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ON STOCHASTIC MODIFIED 3D NAVIER-STOKES

EQUATIONS WITH ANISOTROPIC VISCOSITY

HAKIMA BESSAIH AND ANNIE MILLET

Abstract. Navier-Stokes equations in the whole space R
3 subject to an anisotropic

viscosity and a random perturbation of multiplicative type is described. By adding
a term of Brinkman-Forchheimer type to the model, existence and uniqueness of global
weak solutions in the PDE sense are proved. These are strong solutions in the probability
sense. The convective term given in terms of the Brinkman-Forchheirmer provides some
extra regularity in the space L

2α+2(R3), with α > 1. As a consequence, the nonlinear
term has better properties which allows to prove uniqueness. The proof of existence is
performed through a control method. A Large Deviations Principle is given and proven
at the end of the paper.

1. Introduction

The Navier-Stokes equations describe the time evolution of the velocity u of an incom-
pressible fluid in a bounded or unbounded domain of R

n, n = 2, 3 and are described
by:

∂tu− ν∆u+ (u · ∇)u+∇p = 0,

divu = 0, u|t=0 = u0,

where ν > 0 is the viscosity of the fluid and p denotes the pressure. If existence and
uniqueness is known to hold in dimension 2, the case of dimension 3 is still only partially
solved. Indeed, there exists a solution in some homogeneous Sobolev space Ḣ1/2 either on
a small time interval or on an arbitrary time interval if the norm of the initial condition is
small enough. The difficulty in dimension 3 comes from the nonlinear term (u · ∇)u that
requires more regularity. However, this regularity is not satisfied by the energy estimates
while it is in dimension 2. In particular, the lack of this regularity is essentially the
reason the uniqueness cannot be proved for weak solutions. Many regularizations have
been introduced to overcome this difficulty. Here, we will discuss only two of them; a
regularization by a rotating term u× e3 and a regularization by a Brickman-Forchheimer

term
∣∣u
∣∣2α u. Of course these two different regularizations give rise to different models.

One is related to some rotating flows while the other is related to some porous media
models. We refer to [19] and the references therein, where the following system has been
investigated (in an even more general formulation)

∂tu− ν∆u+ (u · ∇)u+∇p+ a
∣∣u
∣∣2α u = f,

divu = 0, u|t=0 = u0,
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where a > 0 and α > 0 and f is an external force. Under some assumptions on the
coefficient α, the authors in [19] prove the existence and uniqueness of global strong
solutions.

A slightly different regularization has been investigated by Kalantarov and Zelik in [17];
more precisely they studied some versions of the following model:

∂tu− ν∆u+ (u · ∇)u+ g(u) +∇p = f

div u = 0, u|t=0 = u0,

where g ∈ C2(R3,R3) satisfies the following properties:

{
g′(u)v · v ≥ (−K + κ|u|r−1)|v|2, ∀u, v ∈ R

3,
|g′(u)| ≤ C(1 + |u|r−1), ∀u ∈ R

3,
(1.1)

where K,C, κ are some positive constants, r ∈ [1,∞) and u ·v stands for the inner product
in R

3. When the forcing is of random type, that is f = σ(t, u)dW (t), M. Röckner, T. Zhang
and X. Zhang tackled a stochastic version of a modification of the previous model (1.1),
that they called the tamed stochastic Navier-Stokes equations, in several papers such as
[22], and [23]. Let us mention that in both the deterministic and the stochastic versions
of (1.1), the solutions are investigated when the regularity of initial condition is at least
H1 and the viscosity acts in all three directions.

In this paper, we are interested in the 3D Navier-Stokes equations with anisotropic
viscosity that is acting only in the horizontal directions. These models have some appli-
cations in atmospheric dynamics where some informations are missing. The relevance of
the anisotropic viscosity is explained through the Ekeman law (see e.g. [21] or the intro-
duction of [10]). The aim of this paper is to study an anisotropic Navier-Stokes equation
in dimension 3 that is subject to some multiplicative random forcing. More precisely, we
consider the following model of a modified 3D anisotropic Navier-Stokes system on a fixed
time interval [0, T ] which can be written formally as follows:

∂tu− ν∆hu+
(
u · ∇

)
u+ a

∣∣u
∣∣2α u+∇p = σ(t, u) Ẇ for (t, x) ∈ [0, T ]× R

3, (1.2)

∇ · u = 0 for (t, x) ∈ [0, T ]× R
3,

with the initial condition u0 independent of the driving noise W . Here the viscosity ν
and the coefficient a of the nonlinear convective term are strictly positive, α > 1, ∂t denotes
the time partial derivative, ∆h := ∂21 + ∂22 and ∂i denotes the partial derivative in the
direction xi, i = 1, 2, 3. Thus the viscosity is only smoothing in the horizontal directions.
As usual the fluid is incompressible, p denotes the pressure; the forcing term σ(t, u) Ẇ is a
multiplicative noise driven by an infinite dimensional Brownian motion W which is white
in time with spatial correlation. The convective term a|u|2αu is of Brinkman-Forchheimer
type and has a regularization effect which can balance on one hand the vertical partial
derivative of the bilinear term to prove existence, and on the other hand provide some
control to obtain uniqueness. Note that the space L2α+2(R3) appears naturally in the
analysis of (1.2); it is equal to L4(R3) if α = 1. Furthermore, the homogeneous critical

Sobolev space Ḣ1/2 for the Navier-Stokes equation is included in L4. Hence it is natural
to impose α > 1.

The deterministic counterpart of (1.2), that is equation (1.2) with σ = 0, has been
studied by H. Bessaih, S. Trabelsi and H. Zorgati in [5]. The authors have proved that if the

initial condition u0 ∈ H̃0,1, for any T > 0 there exists a unique solution in L∞(0, T ; H̃0,1)∩
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L2(0, T ; H̃1,1) which belongs to C([0, T ], L2), for some anisotropic Sobolev spaces which
will be defined in the next section (see (2.1)). We generalize this result by allowing the
system to be subject to some random external force whose intensity may depend on the
solution u and on its horizontal gradient ∇hu. Note that since no smoothing is provided
by a viscosity in the vertical direction, in the anisotropic case, one requires that the initial
condition u0 is square integrable as well as its vertical partial derivative.

In the deterministic setting (that is σ = 0), replacing the Brinkman-Forchheimer term
a|u|2αu by the rotating term 1

ǫu×e3, J.Y. Chemin, B. Desjardin, I. Gallagher and E. Gre-

nier [9] have studied an anisotropic modified Navier Stokes equation on R
3 with a vertical

viscosity νv ≥ 0, which is allowed to vanish. Using some homogeneous anisotropic spaces,
they have proved that if u0 ∈ H0,s with s > 3

2 , there exists ǫ0 depending only on ν and u0
such that for ǫ ∈ (0, ǫ0],

∂tu− ν∆hu+
(
u · ∇

)
u+

1

ǫ
u× e3 +∇p = 0, for (t, x) ∈ [0, T ]× R

3,

∇ · u = 0 for (t, x) ∈ [0, T ] × R
3, u|t=0 = u0

has a unique global solution in L∞(0, T ;H0,s) ∩ L2(0, T ;H1,s). The dispersive Brickman-
Forchheimer term is ”larger” than the rotating term used in [9] but the regularity required
on the initial condition is weaker and we allow a stochastic forcing term.

The paper is organized as follows. In section 2 we describe the functional setting of
our anisotropic model and prove some technical properties of the deterministic terms.
Several results were already proved in [5] and we sketch the arguments for the sake of
completeness. We also describe the random forcing term and the growth and Lipschitz
assumptions on the diffusion coefficient σ. In section 3 we prove that if u0 ∈ L4(Ω, H̃0,1)
is independent of W and σ satisfies some general assumptions (in particular cases σ may
contain some ”small multiple” of the horizontal gradient ∇hu), equation (1.2) has a unique

solution in L4(Ω;L∞(0, T ; H̃0,1)) ∩ L2(Ω;L2(0, T : H̃1,1)) ∩ L2α+2(Ω× [0, T ]×R
3), which

is almost surely continuous from [0, T ] to H, where H denotes the set of square integrable
divergence free functions. Examples of such coefficients σ are provided. Since we are
working on the whole space R

3, and not on a bounded domain, the martingale approach
used in [4], which depends on tightness properties, does not seem appropriate. We use
instead the control method introduced in [20] for the 2D Navier-Stokes equation; see also
[25], [15], [13] and [23], where this method has been used for the stochastic 2D Navier-
Stokes equations, stochastic 2D general hydrodynamical Bénard models and the stochastic
3D tamed Navier-Stokes equations. In section 4, under stronger assumptions on σ (which
may no longer depend on the horizontal gradient ∇hu), we also prove a large deviations

result in C([0, T ];H) ∩ L2(0, T ; H̃1,0) when the noise intensity is multiplied by a small
parameter

√
ǫ converging to 0. The proof uses the weak-convergence approach introduced

by A. Budhiraja , P. Dupuis and R.S. Ellis in [16] and [6]; see also the references [25],
[15], [13] and [23] where this approach, based on the equivalence of the Large Deviations
and Laplace principles, is used for various stochastic 2D Hydrodynamical models and the
stochastic 3D tamed Navier-Stokes equation. For the sake of completeness, some technical
well-posedness result for a stochastic controlled equation and estimates which only depend
on the norm stochastic control, whose proofs are similar to that of the original equation in
section 3, are given in the appendix. The proof of the weak convergence and compactness
arguments, which have also been used in some papers on Large Deviations Principles of
stochastic hydrodynamical models, are also described in the appendix
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2. The functional setting

2.1. Some notations. Let us describe some further notations and the functional frame-
work we will use throughout the paper. Given a vector x = (x1, x2, x3) let xh := (x1, x2)
denote the horizontal variable, which does not play the same role as the vertical variable
x3. Due to the anisotropic feature of the model, we use anisotropic Sobolev spaces defined
as follows: given s, s′ ∈ R let Hs,s′ denote the set of tempered distributions ψ ∈ S ′

(R3)
such that

‖ψ‖2s,s′ :=
∫

R3

(
1 +

∣∣(ξ1, ξ2)
∣∣2s) (1 +

∣∣ξ3
∣∣2s′) ∣∣Fψ(ξ)

∣∣2 dξ <∞, (2.1)

where F denotes the Fourier transform. The set Hs,s′ endowed with the norm ‖ · ‖s,s′ is
a Hilbert space.

Set divhu = ∂1u1 + ∂2u2. Note that for u ∈
(
H1,0 ∩H0,1

)3

∇ · u = 0 implies divhu = −∂3u3. (2.2)

For exponents p, q ∈ [1,∞) let ‖ · ‖p denote the Lp(R3) norm while Lph(L
q
v) denotes the

space Lp(Rx1 Rx2 , L
q(Rx3)) endowed with the norm

‖φ‖Lp
h
(Lq

v) :=
{∫

R2

(∫

R

∣∣φ(xh, x3)
∣∣qdx3

) p
q
dxh

} 1
p
.

The space Lqv(L
p
h) = Lq(Rx3 ;L

p(Rx1 Rx2)) is defined in a similar way and endowed with the

norm ‖φ‖Lq
v(L

p
h
) :=

{ ∫
R

( ∫
R2

∣∣φ(xh, x3)
∣∣pdxh

) q

pdx3
} 1

q . Note that in the above definitions

we may assume that p or q is ∞ changing the norm accordingly.
Let V be the space of infinitely differentiable vector fields u on R

3 with compact support
and satisfying ∇ · u = 0. Let us denote by H the closure of V in L2(R3;R3), that is

H =
{
u ∈ L2(R3;R3) ; ∇ · u = 0 in R

3
}
.

The spaceH is a separable Hilbert space with the inner product inherited from L2, denoted
in the sequel by (., .) with corresponding norm | . |.

To ease notations, when no confusion arises let Lp (resp. Lqv(L
p
h)) also denote the set of

triples of functions u = (u1, u2, u3) such that each component uj belongs to Lp (resp. to
Lqv(L

p
h)), j = 1, 2, 3, that is u ∈ Lp(R3;R3) (resp. u ∈ Lqv(L

p
h)(R

3;R3)). For non negative
indices s, s′ we set

H̃s,s′ :=
(
Hs,s′

)3 ∩H and again ‖ · ‖s,s′ for the corresponding norm.

We denote by (·, ·)0,1 the scalar product in the Hilbert space H̃0,1, that is for u, v ∈ H̃0,1:

(
u , v

)
0,1

=

3∑

j=1

∫

R3

uj(x) vj(x) dx+

3∑

j=1

∫

R3

∂3uj(x) ∂3vj(x) dx.

As defined previously, we set ∆h := ∂21 + ∂22 ; integration by parts implies that given
u ∈ (H2,0)3 we have

(
∆hu , u

)
= −

3∑

j=1

∫

R3

|∇huj|2L2 dx, where ∇huj = (∂1uj, ∂2uj, uj).

To ease notation, we write ∇hu to denote the triple of functions (∇huj , j = 1, 2, 3) so that〈
∆hu , u

〉
= −|∇hu|2L2 for u ∈ H̃1,0.
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Note that as usual, starting with an initial condition u0 ∈ H̃0,1 and projecting equation
(1.2) on the space of divergence-free fields, we get rid of the pressure and rewrite the
evolution equation as follows:

∂tu− ν Ahu+B(u, u) + a
∣∣u
∣∣2α u = σ(t, u) Ẇ for (t, x) ∈ [0, T ] × R

3, (2.3)

where Ahu = Pdiv∆hu, B(u, v) =
(
Pdivu .∇

)
Pdivv and Pdiv denotes the projection on

divergence free functions.

2.2. Some properties of the non linear terms. In this section, we describe some
properties of the non linear terms B(u) = (u ·∇)u and |u|2αu in equation (2.3). They will
be crucial to obtain apriori estimates and prove global well posedeness.

First, for u, v, w in the classical (non isotropic) Sobolev space H1 such that ∇ · u =
∇ · v = ∇ · w = 0, set

B(u, v) :=
(
u .∇

)
v, and B(u) := B(u, u); (2.4)

then the classical antisymmetry property is satisfied:
〈(
B(u, v) , w

〉
= −

〈(
B(u,w) , v

〉
, and

〈(
B(u, v) , v

〉
= 0. (2.5)

We will prove that under proper assumptions on the initial condition u0 and on the
stochastic forcing term, the solution u to the SPDE (2.3) belongs a.s. to the set X defined
by

X := L∞(0, T ; H̃0,1) ∩ L2(0, T ; H̃1,1) ∩ L2(α+1)([0, T ] × R
3;R3) (2.6)

and endowed with the norm

‖u‖X :=
3∑

j=1

[
ess sup
t∈[0,T ]

‖uj(t)‖0,1 +
(∫ T

0
‖uj(t, .)‖21,1dt

) 1
2
+ ‖uj‖L2(α+1)([0,T ]×R3)

]
.

For random processes, we set

X := L4
(
Ω;L∞(0, T ; H̃0,1)

)
∩L4

(
Ω; (L2(0, T ; H̃1,1)

)
∩L2(α+1)(Ω× [0, T ]×R

3;R3). (2.7)

First, let us prove some integral upper estimates of the bilinear term.

Lemma 2.1. Let u ∈ L∞(0, T ;H) ∩ L2(0, T ; H̃1,0) and v ∈ L∞(0, T ;H) ∩ L2(0, T ; H̃1,1).
Then
∫ T

0

∣∣〈B(u(t)), v(t)
〉∣∣dt ≤ C

(∫ T

0
‖v(t)‖21,1dt

) 1
2
ess sup
t∈[0,T ]

|u(t)|L2

(∫ T

0
|∇hu(t)|2L2dt

) 1
2
,

(2.8)
∣∣〈B(u(t))−B(v(t)), (u − v)(t)

〉∣∣ ≤ C ‖v‖1,1
∣∣∇h(u(t) − v(t))

∣∣
L2

∣∣(u− v)(t)
∣∣
L2 , (2.9)

∫ T

0

∣∣〈B(u(t))−B(v(t)), (u − v)(t)
〉∣∣dt ≤ C

(∫ T

0
‖v(t)‖21,1dt

) 1
2

× ess sup
t∈[0,T ]

|(u− v)(t)|L2

( ∫ T

0
|∇h

(
(u− v)(t)

)
|2L2dt

) 1
2
. (2.10)

Proof. Let us prove some upper estimates of
〈
B(ϕ,ψ), v

〉
for ϕ,ψ ∈ H̃1,0 and v ∈ H̃1,1.

Since ∇ . ϕ = ∇ . ψ = ∇ . v = 0, using notations similar to that in [5] and part of the
arguments in this reference used to prove the uniqueness of the solution, the antisymmetry
(2.5) of B yields

−
〈
B(ϕ,ψ) , v

〉
=

〈(
B(ϕ, v) , ψ

〉
= J1 + J2, (2.11)
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where

J1 :=
2∑

k=1

3∑

l=1

∫

R3

ϕk(x) ∂kvl(x)ψl(x) dx, J2 :=
3∑

l=1

∫

R3

ϕ3(x) ∂3vl(x)ψl(x) dx.

