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Abstract 

 

This article presents a method for estimating the time dependent generation rate of an aerosol source 

starting from a transient concentration signal measured at a distant point. The method is made up of 

two distinct steps: a calibration phase, followed by an estimation phase. The calibration phase 

consists in identifying a transfer function (termed "impedance") between a known source (the 

“calibration source”) and its measured concentration response. In the second step the unknown 

source generation rate, in the configuration of interest, is estimated by inversion of the corresponding 

measured concentration signal at the same point, using the previously identified impedance. The time 

integral of this generation rate, the emitted aerosol dose, can be calculated directly, starting from the 

integral of the (transient) impedance. Here both simulation of inversions and application to a real 

experiment have been implemented. The results confirm that it is possible to estimate the temporal 

pattern of injection and the global emitted mass of pollutant. 

 

Keywords: truncated singular value decomposition, aerosol source, unsteady conditions, inverse 
problem, computational fluid dynamics, convolutive model 
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1. Introduction 

 

Wood dust particles are known to be highly carcinogenic [1-2], which makes the study of their 

emission in the workplace of primary importance for hygiene and safety purposes. According to 

French data, the number of workers potentially exposed to wood dust lies between 310,000 and 

370,000 [3]. Among various sources, hand-held machines produce very high quantities of dust and 

numerous studies [4-5] have shown that the collection system of most of these machines performs 

poorly. Assessing the emission rate of these machines is then necessary in order to propose 

recommendations regarding their choice. 

Experimental estimation of the transient intensity of a source through measurement of its 

response (the concentration) at different locations constitutes an “inverse problem”. As in any inverse 

problem, a direct model has first to be constructed, before considering its inversion. In this study, we 

consider assessing the particles emission rate during operations such as sanding or sawing of wood in 

a ventilated workshop. 

Modeling wood dust emission by hand-held machines involves many issues: 

- the main air flow, created around the machine is turbulent, 

- particles are not emitted from a single point source, and the rotation of the sanding tool 

induces secondary flows, 

- particles follow trajectories that may differ from the airflow, depending on their inertia (size, 

density,…): large particles are deposited near the source while fine particles are dispersed 

over greater distances, 

- aerosol concentration sensors, which provide total concentration measurements or particles 

size distribution, do not provide really instantaneous responses. Moreover, they must be 

located away from the source for technical reasons. 

 

Inverse problems can be solved in two distinct ways: the first method is to use a direct detailed 

modeling and the second refers to the use of a reduced model. 

Direct detailed modeling is used here to grasp the main features of the two-phase flow (airflow 

and particles). However, this model may present some drawbacks for two reasons: the modeled 
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concentration is biased for the reasons exposed above and the computing time required is very large, 

especially when an iterative algorithm is used to solve the inverse problem.  

To compensate for the inconveniences of the direct detailed modeling, the construction of a 

reduced model can be appropriate. There are two ways of constructing a reduced model on a physical 

basis, here turbulent mass advection and diffusion: 

 

- model reduction, using the knowledge of the detailed model input and output, once a pertinent 

structure of this reduced model has been selected. This means that the structural parameters 

of this last model have to be estimated, using generally a non-linear least square procedure, 

- model identification, using the measurement of both input and output, in order to estimate the 

structural parameters of the reduced model. This corresponds to a calibration of the 

input/output relationship on an experimental basis, the physical system itself being considered 

as the instrumentation.  

 

Let us note that the previous definitions, where the structure of the “reduced model” is not necessary 

connected to the structure of a detailed model, that can be coined a “reference model” is a generalized 

one. A more restricted definition consists in applying mathematical transformations to a detailed model 

in order to obtain a reduced one, for instance a truncation or selection of dominant modes in a modal 

or a balanced state space model. 

 

 The aim of a reduced model is to reproduce the outputs of the detailed model with a lower 

number of scalar equations to solve, in order to get a smaller computing time while keeping a good 

accuracy. They are very useful to solve inverse problems, for example in heat or mass transfer, such 

as process control, source estimation …One application of such reduced models consists in 

estimating the unknown source by inverting the previously identified model. Under some restrictive 

conditions (steady-state flow, for example, see section 2), the input/output relationship becomes a 

convolution product, with no need to iterate during either the calibration step or during the source 

reconstruction step. 
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The interested reader can find an overview of these methods in Besselink et al. [6]. Source 

reconstruction for pollutant convection can be found in groundwater flows, see Atmadja and 

Bagtzoglou [7] for example or, under atmospheric conditions, see Bocquet [8, 9], Davoine and Boquet 

[10] and Lushi and Stockie [11]. El Badia et a. [12] dealt with the problem of estimation of both position 

and intensity of a point source for a linear advection–dispersion–reaction problem and Maalej et al [13] 

studied the same type of problem in a 1D ventilation case. 

