitates [5,6], and 
giving rise to grain boundary embrittlement [1,7]. In- 
terpreting the observed microstructural evolution effects 

requires extending the measure of radiation damage be- 
yond the displacement per atom (dpa) concept, proposed 
by Norgett et al. [8] to quantify the exposure of materials 
to fluxes of energetic particles [9]. Defining a physical 
measure of accumulation of defects in materials under 
collision cascade conditions involves recognizing the fact 
that clusters of defects form directly in collision cascade 
events [10,11]. Sand et al. [12] and Yi et al. [13] showed 
that the statistics of defect cluster sizes formed in rela- 
tively low-energy cascades is well described by a power 
law distribution, similar to the power law describing the 
statistics of fragmentation of objects [14]. However, there 
remains an outstanding question that simulations and 
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observations performed in refs. [12,13] did not address. 
The question concerns the role played by the fragmenta- 
tion of cascades themselves. Such fragmentation occurs if 
the energy of a primary knock-on atom (PKA), initiating 
a cascade event, exceeds a certain threshold value. What 
remains unexplored is the effect of cascade fragmentation 
on the statistics of defect clusters. In this letter we inves- 
tigate and answer this question. 

Cascade fragmentation is a phenomenon occurring if 
the energy of a PKA produced by an incident neutron 
or ion [1] exceeds a threshold value, which is close to 
30 keV in iron and 160 keV in tungsten. This is a high- 
energy phenomenon that can be reasonably well described 
by a treatment that neglects the many-body aspects 
of interatomic interactions involving valence electrons. 
Molecular-dynamics (MD) simulations of cascade frag- 
mentation [15] show that the fundamental character of 
defect clusters formed in high-energy cascade events does 
not change above the fragmentation threshold. On the 
other hand, the formation of subcascades may influence 
the defect cluster size distribution. The statistics of sub- 
cascade fragmentation was first investigated by Hou [16], 
who developed a fuzzy clustering method and applied it 
to the study of cascades in Au. Satoh et al. [17] pro- 
posed a model for cascade fragmentation and investigated 
high-energy cascades in Al, Cu and Au, exploring the de- 
pendence of cascade configurations on atomic number and 
density. Heinisch and Singh [18] performed an extensive 
study of cascade fragmentation in several fcc, bcc, and 
hcp metals. Jumel et al. [19] used an analytical approach 
based on the binary collision approximation (BCA), which 
they applied to predict subcascade spectra in iron pro- 
duced by neutrons in High Flux Irradiation Reactor of Oak 
Ridge National Laboratory. Simeone et al. and Luneville 
et al. [20,21] extended the work by Cheng et al. [22] and 
developed a fractal approach to the treatment of cas- 
cades. Cascade fragmentation correlates primarily with 
the atomic charge. The threshold energy for cascade frag- 
mentation is identified from the statistics of subcascades 
and distances between them. A recent example, illus- 
trating the effect of cascade fragmentation on the defect 
cluster size population, is provided by MD simulations of 
very high-energy cascades in Fe performed by Zarkadoula 
et al. [23]. Simulations show that populations of defects 
formed in 500 keV cascades are visibly dominated by in- 
dividual Frenkel pairs and relatively small defect clusters, 
with almost no large defect clusters present in the cascade 
debris. Our analysis, given below, explains this effect and 
generalizes it to a broad range of materials and irradiation 
conditions. 

We use a binary collision approximation (BCA) model 
to investigate the spatial repartition of the energy of the 
projectile that results from the primary recoil and sub- 
sequent atomic collisions. Thanks to its relative simplic- 
ity, our model can be applied to a pure material or al- 
loy, and to a broad range of incident particles —neutrons 
or ions— initiating cascade events. Our treatment of 

cascade fragmentation is focused on the formation of sub-
domains. This produces statistical information that can be 
combined with the data on defect formation dur- ing 
recrystallization, deduced from MD simulations. Our 
method is different from earlier simulations by Broeders 
et al. [24] in that we take full cascade information into ac- 
count and relate the volumes of subcascades to equivalent 
effective secondary knock-on atom (SKA) energies, in this 
way mapping the statistics of sub-domain volumes to the 
global distribution of defect cluster sizes associated with 
an entire fragmented or non-fragmented cascade event. 