The Fubini theorem and Hölder’s inequality applied to the Lebesgue integral with respect
to dxh imply that for almost every t ∈ [0, T ]:

|J1| ≤
2∑

k=1

3∑

l=1

∫

R

|∂kvl(., x3)|L2
h
‖ϕk(., x3)‖L4

h
‖ψl(., x3)‖L4

h
dx3

≤
2∑

k=1

3∑

l=1

(
sup
x3

|∂kvl(., x3)|L2
h

) ∫

R

‖ϕk(., x3)‖L4
h
‖ψl(., x3)‖L4

h
dx3.

The Gagliardo-Nirenberg inequality implies that for almost every x3 ∈ R we have for
φ = ϕk(., x3) and φ = ψl(., x3):

‖φ‖L4
h
≤ C |∇hφ|

1
2

L2
h

|φ|
1
2

L2
h

. (2.12)

On the other hand, for almost every x3 ∈ R the Cauchy-Schwarz inequality for the
Lebesgue measure on R

3 implies for k = 1, 2 and l = 1, 2, 3:

|∂kvl(., x3)|2L2
h
=

∫ x3

−∞

d

dz
|∂kvl(., z)|2L2

h
dz = 2

∫ x3

−∞

∫

R2

∂kvl(xh, z) ∂z∂kvl(xh, z)dxhdz

≤ C|∇hv|L2 |∂3∇hv|L2 ≤ C‖v‖21,1.
Therefore, the Hölder inequality with respect to the Lebesgue measure dx3 implies that

|J1| ≤C ‖v‖1,1
( ∫

R

|∇hϕ(., x3)|2L2
h
dx3

) 1
4
(∫

R

|∇hψ(., x3)|2L2
h
dx3

) 1
4

×
(∫

R

|ϕ(., x3)|2L2
h
dx3

) 1
4
(∫

R

|ϕ(., x3)|2L2
h
dx3

) 1
4

≤C ‖v‖1,1 |∇hϕ|
1
2

L2 |∇hψ|
1
2

L2 |ϕ|
1
2

L2 |ψ|
1
2

L2 . (2.13)

Using once more the Fubini theorem and Hölder’s inequality with respect to dxh we deduce
that

|J2| ≤
3∑

l=1

∫

R

‖∂3vl(., x3)‖L4
h
|ϕ3(., x3)|L2

h
‖ψl(., x3)‖L4

h
dx3

≤
3∑

l=1

(
sup
x3

|ϕ3(., x3)|L2
h

) ∫

R

‖∂3vl(., x3)‖L4
h
‖ψl(., x3)‖L4

h
dx3.

Furthermore, since∇ . ϕ = 0, we deduce that ∂3ϕ3(xh, x3) = −divϕh(xh, x3) := −
[
∂1ϕ1(xh, x3)+

∂2ϕ2(xh, x3)
]
. Therefore, the Cauchy-Schwarz inequality with respect to the Lebesgue

measure on R
3 yields for almost every t ∈ [0, T ] and x3 ∈ R:

|ϕ3(., x3)|2L2
h
= 2

∫ x3

−∞

∫

R2

ϕ3(xh, z) ∂zϕ3(x3, z) dxh dz

= −2

∫ x3

−∞

∫

R2

ϕ3(xh, z) divϕh(xh, z) dxh dz ≤ 2|∇hϕ|L2 |ϕ|L2 .
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Plugging the above upper estimate, using again the Gagliardo-Nirenberg inequality (2.12)
for φ = ∂3vl(., x3) and φ = ψl(., x3), using the Hölder inequality with respect to the
Lebesgue measure dxh we obtain:

|J2| ≤ C
3∑

l=1

|∇hϕ|
1
2

L2 |ϕ|
1
2

L2

∫

R

|∇h∂3vl(., x3)|
1
2

L2
h

|∂3vl(., x3)|
1
2

L2
h

× |∇hψl(t, ., x3)|
1
2

L2
h

|ψl(t, ., x3)|
1
2

L2
h

dx3

≤ C |∇hϕ|
1
2

L2 |ϕ|
1
2

L2 |∇h∂3v|
1
2

L2 |∂3v|
1
2

L2 |∇hψ|
1
2

L2 |ψ|
1
2

L2

≤ C ‖v‖1,1 |∇hϕ|
1
2

L2 |∇hψ|
1
2

L2 |ϕ|
1
2

L2 |ψ|
1
2

L2 . (2.14)

The upper estimates (2.11), (2.13) and (2.14) imply the existence of a positive constant
C such that

∣∣〈B(ϕ,ψ), v
〉∣∣ ≤ C ‖v‖1,1 |∇hϕ|

1
2

L2 |∇hψ|
1
2

L2 |ϕ|
1
2

L2 |ψ|
1
2

L2 . (2.15)

Let u ∈ L∞(0, T ;H)∩L2(0, T ; H̃1,0) and v ∈ L∞(0, T ;H)∩L2(0, T ; H̃1,1). Since for almost

every t ∈ [0, T ] we have u(t, .) ∈ H̃0,1 and v(t, .) ∈ H̃1,1, using (2.15) for ϕ = ψ = u(t) and
Hölder’s inequality with respect to the Lebesgue measure on [0, T ], we obtain

∫ T

0

∣∣〈B(u(t)), v(t)
〉∣∣ dt ≤C ‖v‖L2(0,T ;H̃1,1)

(∫ T

0
|∇hu(t, .)|2L2 |u(t, .)|2L2 dt

) 1
2

≤C ‖v‖L2(0,T ;H̃1,1) ess sup
t∈[0,T ]

|u(t)|L2

(∫ T

0
|∇hu(t)|2L2dt

) 1
2
. (2.16)

This concludes the proof of (2.8).
Expanding B(u(t)) − B(v(t)) and using the antisymmetry property (2.5) we deduce

that
〈
B(u(t, .))−B(v(t, .)) , (u − v)(t, .)

〉
=

〈
B
(
(u− v)(t, .), v(t, .)

)
, (u− v)(t, .)

〉

Using once more the antisymmetry and the upper estimate (2.15) with u− v instead of u,
we conclude the proof of (2.9). Integrating (2.9) on [0, T ] and using the Cauchy Schwarz
inequality, we deduce (2.10). �

Using Hölder’s inequality with respect to the expected value in the upper estimates of
Lemma 2.1, we deduce the following analog for stochastic processes.

Lemma 2.2. Let u ∈ L4
(
Ω;L∞(0, T ;H)

)
∩L4

(
Ω;L2(0, T ; H̃1,0)

)
and v ∈ L4

(
Ω;L∞(0, T ;H)

)
∩

L4
(
Ω;L2(0, T ; H̃1,1)

)
. Then

E

∫ T

0

∣∣〈B(u(t)), v(t)
〉∣∣dt ≤ C ‖v‖L4(Ω;L2(0,T ;H̃1,1))

× ‖u‖L4(Ω;L∞(0,T ;H))

(
E

[ ∫ T

0
|∇hu(t)|2L2dt

]2) 1
4
. (2.17)

E

∫ T

0

∣∣〈B(u(t))−B(v(t)), (u − v)(t)
〉∣∣dt ≤ C ‖v‖L4(Ω;L2(0,T ;H̃1,1))

× ‖u− v‖L4(Ω;L∞(0,T ;H))

(
E

[ ∫ T

0
|∇h(u− v)(t)|2L2dt

]2) 1
4
. (2.18)
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The following lemma proves upper estimates for the third partial derivatives of the
bilinear term; it is essentially contained in [5]. This results shows the crucial role of the
other non linear term |u|2αu of (2.3) in the control of the partial derivative ∂3 of the
bilinear term.

Lemma 2.3. There exists positive constant C such that for any α ∈ (1,∞) there exists
Cα > 0, ǫ0, ǫ1 > 0, s ∈ [0, T ] and u ∈ X:

∣∣∣
〈
∂3B(u(s)), ∂3u(s)

〉∣∣∣ ≤ C
[
ǫ0|∇h∂3u(s)|2L2 +

ǫ1
4ǫ0

∣∣|u(s)|α ∂3u(s)
∣∣2
L2

+ Cα ǫ0
−1 ǫ

− 1
α−1

1 |∂3u(s)|2L2

]
. (2.19)

Proof. We briefly sketch the proof in order to be self contained. Since divh∂3u(s) =
∂3divhu(s), the antisymmetry (2.5) yields

〈
B
(
u(s), ∂3u(s)

)
, ∂3u(s)

〉
= 0; hence for s ∈

[0, T ]:

〈
∂3B(u(s)), ∂3u(s)

〉
=

3∑

k,l=1

∫

R3

∂3uk(s, x)∂kul(s, x)∂3ul(s, x)dx := J̄1(s) + J̄2(s),

where integration by parts with respect to ∂k, k = 1, 2 yields

J̄1(s) =−
2∑

k=1

3∑

l=1

∫

R3

∂k∂3uk(s, x)ul(s, x) ∂3ul(s, x) dx

−
2∑

k=1

3∑

l=1

∫

R3

∂3uk(s, x)ul(s, x) ∂k∂3ul(s, x) dx,

J̄2(s) =

3∑

l=1

∫

R3

∂3u3(s, x)
(
∂3ul(s, x)

)2
dx = −

3∑

l=1

∫

R3

divhuh(s, x)
(
∂3ul(s, x)

)2
dx;

the last identity comes from the fact that ∇·u(s) = 0. Since α > 1, the Hölder and Young
inequalities imply that for functions f, g, h : R3 → R, ǫ0 > 0 and then ǫ1 > 0, we have for
some Cα > 0:

∣∣∣
∫

R3

f(x)g(x)h(x)dx
∣∣∣ ≤

∥∥ |f | |g| 1α
∥∥
L2α

∥∥|g|1− 1
α

∥∥
L

2α
α−1

|h|L2

≤ ǫ0|h|2L2 +
ǫ1
4ǫ0

∣∣ |f |α g
∣∣2
L2 + Cαǫ

−1
0 ǫ

− 1
α−1

1 |g|2L2 . (2.20)

Using this inequality for f = ul(s), g = ∂3ul(s) and h = ∂k∂3uk(s) (resp. g = ∂3uk(s),
h = ∂k∂3ul(s)) we deduce the existence of C > 0 such that for any α > 1, ǫ0, ǫ1 > 0 and
some constant Cα > 0:

|J̄1(s)| ≤ C
[
ǫ0
∣∣∇h∂3u(s)|2L2 +

ǫ1
4ǫ0

∣∣ |u(s)|α ∂3u(s)
∣∣2
L2 + Cαǫ

−1
0 ǫ

− 1
α−1

1 |∂3u(s)|2L2

]

Integration by parts implies that J̄2(s) = 2
∑2

k=1

∑3
l=1

∫
R3 uk(s, x)∂k∂3ul(s, x)∂3ul(s, x)dx.

Using (2.20) with f = uk(s), g = ∂3ul(s) and h = ∂k∂3ul(s), we deduce the existence of
C > 0 such that for any α > 1, ǫ0, ǫ1 > 0 and Cα > 0:

|J̄2(s)| ≤ C
[
ǫ0
∣∣∇h∂3u(s)|2L2 +

ǫ1
4ǫ0

∣∣ |u(s)|α ∂3u(s)
∣∣2
L2 + Cαǫ

−1
0 ǫ

− 1
α−1

1 |∂3u(s)|2L2

]

The upper estimates of J̄1(s) and J̄2(s) conclude the proof. �



STOCHASTIC ANISOTROPIC 3D NAVIER-STOKES 9

For any regular enough function ϕ : R3 → R
3, let F (ϕ) be the function defined by

F (ϕ) = ν∆hϕ−B(ϕ)− a |ϕ|2αϕ. (2.21)

The following lemma proves that for u ∈ X (resp. u ∈ X ), F (u) belongs to the dual space

of L2(0, T ; H̃1,1) ∩ L2(α+1)([0, T ] × R
3) (resp. to the dual space of L4(Ω;L2(0, T ; H̃1,1)) ∩

L2(α+1)(Ω× [0, T ] ×R
3)). We let ΩT := Ω× [0, T ].

Lemma 2.4. (i) Let u ∈ X and v ∈ L2(0, T ; H̃1,1) ∩ L2(α+1)([0, T ] × R
3;R3); then

∫ T

0

∣∣〈F (u(t, .)), v(t, .)
〉∣∣dt ≤ C

[
‖v‖L2(0,T ;H̃1,0)‖u‖L2(0,T ;H̃1,0) + ‖v‖L2(α+1)([0,T ]×R3)

× ‖u‖2α+1
L2(α+1)(ΩT×R3)

+ ‖v‖L2(0,T ;H̃1,1) sup
t∈[0,T ]

|u(t)|L2

(∫ T

0
|∇hu(t)|2L2dt

) 1
2
]
. (2.22)

(ii) Let u ∈ X and v ∈ L4(Ω;L2(0, T ; H̃1,1)) ∩ L2(α+1)(ΩT × R
3). Then

E

∫ T

0

∣∣〈F (u(t, .)), v(t, .)
〉∣∣dt ≤ C

[
‖v‖L2(ΩT ;H̃1,0)‖u‖L2(ΩT ;H̃1,0) + ‖v‖L2(α+1)(ΩT×R3)

× ‖u‖2α+1
L2(α+1)(ΩT×R3)

+ ‖v‖L4(Ω;L2(0,T ;H̃1,1))‖u‖L4(Ω;L∞(0,T ;H))‖u‖L4(Ω;L2(0,T ;H̃1,0))

]
.

(2.23)

Proof. (i) Integration by parts and the Cauchy-Schwarz inequality with respect to dt⊗ dx
yield

∣∣∣ν
∫ T

0
〈∆hu(t, .), v(t, .)〉dt

∣∣∣ =
∣∣∣− ν

∫ T

0

∫

R3

∇hu(t, x) ∇hv(t, x) dxdt
∣∣∣

≤ ν ‖u‖L2(0,T ;H̃1,0)‖v‖L2(0,T ;H̃1,0). (2.24)

Note that 2α+2 and 2α+2
2α+1 are conjugate Hölder exponents. Since u ∈ L2(α+1)([0, T ]×R

3),

the function |u|2αu belongs to L
2(α+1)
2α+1 ([0, T ] × R

3) and

∣∣∣
∫ T

0

∫

R3

|u(t, x)|2α u(t, x) v(t, x) dx dt ≤
∥∥|u|2αu

∥∥
L

2(α+1)
2α+1 ([0,T ]×R3)

‖v‖L2(α+1)([0,T ]×R3)

≤ ‖u‖2α+1
L2(α+1)([0,T ]×R3)

‖v‖L2(α+1)([0,T ]×R3). (2.25)

The inequalities (2.24), (2.8) and (2.25) conclude the proof of (2.22).

(ii) Let u ∈ X and v ∈ L4(Ω;L2(0, T ; H̃1,1)) ∩ L2(α+1)(ΩT × R
3). Then a.s. we may

apply part (i) to u(t)(ω) and v(t)(ω). The Cauchy Schwarz and Hölder inequalities with
respect to the expectation conclude the proof. �

To prove uniqueness of the solution, we will need the following lemma which provides
an upper estimate of

〈
F (u(t, .)) − F (v(t, .)), u(t, .) − v(t, .)

〉
for u, v ∈ X and t ∈ [0, T ].

Lemma 2.5. Let u, v ∈ X; then there exists a positive constant κ depending on α, and
for any η ∈ (0, ν) a positive constant Cη such that for almost every t ∈ [0, T ]:

〈
F (u(t, .)) − F (v(t, .)), (u − v)(t, .)

〉
≤ −η |∇h(u− v)(t, .)|2L2

+ Cη ‖v(t, .)‖21,1|(u− v)(t, .)|2L2 − aκ
∣∣(|u(t, .)| + |v(t, .)|

)α (
(u− v)(t, .)

)∣∣2
L2 . (2.26)
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Proof. Integration by parts implies that

ν
〈
∆h(u− v)(t, .) , (u− v)(t, .)

〉
= −ν |∇h(u− v)(t, .)|2L2 . (2.27)

It is well-known (see [2]; see also [19] where it is used) that there exists a constant κ
depending on α such that

κ|u(t, x) − v(t, x)|2
(
|u(t, x)| + |v(t, x)|

)2α

≤
(
|u(t, x)|2αu(t, x)− |v(t, x)|2αv(t, x)

)
·
(
u(t, x)− v(t, x)

)
,

which clearly implies:

a

∫

R3

(
|u(t, x)|2αu(t, x)− |v(t, x)|2αv(t, x)

)
.
(
u(t, x)− v(t, x)

)
dx

≥ aκ
∣∣(|u(t, .)| + |v(t, .)|

)α(
u(t, .)− v(t, .)