 

Few experimental inverse transient input problems for pollutant advection and diffusion in a 

ventilated room can be found in the literature. Girault et al. [14] used model identification followed by 

input reconstruction using gas tracers in a ventilated room. The reduction technique he used, the 

Modal Identification Method [15] was based on the construction of a series of reduced models having 

the same structure as the original detailed state-space model (a linear state equation and an output 

equation), written for several concentration sensors and several sources. Discrimination of 2 sources 

using 3 sensors was possible using a regularization based on Beck’s Function Specification Method 

(also called Future Time Steps Method) [16]. However, the model identification phase was non-linear, 

since time constants had to be estimated for the diagonalized reduced models. 

 

In the present paper we consider the same type of configuration and methodology, but instead 

of estimating a reduced model of given order for each source in the identification step, we model the 

input/output relationship using a transfer function that relates a given concentration sensor to the time-

varying intensity of the pollutant source through a convolution product. The advantage of this 

formulation is that the inverse model identification problem is now linear. This technique has already 

been used in 1D by Maalej [13] but we now apply it on an experimental basis in 3D. Here a 

regularization by Truncated Singular Value Decomposition (TSVD) [17] is implemented, both for the 

identification step (transfer function estimation in a calibration experiment) and for the source 

estimation step (inverse input problem, in the real experimental conditions). This specific regularization 

technique has a very interesting advantage: even if the estimated (time) function is biased, as in any 

regularization technique, the relative bias in the time integral remains very small, whatever the TSVD 

truncation order. This allows to get estimates of the emitted pollutant dose (integrated intensity) which 

do not suffer from this type of bias.  
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2. Impedances in advection-diffusion problems in mass transfer 

2.1. Convolutive response 

 

A very interesting mathematical property of systems of partial differential equation (PDE) with time 

independent coefficients is the convolutive nature of their solution.  

This will be shown here for the generic mass transfer equation of a species (a pollutant in air) whose 

mass concentration C (in 3kg.m −  for example) depends both on time t  and on the current point P in 

space: 
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The initial concentration at time t  = 0 is supposed to be equal to zero in the considered domain, a 

room for example, and the boundary conditions are supposed to be homogeneous: zero concentration 

at the inlet(s) and zero normal gradient at the outlet(s) and at the walls, for example.  

A unique pollutant source emits a mass flow rate )(tQ of pollutant (in 1kg.s − ), called the intensity (or 

the time dependent generation rate) of the source, over a given subdomain sourceΩ of volume sourceV  

defined by its  characteristic function (P)sourceχ . The local velocity field (P)u
r

 is supposed to depend on 

space but not on time (steady flow). (P)effD  in equation (1) is the effective mass diffusion coefficient 

that is the sum of its molecular and turbulent components. 

Equation (1) associated with its initial and boundary conditions can be submitted to a Laplace 

transformation, which gives rise to a PDE system depending on space only, for a fixed value of the 

Laplace parameter p. There is just a single source term in this system, that is proportional to the 

Laplace transform )(pQ  of the initial intensity )(Q t  of the source (we use here an upper bar to 

designate the Laplace transform of any time dependent quantity).  

 

As a consequence, the new PDE system being linear, the Laplace transform ) (P, pC of the local 

concentration )(P t,C  at any point P , is proportional to )( pQ , which can be expressed by equation 

(2a): 

)() P,() (P, pQpZpC =     (2a) 
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t''tQ'ttZtQ*t,Zt,C
t

d)() (P,)()P()(P
0∫ −==⇒    (2b) 

The proportionality constant Z is the Laplace transform of a transfer function Z in the time domain.  

So, in this domain, equation (2b) shows that the local concentration C , that is the forced response to 

the unique transient input Q , is a convolution product (designated by the star character ‘*’ in equation 

(2b)) between this local transfer function Z , called here an impedance, and the intensity Q  of the 

source. 

 

2.2. Discretized column vector/matrix model and parameterization of source and impedance 

 

Model (2.b) is continuous in time. In the inverse approach, it has to be associated to m discrete 

observations at measurement times )to1(for∆0 mititti =+= , where 0t is the initial time, that 

corresponds to a zero concentration, and t∆ the time step. So, the discretization of the local 

concentration at a specific observed point obsP  becomes: 

mit,CC iobsi to1for)(P ==      (3) 

In a similar way, the unknowns of the inverse problem, that is the local impedance for the identification 

problem and the intensity of the source for the inverse input problem, are parameterized on a finite 

basis of m piecewise constant functions jf : 

mjtttttfwheretfZtZtfQtQ jjjj
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where H  designates the Heaviside function. This means that both jQ  and jZ  are then mean values 

of original functions )(tQ  and )(tZ over each ][ 1 jj tt −  time interval : 
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If the time step t∆ is small enough, to be adapted to the time scales of both input )(tQ  and 

impedance )(tZ , in order to grasp their possible sharp variations in time, which is important for 

the inverse input problem, it is possible to approximate equation (2b), written at time it  by a 

numerical quadrature : 