The sub-domain decomposition approach combines a 
BCA treatment of the cascade with a method for the 
identification of one or several distinct regions of high 
density of deposited energy. We apply the model to W 
and Fe and investigate the statistics of cascade events 
in these two materials, exploring the dependence of sub- 
domain distributions as a function of their volume and 
the PKA energy. We analyze the dependence of cascade 
fragmentation on the atomic number and mass density of 
the material, and establish a statistical law defining the 
population of defect cluster sizes produced in an entire 
cascade event. Our analysis explains the increase of the ef- 
fective power law exponent observed in recent experiments 
by Yi et al. [13], which explains why the defects produced 
in fragmented cascades contain greater numbers of indi- 
vidual Frenkel pairs and small defect clusters, whereas 
the non-fragmented cascades are characterised by larger 
defect clusters and dislocation loops. 

Cascade fragmentation. – The Monte Carlo BCA 
model for atomic collisions implemented in the SDTrimSP 
code [25,26] is used for simulating cascade evolution at 
high impact energies. The slowing-down of atoms is 
modeled, without giving any consideration to the crystal 
structure, by a series of random collisions and continuous 
interaction with electrons. The main input parameters 
describing a target material are its atomic number and 
density. The slowing-down of knock-on atoms and devel- 
opment of the cascade itself is simulated assuming that 
moving atoms do not interact. The kinetic energy trans- 
ferred to the knock-on atom is calculated by the scattering 
integral using the Ziegler-Biersack-Littmark potential. In 
the simulations described below, surface effects are not 
treated, and the term PKA refers to the initial projec- 
tile. The model includes two energy loss channels, the 
kinetic energy transfer in nuclear collisions and the elec- 
tron energy losses. A BCA model does not treat melt- 
ing and recrystallization, and hence on its own it cannot 
fully describe the cascade debris remaining in the mate- 
rial, or the interaction and recombination of defects. To re- 
late BCA simulations to experimental observations, which 
show the formation of individual subcascades [27], we use 
a sub-domain decomposition method, where we describe 
the result of cascade evolution in terms of one or several 
spatially separated, hence by definition non-overlapping, 
sub-domains. The spatial repartition of the damage is 
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Fig. 1: (Colour online) Left: sketch illustrating a high-energy 
cascade in tungsten, initiated by a 1 MeV primary knock-on 
atom, and represented by points where energy was lost in a 
BCA simulation. Centre: the same cascade represented by a 
set of elementary cubes (ECs), where the melting criterion (1) 
was satisfied.  The size of ECs used in the simulation was 15 Å. 
Right: the same cascade, where electronic losses were added 
to nuclear losses when applying the melting criterion. All the 
figures are projections onto the (x, y)-plane. The same colour 
refers to ECs belonging to the same molten sub-domain. 

 

analysed by comparing the amount of energy deposited 
locally in a certain volume with a local melting criterion, 
which is derived from certain thermodynamic quantities 
characterizing the material. A volume large enough to 
contain the full extent of a cascade is created and divided 
into elementary cubes (ECs). During the cascade calcu- 
lation, the energy of the initial projectile is transferred 
from a knocked-on atom to a knocked-on atom down to 
the slowest one, the kinetic energy of which is lower than 
the cutoff energy. An amount of energy equal to the bulk 
energy is subtracted from the kinetic energy if a vacancy 
is created, and also the kinetic energy is reduced if elec- 
tronic losses occur along the free flight paths [25]. These 
energies are summed in each EC then compared with the 
amount of energy, Em, required to melt the material in 

that particular EC, namely 

Em = [C(Tm − T ) + L] V, (1) 

where C and L are the specific heat and enthalpy of fu- 
sion, respectively. Tm and T are the melting temperature 
and the initial temperature of the material and V is the 
volume of an EC. The above equation cannot describe the 
melting of the material during the cascade since it is a 
non-equilibrium process, the specific heat is a function of 
temperature, and also, given the short timescale, the melt- 
ing temperature is expected to be around 20% higher than 
the equilibrium melting temperature [28]. Still this crite- 
rion is sufficient to reproduce the liquid volume observed 
in full MD cascades. Also it provides a suitable numerical 
input for the model and is fast, simple and compatible 
with BCA simulations involving many thousand events 
and many materials. In what follows, an EC where the 
deposited energy is larger than Em will be called molten. 
The evaluation of the melting criterion of a 10 Å size cube 
of Fe and W gives, respectively, 44 and 77 eV. 