)∣∣2
L2 . (2.28)

Using Young’s inequality in (2.9) we deduce that for any η ∈ (0, ν) there exists Cη > 0
such that
∣∣〈B(u(t)) −B(v(t)) , (u− v)(t)〉

∣∣ ≤ (ν − η)|∇h(u− v)(t)|2L2 + Cη‖v(t)‖21,1 |(u− v)(t)|2L2 .

This upper estimates, (2.27) and (2.28) conclude the proof of (2.26). �

2.3. The stochastic perturbation. We will consider an external random force in equa-
tion (2.3) driven by a Wiener process W and whose intensity may depend on the solution
u.

More precisely, let (ek, k ≥ 1) be an orthonormal basis of H whose elements belong

to H2 := W 2,2(R3;R3) and are orthogonal in H̃0,1. For integers k, l ≥ 1 with k 6= l, we
deduce that

(∂23ek, el) = −(∂3ek, ∂3el) = −(ek, el)0,1 + (ek, el) = 0.

Therefore, ∂23ek is a constant multiple of ek. Let Hn = span (e1, · · · , en) and let Pn (resp.

P̃n) denote the orthogonal projection from H (resp. H̃0,1) to Hn. We deduce that for

u ∈ H̃0,1 we have Pnu = P̃nu. Indeed, for v ∈ Hn, we have ∂
2
3v ∈ Hn and for any u ∈ H̃0,1:

(Pnu, v) = (u, v), and (∂3Pnu, ∂3v) = −(Pnu, ∂
2
3v) = −(u, ∂23v) = (∂3u, ∂3v).

Hence given u ∈ H̃0,1, we have (Pnu, v)0,1 = (u, v)0,1 for any v ∈ Hn; this proves that Pn
and P̃n coincide on H̃0,1.

Let (W (t), t ≥ 0) be a H̃0,1-valued Wiener process with covariance operator Q on a

filtered probability space (Ω,F , (Ft),P); that is Q is a positive operator from H̃0,1 to itself
which is trace class, and hence compact. Let (qk, k ≥ 1) be the set of eigenvalues of Q
with

∑
k≥1 qk < ∞, and let (ψk, k ≥ 1) denote the corresponding eigenfunctions (that

is Qψk = qkψk). The process W is Gaussian, has independent time increments, and for

s, t ≥ 0, f, g ∈ H̃0,1,

E
[
(W (s), f)0,1

]
= 0 and E

[
(W (s), f)0,1(W (t), g)0,1

]
=

(
s ∧ t) (Qf, g)0,1.

We also have the following representation

W (t) = lim
n→∞

Wn(t) in L2(Ω; H̃0,1) with Wn(t) =

n∑

k=1

q
1/2
k βk(t)ψk, (2.29)

where βk are standard (scalar) mutually independent Wiener processes and ψk are the
above eigenfunctions of Q. For details concerning this Wiener process we refer to [14].
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Let H0 = Q
1
2 H̃0,1; then H0 is a Hilbert space with the scalar product

(φ,ψ)0 = (Q− 1
2φ,Q− 1

2ψ)0,1, ∀φ,ψ ∈ H0,

together with the induced norm | · |0 =
√

(·, ·)0. The embedding i : H0 → H̃0,1 is Hilbert-
Schmidt and hence compact; moreover, i i∗ = Q.

Let L ≡ L(2)(H0,H) (resp. L̃ ≡ L(2)(H0, H̃
0,1) ) be the space of linear operators

S : H0 7→ H (resp. S : H0 7→ H̃0,1) such that SQ
1
2 is a Hilbert-Schmidt operator from

H̃0,1 to H (resp. from H̃0,1 to itself). Clearly, L̃ ⊂ L. Set

|S|2L = traceH([SQ
1/2][SQ1/2]∗) =

∞∑

k=1

‖SQ1/2φk‖2L2 , (2.30)

|S|2L̃ = traceH̃0,1([SQ
1/2][SQ1/2]∗) =

∞∑

k=1

|SQ1/2φk|20,1. (2.31)

for any orthonormal basis {φk} in H̃0,1. Let (·, ·)L and (·, ·)L̃ denote the associated scalar
products.

The noise intensity of the stochastic perturbation σ : [0, T ] × H̃1,1 → L̃ which we put
in (2.3) satisfies the following classical growth and Lipschitz conditions (i) and (ii). Note
that due to the anisotropic feature of our model, we have to impose growth conditions
both for the | · |L and | · |L̃ norms.

Condition (C): The diffusion coefficient σ ∈ C
(
[0, T ]×H̃1,1; L̃)

)
is a linear operator such

that:
(i) Growth condition There exist non negative constants Ki and K̃i such that such

that for every t ∈ [0, T ] and u ∈ H̃1,1:

|σ(t, u)|2L ≤ K0 +K1|u|2L2 +K2|∇hu|2L2 , (2.32)

|σ(t, u)|2L̃ ≤ K̃0 + K̃1‖u‖20,1 + K̃2

(
|∇hu|2L2 + |∂3∇hu|2L2

)
. (2.33)

(ii) Lipschitz condition There exists constants L1 and L2 such that:

|σ(t, u) − σ(t, v)|2L ≤ L1|u− v|2L2 + L2|∇h(u− v)|2L2 , t ∈ [0, T ] and u, v ∈ H̃1,1.

Definition 2.6. An (Ft)-predictable stochastic process u(t, ω) is called a weak solution
in C([0, T ];H) ∩X for the stochastic equation (2.3) on [0, T ] with initial condition u0 if
u ∈ C([0, T ];H) ∩X a.s., where X is defined in (2.6), and u satisfies

(u(t), v) − (u0, v) +

∫ t

0

[
− ν

〈
u(s),∆hv

〉
−

〈
B(u(s), v) , u(s)

〉]
ds

+ a

∫ t

0

∫

R3

∣∣u(s, x)
∣∣2αu(s, x)v(x)dxds =

∫ t

0

(
σ(s, u(s))dW (s), v

)
, a.s.,

for every test function v ∈ H2(R3) and all t ∈ [0, T ]. All terms are well defined since

u ∈ L2(α+1)([0, T ]×R
3) for almost every s ∈ [0, T ]; this implies |u(s)|2αu(s) ∈ L

2(α+1)
2α+1 (R3)

which is the dual space of L2(α+1)(R3).

Furthermore the Gagliardo-Nirenberg inequality implies Dom(−∆) ⊂ Lp(R3) for any
p ∈ [2,∞). Note that this solution is a strong one in the probabilistic meaning, that is
the trajectories of u are written in terms of stochastic integrals with respect to the given
Brownian motion W .
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3. Existence and uniqueness of global solutions

The aim of this section is to prove that equation (2.3) has a unique solution in X
defined in (2.7). We at first prove local well posedeness of a Galerkin approximation of u
and apriori estimates.

3.1. Galerkin approximation and apriori estimates. Let (en, n ≥ 1) be the or-
thonormal basis of H defined in section 2.3 (that is made of functions in H2 which are

also orthogonal in H̃0,1). Recall that for every integer n ≥ 1 we set Hn := span(e1, · · · , en)
and that the orthogonal projection Pn from H to Hn restricted to H̃0,1 coincides with the
orthogonal projection from H̃0,1 to Hn.

Let Πn denote the projection in H0 on Q1/2(Hn). Let Wn(t) =
∑n

j=1
√
qjψjβj(t) =

ΠnW (t) be defined by (2.29).
Fix n ≥ 1 and consider the following stochastic ordinary differential equation on the

n-dimensional space Hn defined by un(0) = Pnu0, and for t ∈ [0, T ] and v ∈ Hn:

d(un(t), v) =
〈
F (un(t)), v

〉
dt+ (Pn σ(t, un(t))Πn dW (t), v). (3.1)

Then for k = 1, · · · , n we have for t ∈ [0, T ]:

d(un(t), ek) =
〈
F (un(t)), ek

〉
dt+

n∑

j=1

q
1
2
j

(
Pn σ(t, un(t))ψj , ek

)
dβj(t).

Note that for v ∈ Hn the map u ∈ Hn 7→ 〈F (u) , v〉 is locally Lipschitz. Indeed, H2 ⊂
L2α+2 and there exists some constant C(n) such that ‖v‖H2 ≤ C(n)|v|L2 for v ∈ Hn. Let
ϕ,ψ, v ∈ Hn; integration by parts implies that

|〈∆hϕ−∆hψ, v〉| ≤ ‖ϕ− ψ‖1,0 ‖v‖1,0 ≤ C(n)2|ϕ− ψ|L2 |v|L2 .

In the polynomial nonlinear term, the Hölder and Gagliardo-Nirenberg inequalities imply:
∣∣∣
∫

R3

(
|ϕ(x)|2αϕ(x)−|ψ(x)|2αψ(x)

)
v(x)dx

∣∣∣

≤ C(α)
(
‖ϕ‖2αL2α+2 + ‖ψ‖2αL2α+2

)
‖ϕ− ψ‖L2α+2 ‖v‖L2α+2

≤ C(α)C(n)2(α+1)
(
|ϕ|2αL2 + |ψ|2αL2

)
|ϕ− ψ|L2 |v|L2 .

Finally, using (2.15) and integration by parts we deduce:

|〈B(ϕ) −B(ψ), v〉| =
∣∣− 〈B(ϕ− ψ, v) , ϕ〉 − 〈B(ψ, v) , ϕ− ψ〉

∣∣

≤ C ‖ϕ− ψ‖1,0
(
‖ϕ‖1,0 + ‖ψ‖1,0

)
‖v‖1,1

≤ CC(n)3|ϕ− ψ|L2

(
|ϕ|L2 + |ψ|L2

)
|v|L2 .

Condition (C) implies that the map u ∈ Hn 7→
(√
qj

(
σ(t, u)ψj , ek

)
: 1 ≤ j, k ≤ n

)

satisfies the classical global linear growth and Lipschitz conditions from Hn to n × n
matrices uniformly in t ∈ [0, T ]; indeed, the growth and Lipschitz conditions (2.32) and
(C)(ii) imply:

∣∣(σ(t, u)√qjψj , ek
)∣∣ ≤

∣∣σ(t, u)√qjψj
∣∣
H
|ek|L2 ≤

√
K0 +

√
K1|u|L2 +

√
K2|∇hu|L2

≤ C(n)
(
1 + |u|L2

)
,

∣∣([σ(t, u) − σ(t, v)]
√
qjψj , ek

)∣∣ ≤
√
L1|u− v|L2 +

√
L2|∇h(u− v)|2L2 ≤ CC(n)|u− v|L2 .

Hence by a well-known result about existence and uniqueness of solutions to stochastic dif-
ferential equations (see e.g. [18]), there exists a maximal solution un =

∑n
k=1(un , ek

)
ek ∈
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Hn to (3.1), i.e., a stopping time τ∗n ≤ T such that (3.1) holds for t < τ∗n and as t ↑ τ∗n < T ,
|un(t)|L2 → ∞.

The following proposition shows that τ∗n = T a.s., that is provides the (global) existence
and uniqueness of the finite dimensional approximations un. It also gives apriori estimates
of un which do not depend on n; this will be crucial to prove well posedeness of (2.3).

Proposition 3.1. Let u0 be a F0 measurable random variable such that E‖u0‖40,1 < ∞,

T > 0 and σ satisfy condition (C) with K̃2 <
2ν
21 . Then (3.1) has a unique global solution

(i.e., τ∗n = T a.s.) with a modification un ∈ C([0, T ],Hn). Furthermore, there exists a
constant C > 0 such that:

sup
n

E

[
sup
t∈[0,T ]

‖un(t)‖40,1 +
(∫ T

0
‖un(s)‖21,1 ds

)2
+

∫ T

0
‖un(s)‖2(α+1)

L2(α+1)ds
]
≤ C

(
E‖u0‖40,1 + 1

)
.

(3.2)

Proof. Let un(t) be the maximal solution to (3.1) described above. For every N > 0, set

τN = inf{t : ‖un(t)‖0,1 ≥ N} ∧ T.
Itô’s formula applied to ‖ .‖0,1 and the antisymmetry relation (2.5) of the bilinear term

yield that for t ∈ [0, T ]:

‖un(t ∧ τN )‖20,1 = ‖Pnu0‖20,1 − 2ν

∫ t∧τN

0
|∇hun(s)|2L2ds− 2ν

∫ t∧τN

0
|∇h∂3un(s)|2L2ds (3.3)

− 2a

∫ t∧τN

0
‖un(s)‖2α+2

L2α+2ds− 2a(2α + 1)

∫ t∧τN

0

∫

R3

|un(s, x)|2α|∂3un(s, x)|2ds +
3∑

j=1

Tj(t),

where

T1(t) = −2

∫ t∧τN

0
〈∂3B(un(s)), ∂3un(s)〉 ds,

T2(t) = 2

∫ t∧τN

0

(
σ(s, un(s))dWn(s), un(s)

)
0,1
,

T3(t) =

∫ t∧τN

0

∣∣Pn σ(s, un(s))Πn
∣∣2
L̃ ds.

The growth condition (2.33) implies that

T3(t) ≤
∫ t∧τN

0

[
K̃0 + K̃1‖un(s)‖20,1 + K̃2

(
|∇hun(s)|2L2 + |∂3∇hun(s)|2L2

)]
ds,

while (2.19) in Lemma 2.3 yields the existence of positive constants C,Cα, ǫ0 and ǫ1 such
that

|T1(t)| ≤ 2C
[
ǫ0

∫ t∧τN

0
|∇h∂3un(s)|2L2 ds+

ǫ1
4ǫ0

∫ t∧τN

0

∣∣|un(s)|α ∂3un(s)
∣∣2
L2ds

+ Cαǫ
−1
0 ǫ

− 1
α−1

1

∫ t∧τN

0
|∂3un(s)|2L2ds

]
.

Finally, the Burkholder-Davies-Gundy and Young inequalities as well as (2.33) imply that
for β ∈ (0, 1):

E

(
sup
s≤t

∣∣∣2
∫ s∧τN

0

(
σ(r, un(r))dWn(r), un(r)

)
0,1

∣∣∣
)
≤ 6E

{∫ t∧τN

0

∣∣Pnσ(r, un(r))Πn
∣∣2
L̃‖un(r)‖

2
0,1dr

} 1
2



14 H. BESSAIH AND A. MILLET

≤β E

(
sup

s≤inf t∧τN
‖un(s)‖20,1

)

+
9

β
E

∫ t∧τN

0

[
K̃0 + K̃1‖un(s)‖20,1 + K̃2

(
|∇hun(s)|2L2 + |∂3∇hun(s)|2L2

)]
ds.

If K̃2 <
ν
5 and ǫ ∈ (0, 2ν − 10K̃2), we may choose β ∈ (0, 1) such that 2ν−

(
9
β +1

)
K̃2 > ǫ,

then ǫ0 > 0 such that 2ν−2Cǫ0 > ǫ, and finally ǫ1 > 0 such that 2a(2α+1)− ǫ1C
2ǫ0

> ǫ. For

this choice of constants, the inequality ‖Pnu0‖0,1 ≤ ‖u0‖0,1 and the above upper estimates
yield (neglecting some non negative terms in the left hand side of (3.3)):

(1− β)E
(

sup
s∈[0,t]

‖un(s ∧ τN )‖20,1
)
≤ E‖u0‖20,1 + TK̃0

( 9
β
+ 1

)

+
[
K̃1

( 9
β
+ 1

)
+

2CCα

ǫ0ǫ
1/(α−1)
1

]
E

∫ t

0
||un(s ∧ τN )‖20,1ds. (3.4)

Gronwall’s lemma implies that E
(
sups∈[0,T ] ‖un(s ∧ τN )‖20,1

)
≤ C for some constant C

which does not depend on n and N . Note that ‖φ‖21,1 = ‖φ‖20,1+ |∇hφ|2L2 + |∂3∇hφ|2H . We
use (3.4) and the upper estimates of Ti(t) for i = 1, 2, 3 for the same choice of constants
β, ǫ0 and ǫ1; this yields

E

(
sup
s∈[0,T ]

‖un(s∧τN )‖20,1
)
+E

∫ τN

0

(
‖un(s)‖21,1+‖un(s)‖2α+2

L2α+2

)
ds ≤ C

(
1+E‖u0‖20,1

)
(3.5)

for some positive constant C depending on K̃i, i = 0, 1, 2, β, ǫ0 and ǫ1 but independent of
n and N .

Apply once more the Itô formula to the square of ‖ . ‖20,1. This yields

‖un(t ∧ τN )‖40,1 = ‖Pnu0‖40,1 − 4ν

∫ t∧τN

0
‖un(s)‖20,1

[
|∇hun(s)|2L2 + |∂3∇hun(s)|2L2

]
ds

− 4a

∫ t∧τN

0
‖un(s)‖20,1‖un(s)‖2α+2

L2α+2ds

− 4a(2α + 1)

∫ t∧τN

0
‖un(s)‖20,1

∣∣ |un(s)|α∂3un(s)
∣∣2
L2ds+

4∑

j=1

T̃j(t), (3.6)

where we let

T̃1(t) = − 4

∫ t∧τN

0
〈∂3B(un(s)), ∂3un(s)〉 ‖un(s)‖20,1ds,

T̃2(t) = 4

∫ t∧τN

0

(
Pnσ(s, un(s))dWn(s), un(s)

)
0,1

‖un(s)‖20,1,

T̃3(t) = 2

∫ t∧τN

0

∣∣Pnσ(s, un(s))Πn
∣∣2
L̃ ‖un(s)‖20,1ds,

T̃4(t) = 4

∫ t∧τN

0

∣∣(Πnσ(s, un(s))Pn
)∗
un(s)

∣∣2
0
‖un(s)‖20,1ds.