∑
=

+−≈
i

j
jjii QZtC

1
1∆       (5) 

This scalar model can be put under a column vector/matrix form: 

ZQC )(M=        (6a) 

or, alternatively 

QZC )(M=        (6b) 

 

where each column vector C , Q  or Z  are composed of the m  scalars  iC , iQ  or iZ  and where 

(.)M  is a (square) matrix function of a column vector, here a Toeplitz matrix defined for any column 

vector x  as : 
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Let us note that Q and Z  play a symmetrical role in equations (6a and b) because of the 

commutative property of the convolution product. Equation (6a) will be used as the linear model in the 

identification of impedance Z (calibration experiment with a known Q ) while equation (6b) will 

constitute another model for the estimation of source Q (inverse input problem in the experiment one 

is interested in). 

 

2.3. Link between transient and steady state models through the notion of dose 

 

In steady state regime, concentration ssC at any point in the system is proportional to the 

emission rate 0Q : 
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0QRC ss =       (7) 

where constant R  can be considered as a pseudo resistance to mass transfer. One way to achieve 

this type of regime, starting from a zero initial concentration everywhere in the physical system, is to 

assume that the emission rate )(tQ  is a step function of time, which yields: 

p/QpQtQtQ 00  )()(H )( =⇒=     (8) 

On the one hand, substitution of this Laplace mass flow rate of pollutant into equation (2a) gives, 
dropping the P  argument: 
 

[ ] [ ] 00
0 as0 as

0 )0()p(lim)(lim)p()( QZQZpCpQZpCp
pp

==⇒=
→→

  (9a) 

 
On the other hand, the final value theorem (a property of the Laplace transformation) writes out : 
 

[ ] [ ] ss

tp
CtCpCp ==

∞+→→
)(lim)(lim

 as0 as
    (9b) 

Hence : 

ssCQZ =0)0(      (10) 

Comparison (7) and (10) yields: 

∫
∞+

==
0

d)()0(-exp)0( ttZtZR     (11) 

We will designate dose, noted xD here, the time integral of any time-varying quantity )(tx : 

CQ,ZxttxDx orford)(
0

== ∫
∞+

    (12) 

Let us note that the notion of dose of x  here is the same as the notion of moment of zero order. So, 

equation (11) can be written the following way: 

ZDR =       (13) 

which means that the steady state resistance is simply the dose of the (transient) impedance. Of 

course integral (12) has to be convergent, which is the case for ZD that is input independent. 

However in order for QD  and CD  to exist, the input )(tQ  has to go back to zero after a finite time. 

Under these conditions, equation (2a) written for a zero Laplace parameter p  can be expressed in 

terms of doses: 

QZC DDD =       (14) 
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3. Regularization of the two deconvolution problems 

3.1. Ordinary Least Square solutions for the identification problem 

 

Both identification and estimation problems are inverse deconvolution problems. Their models have 

the same structure. Let us consider first the identification problem. In the calibration experiment, the 

measured signal calY is composed of the exact output exactC augmented by an additive noise ε . In 

a column vector notation, that yields: 

0M ==+= )(Eand)(where εZQCεCY exactcalexactexactcal   (15) 

In this equation calQ designates the measured input, supposed noiseless here and )(E the 

expectation of a random quantity. So, equation (6a) being square, the Ordinary Least Square (OLS) 

solution is:  

( ) )(and)()(with))((minArg
2

2

1 calcalcal
OLS

cal
OLSOLS JJˆ QMZQYZYMZZ MM =−=== −

  (16) 

where subscript “2” designates the Euclidian norm and matrix M  the value of the Toeplitz matrix 

function )( calQM constructed with column-vector calQ , see equation (6c). 

 

It is easy to see that this identification problem is ill-posed since the determinant of the lower triangular 

matrix )( calQM is equal to mcal tQ )∆( 1 . So, the choice of the initial time 0t is important:  it has to be 

chosen prior to the time when )( tQ cal departs from zero. However, if its average value in the ][ 10 t,t  

interval is small, the determinant of this matrix becomes close to zero and the deconvolution problem 

becomes ill-posed ( calY  instead of exactC ), with large standard deviations for the different 

components of the estimated impedance vector OLSẐ .  