After applying the melting criterion to individual ECs, 
the neighbouring molten ECs are merged by considering 

 
 

 

 

 
Fig. 2: (Colour online) The number of cascade sub-domains 
in various metals computed using the domain decomposition 
method described in the text and plotted as a function of the 
PKA energy. Lines are fits to simulation data, given by the 
equation ν(E) =  1  if  E  ≤  2−1/P Efr and  ν(E) = 2(E/Efr)P 
if E ≥ 2−1/P Efr, where ν is the number of sub-domains, Efr 

is the cascade threshold fragmentation energy, above which 
cascades start splitting into subcascades, and P varies in the 
interval from 0.8 to 1.2. 

 

whether any two molten ECs share an edge or a corner. 
These are then treated as parts of a single molten domain. 
A full set of connected molten ECs forms a sub-domain. 
To be treated as separate entities, any two sub-domains 
must be isolated from each other by a layer of material 
that does not satisfy the criterion. Such a layer consists 
of ECs where no collisions occurred, or where the amount 
of deposited energy is smaller than Em. Once this proce- 
dure has been applied, a cascade can be described as con- 
sisting of one or several sub-domains made of individual 
ECs. The left panel of fig. 1 shows a cascade that formed 
as a result of impact of an 1 MeV PKA in W. The central 
panel in fig. 1 shows the same cascade, now analyzed using 
the domain decomposition procedure, where only nuclear 
losses were included in the calculation of the deposited en- 
ergy.  The size of the ECs is 15 Å.  The right panel in fig. 1 
illustrates the same cascade where both nuclear and elec- 
tron energy losses were included in the deposited energy. 
The central panel in fig. 1 shows 15 distinct molten sub- 
domains, whereas we find only 5 separate sub-domains in 
the right panel. The difference is caused by the narrow 
connecting molten “tubes” formed due to electron energy 
losses occurring along the trajectories of fast moving par- 
ticles. In what follows, we use only the nuclear energy loss 
criterion to identify the molten sub-domains. 

Figure 2 shows the average number of sub-domains gen- 
erated by PKAs of various energies in different metals. For 
clarity, only data for seven out of the twenty metals are 
reproduced here. The full data and comparison with other 
methods of subcascade fragmentation will be described 
in [29]. In all the cases we observed a transition from 
a single molten domain to several sub-domains occurring 
at a characteristic threshold energy.   The total number 
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Fig. 3: (Colour online) Comparison of molten volumes of cas- 
cades in Fe and W predicted by BCA and MD simulations for 
various PKA energies. Simulations show that the total volume 
V (E) of molten material is nearly proportional to the PKA 
energy. Lines are linear fits of the form V (E) = Vfr · (E/Efr), 
where Vfr is the volume of the cascade at the fragmentation 
threshold PKA energy. 

 
 

of sub-domains ν as a function of the PKA energy E is 

well described by the equation ν(E) = 1 if E 2−1/P Efr 

and ν(E) = 2(E/Efr)P  if E     2−1/P Efr, where Efr is 
the cascade fragmentation threshold energy, and the frag- 
mentation exponent P varies in the interval from 0.8 to 
1.2. The cascade fragmentation transitions occur at PKA 
energies from 2 keV to 500 keV, which increases with the 
atomic number and atomic density [29]. 