The growth condition (2.33) implies that

T̃3(t)+T̃4(t) ≤ 6

∫ t∧τN

0

[
K̃0+K̃1‖un(s)‖20,1+K̃2

(
|∇hun(s)|2L2+|∂3∇hun(s)|2L2

)]
‖un(s)‖20,1ds,
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while (2.19) implies

|T̃1(t)| ≤ 4C

∫ t∧τN

0

(
ǫ0|∇h∂3un(s)|2L2 +

ǫ1
4ǫ0

∣∣|un(s)|α ∂3un(s)
∣∣2
L2 + Cαǫ

−1
0 ǫ

− 1
α−1

1 |∂3un(s)|2L2

)

× ‖un(s)‖20,1 ds.
The Burkholder-Davies-Gundy inequality, the growth condition (2.33) and Young’s in-
equality imply that for β ∈ (0, 1):

E

(
sup
s≤t

T̃2(s)
)
≤ 12E

{∫ t∧τN

0

∣∣σ(r, un(r))
∣∣2
L̃ ‖un(r)‖60,1dr

} 1
2

≤ βE
(

sup
s≤t∧τN

‖un(s)‖40,1
)

+
36

β
E

∫ t∧τN

0

[
K̃0 + K̃1‖un(s)‖20,1 + K̃2

(
|∇hun(s)|2L2 + |∂3∇hun(s)|2L2

)]
‖un(s)‖20,1ds.

If K̃2 <
2ν
21 we may choose β ∈ (0, 1) and ǫ > 0 such that ǫ < 4ν−6

(
1+6/β)K̃2, then ǫ0 > 0

such that 4ν−6
(
1+6/β)K̃2−4Cǫ0 > ǫ and finally ǫ1 > 0 such that 4Cǫ1

4ǫ0
+ ǫ < 4a(2α+1).

For this choice of constants, neglecting some non positive integrals in the right hand side
of (3.6), we deduce:

(1− β)E
(

sup
s∈[0,t]

‖un(s ∧ τN )‖40,1
)
+ ǫE

∫ t∧τN

0
‖un(s)‖20,1

[
|∇hun(s)|2L2 + |∂3∇hun(s)|2L2

]
ds

≤ E‖u0‖40,1 +
(
6 +

36

β

)
K̃1E

∫ t

0
‖un(s ∧ τN )‖40,1ds+

[
6 +

36

β

]
K̃0E

∫ t

0
‖un(s ∧ τN )‖20,1ds.

This inequality, (3.5) and Gronwall’s lemma yield supn E
(
sups∈[0,T ] ‖un(s∧ τN )‖40,1

)
<∞.

We deduce the existence of a constant C, which does not depend on n and N , such that:

E

(
sup
s∈[0,T ]

‖un(s ∧ τN )‖40,1
)
+ E

∫ τN

0
‖un(s)‖21,1‖un(s)‖20,1ds ≤ C

(
1 + E‖u0‖40,1

)
. (3.7)

We now prove that (3.2) holds. As N → ∞, the sequence of stopping times τN increases
to τ∗n, and on the set {τ∗n < T} we have sups∈[0,τN ] ‖un(s)‖0,1 → +∞. Hence (3.5) proves

that P (τ∗n < T ) = 0 and that for almost every ω, for N(ω) large enough, τN(ω)(ω) = T .
The monotone convergence theorem used in (3.5) and (3.7), we deduce the following upper
estimates for some constant which does not depend on n:

E

(
sup
s∈[0,T ]

‖un(s)‖20,1
)
+ E

∫ T

0

(
‖un(s)‖21,1 + ‖un(s)‖2α+2

L2α+2

)
ds ≤ C

(
1 + E‖u0‖20,1

)
, (3.8)

E

(
sup
s∈[0,T ]

‖un(s)‖40,1
)
+ E

∫ T

0
‖un(s)‖21,1‖un(s)‖20,1ds ≤ C

(
1 + E‖u0‖40,1

)
. (3.9)

To complete the proof and check (3.2), we finally prove that

sup
n

E

(∣∣∣
∫ T

0
‖un(s)‖21,1ds

∣∣∣
2)

≤ C
(
1 + E‖u0‖40,1

)
. (3.10)

The identity (3.3) and the upper estimates of T1(t) and T3(t) imply that for K̃2 < 2ν,

2Cǫ0 < K̃2 and ǫ1 small enough we have for every t ∈ [0, T ] and :

‖un(t ∧ τN )‖20,1 + (2ν − K̃2)

∫ t∧τN

0

(
|∇hun(s)|2L2 + |∂3∇hun(s)|2L2

)
ds
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≤ ‖u0‖20,1 + sup
s≤t

|T2(s)|+ J(t), (3.11)

where for some positive constant C:

J(t) =

∫ t∧τN

0

[
K̃1‖un(s)‖20,1 + K̃0 +

2CCα

ǫ0ǫ
1/(α−1)
1

|∂3un(s)|2L2

]
ds ≤ C

∫ t∧τN

0
‖un(s)‖20,1ds.

Hence for K̃2 < 2ν, using the Doob and Cauchy Schwarz inequalities as well as (2.33), we
deduce:

E

[{
sup
s≤T

‖un(s ∧ τN )‖20,1 + (2ν − K̃2)

∫ τN

0

(
|∇hun(s)|2L2 + |∂3∇hun(s)|2L2

)
ds
}2]

≤ 3E(J(T )2) + 3E
(
sup
s≤T

T 2
2 (s)

)
+ 3E(‖u0‖40,1)

≤ 3CTE

∫ τN

0
‖un(s)‖40,1ds+ 3CE

∫ τN

0
‖un(s)‖20,1 |σ(un(s))Πn|2L̃ds+ 3E(‖u0‖40,1)

≤ 3C E

∫ τN

0

[
2K̃2‖un(s)‖20,1‖un(s)‖21,1 + (K̃1 + T )‖un(s)‖40,1 + K̃0‖un(s)‖20,1

]
ds

+ 3E(‖u0‖40,1).
Let N → ∞ in this equation. Since τN(ω)(ω) = T for N(ω) large enough, the above
inequality where τN is replaced by T (which is deduced by means of the monotone conver-
gence theorem) coupled with (3.8) and (3.9) yield (3.10). This completes the proof. �

3.2. Well posedeness of equation (2.3). The aim of this section is to prove that if the

initial condition u0 ∈ L4(Ω; H̃0,1), equation (2.3) has a unique (weak) solution in the space
X which belongs a.s. to C([0, T ];H), where

X := L4
(
Ω;L∞(0, T ; H̃0,1)

)
∩ L4

(
Ω;L2(0, T ; H̃1,1)

)
∩ L2(α+1)(Ω × [0, T ] × R

3).

Theorem 3.2. Let σ satisfy condition (C) with K̃2 < 2ν
21 and u0 be independent of

(W (t), t ≥ 0) such that E(‖u0‖40,1) <∞. Then there exists a weak solution u ∈ X to (2.3)

with initial condition u0. This solution belongs to C([0, T ];H) a.s.
Furthermore, there exists a constant C > 0 such that this solution satisfies the following

upper estimate:

E

(
sup

0≤t≤T
‖u(t)‖40,1 +

( ∫ T

0
‖u(t)‖21,1dt

)2
+

∫ T

0

∫

R3

|u(t, x)|2(α+1)dxdt
)
≤ C

(
1 + E‖u0‖40,1

)
.

(3.12)
If L2 < 2ν, then (2.3) has a unique weak solution in X which belongs a.s. to C([0, T ];H).

Proof. The proof is decomposed in several steps. Let ΩT = [0, T ] × Ω be endowed with
the product measure ds⊗ dP on B([0, T ])⊗F . Recall that L is defined by (2.31) and that
σ satisfies (2.32).

Step 1: The inequalities (3.2) and (2.23) imply the existence of a subsequence of
(un, n ≥ 1) (resp. of

(
Pnσ(., un) ◦ Πn, n ≥ 1

)
and of

(
F (un), n ≥ 1

)
), still denoted by the

same notation, of processes u ∈ X (resp. S̃ ∈ L2(ΩT ;L) and F̃ ∈
[
L4

(
Ω;L2(0, T ; H̃1,1)

)
∩

L2(α+1)(ΩT × R
3)
]∗
), and finally of a random variable ũ(T ) ∈ L2(Ω; H̃0,1), for which the

following properties hold:
(i) un → u weakly in L4

(
Ω;L2(0, T ; H̃1,1)

)
∩ L2(α+1)(ΩT × R

3),

(ii) un is weak star converging to u in L4
(
Ω;L∞(

[0, T ]; H̃0,1)
)
,
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(iii) un(T ) → ũ(T ) weakly in L2(Ω; H̃0,1),

(iv) F (un) → F̃ weakly in
[
L4

(
Ω;L2(0, T ; H̃1,1)

)
∩ L2(α+1)(ΩT × R

3)
]∗

(v) Pnσ(., un(.))Πn → S̃ weakly in L2(ΩT ;L).
Indeed, (i) and (ii) are straightforward consequences of Proposition 3.1, of (3.2), and of

uniqueness of the limit of E
∫ T
0 (un(t), v(t))dt for appropriate v. The upper estimate (2.23)

proves (iv). The definition of Pn, Πn, the growth condition (2.32) and (3.2) imply:

sup
n

E

∫ T

0
|Pnσ(s, un(s))Πn|2L ds ≤ sup

n
E

∫ T

0

[
K0 +K1|un(s)|2L2 +K2|∇hun(s)|2L2

]
ds <∞.

This proves (v). Finally, (3.7) and the equality τN = T a.s. imply that supn E‖un(T )‖40,1 <
∞, which proves (iii).

Furthermore, properties (i) and (ii) and (3.2) imply that

E

[( ∫ T

0
‖u(s)‖21,1ds

)2
+

∫ T

0
‖u(s)‖2α+2

L2α+2ds
]
≤ C(1 + E‖u0‖40,1),

E

(
sup
s∈[0,T ]

‖u(s)‖40,1
)
≤ C(1 + E‖u0‖40,1).

Step 2: We prove that ũ(T ) = u(T ) a.s. and that for t ∈ [0, T ]:

u(t) = u0 +

∫ t

0
F̃ (s)ds+

∫ t

0
S̃(s)dW (s). (3.13)

For δ > 0, let f ∈ H1(−δ, T+δ) be such that ‖f‖∞ = 1, f(0) = 1 and for any integer j ≥ 1
set gj(t) = f(t)ej, where {ej}j≥1 is the previous orthonormal basis of H made of elements

ofH2 which are also orthogonal in H̃0,1, such that for every n ≥ 1, Hn = span (e1, · · · , en).

The Itô formula implies that for any j ≥ 1, and for 0 ≤ t ≤ T :

(
un(T ) , gj(T )

)
=

(
un(0) , gj(0)

)
+

3∑

i=1

Iin,j, (3.14)

where

I1n,j =

∫ T

0
(un(s), ej) f

′(s)ds, I2n,j =

∫ T

0
〈F (un(s)), gj(s)〉ds,

I3n,j =

∫ T

0

(
Pnσ(s, un(s))ΠndW (s), gj(s)

)
.

Since f ′ ∈ L2([0, T ]) and for every Z ∈ L2(Ω), (t, ω) 7→ ejZ(ω) f
′(t) ∈ L2

(
Ω;L2(0, T ; H̃0,1)

)

⊂ L
4
3 (Ω;L1(0, T ; H̃0,1)), the weak-star convergence (ii) above implies that as n → ∞,

I1n,j →
∫ T
0

(
u(s), ej

)
f ′(s)ds weakly in L2(Ω). Similarly, (iv) implies that as n → ∞,

I2n,j →
∫ T
0 〈F̃ (s), gj(s)〉ds weakly in L2(Ω).

To prove the convergence of I3n,j, as in [25] (see also [13]), let PT denote the class of

predictable processes in L2(ΩT ,L) with the inner product

(G, J)PT
= E

∫ T

0

(
G(s), J(s)

)
L ds = E

∫ T

0
traceH(G(s)QJ(s)

∗) ds.
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The map T : PT → L2(Ω) defined by T (G)(t) =
∫ T
0

(
G(s)dW (s), gj(s)

)
is linear and

continuous because of the Itô isometry. Furthermore, (v) shows that for every G ∈ PT , as
n→ ∞,

(
Pnσ(., un(.))Πn, G

)
PT

→ (S̃(.), G)PT
weakly in L2(Ω).

Finally, as n → ∞, Pnu0 = un(0) → u0 in H. By (iii), (un(T ), gj(T )) converges to
(ũ(T ), gj(T )) weakly in L2(Ω). Therefore, as n→ ∞, (3.1) leads to

(ũ(T ), ej) f(T ) =
(
u0, ej

)
+

∫ T

0

(
u(s), ej

)
f ′(s)ds+

∫ T

0
〈F̃ (s), gj(s)〉ds

+

∫ T

0

(
S̃(s)dW (s), gj(s)

)
a.s. (3.15)

For δ > 0, k > 1
δ , t ∈ [0, T ], let fk ∈ H1(−δ, T + δ) be such that ‖fk‖∞ = 1, fk = 1 on

(−δ, t − 1
k ) and fk = 0 on

[
t, T + δ

)
. Then fk → 1(−δ,t) in L

2, and f ′k → −δt in the sense
of distributions. Hence as k → ∞, (3.15) written with f := fk yields

0 =
(
u0 − u(t), ej

)
+

∫ t

0
〈F̃ (s), ej〉ds +

∫ t

0

(
S̃(s)dW (s), ej

)

for almost all (t, ω) ∈ ΩT . Here, the weak continuity (after some modification) of u(t) in
H for almost all ω ∈ Ω is deduced by using Lemma 1.4 in Chapter III in Temam [26].
Indeed, it is easy to see that (3.15) provides weak continuity with values in H−1. Using
the fact that the solution is also a.s L∞([0, T ];H), Lemma 1.4 from [26] provides that the
solution is a.s. in Cw([0, T ];H).

Note that j is arbitrary and E
∫ T
0 |S̃(s)|2Lds <∞; hence for 0 ≤ t ≤ T and almost every

ω, we deduce (3.13). Moreover
∫ t
0 F̃ (s)ds ∈ H a.s. Let f = 1(−δ,T+δ); using again (3.15)

we obtain

ũ(T ) = u0 +

∫ T

0
F̃ (s)ds +

∫ T

0
S̃(s)dW (s).

This equation and (3.13) yield that ũ(T ) = u(T ) a.s.

Step 3: In (3.13) we still have to prove that ds ⊗ dP a.s. on ΩT , we have:

S̃(s) = σ(s, u(s)) and F̃ (s) = F (u(s)) .

To establish these relations we use the same idea as in [20] (see also [25]). Let

v ∈ X = L4
(
Ω;L∞(0, T ; H̃0,1)

)
∩ L4

(
Ω;L2(0, T ; H̃1,1)

)
∩ L2(α+1)(Ω× [0, T ]× R

3).

Since σ satisfies the Lipschitz condition (C)(ii) with a constant L2 < 2ν, we may choose
η ∈ (0, ν) such that L2 < 2η. For this choice of η, let Cη > 0 be defined by (2.26) and for
every t ∈ [0, T ], set

r(t) =

∫ t

0

[
Cη‖v(s)‖21,1 + L1

]
ds. (3.16)

Then almost surely, 0 ≤ r(t) <∞ for all t ∈ [0, T ]. Moreover, we also have that

r ∈ L1(Ω, L∞(0;T )), e−r ∈ L∞(ΩT ), r
′ ∈ L1(ΩT ), r

′e−r ∈ L2(Ω, L1((0, T )). (3.17)

The weak convergence in (iii) and the property Pnu0 → u0 in H imply that

E
(
|u(T )|2L2 e

−r(T ))− E|u0|2L2 ≤ lim inf
n

[
E
(
|un(T )|2L2

e−r(T )
)
− E|Pnu0|2L2

]
. (3.18)
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We now apply Itô’s formula to |φ(t)|2L2 e
−r(t) for φ = u and φ = un. This gives the relation

E
(
|φ(T )|2L2 e

−r(T ))− E|φ(0)|2L2 = E

∫ T

0
e−r(s)d

{
|φ(s)|2L2

}
− E

∫ T

0
r′(s)e−r(s)|φ(s)|2L2ds,

which can be justified due to (3.17) and the property |φ|2 ∈ L1(Ω, L∞((0, T )) for both
choices of φ. Using (3.13), (3.1) and letting u = v + (u − v) after simplification, from
(3.18) we obtain

E

∫ T

0
e−r(s)

[
− r′(s)

{∣∣u(s)− v(s)
∣∣2
L2 + 2

(
u(s)− v(s) , v(s)

)
}+ 2〈F̃ (s), u(s)〉 + |S̃(s)|2L

]
ds

≤ lim inf
n

Xn, (3.19)

where

Xn = E

∫ T

0
e−r(s)

[
− r′(s)

{∣∣un(s)− v(s)
∣∣2
L2 + 2

(
un(s)− v(s) , v(s)

)}

+ 2〈F (un(s)), un(s)〉+ |Pnσ(s, un(s))Πn|2L
]
ds.