 

The same type of remark can be made for the choice of the time step t∆ : a low value ensures a good 

resolution for the parameterization (4) of both functions )(tQ  and )(tZ  with an unbiased model (2b) 

for the response )( tC . However, concomitantly, such a choice would make the inversion ill-posed in 

case of noise in this response, so a regularization is necessary. We have chosen to use a Truncated 

Singular Value Decomposition (TSVD) here. 
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3.2. TSVD regularization of the identification problem 

 

If the Singular Value Decomposition (SVD) of square matrix M is written, see equation (17a) below, it 

is easy to show that the OLS estimate of impedance Z (15) is given by equation (17b): 

tVWUM =       (17a) 

calt
OLS

ˆ YUWVZ 1−=⇒      (17b) 

In these equations, all three matrices are (m x m), W  being diagonal (with its singular values 

numbered in decreasing order:  mm wwww ≥≥≥≥ −121 L ) and U andV being orthogonal. This 

identity is valid only if matrix M  is of full rank, which means that its smaller singular value mw  should 

be strictly positive.  

 In practice, the Euclidian condition number mw/w1)(cond =M  is very large, or even 

infinite for a system where the response time of the system (here the pollutant source/concentration 

sensor) is small, see section 3.1, and a regularization is always necessary. If Truncated SVD is used, 

only a number α  of singular values has to be kept in a truncated version of equation (17), with α  

smaller or equal to the rank r  of the system, yielding the regularized estimator αẐ : 

[ ]( )

[ ] [ ]αα

αα α

VVVVUUUU

WYUWVZ
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2121

21
1

andwhere

anddiagwith
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≤<== −
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A
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AAA mrwwwˆ

  (18a) 

Here matrices AU  and AV are composed of the α  first left and right singular column vectors kU  and 

kV  respectively, corresponding to the α  largest singular values kw (for mk to1= ). 

An alternate less classical but equivalent version of this TSVD estimator is: 

 

[ ]( )
mr

w/w/w/w/ˆ calt

≤<
=== −

−−

α
ααααα

with

001111diagwith 121
11

LLWYUWVZ
     (18b) 

 The interest of this version is to keep the matrices of the left and right singular vectors 

unchanged in this TSVD regularized estimate: the notation 1−
αW is only symbolic here since diagonal 
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matrix αW does not exist as it corresponds to matrix W  in which the last )( α−m (smallest) singular 

values have been given infinite values. 

The choice of the optimal regularization hyperparameter α  is made according to Morozov’s 

discrepancy principle [18], in the case of an independent identically distributed (i.i.d.) noise of standard 

deviation σ . So, α  is chosen so that: 

2
1

2 )( and )( σσ αα mˆJmˆJ ≥< +ZZ     (18c) 

 

3.3. Estimation for the inverse input problem 

Once a regularized estimation, called Ẑ  now on, of the impedance vector Z  has been 

obtained through the previous calibration experiment, the convolution model written under its form (6b) 

is used for estimating the intensity of the source realQ in the experiment one is interested in, that is 

called ‘real experiment’ here. So, in case of a noise ε  in the unbiased concentration signal Y , one 

gets: 

0M ==+= )(Eand)(where εQΖCεCY realexactexactexact   (19) 

The procedure for estimating realQ  is the same as above, in section 3.2, with the OLS estimator: 

( )
)(and)()(with

))((minArg
2

2

1

ZMQZYQ

YMQQ

ˆˆJ

Jˆ

realreal
OLS

real
OLS

real
OLS

MM =−=

== −

   (20) 

This can be regularized by TSVD, using the SVD decomposition of )(ẐM : 

ttreal ˆˆ VWUZYUWVQ == − )(with1 Mαα    (21) 

 

3.4. Estimation of the doses 

There are two ways for estimating the doses of both impedance and input for the two 

experiments (calibration and real experiments). 

The first one, noted a here, relies on the preceding TSVD inversions of the two deconvolution 

problems: 

- for the calibration experiment, using αẐ given by equation (18b): 

[ ]111where∆ L== mm
a
Z

ˆtD̂ uZu α    with  ∈mu   ℝm   (22) 
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- for the real experiment, using  realˆ
αQ given by equation (21): 

real
m

a
Q

ˆtD̂ αQu∆=       (23) 

The second one, noted b here, stems directly from equation (14) and is detailed below: 

- for the calibration experiment, using direct integration of the doses of the experimental (noisy) 

concentration calY and on the (exact) measured calibration source calQ defined by equation 

(15): 

cal
m

cal
Q

cal
m

cal
Y

cal
Q

cal
Y

b
Z tDtDD/DD̂ QuYu ∆and∆where ===   (24) 

 

- for the real experiment, using the experimental (noisy) concentration Y  defined by equation 

(19): 

YumY
b
ZY

b
Q tDD̂/DD̂ ∆where ==     (25) 

 

The interest of the b estimates is that they correspond to a scalar well-posed problem, which is not the 

case for the a estimates that are the by-products of two ill-posed function estimation problems. 