To validate eq. (1), we compare the size of molten vol- 
umes of cascades predicted by MD simulations, with val- 
ues derived from our BCA-based method. BCA cascade 
simulations were performed over a broad interval of PKA 
energies, spanning the range from 1 keV to 10 MeV in W 
and Fe. It proved necessary to simulate about 1500 cas- 
cades per energy to achieve reasonably good statistics. 
Sub-domain decomposition analysis was then carried out 
using  ECs  with  sizes  varying  from  3  to  300 ̊A.   We  found 
a range of values between 10 Å and 20 Å where the results 
do not depend on the EC size. This justified the choice 
of EC size used in this study. Averaged molten volumes 
were compared to MD cascade results over the interval of 
energies accessible to MD simulations. Figure 3 shows the 
total volume of cascade molten zones plotted as a function 
of the PKA energy. The volume of the molten region is 
proportional to the PKA energy, with cascades in tung- 
sten being more compact than those in iron. The most 
significant conclusion that we are able to derive from the 
data shown in fig. 3 is that over a broad range of PKA 
energies the BCA sub-domain decomposition model pre- 
dicts the same molten volumes of collision cascades as MD 
simulations. We now proceed to the analysis of statistics 
of sizes of molten sub-domains produced by PKAs with 
energies below and above the cascade fragmentation en- 
ergy. The rationale for performing this analysis is based on 
the fact that, according to fig. 3, it is possible to establish 

 
 
 

 
Fig. 4: (Colour online) Distributions of sub-domain volumes 
in iron (top) and tungsten (bottom) shown as functions of the 
PKA energy. The distributions are derived from a BCA study 
involving 1500 cascade simulations performed for every PKA 
energy. 

 
a unique correspondence between the volume of a molten 
sub-domain and the energy of an effective secondary 
knock-on atom (SKA) that produces it. Using this corre- 
spondence, and information about the statistics of defect 
production in individual relatively small cascades [12,13], 
we will be able to derive a statistical law for defect clus- 
ter sizes, describing not only individual relatively low- 
energy cascades but also high-energy cascades undergoing 
fragmentation. 

Figure 4 shows the average frequency of occurrence of 
sub-domains plotted as a function of their volume for 
various PKA energies in tungsten and iron. At PKA ener- 
gies below the cascade fragmentation transition, the dis- 
tribution of sub-domain sizes can be approximated by a 
delta function, which reflects that there is one single sub- 
domain whose volume is representative of the PKA en- 
ergy. Around the transition, fluctuations of the volume 
of the main sub-domain broaden the main peak, which is 
accompanied by a tail of smaller sub-domains. A frag- 
mented cascade can be viewed as one main sub-domain, 
due to one SKA whose energy is close to the fragmenta- 
tion energy, decorated by a one or several sub-domains of 
smaller effective SKA energy. With PKA energy several 
times larger than the fragmentation energy, cascades are 
not characterized by a main sub-domain of a specific size 
but consist in many sub-domains of any volume whose 
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occurence decreases with the volume, or equivalently the 
SKA energy. 

We have now established an equivalence between the 
cascade fragmentation energy threshold, Efr, and a 
threshold cascade volume, Vfr. In principle, this vol- 
ume is the maximum subcascade or sub-domain volume 
formed at any energy. However, we have also observed 
rare sub-domains larger than Vfr above the fragmentation 
transition. They come from the overlap of subcascades 
from different branches initiated by high-energy knock-on 

energies there appears to be a greater number of smaller 
sub-domains as opposed to large ones. Fits to the tungsten 
data  using  the  functional  form  DV (V, E)    (Vfr/V )Q(E) 

for V < Vfr and E  > Efr give Q(E) that increases from 
0.68 for E = 300 keV PKAs to 0.93 for E = 3000 keV 
PKAs. The normalization condition to the total number 
of sub-domains ν(E), derived for Q(E) < 1, gives that for 
E > Efr the distribution of sub-domains over energies is 

1 − Q(E) 
 
 Efr 

 Q(E)
 

atoms. Since they are rare, we approximate the spectrum 
of sub-domain volumes shown in fig. 4 by a spectrum of 
effective SKA energies limited from above by Efr. 

D(ϵ, E) = ν(E) 

 
where ϵ < Efr. 