We write Xn = Yn +
∑3

i=1 Z
i
n where Yn need not converge but is non positive while the

sequences Zin, i = 1, 2, 3 converge as n → ∞. The upper estimate in (2.26) and the
Lipschitz condition (C)(ii) imply that for s ∈ [0, T ] and L2 < 2η < 2ν:

2〈F (un(s))− F (v(s)) , un(s)− v(s)〉+
∣∣Pnσ(s, un(s))Πn − Pnσ(s, v(s))Πn

∣∣2
L

≤ −2η
∣∣∇h

(
un(s)− v(s)

)∣∣2
L2 + Cη‖v(t)‖21,1 |un(s)− v(s)|2L2 + |σ(s, un(s))− σ(s, v(s))|2L

≤ −(2η − L2)|∇h(un(s)− v(s)|2L2 +
(
Cη‖v(s)‖21,1 + L1

)
|un(s)− v(s)|2L2 .

Hence the definition of r in (3.16) implies that

Yn := E

∫ T

0
e−r(s)

[
− r′(s)|un(s)− v(s)|2L2 + 2〈F (un(s))− F (v(s)), un(s)− v(s)〉

+
∣∣Pn

[
σ(s, un(s))− σ(s, v(s))

]
Πn

∣∣2
L

]
ds ≤ 0. (3.20)

Furthermore, Xn = Yn +
∑3

j=1 Z
j
n, where

Z1
n =E

∫ T

0
e−r(s)

[
− 2r′(s)

(
un(s))− v(s), v(s)

)
+ 2〈F (un(s)), v(s)〉 + 2〈F (v(s)), un(s)〉

− 2〈F (v(s)), v(s)〉 + 2
(
Pnσ(s, un(s))Πn , σ(s, v(s))

)
L

]
ds,

Z2
n =2E

∫ T

0
e−r(s)

(
Pnσ(s, un(s))Πn , Pnσ(s, v(s))Πn − σ(s, v(s))

)
L ds,

Z3
n = − E

∫ T

0
e−r(s)

∣∣Pnσ(s, v(s))Πn
∣∣2
L ds.

The definition of X and (3.17) imply that r′e−rv ∈ L2
(
Ω;L1(0, T ; H̃0,1)

)
. Hence the weak

star convergence (ii) implies that as n→ ∞:

E

∫ T

0
e−r(s)r′(s)

(
un(s)− v(s) , v(s)

)
ds→ E

∫ T

0
e−r(s)r′(s)

(
u(s)− v(s) , v(s)

)
ds.

Since (2.23) implies that F (v) ∈
(
L4(Ω;L2(0, T ; H̃1,1)) ∩ L2(α+1)(ΩT × R

3)
)∗
, the weak

convergence (i) implies that E
∫ T
0 e−r(s)〈F (v(s)), un(s)〉ds → E

∫ T
0 e−r(s)〈F (v(s)), u(s)〉ds.
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Since v ∈ L4(Ω;L2(0, T ; H̃1,1))∩L2(α+1)(ΩT ×R
3), the weak convergence (iv) implies that

E
∫ T
0 e−r(s)〈F (un(s)), v(s)〉ds → E

∫ T
0 e−r(s)〈F̃ (s), v(s)〉ds. Finally, the weak convergence

(v) implies that as n→ ∞:

E

∫ T

0
e−r(s)

(
Pnσ(s, un(s))Πn , σ(s, v(s))

)
L ds → E

∫ T

0
e−r(s)

(
S̃(s) , σ(s, v(s))

)
L ds.

Hence as n→ ∞,

Z1
n → E

∫ T

0
e−r(s)

[
− 2r′(s)

(
u(s)− v(s), v(s)

)
+ 2〈F̃ (s), v(s)〉+ 2〈F (v(s)), u(s)〉

− 2〈F (v(s)), v(s)〉 + 2
(
S̃(s) , σ(s, v(s))

)
L

]
ds. (3.21)

For almost every (ω, t) ∈ ΩT and any orthonormal basis ψj ofH0,
∑

j≥n+1 qj|σ(s, v(s))ψj |2L2

converges to 0 as n → ∞. This sequence is dominated by |σ(s, v(s))|2L which belongs to
L1(P ) by means of the growth condition (2.32) and the definition of X . Furthermore, the
inequality |Pnσ(s, un(s)) ◦ Πn|L ≤ |σ(s, un(s))|L, the growth condition (2.32), (3.7) and
the Cauchy-Schwarz inequality yield

Z2
n ≤

(
E

∫ T

0
e−r(s)|Pnσ(s, un(s)) ◦ Πn|2Lds

) 1
2
(
E

∫ T

0
e−r(s)

∑

j≥n+1

qj|σ(s, v(s))ψj |2L2ds
) 1

2
.

In the above right hand side, the first factor remains bounded, while as n→ ∞ the second
one converges to 0 by the dominated convergence theorem. This yields

Z2
n → 0 as n→ ∞. (3.22)

Finally, the definition of Pn, Πn and the growth condition (2.32) imply that for a.e.
(ω, s) ∈ ΩT ,

∣∣∣
∑

j≥1

qj|Pnσ(s, v(s))Πnψj |2L2 − |σ(s, v(s))|2L
∣∣∣ ≤ 2

∑

j≥n+1

qj |σ(s, v(s))ψj |2L2

+ 2|(Pn − Id)σ(s, v(s))|2L → 0

as n→ ∞. Furthermore, the growth conditon (2.32) implies that for every n:
∣∣∣
∑

j≥1

qj|Pnσ(s, v(s))Πnψj |2L2 − |σ(s, v(s))|2L
∣∣∣ ≤ 2|σ(s, v(s))|2L

≤ 2
[
K0 +K1|v(s)|2L2 +K2|∇hv(s)|2L2

]
∈ L1(ΩT ).

Hence the dominated convergence theorem implies that

Z3
n → −E

∫ T

0
e−r(s) |σ(s, v(s))|2Lds. (3.23)

Using the inequalities (3.19)–(3.23) we obtain:

E

∫ T

0
e−r(s)

[
− r′(s)|u(s)− v(s)|2L2 + 2〈F̃ (s)− F (v(s)) , u(s)− v(s)〉

+ |S̃(s)− σ(s, v(s))|2L
]
ds ≤ 0. (3.24)

Let v = u ∈ X ; then we deduce that for almost every (ω, s) ∈ ΩT we have S̃(s) = σ(s, u(s)).
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Let λ ∈ R and ṽ ∈ X and set vλ = u + λṽ ∈ X . Then if rλ is defined in terms on vλ
using (3.16), the inequality (3.24) yields

λ2E

∫ T

0
e−rλ(s)r′λ(s)|ṽ(s)|2L2ds+ 2λE

∫ T

0
e−rλ(s)〈F̃ (s)− F (u(s)) , ṽ(s)〉ds

+2λE

∫ T

0
e−rλ(s)〈F (u(s))− F (vλ(s)) , ṽ(s)〉ds ≤ 0. (3.25)

The upper estimate (2.26) and Hölder’s inequality imply that for η ∈ (0, ν) and λ ∈ (0, 1],
∣∣〈F (vλ(s))− F (u(s)) , ṽ(s)〉

∣∣ = 1

|λ|
∣∣〈F (vλ(s))− F (u(s)) , vλ(s)− u(s)〉

∣∣ ≤ |λ|φ(t),

where by Hölder’s inequality we have

φ(t) =η‖ṽ(t)‖21,1 + 2Cη
(
‖u(s)‖21,1 + ‖ṽ‖21,1

)
|ṽ(s)|2L2

+ Caκ
(
‖u(s)‖2α

L2(α+1) + ‖ṽ(s)‖2α
L2(α+1)

)
‖ṽ(s)‖2

L2(α+1) .

Using once more Hölder’s inequality, we deduce that

E

∫ T

0
φ(t)dt ≤ CE

[ ∫ T

0
‖ṽ(s)‖21,1ds+

[(∣∣∣
∫ T

0
‖u(s)‖21,1ds

∣∣∣
2) 1

2
+

(∣∣∣
∫ T

0
‖ṽ(s)‖21,1ds

∣∣∣
2) 1

2
]

×
(

sup
s∈[0,T ]

|ṽ(s)|4L2

) 1
2
+ C

[
‖u‖2α

L2(α+1)(ΩT×R3)
+ ‖ṽ(s)‖2α

L2(α+1)(ΩT×R3)

]
‖ṽ‖2

L2(α+1)(ΩT×R3)
<∞.

Since rλ(s) ≥ 0, the dominated convergence theorem implies that

E

∫ T

0
e−rλ(s)〈F (u(s)) − F (vλ(s)), ṽ(s)〉ds → 0 as λ→ 0.

Furthermore, since F̃ (s) − F (u(s)) ∈
(
L4(Ω;L2(0, T ; H̃1,1)) ∩ L2(α+1)(ΩT × R

3)
)∗
, using

once more the dominated convergence theorem we deduce that as λ→ 0:

E

∫ T

0
e−rλ(s)〈F̃ (s)− F (u(s)) , ṽ(s)〉ds → E

∫ T

0
e−r0(s)〈F̃ (s)− F (u(s)) , ṽ(s)〉ds.

Dividing (3.25) by λ and letting λ→ 0+ and λ→ 0−, we deduce that for every ṽ ∈ X ,

E

∫ T

0
e−r0(s)〈F̃ (s)− F (u(s)) , ṽ(s)〉ds = 0.

This implies that F̃ (s) = F (u(s)) a.e. on ΩT .
Step 4: We next prove that u ∈ C([0, T ];H) a.s. First recall that u is a.s. weakly
continuous from [0, T ] to H as proved in Step 2. Therefore, for any t0 ∈ [0, T ] we have

(
u(t) , u(t0)

)
→ |u(t0)|2H , as t→ t0.

Furthermore, given t, t0 ∈ [0, T ],

|u(t)− u(t0)|2L2 = |u(t)|2L2 + |u(t0)|2L2 − 2
(
u(t) , u(t0)

)
.

Hence to prove that a.s. |u(t) − u(t0)|L2 |L2 → 0 as t → t0, it is enough to check that a.s.
|u(t)|2L2 converges to |u(t0)|2L2 as t→ t0. Itô’s formula implies

|u(t ∨ t0)|2L2 − |u(t ∧ t0)|2L2 = T1(t0, t) + T2(t0, t) +M(t ∨ t0)−M(t ∧ t0),
where we let

T1(t0, t) = 2

∫ t0∨t

t0∧t
〈F (u(s)) , u(s)〉ds,
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T2(t0, t) =

∫ t0∨t

t0∧t
|σ(s, u(s))|2L ds,

M(τ) = 2

∫ τ

0

(
σ(s, u(s))dW (s) , u(s)

)
.

The process (M(τ), τ ∈ [0, T ]) is a real-valued square integrable martingale with respect to
the Brownian motionW . Indeed, the Cauchy-Schwarz inequality and the growth condition
(2.32) yield

E

∫ T

0
|σ(s, u(s))|2L |u(s)|2L2ds ≤

{
E

(
sup
s∈[0,T ]

|u(s)|4L2

)} 1
2
{
E

(∫ T

0
|σ(s, u(s))|2L ds

)2} 1
2

≤
{
E

(
sup
s∈[0,T ]

|u(s)|4L2

)} 1
2
{
E

(∫ T

0

[
K0 +K1|u(s)|2L2 +K2|∇hu(s)|2L2

]
ds
)2} 1

2
<∞

since by (3.12) we have u ∈ L4(Ω;L∞(0, T ;H)) ∩ L4
(
Ω;L2(0, T : H̃1,0)

)
.

Hence, M(t ∨ t0)−M(t ∧ t0) → 0 a.s. as t→ t0.
The upper estimates (3.12) prove that u ∈ X a.s. and using the upper estimate (2.22)

we deduce that 〈F (u(.)) , u(.)〉 is integrable on [0, T ]. Hence T1(t0, t) → 0 a.s. as t→ t0.
Finally, the growth condition (2.32) and the upper estimates in (3.12) imply that a.s.
∫ T

0
|σ(s, u(s))|2L ds ≤ K0T +K1T sup

s∈[0,T ]
|u(s)|2L2 +K2

∫ T

0
|∇hu(s)|2L2ds <∞ a.s.

Therefore, we have a.s. T2(t0, t) → 0 as t→ t0. This completes the proof of the continuity
of u from [0, T ] to H.

Step 5: We finally prove that if L2 is small enough, there exists a unique process in X
and a.s. in C(0, T ;H) which is a weak solution to (2.3). Let u, v ∈ X be solutions to (2.3)
and belong a.s. to C(0, T ;H). For every N set

τN = inf{t ≥ 0 : |u(s)|L2 ∨ |v(s)|L2 ≥ N} ∧ T.
Since |u(.)|H and |v(.)|H are a.s. bounded on [0, T ] by the definition of X , we deduce that
a.s. τN → T as N → ∞. Set U = u− v; since L2 < 2ν, we may choose η ∈ (0, ν) be such
that L2 < 2η < 2ν. Let Cη be a constant defined in (2.26); the Itô formula implies

e−2Cη

∫ t∧τN
0 ‖v(r)‖21,1dr |U(t ∧ τN )|2L2 = 2M(t ∧ τN ) +

∫ t∧τN

0
ψ(s)ds,

where

M(τ) =

∫ τ

0
e−2Cη

∫ s

0
‖v(r)‖21,1dr

(
U(s) ,

[
σ(s, u(s)) − σ(s, v(s))

]
dW (s)

)
,

ψ(s) = e−2Cη

∫ s

0 ‖v(r)‖21,1dr
[
− 2Cη‖v(s)‖21,1|U(s)|2L2

+ 2〈F (u(s)) − F (v(s)) , U(s)〉
+ |σ(s, u(s))− σ(s, v(s))|2L

]
.

We at first check that the processM is a square integrable martingale. Indeed, the Cauchy-
Schwarz and the Young inequalities, the Lipschitz condition (C)(ii) and the definition of
X imply that

E

∫ T

0
e−4Cη

∫ s

0
‖v(r)‖21,1dr|U(s)|2L2

∣∣σ(s, u(s))− σ(s, v(s))
∣∣2
Lds
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≤ E

∫ T

0
|U(s)|2L2

[
L1|U(s)|2L2

+ L2|∇hU(s)|2L2

]
ds

≤ C E

(
sup
t∈[0,T ]

|U(s)|4L2

)
+ C E

(∣∣∣
∫ T

0
|∇hU(s)|2L2ds

∣∣∣
2)

<∞.

Furthermore, the upper estimate (2.26) and the Lipschitz condition (C)(ii) imply that
for L2 < 2η < 2ν, we have

|ψ(s)| ≤
(
L2 − 2η

)
|∇hU(s)|2L2 + L1|U(s)|2L2 ≤ L1|U(s)|2L2 .

Hence taking expected values, we deduce that for any t ∈ [0, T ]:

E

(
e−2Cη

∫ t∧τN
0 ‖v(r)‖21,1dr |U(t ∧ τN )|2L2

)
≤

∫ t

0
E

(
e−2Cη

∫ s∧τN
0 ‖v(r)‖21,1dr |U(s ∧ τN )|2L2

)
ds.

The Gronwall lemma implies that for every t ∈ [0, T ], we have U(t ∧ τN ) = 0 a.s. Since U
a.s. belongs to C([0, T ];H), this completes the proof as N → ∞. �

3.3. Examples. Here, we provide two examples of coefficients σ which satisfy condition
(C)

Let {ψk, k ≥ 1} denote an orthonormal basis ofH0 = Q
1
2 H̃0,1 and for t ∈ [0, T ], u ∈ H̃1,1

and ψ ∈ H0; set

σ(t, u)ψ(x) :=

∞∑

k=1

(
ψ,ψk

)
0
σk(t, x, u(x),∇hu(x)),

where σk : [0, T ]×R
3×R

3×R
6 → R

3 are measurable functions with appropriate regularity
and ∇h = (∂1u, ∂2u).