 

 

3.5. Summary: Implementation 

To summarize, the field implementation of this method consists of following these steps: 

1. Impedance calibration 

For this step, the impedance is estimated from a calibrated source calQ and implies the measurement 

calY  of concentration at a given point in the flow. Estimation of the impedance is carried out using 

TSVD regularization, with the truncation order used noted ��, which yields: 

 

              ( ) calcalˆ YQZ
1

)(
11

−
= αα M       (26) 

where ( ) 1
)(

1

−calQαM designates the truncated SVD version (with 1α  singular values kept) of the 

inverse of matrix )( calQM   

2. Estimation of unknown generation rate 
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In this step corresponding to the experiment with an unknown generation rate, the previously 

estimated impedance 
1αẐ  is used with measurement Y  of concentration at the same point used for 

calibration. The second truncation order used is noted 2α  and the unknown generation rate 

estimation is calculated such as: 

 

( ) YZQ
1

)(
122

−
= ααα

ˆˆ real M       (27) 

 

4. Experimental configuration 

The present method for aerosol source estimation was applied to the case of an open ventilated 

cabin where an aerosol source is present (Figure 1).  

 

Figure 1 – Diagram of the ventilated open cabin used 

The dimensions of the principal cabin are depicted in figure 1. A source of particulate pollutant is 

placed close to the inlet. This principal cabin is connected to the extraction duct through a funnel-like 

part. This duct is 5 m long with a 1 m diameter. The total length of the open ventilated cabin (principal 

cabin, funnel, and extraction duct) is 12.5 m. The cabin operated at a flow rate of 9,720 m3.h-1 (that is a 

mean velocity of 0.3 m s-1 at the inlet section). A vertical diffusing canvas has been set in the inlet 

section in order to ensure a uniform horizontal velocity distribution.  

The calibrated aerosol source is a Palas® RBG-1000 generator to which a small divergent 

nozzle was added. In this generator, the particles placed in a reservoir are conveyed onto a rotating 
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brush at a precisely controlled feed rate and an adjustable secondary volume flow disperses the 

particles into the main flow through the cabin. Thus, the air charged with airborne particles is ejected 

horizontally at an average velocity of 0.55 m.s-1 over a circular cross-section of 40 mm diameter. The 

particle injection velocity is quite low in order not to modify the main flow. The aerosol source was 

placed at a distance of X = 0.9 m from the inlet of the cabin, at a distance Y=1.5 m from the wall (that is 

at the middle of the cabin in the Y direction) and at a height of Z=1.4m. For all cases considered in the 

present paper, particles used are a recycled sanding wood dust whose size distribution is shown in 

Figure 2. This dust was characterized using an Aerodynamic Particle Sizer (APS/TSI® – 3321). This 

sensor provides high-resolution, real-time aerodynamic measurements of the distribution of the particles 

in the 0.5 to 20 micrometer range (see Figure 2) thanks to an optical measurement based on the 

acceleration of the particles. 

 

Figure 2 – Size distribution of sanding wood dust 

The position of the measurement point is located in the outlet duct (Fixed sensor at X=11m, 

see Figure 1). This position was chosen because this exhaust duct is the region where the aerosol is 

best mixed: this makes the corresponding measurement of the transient concentration at this point a 

good sample of the average particle transport in the cabin, and it also makes this measurement point 

less sensitive to unsteady perturbations.  



 
 

 

 Prior to implementing the method directly on 

was firstly applied to the concentration output of 

without experimental uncertainties (

 

5. Numerical validation using synthetic measurements

 

For this CFD modeling application, the 

of the source shown in Figure 3

with a diameter equal to the mean diameter of sanding wood dust (

 

Figure 3 – Schematic drawing 

5.1. CFD modeling 

The flow studied in the cabin was incompressible, steady

modeled by an averaged Navier

turbulence model [19-20]. The variation in the particle concentration field was modeled by means of 

the drift-flux model [21] following the transport equation:
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where pτ  is the response time of the particle, 
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drawing of the source injection for CFD application (top view)

The flow studied in the cabin was incompressible, steady-state and turbulent. It could hence be 

modeled by an averaged Navier-Stokes approach, associated with the k-ε realizable conventional 
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for wall deposition of particles was modeled using  the deposition law of Nerisson et al. [22] which 

reads: 

 

+
+= d

*
y

VuCJ       (29) 

where J is the flux deposited per unit time and per unit area, +yC the concentration of particles at the 

wall, *u  the friction velocity, and +
dV  the dimensionless deposition velocity. This one  depends on the 

aerodynamic diameter of the particles, on the surface orientation, on gravity, and on the near-surface 

velocity but not on concentration (see [23]). Consequently, since equation (28) and its boundary 

condition (29) are linear with respect to concentration and since their coefficients are time-invariant, 

the solution of the transport equation has still the form of a convolution product (equation 2a, b). 