Efr ϵ 
, (3) 

In the sub-threshold interval of PKA energies, described 
by the data shown in fig. 3 for tungsten, it is possible to 
establish a link between a PKA energy E and a distribu- 
tion F (n, E) of defect cluster sizes generated by such a 
PKA [12,13]: 

E → F (n, E) = A(E)/nS, n < n∗(E), (2) 

where for tungsten S 1.63 < 2, and A(E) will be defined 
by a normalization condition on the total number of de- 

fects produced in a cascade [8,9]. The upper limit n∗(E) 
of the number of individual defects in defect cluster is a 
mere consequence of the finite spatial extent of the cas- 

The distribution of defect cluster sizes for E > Efr can 
now be evaluated as 

Efr  

G(n, E) = F (n, ϵ)D(ϵ, E)dϵ, (4) 

0 

 

where F (n, ϵ) is given by eq. (2). We need now to de- 
fine A(ϵ) for the interval of SKA energy ϵ < Efr. For 
simplicity, we assume that the total number of individ- 
ual defects produced in a cascade is a linear function of 
the SKA energy, as in the Norgett et al. model [8]. This 

cade. Assuming that defect clusters produced in cascades 
are dislocation loops with planar geometry, we use the fact 
that the upper limit on the number of defects in a clus- 

results in  
A(ϵ) = Afr 

 

2S   1 
3 

 

Efr  

 

, (5) 

ter is proportional to the projected area of a molten zone, where A is a constant. Integrating eq. (4) after replacing 
which in the sub-threshold energy range E  < Efr, varies 
as n∗(E) ∼ E2/3.  This also defined nfr, the size of the 

fr  

F (n, ϵ) by A(ϵ)/nS and D(E) by ϵ −Q(E) and noting that 

largest defect cluster that can be produced in a cascade 
initiated by a PKA with energy Efr. Because of cascade 
fragmentation, it is also the largest cluster formed in a 

the lower limit of the integration is defined by the condi- 
tion that a defect cluster of size n forms only if the energy 

of a subcascade ϵ exceeds (n/nfr)3/2Efr, we arrive at 
cascade of any energy.   With this approach, n equals 

 1450 for a 1 2 111 fr  loop in W, and  
  n   

 1+S− 3 Q(E)
 
 

 
 We now proceed to establish a law of defect cluster- 

ing also valid above the cascade fragmentation transition. G(n, E) ∼ n 1 nfr  
, E >Efr, (6) 

We first consider the distribution D(ϵ, E) of sub-domains 
as  a  function  of  the  SKA  energy  ϵ.  By  integrating 
this distribution D(ϵ, E) over the energy ϵ of individual 
sub-domains, we find the total number of sub-domains 

where the second term in square brackets describes the 
effect of cascade fragmentation on the statistics of defect 
clustering. 

The magnitude of the exponent 1 + S − 3 Q(E) varies 
 

 

ν(E) =  
∫ E 

D(ϵ, E)dϵ,  which  is  the  quantity  shown  in from 1.61 for E = 300 keV to 1.23 for E 
2 

= 3000 keV. The 
fig. 2. At energies well below the cascade threshold frag- 
mentation energy the sub-domain energy distribution can 
be approximated by a single value, D(ϵ, E )  = δ(ϵ E), 
resulting in ν(E)  = 1.  At  energies close  to,  or above 
Efr, the distribution of sub-domain energies is a contin- 
uous function of ϵ, spanning the entire interval from zero 
to Efr. We neglected here the rare subcascade overlap. 
Now the total number of sub-domains shown in fig. 2 is 

Efr  

fr  

energy above the fragmentation threshold energy, the 
distributions resemble power laws, with a sharp cut-off at 
the cascade fragmentation energy. The slope of the curves 
increases slightly as a function of E, showing that at higher 

factor in square brackets in eq. (6) vanishes when the de- 
fect size n approaches nfr. This effect is more pronounced 
in the limit of high PKA energies. 

Figure 5 shows distributions of defect cluster sizes in 
tungsten, produced by PKAs with energies below and 
above the cascade fragmentation transition, computed as- 
suming Afr = 2. It can be observed that while the maxi- 
mum size of defect clusters, treated as a function of PKA 
energy E, increases up to the energy fragmentation thresh- 
old, it then remains independent of E.  The  shape  of 
the defect cluster size distribution as a function of E ex- 
hibits a systematic trend, giving greater weight to smaller 
size defect clusters in cascades produced by higher-energy 

− −S ⟩ 
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