Example 1: For t ∈ [0, T ], x ∈ R
3, y ∈ R

3 and z = (ζ, ζ̃) for ζ, ζ̃ ∈ R
3 set

σk(t, x, y, z) = σk,0(t, x) + σk,1(t, x)y + σk,2(t, x)ζ + σ̃k,2(t, x)ζ̃ ,

where σk,0(t, .) ∈ H̃0,1, σk,1(t, .), σk,2(t, .), σ̃k,2(t, .), ∂3σk,0(t, .); ∂3σk,2(t, .) and ∂3σ̃k,2(t, .)
belong to L∞(R3). Suppose furthermore that:

sup
t∈[0,T ]

∑

k≥1

[
‖σk,0(t, .)‖20,1 + ‖σk,1(t, .)‖2L∞ + ‖σk,2(t, .)‖2L∞ + ‖σ̃k,2(t, .)‖2L∞

]
<∞,

sup
t∈[0,T ]

∑

k≥1

[
‖∂3sk,1(t, x)‖2L∞ + ‖∂3σk,2(t, x)‖2L∞ + ‖∂3σ̃k,2(t, x)‖2L∞

]
<∞.

Then condition (2.32) holds withK0 = 3 supt
∑

k |σk,0(t, .)|2L2 ,K1 = 3 supt
∑

k ‖σk,1(t, .)‖2L∞

andK2 = 3 supt
∑

k

(
‖σk,2(t, .)‖2L∞+‖σ̃k,2(t, .)‖2L∞

)
. The Lipschitz condition (C)(ii) holds

with L1 =
2
3K1 and L2 =

2
3K2.

Taking the partial derivative with respect to x3, we deduce that (2.33) holds with

K̃0 = 5 sup
t

∑

k

‖σ(t, .)‖20,1,

K̃1 = K1 + 5 sup
t

∑

k

(
‖σk,1(t, .)‖2L∞ + ‖∂3σk,1(t, .)‖2L∞

)

and finally

K̃2 = K2 +5 sup
t

∑

k

(
‖σk,2(t, .)‖2L∞ + ‖σ̃k,2(t, .)‖2L∞ + ‖∂3σk,2(t, .)‖2L∞ + ‖∂3σ̃k,2(t, .)‖2L∞

)
.
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Example 2 The following example has some more general Lipschitz structure.
For t ∈ [0, T ], x ∈ R

3, y, y′ ∈ R
3 and z, z′ ∈ R

6 set

|σk(t, x, y, z) − σk(t, x, y
′, z′)| ≤ Ck,1(t, x)|y − y′|+ Ck,2(t, x)|z − z′|,

|∂x3σk(t, x, y, z)| ≤ C̃k,0(t, x) + C̃k,1(t, x)|y| + C̃k,2(t, x)|z|,

where σk(t, ., 0, 0) and C̃k,0 belong to L2(R3), while Ck,1(t, .), Ck,2(t, .), C̃k,1(t, .) and

C̃k,2(t, .) belong to
[
L∞(R3)

]3
. Moreover, we suppose that

sup
t∈[0,T ]

∑

k≥1

sup
(x,y,z)∈R12

|∇yσk(t, x, y, z)|2 = C̃3 <∞,

sup
t∈[0,T ]

∑

k≥1

sup
(x,y,z)∈R12

|∇zσk(t, x, y, z)|2 = C̃4 <∞,

and

sup
t∈[0,T ]

∑

k≥1

(
|σk(t, ., 0, 0)|2L2 + |C̃k,0(t, .)|2L2

)
<∞

sup
t∈[0,T ]

∑

k≥1

(
‖Ck,1(t, .)‖2L∞ + ‖Ck,2(t, .)‖2L∞ + ‖C̃k,1(t, .)‖2L∞ + ‖C̃k,2(t, .)‖2L∞

)
<∞.

The growth condition (2.32) holds with:

K0 = 3 sup
t

∑

k

|σk(t, ., 0, 0)|2L2 , K1 = 3 sup
t

∑

k

‖Ck,1(t, .)‖2L∞ , K2 = 3 sup
t

∑

k

‖Ck,2(t, .)‖2L∞ .

The Lipschitz condition (C)(ii) holds with L1 = 2
3K1 and L2 = 2

3K2. Taking partial
derivatives with respect to x3 yields that the growth condition (2.33) is satisfied with:

K̃0 =K0 + 5 sup
t

∑

k

|C̃k,0(t, .)|2L2 ,

K̃1 =K1 + 5C̃3 + sup
t

∑

k

(
3‖Ck,1(t, .)‖2L∞ + 5‖C̃k,1(t, .)‖2L∞

)
,

K̃2 =K2 + 5C̃4 + sup
t

∑

k

(
3‖Ck,2(t, .)‖2L∞ + 5‖C̃k,2(t, .)‖2L∞

)
.

4. Large deviations

For ǫ > 0, let uǫ ∈ X such that uǫ ∈ C([0, T ];H) a.s. denote the solution of (2.3) where
the noise intensity is multiplied by a small parameter ǫ > 0, that is

uǫ(t) = u0+

∫ t

0

[
νAhu

ǫ(s)−B(uǫ(s))−a|uǫ(s)|2αuǫ(s)
]
ds+

√
ε

∫ t

0
σ(s, uǫ(s))dW (s). (4.1)

For any constants Ki, K̃i and L̃i in Condition (C), for ǫ small enough there is a unique
solution to (4.1) which is denoted uǫ = Gǫ(√ǫW ) for some Borel-measurable function

Gǫ : C([0, T ]; H̃0,1) → X.
In this section we prove that uǫ satisfies a large deviations principle in the space

Y := C([0, T ];H)∩L2(0, T ; H̃1,0). For technical reasons, in all this section we will suppose

that Condition (C) holds with K2 = K̃2 = L̃2 = 0. We use the weak convergence approach
introduced in [6] and [7]. We at first prove apriori estimate for stochastic control equations
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deduced from (2.3) by shifting W by some random element. To describe a set of admis-
sible random shifts, we introduce the class A as the set of H0−valued (Ft)−predictable

stochastic processes φ such that
∫ T
0 |φ(s)|20ds <∞, a.s. Let

SM =
{
φ ∈ L2(0, T ;H0) :

∫ T

0
|φ(s)|20ds ≤M

}
.

The set SM endowed with the following weak topology is a Polish space (complete separable

metric space) [7]: d1(φ,ψ) =
∑∞

i=1
1
2i

∣∣ ∫ T
0

(
φ(s) − ψ(s), ẽi(s)

)
0
ds
∣∣, where {ẽi(s)}∞i=1 is an

orthonormal basis for L2(0, T ;H0). Define

AM = {φ ∈ A : φ(ω) ∈ SM , a.s.}. (4.2)

Let B(Y ) denote the Borel σ−field of the Polish space Y endowed with the metric
associated with the norm

‖u‖Y = sup
t∈[0,T ]

|u(t)|L2 +
( ∫ T

0
‖u(t)‖21,0ds

) 1
2
. (4.3)

We recall some classical definitions; by convention the infimum over an empty set is +∞.

Definition 4.1. The random family (uε) is said to satisfy a large deviation principle on
Y with the good rate function I if the following conditions hold:
I is a good rate function. The function function I : Y → [0,∞] is such that for each

M ∈ [0,∞[ the level set {φ ∈ Y : I(φ) ≤M} is a compact subset of Y .
For A ∈ B(Y ), set I(A) = infu∈A I(u).

Large deviation upper bound. For each closed subset F of Y :

lim sup
ε→0

ε log P(uε ∈ F ) ≤ −I(F ).

Large deviation lower bound. For each open subset G of Y :

lim inf
ε→0

ε log P(uε ∈ G) ≥ −I(G).

For all φ ∈ L2([0, T ],H0), we will prove that there exists a unique solution let u0φ ∈ Y of

the deterministic control equation (4.4) with initial condition u0φ(0) = u0 ∈ L4(Ω, H̃0,1):

du0φ(t) + [−νAhu0φ(t) +B(u0φ(t)) + a|u0φ(t)|2αu0φ(t)]dt = σ(t, u0φ(t))φ(t)dt. (4.4)

Let C0 = {
∫ .
0 φ(s)ds : φ ∈ L2([0, T ],H0)} ⊂ C([0, T ],H0). Define G0 : C([0, T ],H0) → Y

by G0(Φ) = uφ for Φ =
∫ .
0 φ(s)ds ∈ C0 and G0(Φ) = 0 otherwise. Since the argument below

requires some information about the difference of the solution at two different times, we
need an additional assumption about the regularity of the map σ(., u).

Condition (C’) (Time Hölder regularity of σ): There exist constants γ > 0 and C ≥ 0

such that for t1, t2 ∈ [0, T ] and u ∈ H̃1,0:

|σ(t1, u)− σ(t2, u)|L ≤ C (1 + ‖u‖1,0) |t1 − t2|γ .
The following theorem is the main result of this section.

Theorem 4.2. Suppose that conditions (C) with K2 = K̃2 = L2 = 0 and (C’) are

satisfied and that u0 ∈ H̃0,1 . Then the solution (uε) to (4.1) satisfies the large deviation

principle in Y = C([0, T ];H) ∩ L2(0, T ; H̃1,0), with the good rate function

Iξ(u) = inf
{φ∈L2(0,T ;H0): u=G0(

∫ .

0
φ(s)ds)}

{1

2

∫ T

0
|φ(s)|20 ds

}
. (4.5)
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The proof relies on properties of a stochastic control equation. Let M > 0, φ ∈ AM

and u0 ∈ L4(Ω; H̃0,1). Suppose that σ satisfies condition (C) with K2 = K̃2 = L2 = 0
and consider the following non linear SPDE with initial condition uφ(0) = u0:

dtuφ(t) +
[
− νAh∆huφ(t)+B

(
uφ(t)

)
+ a|uφ(t)|2αuφ(t)

]
dt

= σ
(
t, uφ(t)

)
dW (t) + σ

(
t, uφ(t)

)
φ(t)dt. (4.6)

The following theorem shows that Theorem 3.2 holds in this setting. Its proof, which is
similar to that of Theorem 3.2 (see also Theorem 2.4 in [13]), is given in the appendix.

Note that the result would still be valid with ”small enough” K2, K̃2 and L2. However,
some further arguments needed to prove the Large Deviations Principle require these
coefficients to vanish.

Theorem 4.3. Let σ satisfy condition (C) with K2 = 0 (resp. K̃2 = 0) in the growth
condition (2.33) (resp. (2.32)), and with L2 = 0 in condition (C)(ii). Then for every
M > 0 and T > 0 and any F0-measurable u0 such that E‖u0‖40,1 < ∞ and any φ ∈
AM , there exists a unique weak solution uφ in X of the equation (4.6) with initial data

uφ(0) = u0 ∈ L4(Ω; H̃0,1). Furthermore, uφ ∈ C(0, T ;H) a.s. and there exists a constant

C := C(K0,K1, K̃0, K̃1, T,M) such that for φ ∈ AM ,

E

(
sup

0≤t≤T
‖uφ(t)‖40,1+

(∫ T

0
‖uφ(t)‖21,1 dt

)2
+

∫ T

0
‖uφ(t)‖2α+2

L2α+2dt
)
≤ C

(
1+E‖u0‖40,1

)
. (4.7)

We next consider stochastic control evolution equations deduced from (4.1) by a random
shift by a function φ ∈ AM , that is the solution uǫφ to the evolution equation:

uǫφ(t) =u0 +

∫ t

0

[
νAhu

ǫ
φ(s)−B(uǫφ(s))− a|uǫφ(s)|2αuǫφ(s) + σ(s, uǫφ(s))φ(s)

]
ds

+
√
ǫ

∫ t

0
σ(s, uǫφ(s))dW (s). (4.8)

Let ε0 > 0, (φε, 0 < ε ≤ ε0) be a family of random elements taking values in the set AM

given by (4.2). Let uεφε , be the solution of the corresponding stochastic control equation

with initial condition uεφε(0) = u0 ∈ H̃0,1:

dtu
ε
φε(t) + [−νAhuεhε(t) +B(uεφε(t)) + a|uεφε(t)|

2αuεφε(t)]dt

= σ(t, uεφε(t))
[
φε(t)dt+

√
ε dW (t)

]
. (4.9)

Note that for W ε
. =W. +

1√
ε

∫ .
0 φε(s)ds we have uǫφε = Gε

(√
εW ε

)
.

The following proposition establishes the weak convergence of the family (uφε) as ε→ 0.
Its proof, which is similar to that of Proposition 4.3 in [15] (see also Proposition 3.4 in
[13]), is given in the appendix.

Proposition 4.4. Suppose that the conditions (C) and (C’) are satisfied with K2 =

K̃2 = L2 = 0. Let u0 be F0-measurable such that E‖u0‖40,1 < +∞, and let φε converge
to φ in distribution as random elements taking values in AM , where this set is defined
by (4.2) and endowed with the weak topology of the space L2(0, T ;H0). Then as ε → 0,
the solution uεφε of (4.9) converges in distribution to the solution u0φ of (4.4) in Y =

C([0, T ];H)∩L2(0, T ; H̃1,0) endowed with the norm (4.3). That is, as ε→ 0, Gε
(√

ε
(
W.+

1√
ε

∫ .
0 φε(s)ds

))
converges in distribution to G0

( ∫ .
0 φ(s)ds

)
in Y .
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The following compactness result is the second ingredient which allows to transfer the
LDP from

√
εW to uε. Its proof is similar to that of Proposition 4.4 and easier; it will be

sketched in the appendix.

Proposition 4.5. Suppose that conditions (C) and (C’) hold with K2 = K̃2 = L2 = 0

hold. Fix M > 0, u0 ∈ H̃0,1 and let K(M) = {u0φ ∈ X : φ ∈ SM}, where u0φ is the

unique solution of the deterministic control equation (4.4), and let Y = C([0, T ];H) ∩
L2(0, T ; H̃1,0). Then K(M) is a compact subset of Y .

Using the above results, we can complete the proof of the Large Deviations Principle
for our stochastic Brinkman-Forchheimer 3D Navier-Stokes equations.
Proof of Theorem 4.2: Propositions 4.5 and 4.4 imply that the family {uε} satisfies the
Laplace principle, which is equivalent to the large deviation principle, in Y with the good
rate function defined by (4.5); see Theorem 4.4 in [6] or Theorem 5 in [7]. This concludes
the proof of Theorem 4.2. 2

5. Appendix

The computations in this section are similar to the ones established for the stochastic
equation (2.3). Equation (4.4) is a particular case of equation (4.6) and the proof of the
well posedness of (4.6) follows the steps used to prove that of (2.3). However, for the sake
of completeness, we show some of the estimates that are performed for (4.6) to show how
the extra term σ

(
t, uφ(t)

)
φ(t) with respect to (2.3) can be dealt with.

5.1. A priori estimates for the stochastic control equation. In this section we will
only show how to obtain the estimates given in Theorem 4.3. The argument is similar to
that of Theorem 3.2 (see also Theorem 2.4 in [13]). We briefly sketch it only pointing out
the changes to be made to deal with the random shift φ.

We at first consider an analog of (3.1). For t ∈ [0, T ], φ ∈ AM , v ∈ Hn and un,φ(0) =
Pnu0, let un,φ be defined on Hn as follows:

d
(
un,φ(t), v

)
= 〈F (un,φ(t) , v〉dt+

(
Pnσ(t, un,φ(t))dWn(t), v

)
+

(
Pnσ(t, un,φ(t))Πnφ(t) , v)dt.

(5.1)

We check that an analog of (3.2) can be obtained for these processes with a constant C
which only depends onM (but not on φ and n). We let τN = inf{t : ‖un,φ(t)‖0,1 ≥ N}∧N .

We apply the Itô formula to ‖.‖20,1 and the process un,φ. This yields an equation similar

to (3.3) where un is replaced by un,φ, and where we add the term T4(t) in the right hand
side, with

T4(t) = 2

∫ t∧τN

0

(
σ(s, uφ(s))φ , uφ(s)

)
ds.

The growth condition (2.33) with K̃2 = 0, the Cauchy-Schwarz inequality, and the in-
equality |y| ≤ 1 + y2 imply

|T4(t)| ≤ 2

∫ t∧τN

0

[√
K̃0 +

√
K̃1|un,φ(s)|L2

]
|φ(s)|0 ‖un,φ(s)‖0,1ds

≤ 2

√
K̃0M T + 2

(√
K̃0 +

√
K̃1

)∫ t∧τN

0
|φ(s)|0 ‖un,φ(s)‖20,1ds.

Fix ǫ > 0; as in the proof of Proposition 3.1, choose ǫ0 > 0 small enough to ensure
2Cǫ0 < 2ν − ǫ, where C is the constant in the right hand side of (2.22), and then ǫ1 > 0
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small enough to ensure ǫ1
4ǫ0

< 2a(2α + 1)− ǫ. Set

X(t) = sup
s≤t∧τN

‖un,φ(s)‖20,1 + 2a

∫ t∧τN

0
‖un,φ(s)‖2α+2

L2α+2ds,

Y (t) =

∫ t∧τN

0

[(
|∇hun,φ(s)|2L2 + |∂3∇hun,φ(s)|2L2

)
+ ‖un,φ(s)‖2α+2

L2α+2

]
ds.