 

For closing the system of equations, Dirichlet conditions are given for the concentration of particles at 

the air inlets, that is backgroundYY =  (corresponding to the uniform initial background concentration in 

the cabin, that is uniform) at the inlet of the cabin and injectionYY =  at the injection outlet, which is 

connected to the injection of the source through the equation: 

 

))((/)()( tuStQtY injectioninjection=      (30) 

 

where injectionS is the outlet section of the divergent nozzle connected to the calibration source and 

injectionu  is the source velocity outlet. 

Of course, in order to get a convolutive solution of the form (2b), the background concentration is 

substracted from the concentration in the numerical simulation. 

 

5.2.  Generation of the reduced model output 

Two numerical simulations were conducted. 

• First, the time-averaged fluid flow was computed: it is then frozen for aerosol computations 

(the flow is supposed to be unaffected by the presence of particles); The fluid flow is modeled 

by a RANS, k-ε realizable turbulence model.  
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• Second, two unsteady simulations of the particle flow (recording time step of 0.5 second) were 

performed. The first was performed to calibrate the impedance, and the second corresponds 

to the unknown source to be estimated. The drift-flux model (28) with the deposition model 

(29) are solved to determine the particles flow in the cabin. The particles are monodispersed 

with a mean diameter of m43 µ.  ( pτ  is constant). 

 

Figure 4 summarizes the two particle injection rates that are used in the different numerical 

simulations (calibration and estimation configurations). 
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Figure 4 – Mass generation rate of particles used in the numerical simulations for the calibration and 

the estimation 

 

5.3. Inversion of synthetic (CFD) concentration signals 

In this section, the method is applied to an ideal CFD case (non-noised concentration). Then, the 

impact of measurement noise on the calibration and estimation phases is considered. 

5.3.1 Application of the inverse method to non-noised synthetic (CFD) signals 

First step: impedance calibration 

Impedance estimation is performed using the injection generation rate calQ and the CFD concentration 

signal calY calculated in the extraction duct (shown in Figure 5). 
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Figure 5 – Signals used for impedance calibration in the ideal case without measurement noise  

 

The impedance calculation (equation 26) is made with a truncation order obtained by 

Morozov’s principle (equation 18c). As no noise is added on the CFD simulation, the standard 

deviation of the calculated concentration is taken equal to the CFD precision at convergence, that is a 

value 38 g.m1001 −−= .σ . Figure 6 illustrates the determination of the truncation order (with tit i ∆=  

for 1to1 mi =  with 2001 =m  and  s50∆ .t = ) using the Morozov’s criterion, see equation (18c). The 

resulting optimal truncation order is 1991 =α   (i.e. one value removed for SVD). 
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Figure 6 – Truncation order determination for calibration with non-noised signals 

 

Figure 7 shows the corresponding estimated impedance.  

 

Figure 7 – Ideal impedance 
1αẐ  estimated from non-noised signals 

Let us remind here the significance of an impedance: it is the specific concentration response to a 

pulse (i.e. a Dirac distribution) of input (an emitted mass flowrate). This can be seen easily by putting 

1  )( =pQ  in equation (2a), without paying particular attention to the choice of the physical units (the 

Laplace transform of a Dirac distribution is equal to a constant function in time that is equal to unity). 

 

Here, one can notice a maximum in figure 7 at about a time t = 12 s after the input start, as well as a 

second relative maximum (a “bump”) at t = 16 s. One can find a physical explanation for both of them: 

the absolute maximum is nearly equal to the time of flight (that corresponds to a straight line path 

between source and sensor, see figure 1), while the relative one corresponds to a curved path, in 

parts of the cabin where velocities are lower (close to the floor or to the ceiling) with a delayed arrival.  

 

Second step: unknown source estimation 
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The estimation is carried out from the impedance 
1αẐ  previously estimated (Figure 7) and 

from CFD output concentration (see equation (27)) with generation rate shown in Figure 5 as input. To 

construct the )(
1αẐM  matrix, the time step is the same as in the calibration ( s50∆ .t = ), with 

tit i ∆=  for 2to1 mi =  and with 8002 =m . In this step, the truncation order by Morozov principle is 

1752 =α . 

Thus the zero level of the estimated parameterized impedance has been set for times it  with

21 mim ≤<  in the construction of the Toeplitz matrix )(
1αẐM , see equation (27). Even if this case is 

an ideal case for a signal Y  without noise, the truncation is higher than in the impedance calibration 

step ( 12 αα < ) because of the random error already present in the estimated impedance 
1αẐ . Figure 8 

shows the CFD concentration used and the estimated generation rate. 

 

Figure 8 – (a) CFD non-noised concentration used for estimation – (b) Estimated generation rate 

 

As shown in Figure 8, the reconstruction of the injected generation rate is very good. On the 

estimated curve, small oscillations appear when the generation rate changes suddenly. These are due 

to noise caused by the solution of the detailed model, which has already affected the truncation order 

in the calibration phase. 