For this choice of constants, we deduce that

X(t) + ǫY (t) ≤ Z +

∫ t

0
ϕ(r)X(r)dr + I(t),

where ϕ(r) = K̃1 + Cαǫ
−1
0 ǫ

− 1
α−1

1 + 2
(√

K̃1 +
√
K̃0)|φ(r)|0 and

Z = ‖u0‖20,1 + K̃0T + 2

√
K̃0TM, I(t) = 2 sup

s∈[0,T ]

∣∣∣
∫ s∧τN

0

(
σ(r, uφ(r))dW (r) , uφ(r)

)
0,1

∣∣∣.

The Burkholder-Davies-Gundy inequality, the growth condition (2.33) with K̃2 = 0 and
arguments similar to those in the proof of Proposition 3.1 imply that for β ∈ (0, 1), γ = 9

K̃1
,

C̃ = 9
β K̃0T we have

E
(
I(t)

)
≤ βE

(
X(t)

)
+ γ

∫ t

0
E
(
X(s)

)
ds+ C̃

Then
∫ T
0 ϕ(s)ds ≤ K̃1T + Cαǫ

−1
0 ǫ

− 1
α−1

1 T + 2
(√

K̃1 +
√
K̃0

)√
MT := C(1).

Since φ is random, we need an extension of Gronwall’s lemma (see [15], Lemma 3.9 for
the proof of a more general result).

Lemma 5.1. Let X, Y , I and ϕ be non-negative processes and Z be a non-negative
integrable random variable. Assume that I is non-decreasing and there exist non-negative
constants C, κ, β, γ with the following properties

∫ T

0
ϕ(s) ds ≤ C a.s., 2βeC ≤ 1, (5.2)

and such that for 0 ≤ t ≤ T ,

X(t) + κY (t) ≤ Z +

∫ t

0
ϕ(r)X(r) dr + I(t), a.s.,

E(I(t)) ≤ β E(X(t)) + γ

∫ t

0
E(X(s)) ds + C̃,

where C̃ > 0 is a constant. If X ∈ L∞([0, T ]× Ω), then we have

E
[
X(t) + κY (t)

]
≤ 2 exp

(
C + 2tγeC

) (
E(Z) + C̃

)
, t ∈ [0, T ]. (5.3)

Lemma 5.1 implies that for all t ∈ [0, T ] we have E
(
X(t) + ǫY (t)

)
≤ 2 exp(C(1) +

2tγeC(1))
[
EZ + C̃].

Hence there exists a constant C, which only depends on M,T and the constants K̃i,
i = 0, 1 in Condition (C), such that for every φ ∈ AM

E

(
sup
s∈[0,T ]

‖un,φ(s ∧ τN )‖20,1 +
∫ τN

0

(
‖un,φ(s)‖21,1 + ‖un,φ(s)‖2α+2

L2α+2

)
ds
)
≤ C

(
1 + E‖u0‖20,1

)
.

(5.4)
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We then apply once more the Itô formula to the square of ‖un,φ‖20,1. This yields an

upper estimate similar to (3.6) with un,φ instead of un, and where we add T̃5(t) in the
right hand side, with

T̃5(t) = 4

∫ t∧τN

0

(
σ(s, un,φ(s))φ(s) , un,φ(s)

)
0,1

‖un,φ(s)‖20,1ds.

Using the Cauchy-Schwarz inequality and the growth condition (2.33) with K̃2 = 0, we
deduce that

|T̃5(t)| ≤ 4

∫ t∧τN

0

(√
K̃1 +

√
K̃0

)
‖un,φ(s)‖40,1|φ(s)|0ds+ 4

√
K̃0TM.

Let

X̄(t) = sup
s∈[0,t]

‖un,φ(s∧τN )‖40,1, Ȳ (t) =

∫ t∧τN

0
‖un,φ(s)‖20,1

(
|∇hun,φ(s)|2L2+∂3∇hun,φ(s)|2L2

)
ds.

Then choosing again ǫ0 and ǫ1 small enough, we deduce that for some ǫ > 0,

X̄(t) + ǫȲ (t) ≤ Z̄ + Ī(t) +

∫ t

0
ϕ̄(s)X̄(s)ds,

where ϕ̄(s) = 6K̃1+4
(√

K̃0+
√
K̃1)|φ(s)|0, I(t) = sups∈[0,t] T̃2(s) for T̃2(s) defined in (3.6)

and Z̄ =
√

4K̃0TM+6K̃0

∫ τN
0 ‖un,φ(s)‖20,1ds. Then

∫ T
0 ϕ̄(s)ds ≤ C(2) := 6K̃1T+4

(√
K̃0+√

K̃1)
√
TM . For β̄ ∈ (0, 1) and γ̄ = 36

β̄
K̃1, we have EĪ(t) ≤ β̄EX̄(t) + γ̄

∫ t
0 EX̄(s)ds + C̄ ′

where C̄ ′ = 36
β E

∫ τN
0 ‖un,φ(s)‖20,1ds <∞ by (5.4). Using once more Lemma 5.1 we deduce

the existence of a constant C depending on M , T and the constants K̃i in (2.33) such that

E

[
sup
t∈[0,T ]

‖un,φ(s ∧ τN )‖40,1 +
∫ τN

0
‖un,φ(s)|20,1‖un,φ(s)21,1ds

]
≤ C

(
1 + E‖u0‖40,1

)
. (5.5)

holds for any φ ∈ AM .
This estimate being established, we follow the steps in the proof of Theorem 3.2 and

prove that the weak limit uφ of a proper subsequence of the sequence (un,φ, n ≥ 1) is a
solution of the evolution equation (4.6). In order to conclude the proof of Theorem 4.3, it
remains only to prove the almost sure continuity of the process uφ.

Let W φ(t) = W (t) +
∫ t
0 φ(s)ds; the Girsanov theorem implies that W φ is a Brownian

motion under the probability P̃ with density exp
(
−

∫ t
0 φ(s)dW (s) − 1

2

∫ t
0 |φ(s)|20ds

)
with

respect to P on Ft. Under P̃ the process uφ is the unique solution to the evolution

equation (2.3) in X and belongs P̃ a.s. to C([0, T ] : H). Since the probabilities P̃ and P

are equivalent and this completes the proof of Theorem 4.3.

5.2. Weak convergence of the stochastic control equations (Proposition 4.4).
We at first prove the following technical lemma, which studies time increments of the
solution to the stochastic control problem (4.8). To state the lemma mentioned above,
we need the following notations. For every integer n, let ψn : [0, T ] → [0, T ] denote a
measurable map such that for every s ∈ [0, T ], s ≤ ψn(s) ≤

(
s + c2−n) ∧ T for some

positive constant c. Given N > 0, φ ∈ AM , and for t ∈ [0, T ], let

GN (t) =
{
ω :

(
sup
0≤s≤t

|uεφ(s)(ω)|2L2

)
∨
(∫ t

0
‖uεφ(s)(ω)‖21,1ds

)
∨
(∫ t

0
‖uεφ(s)‖2α+2

L2α+2ds
)
≤ N

}
.
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Lemma 5.2. Let ε0,M,N > 0, σ satisfy condition (C) with K2 = K̃2 = L2 = 0. Let

u0 ∈ L4(Ω; H̃0,1) be F0-measurable, and let uεφ(t) be solution of (4.8). Then there exists

a positive constant C (depending on Ki, K̃i, i = 0, 1, L1, T,M,N, ε0) such that for any
φ ∈ AM , ε ∈ [0, ε0]:

In(φ, ε) :=E

[
1GN (T )

∫ T

0

{
|uεφ(s)− uεφ(ψn(s))|2L2

+

∫ ψn(s)

s

(
|∇hu

ε
φ(r)|2L2dr + ‖uεφ(r)‖2α+2

L2α+2

)
dr

}
ds
]
≤ C 2−

n
2 . (5.6)

Proof. The proof is close to that of Lemma 3.3 in [13]. Let φ ∈ AM , ε ≥ 0; for any

s ∈ [0, T ], Itô’s formula yields |uεφ(ψn(s))− uεφ(s)|2L2 =
∑6

i=1 In,i, where

In,1 = 2
√
ε E

(
1GN (T )

∫ T

0
ds

∫ ψn(s)

s

(
σ(r, uεφ(r))dW (r) , uεφ(r)− uεφ(s)

))
,

In,2 = ε E
(
1GN (T )

∫ T

0
ds

∫ ψn(s)

s
|σ(r, uεφ(r))|2L dr

)
,

In,3 = 2E
(
1GN (T )

∫ T

0
ds

∫ ψn(s)

s

(
σ(r, uεφ(r))φ(r) , u

ε
φ(r)− uεφ(s)

)
dr

)
,

In,4 = 2ν E
(
1GN (T )

∫ T

0
ds

∫ ψn(s)

s

〈
∆h u

ε
φ(r) , u

ε
φ(r)− uεφ(s)

〉
dr

)
,

In,5 = −2E
(
1GN (T )

∫ T

0
ds

∫ ψn(s)

s

〈
B(uεφ(r)) , u

ε
φ(r)− uεφ(s)

〉
dr

)
,

In,6 = −2aE
(
1GN (T )

∫ T

0
ds

∫ ψn(s)

s

∫

R3

|uεφ(r, x)|2αuεφ(r, x)
(
uεφ(r, x) − uεφ(s, x)

)
dx dr

)
.

Clearly GN (T ) ⊂ GN (r) for r ∈ [0, T ]. In particular this means that |uεφ(r)|2L2+|uεφ(s)|2L2 ≤
N on GN (r) for 0 ≤ s ≤ r ≤ T . We use this observation in the considerations below.
The Burkholder-Davis-Gundy inequality and the growth condition (2.32) yield for ε ∈
[0, ε0]:

|In,1| ≤ 6
√
ε

∫ T

0
ds E

(∫ ψn(s)

s
|σ(r, uεφ(r))|2L1GN (r) |uεφ(r)− uεφ(s)|2 dr

) 1
2

≤ 6
√

2ε0N

∫ T

0
ds E

(∫ ψn(s)

s
[K0 +K1 |uεφ(r)|2L2

] dr
) 1

2
.

Schwarz’s inequality and Fubini’s theorem as well as (4.7), which holds uniformly in ε ∈
]0, ε0] for fixed ε0 > 0 (since the constants Ki and L1 are multiplied by at most ε0), imply

|In,1| ≤ 6
√

2ε0NT
[
E

∫ T

0

(
K0 +K1 |uεφ(r)|2L2

) (∫ r

(r−c2−n)∨0
ds
)
dr

] 1
2 ≤ C12

−n
2 (5.7)

for some constant C1 depending only on Ki, i = 0, 1, M , ε0, N and T . The growth
condition (2.32) and Fubini’s theorem imply that for ε ∈ [0, ε0]:

|In,2| ≤ ε0 E
(
1GN (T )

∫ T

0
ds

∫ ψn(s)

s

(
K0 +K1|uεφ(r)|2L2

)
dr

)
≤ C22

−n (5.8)
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for some constant C2 depending on the same parameters as C1. The Cauchy-Schwarz
inequality, Fubini’s theorem, the growth condition (2.32) and the definition of AM yield

|In,3| ≤ 2 E

(
1GN (T )

∫ T

0
ds

∫ ψn(s)

s

(
K0 +K1|uεφ(r)|2

) 1
2 |φ(r)|0|uεφ(r)− uεφ(s)| dr

)

≤ 4
√
N E

∫ T

0
1GN (T )|φ(r)|0(K0 +K1N)

1
2

( ∫ r

(r−c2−n)∨0
ds
)
dr ≤ C3 2

−n, (5.9)

for some constant C3 depending on the same parameters as C1. Using the Cauchy-Schwarz
inequality we deduce that

|In,4| = 2
∣∣∣E

(
1GN (T )

∫ T

0
ds

∫ ψn(s)

s
dr

[
− |∇hu

ε
φ(r)|2L2 + |∇hu

ε
φ(r)|L2 |∇hu

ε
φ(s)|L2

])∣∣∣

≤ 1

2
E

(
1GN (T )

∫ T

0
ds |∇hu

ε
φ(s)|2L2

∫ ψn(s)

s
dr

)
≤ C N 2−n. (5.10)

The antisymmetry relation (2.5), the inequality (2.15), the Cauchy-Scwarz inequality and
Fubini’s theorem and inequality yield:

|In,5| ≤ 2E
(
1GN (T )

∫ T

0
ds

∫ ψn(s)

s
dr

∣∣〈B(uεφ(r)), u
ε
φ(s)〉

∣∣
)

≤ CNE

[
1GN (T )

( ∫ T

0
‖uεφ(s)‖21,1ds

) 1
2
( ∫ T

0

(∫ ψn(s)

s
|∇hu

ε
φ(r)|L2dr

)
ds
) 1

2
]

≤ C(T )N
3
2 2−

n
2 E

[
1GN (T )

{∫ T

0
dr

(∫ r

(r−c2−n)∨0
ds
)
|∇hu

ε
φ(r)|2L2

} 1
2
]
≤ C52

−n (5.11)

for some constant C5 which depends on T and N .
Finally, Fubini’s theorem and Hölder’s inequality imply:

|In,6| ≤ 2aE
[
1GN (T )

∫ T

0
ds

∫ ψn(s)

s
dr

∫

R3

(
|uεφ(r)|2α+2 + |uεφ(r)|2α+1|uεφ(s)|

)
dx

]

≤ 2aE
[
1GN (T )

∫ T

0
ds

∫ ψn(s)

s
‖uεφ(s)‖L2α+2 ‖uεφ(r)‖2α+1

L2α+2dr
]

+ 2aE
[
1GN (T )

∫ T

0
‖uεφ(r)‖2α+2

L2α+2

( ∫ r

(r−c2−n)∨0
ds
)
dr

]

+ 2ac2−nN

≤ 2a
(
c2−n

) 2α+1
2α+2 E

[
1GN (T )

(∫ T

0
‖uεφ(r)‖2α+2

L2α+2

) 2α+1
2α+2

(∫ T

0
ds‖uεφ(s)‖2α+2

L2α+2

∫ ψn(s)

s
dr

) 1
2α+2

]

+ 2ac2−nN ≤ C62
−n (5.12)

for some constant C6 depending on T and N . Collecting the upper estimates from (5.7)-
(5.12), we conclude the proof of (5.6). �

In the setting of large deviations, we will use Lemma 5.2 with the following choice of
the function ψn. For any integer n define a step function s 7→ s̄n on [0, T ] by the formula

s̄n = tk+1 ≡ (k + 1)T2−n for s ∈ [kT2−n, (k + 1)T2−n[. (5.13)

Then the map ψn(s) = s̄n clearly satisfies the previous requirements with c = T .
Proof of Proposition 4.4
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Now we return to the setting of this proposition and recall that for random elements
(φε, 0 < ε ≤ ε0) taking values in the set AM , we let uεφε denote the solution to (4.9) with

initial condition uεφε(0) = u0 ∈ H̃0,1.

Since AM is a Polish space (complete separable metric space), by the Skorokhod rep-

resentation theorem, we can construct processes (φ̃ε, φ̃, W̃
ε) such that the joint distribu-

tion of (φ̃ε, W̃
ε) is the same as that of (φε,W

ε), the distribution of φ̃ coincides with

that of φ, and φ̃ε → φ̃, a.s., in the (weak) topology of SM . Hence a.s. for every

t ∈ [0, T ],
∫ t
0 φ̃ε(s)ds −

∫ t
0 φ̃(s)ds → 0 weakly in H0. To lighten notations, we will write

(φ̃ε, φ̃, W̃
ε) = (φε, φ,W ). Let Uε = uεφε − u0φ; then Uε(0) = 0 and

dUε(t) =
[
F (uεφε(t))− F (u0φ(t)) + σ

(
t, uεφε(t)

)
φε(t)− σ

(
t, u0φ(t)

)
φ(t)

]
dt

+
√
εσ

(
t, uεφε(t)

)
dW (t). (5.14)

Let η ∈ (0, ν) and Cη be defined in (2.26); Itô’s formula, the upper estimate (2.26), the
growth condition (2.32) and the Lipschitz condition (C)(ii) imply for t ∈ [0, T ]:

|Uε(t)|2L2 + 2η

∫ t

0
|∇hUε(s)|2L2ds+ 2aκ

∫ t

0

∣∣(|uεφε(s)|+ |u0φ(s)|
)α|Uε(s)|

∣∣2
L2ds

≤
3∑

i=1

Ti(t, ε) + 2

∫ t

0

(
Cη ‖u0φ(s)‖21,1 +

√
L1|φε(s)|0

)
|Uε(s)|2L2ds, (5.15)

where

T1(t, ε) = 2
√
ε

∫ t

0

(
Uε(s), σ(s, u

ε
φε(s)) dW (s)

)
,

T2(t, ε) = ε

∫ t

0
(K0 +K1|uεφε(s)|2)ds,

T3(t, ε) = 2

∫ t

0

(
σ(s, u0φ(s))

(
φε(s)− φ(s)

)
, Uε(s)

)
ds.

We want to show that as ε → 0, ‖Uε‖Y → 0 in probability, which implies that uεhε → uh
in distribution in Y . Fix N > 0 and for t ∈ [0, T ] let

GN (t) =
{

sup
0≤s≤t

|u0φ(s)|2L2 ≤ N
}
∩
{∫ t

0

(
‖u0φ(s)‖21,1 + ‖u0φ(s)‖2α+2

L2α+2

)
ds ≤ N

}
,

GN,ε(t) =GN (t) ∩
{

sup
0≤s≤t

(
|uεφε(s)|

2
L2 ≤ N

}
∩
{∫ t

0

(
‖uεφε(s)‖

2
1,1 + ‖uεφε(s)‖

2α+2
L2α+2

)
ds ≤ N

}
.

The proof consists in two steps.
Step 1: For any ε0 ∈]0, 1], we have sup

0<ε≤ε0
sup

φ,φε∈AM

P(GN,ε(T )
c) → 0 as N → ∞.

Indeed, for ε ∈]0, ε0], φ, φε ∈ AM , the Markov inequality and the a priori estimate (4.7),
which holds uniformly in ε ∈]0, ε0], imply

P(GN,ε(T )
c) ≤ P

(
sup

0≤s≤T
|u0φ(s)|2L2 > N

)
+ P

(∫ T

0

(
‖u0φ(s)‖21,1 + ‖u0φ(s)‖2α+2

L2α+2

)
ds > N

)

+ P

(
sup

0≤s≤T
|uεφε(s)|2L2

> N
)
+ P

(∫ T

0

(
‖uεφε(s)‖21,1 + ‖uεφe(s)‖

2α+2
L2α+2

)
ds > N

)

≤ C
(
1 + E‖u0‖40,1

)
N−1, (5.16)
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for some constant C depending on T and M .
Step 2: Fix N > 0, φ, φε ∈ AM such that as ε → 0, φε → φ a.s. in the weak topology of
L2(0, T ;H0); then one has as ε→ 0:

E

[
1GN,ε(T )

(
sup

0≤t≤T
|Uε(t)|2L2 +

∫ T

0
|∇hUε(t)|2L2 dt

)]
→ 0. (5.17)

Indeed, (5.15) and Gronwall’s lemma imply that on GN,ε(T ),

sup
0≤t≤T

|Uε(t)|2L2 ≤
[

sup
0≤t≤T

(
T1(t, ε) + T3(t, ε)

)
+ εC∗

]
exp

(
2CηN + 2

√
L1MT

)
,

where C∗ = T (K0 + K1N). Using again (5.15) we deduce that for some constant C̃ =
C(T,M,N), one has for every ε ∈ [0, ε0]:

E
(
1GN,ε(T ) ‖Uε‖2Y

)
≤ C̃

(
ε+ E

[
1GN,ε(T ) sup

0≤t≤T

(
T1(t, ε) + T3(t, ε)

)])
. (5.18)

Since the sets GN,ε(.) decrease, E
(
1GN,ε(T ) sup0≤t≤T |T1(t, ε)|

)
≤ E(λε), where

λε := 2
√
ε sup
0≤t≤T

∣∣∣
∫ t

0
1GN,ε(s)

(
Uε(s), σ(s, uφε(s))dW (s)

)∣∣∣.

The scalar-valued random variables λε converge to 0 in L1 as ε → 0. Indeed, by the
Burkholder-Davis-Gundy inequality, (2.32) and the definition of GN,ε(s), we have

E(λε) ≤ 6
√
ε E

{∫ T

0
1GN,ε(s) |Uε(s)|2L2 |σ(s, uεφε(s))|

2
Lsds

} 1
2

≤ 6
√
ε E

[{
4N

∫ T

0
1GN,ε(s) (K0 +K1|uεφε(s)|

2
L2)ds

} 1
2
]
≤ C(T,N)

√
ε. (5.19)

In further estimates we use Lemma 5.2 with ψn = s̄n, where s̄n is defined in (5.13). For
any n,N ≥ 1, if we set tk = kT2−n for 0 ≤ k ≤ 2n, we obviously have:

E

(
1GN,ε(T ) sup

0≤t≤T
|T3(t, ε)|

)
≤ 2

4∑

i=1

T̃i(N,n, ε) + 2 E
(
T̄5(N,n, ε)

)
, (5.20)

where

T̃1(N,n, ε) = E

[
1GN,ε(T ) sup

0≤t≤T

∣∣∣
∫ t

0

(
σ(s, u0φ(s))

(
φε(s)− φ(s)

)
,
[
Uε(s)− Uε(s̄n)

])
ds
∣∣∣
]
,

T̃2(N,n, ε) = E

[
1GN,ε(T )

× sup
0≤t≤T

∣∣∣
∫ t

0

(
[σ(s, u0φ(s))− σ(s̄n, u

0
φ(s))](φε(s)− φ(s)) , Uε(s̄n)

)
ds
∣∣∣
]
,

T̃3(N,n, ε) = E

[
1GN,ε(T )

× sup
0≤t≤T

∣∣∣
∫ t

0

([
σ(s̄n, u

0
φ(s))− σ(s̄n, u

0
φ(s̄n))

](
φε(s)− φ(s)

)
, Uε(s̄n)

)
ds
∣∣∣
]
,

T̃4(N,n, ε) = E

[
1GN,ε(T ) sup

1≤k≤2n
sup

tk−1≤t≤tk

∣∣∣
(
σ(tk, u

0
φ(tk))

∫ t

tk−1

(φε(s)− φ(s)) ds , Uε(tk)
)∣∣∣
]
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T̄5(N,n, ε) = 1GN,ε(T )

2n∑

k=1

∣∣∣
(
σ(tk, u

0
φ(tk))

∫ tk

tk−1

(
φε(s)− φ(s)

)
ds , Uε(tk)

)∣∣∣.

Using the Cauchy-Schwarz inequality, the growth condition (2.32) and Lemma 5.2 with
ψn = s̄n, we deduce that for some constant C̄1 := C(T,M,N) and any ε ∈]0, ε0]:

T̃1(N,n, ε) ≤ E

[
1GN,ε(T )

∫ T

0

(
K0 +K1|u0φ(s)|2L2

) 1
2 |φε(s)− φ(s)|0

∣∣Uε(s)− Uε(s̄n)
∣∣
L2 ds

]

≤
(
E

[
1GN,ε(T )

∫ T

0

{
|uεφε(s)− uεφε(s̄n)|2L2 + |u0φ(s)− u0φ(s̄n)|2L2

}
ds
]) 1

2

×
√

2(K0 +K1N)
(
E

∫ T

0
|φε(s)− φ(s)|20 ds

) 1
2 ≤ C̄1 2

−n
4 . (5.21)

A similar computation based on the Lipschitz condition (C)(ii) and Lemma 5.2 yields for
some constant C̄3 := C(T,M,N) and any ε ∈]0, ε0]

T̃3(N,n, ε) ≤
√

2NL1

(
E

[
1GN,ε(T )

∫ T

0
|u0φ(s)− u0φ(s̄n)|2L2 ds

]) 1
2
(
E

∫ T

0
|φε(s)− φ(s)|20ds

) 1
2

≤ C̄3 2
−n

4 . (5.22)

The Hölder regularity (C’) imposed on σ(., u) and the Cauchy-Schwarz inequality imply:

T̃2(N,n, ε) ≤ C
√
N 2−nγ E

(
1GN,ε(T )

∫ T

0

(
1 + ‖u0φ(s)‖1,0

)
|φε(s)− φ(s)|0 ds

)
≤ C̄22

−nγ

(5.23)
for some constant C̄2 = C(T,M,N). Using the Cauchy-Schwarz inequality and the growth
condition (2.32), we deduce for C̄4 = C(T,N,M) and any ε ∈]0, ε0]

T̃4(N,n, ε) ≤ E

[
1GN,ε(T ) sup

1≤k≤2n

(
K0 +K1|u0φ(tk)|2L2

) 1
2

∫ tk

tk−1

|φε(s)− φ(s)|0 ds |Uε(tk)|L2

]

≤ 2
√
N(K0 +K1N) E

(
sup

1≤k≤2n

∫ tk

tk−1

|φε(s)− φ(s)|0 ds
)
≤ 4C̄4 2

−n
2 . (5.24)

Finally, note that the weak convergence of φε to φ implies that for any a, b ∈ [0, T ],

a < b, as ε→ 0 the integral
∫ b
a φε(s)ds converges to

∫ b
a φ(s)ds in the weak topology of H0.

Therefore, since for the operator σ(tk, u
0
φ(tk)) is compact from H0 to H, we deduce that

for every k,
∣∣∣σ(tk, u0φ(tk))

( ∫ tk

tk−1

φε(s)ds−
∫ tk

tk−1

φ(s)ds
)∣∣∣
H

→ 0 as ε→ 0.

Hence a.s., for fixed n as ε → 0, T̄5(N,n, ε, ω) → 0. Furthermore, T̄5(N,n, ε, ω) ≤
C(K0,K1, N,M) and hence the dominated convergence theorem proves that for any fixed
n,N , E(T̄5(N,n, ε)) → 0 as ε→ 0.

Thus, (5.20)–(5.24) imply that for any fixed N ≥ 1 and any integer n ≥ 1

lim sup
ε→0

E

[
1GN,ε(T ) sup

0≤t≤T
|T3(t, ε)|

]
≤ CN,T,M 2−n(γ∧

1
4
).

Since n is arbitrary, this yields for any integer N ≥ 1:

lim
ε→0

E

[
1GN,ε(T ) sup

0≤t≤T
|T3(t, ε)|

]
= 0.
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Therefore from (5.18) and (5.19) we obtain (5.17). By the Markov inequality

P(‖Uε‖Y > δ) ≤ P(GN,ε(T )
c) +

1

δ2
E

(
1GN,ε(T )‖Uε‖2Y

)
for any δ > 0.

Finally, (5.16) and (5.17) yield that for any integer N ≥ 1,

lim sup
ε→0

P(‖Uε‖Y > δ) ≤ C(T,M)N−1,

for some constant C(T,M) which does not depend on N . This implies limε→0 P(‖Uε‖Y >
δ) = 0 for any δ > 0, which concludes the proof of Proposition 4.4. 2

5.3. Proof of the compactness of the set of controlled equations (Proposition
4.5). Recall that we want to prove that the set K(M) = {u0φ ∈ X : φ ∈ SM} is a compact

subset of Y . Let {u0n} be a sequence in K(M), corresponding to solutions of (4.4) with
controls {φn} in SM :

du0n(t) = F (u0n(t)dt+ σ(t, u0n(t))φn(t)dt, u0n(0) = u0 ∈ H0,1.

Since SM is a bounded closed subset in the Hilbert space L2(0, T ;H0), it is weakly compact.
So there exists a subsequence of {φn}, still denoted as {φn}, which converges weakly to a
limit φ in L2(0, T ;H0). Note that in fact φ ∈ SM as SM is closed. We now show that the
corresponding subsequence of solutions, still denoted as {u0n}, converges in Y to u0φ which
is the solution of the following “limit” equation

du0φ(t) = F (u0φ(t))dt + σ(t, u0φ(t))φ(t)dt, u(0) = u0.

This will complete the proof of the compactness of K(M). To ease notation we will often
drop the time parameters s, t, ... in the equations and integrals.

Let Un = u0n − u0φ; using (2.26) with η ∈ (0, ν), Condition (C) and Young’s inequality,

we deduce for t ∈ [0, T ]:

|Un(t)|2L2 + 2η

∫ t

0
|∇hUn(s)|2L2ds ≤ 2Cη

∫ t

0
‖u0φ(s)‖21,1|Un(s)|2L2ds

+ 2

∫ t

0

{([
σ(s, u0n(s))− σ(s, u0φ(s))

]
φn(s), Un(s)

)

+
(
σ(s, u0φ(s))

(
φn(s)− φ(s)

)
, Un(s)

)}
ds

≤ 2

∫ t

0
|Un(s)|2

(
Cη‖u0φ(s)‖21,1 +

√
L1 |φn(s)|0

)
ds

+ 2

∫ t

0

(
σ(s, u0φ(s)) [φn(s)− φ(s)] , Un(s)

)
ds. (5.25)

The inequality (4.7) implies that there exists a finite positive constant C̄ such that

sup
n

[
sup

0≤t≤T

(
|u(t)|2L2 + |un(t)|2L2

)
+

∫ T

0

(
‖u0φ(s)‖21,1 + ‖u0n(s)‖21,1

)
ds
]
= C̄. (5.26)

Thus Gronwall’s lemma implies that

sup
t≤T

|Un(t)|2 + 2η

∫ T

0
|∇hUn(t)‖2L2 dt ≤ exp

(
2
(
CηC̄ +

√
L1MT

)) 5∑

i=1

Iin,N , (5.27)
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where, as in the proof of Proposition 4.4, we have for tk = kT2−N :

I1n,N =

∫ T

0

∣∣(σ(s, u0φ(s)) [φn(s)− φ(s)] , Un(s)− Un(s̄N )
)∣∣ ds,

I2n,N =

∫ T

0

∣∣∣
([
σ(s, u0φ(s))− σ(s̄N , u

0
φ(s))

]
[φn(s)− φ(s)] , Un(s̄N )

)∣∣∣ ds,

I3n,N =

∫ T

0

∣∣∣
([
σ(s̄N , u

0
φ(s))− σ(s̄N , u

0
φ(s̄N ))

]
[φn(s)− φ(s)] , Un(s̄N )

)∣∣∣ ds,

I4n,N = sup
1≤k≤2N

sup
tk−1≤t≤tk

∣∣∣
(
σ(tk, u

0
φ(tk))

∫ tk

t
(φε(s)− φ(s))ds , Un(tk)

)∣∣∣,

I5n,N =

2N∑

k=1

(
σ(tk, u

0
φ(tk))

∫ tk

tk−1

[φn(s)− φ(s)] ds , Un(tk)
)
.

The Cauchy-Schwarz inequality, condition (C) and Lemma 5.2 imply that for some con-
stants Ci, which depend on M and T , but do not depend on n and N :

I1n,N ≤
(
K0 +K1C̄

) 1
2

(∫ T

0

(
|u0n(s)− u0n(s̄N )|2L2 + |u0φ(s)− u0φ(s̄N )|2L2

)
ds
) 1

2

×
(∫ T

0
|φn(s)− φ(s)|20ds

) 1
2 ≤ C1 2

−N
4 , (5.28)

I3n,N ≤ 2
√
L1C̄

(∫ T

0
|u0φ(s)− u0φ(s̄N )|2L2ds

) 1
2
( ∫ T

0
|φn(s)− φ(s)|20 ds

) 1
2 ≤ C3 2

−N
4 , (5.29)

I4n,N ≤
(
K0 +K1C̄

) 1
2 2
√
C̄ sup
k=1,··· ,2N

( ∫ tk

tk−1

|φn(s)− φ(s)|20ds
) 1

2 ≤ C4 2
−N

2 . (5.30)

Furthermore, condition (C’) implies that

I2n,N ≤ C2−Nγ sup
0≤t≤T

(
|u0φ(t)|L2 + |u0n(t)|L2

) ∫ T

0
(1 + ‖u0φ(s)‖1,0)(|φ(s)|0 + |φn(s)|0) ds

≤ C2 2
−Nγ . (5.31)

For fixed N and k = 1, · · · , 2N , as n → ∞, the weak convergence of φn to φ implies that

of
∫ tk
tk−1

(φn(s)− φ(s))ds to 0 weakly in H0. Since σ(tk, u
0
φ(tk)) is a compact operator, we

deduce that for fixed k the sequence σ(tk, u
0φ(tk))

∫ tk
tk−1

(φn(s) − φ(s))ds converges to 0

strongly in H as n → ∞. Since supn,k |Un(tk)| ≤ 2
√
C̄, we have limn I

5
n,N = 0. Thus

(5.27)–(5.31) yield for every integer N ≥ 1

lim sup
n→∞

{
sup
t≤T

|Un(t)|2L2 +

∫ T

0
‖Un(t)‖21,0 dt

}
≤ C2−N(γ∧ 1

4
).

Since N is arbitrary, we deduce that ‖Un‖Y → 0 as n → ∞. This shows that every
sequence in K(M) has a convergent subsequence. Hence K(M) is a sequentially relatively
compact subset of Y . Finally, let {u0n} be a sequence of elements of K(M) which converges
to v in Y . The above argument shows that there exists a subsequence {u0nk

, k ≥ 1} which

converges to some element uφ ∈ K(M) for the same topology of Y . Hence v = u0φ, K(M)
is a closed subset of Y , and this completes the proof of Proposition 4.5. 2
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[22] M. Röckner, T. Zhang & X. Zhang, Large deviations for the tamed stochastic Navier-Stokes equations,

Appl. Math. Optim. 61 (2) (2010), 267–285.
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