Dose analysis 

The impedance dose calculated by the two methods (equations 22 and 24 in section 3.4) is 

given in Table 1, together with the emission dose estimated in the second step. 
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a
ZD̂  b

ZD̂  

 

real
QD  

(CFD input) 

a
QD̂  b

QD̂  

s.m-3 g 

1.08 1.09 420.00 420.02 418.40 

Table 1 – Dose calculation of the impedance and of the unknown emission rate in the ideal numerical 

case 

Both impedance doses are very close (differences below 1%). The emitted dose given by 

equation (23) is slightly closer to the true value (CFD input) than the estimation obtained by equation 

(25). However, the two dose calculation methods provide coherent results with errors lower than 0.4 

%.  

In this case where the concentration signals are noiseless in the calibration and estimation steps, the 

estimation method of the generation rate gives correct results. The next section concerns the impact 

of measurement noise on the estimation of the impedance and of the unknown generation rate. 

 

5.3.2 Application of the inverse method to noised signals 

The signals used are exactly the same as previously with the addition of a noise. Equation (15) 

defines a measured concentration ( cal
iY ) , at a given time for example, as the sum of an exact 

concentration  ( exact
iC ) and a noise ( iε ) with an expected value equal to zero ( 0)(E =iε ).The 

signal-to-noise ratio is defined here as the ratio of Euclidian vector norms as: 
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Two different signal-to-noise ratios (SNR) are tested here: a very noisy signal with 5)(SNR 2 =Y  and 

one another less noisy one with 52)(SNR 2 =Y . 

 

First step: impedance calibration 

Figure 9 shows the noised concentration for the calibration (a) as well as the estimated impedance (b). 

An independent identically distributed Gaussian noise of standard deviation 

)(
1

22

calcal YSNR
m

Y=σ  was used to produce the added noise vector ε . 
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Figure 9 – (a) CFD noised concentration used for calibration – (b) Impedance estimated for different 

noisy signals with the optimum number 1α of singular values 

 

Morozov’s principle gives for 5)(SNR 2 =Y  and 52)(SNR 2 =Y  a truncation order 1α  equal  to 

15 and 35 respectively (see Table 2). Figure 9b shows that when the SNR is high, the characteristic 

peak of the impedance is close to the ideal case. Nonphysical oscillations caused by the concentration 

noise appear before and after the characteristic peak. If the SNR gets very small, the impedance 

calculation becomes very inaccurate because of an excessive truncation that causes the appearance 

of non-physical oscillations which blur the characteristic peak. However, if we consider the impedance 

dose only, the SNR has a very little influence, as can be seen on Table 2. 

 

)(SNR2 C  

a
ZD̂  b

ZD̂  Truncation order 

1α  

( 200for 1 =m ) 
s.m-3 

No-noise 1.08 1.09 199 

25 1.07 1.09 35 

5 1.12 1.09 15 

Table 2 – Dose calculation of the impedance for different SNR in the CFD case and corresponding 

truncation order 

 

Even with a very low SNR, both algorithms a and b allow to retrieve the impedance dose with a 

precision of about 4%. So the main impact of the noise relates to the reconstruction of the impedance 

but not on the estimation of its dose.  
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Second step: unknown source estimation 

Once the impedance has been estimated for different noise levels, the second step of the 

method is performed on a concentration signal similar to that of Figure 8a but with an added noise 

corresponding to the tested SNR. Figure 10 shows the noisy concentration signals and the resulting 

estimated generation rates using the corresponding identified impedances. 

 

Figure 10 – (a) CFD noised concentration used for estimation – (b) Generation rate estimated for 

different noisy signals 

 

The optimum truncation orders 2α  (Morozov principle) are 63 for 5)(SNR 2 =Y  and 91 for 

52)(SNR 2 =Y  (see Table 3). So, the conclusion is the same as for the impedance calibration step: the 

SNR and the optimal truncation orders vary in the same direction. We can observe that the 

reconstruction of the emission rate seems to be of good quality for each SNR level. However this 

reconstruction is slightly worse for a low SNR. The effect of SNR on the estimated doses is presented 

in Table 3. 

 

)(SNR2 C  

real
QD  

(CFD input) 
a
QD̂  b

QD̂  
Truncation order 

2α  

( 840for 2 =m ) g 
No-noise 420.00 420.02 418.40 175 

25 420.00 419.90 417.71 91 
5 420.00 396.95 416.60 63 

Table 3 – Dose calculation of the unknown generation rate estimated for different SNR’s and 

corresponding truncation orders in the CFD case 
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The maximum deviation between the real and the estimated value (for all the presented 

estimations) is 5.5%. When the measurement noise is low (no-noise or 52)(SNR 2 =Y ), the estimated 

dose a
QD̂  is more accurate but in the opposite case ( 5)(SNR 2 =Y ) the dose b

QD̂  becomes better. 

Therefore, the implementated method gives satisfactory results for all noise levels tested. Next 

section is then dedicated to an application on a real experimental case. 

 

6. Experimental validation of the method 

After testing the method on an ideal CFD case, we propose to consider its application on a real 

experimental case. The injection for the two steps (calibration and estimation) is achieved with the 

aerosol generator Palas RBG-1000 using sanding wood dust. Figure 11 shows the two injection rates 

that are used in both steps of the method. 

 

Figure 11 – Mass generation rate of particles in the experimental cases for calibration and source 

estimation 

First step: impedance calibration 

In this step, the concentration used is measured by the APS sensor located in the extraction 

duct. Figure 12a shows the two signals (calibration generation rate and measured concentration) used 

for impedance calculation. The acquisition time step is s1∆ =t  for 6001 =m  and tit i ∆= . The 

concentration signal (Figure 12a) is obtained from an averaged response over 20 tests. This 

averaging is used to increase the SNR in order to avoid a too ill-posed problem.  Let us note that 

transient particle concentration measurements present indeed very high noise levels that lead to low 

signal-to-noise ratios. The standard deviation -3µg.m164.=σ of the noise has been estimated in a 
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statistical way from the fluctuations of the final concentration plateau in this figure. The 2SNR is then 

equal to 10.44 . So this signal-to-noise ratio lies just in between the two levels tested in the numerical 

cases considered in section 5.  The truncation order obtained by Morozov’s principle is 351 =α . 

Figure 12 – (a) Signals used for calibration – (b) Estimated impedance 

 

The reconstructed impedance (Figure 12b) exhibits the same type of variation with time as the 

one obtained previously, with a characteristic peak, but with nonphysical oscillations due to noise in 

the measurement. 

Second step: unknown source estimation 

Figure 13a presents the measured concentration resulting from the unknown injection and 

Figure 13b shows the estimation of the source by the inverse method. The standard deviation 

-3µg.m853.=σ of the concentration noise has been estimated in a statistical way using the first 

concentration plateau (between s600ands215 == tt ) in the same figure. In this case, 6SNR2 = and 

the resulting truncation order is  552 =α . 
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Figure 13 – (a) Experimental concentration used for estimation – (b) Real and estimated generation 

rate (same particulate source as for the calibration experiment) 

The reconstruction of the particle generation rate is in good agreement with the real injection: 

the three injection plateaus are recovered in the estimation, and the emitted dose is recovered (Table 

4). 

a
ZD̂  b

ZD̂  Truncation 
order  

�� 
( 600for 1 =m ) 

SNR=10.44 

 

real
QD  a

QD̂  b
QD̂  Truncation order 

2α  

( 1500for 2 =m ) 
SNR=6 

s.m-3 g 

14.790 15.670 35 2.885 2.867 2.689 55 
Table 4 – Dose calculation for the impedance and for the unknown source generation rate in the 

experimental case (same particulate source for calibration and real experiments) 

 

Table 4 shows that the two impedance doses calculated are close. Moreover, the estimated emission 

doses ( a
QD̂  or b

QD̂ ) are very close to the real emitted mass. The error for a
QD̂  and b

QD̂  are 0.6% and 

6% respectively.  

So, we see here that use of the transient (a) method gives a better estimate of the emitted dose than 

the purely steady state (b) method, while the opposite was true in the simulated case shown in Table 

2, with a very close 2SNR ratio (5, instead of 6 here). However, no general conclusion about the 

superiority of one of these methods can be drawn here, since in both cases, only one realization of 2 

experimental or simulated estimations (calibration and input estimation) has be made, with high 

relative noise levels. 
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Let us note finally that comparison of Figure 13a (concentration measurement) and 8a (simulated CFD 

concentration output) shows that our CFD model was biased because the constant plateaus of its 

output cannot be found in the experimental measurements. 

 

7. Conclusions 

The work presented in this paper describes the development of a method for estimating an unsteady 

injection of particulate pollutant in a ventilated room from transient concentration measurements. This 

corresponds to a convolution model linking the concentration at any point to the intensity of the 

source. The developed method is based on two steps:  

- The impedance identification, which derives from a controllable source (which the generation 

rate is known) and a simultaneous concentration measurement in a calibration experiment; 

- Estimation of the unknown generation rate, which uses the previously determined impedance 

and the concentration signal resulting from this unknown generation rate. 

For each step, the TSVD regularization of the corresponding inverse linear problem is used. The 

truncated order is determined by Morozov’s discrepancy principle. 

First, the method was applied and validated starting from the concentration output of an ideal (no-

noise measurement) CFD detailed model where all parameters (ambient settings, injected generation 

rate, velocity fields ...) are controlled. In this case, a good quality reconstruction of the transient 

injection rate was reached, with an emitted dose estimated within 0.5% of the real dose. 

Second, the method was used in the CFD case with two different signal to noise ratios (SNR2, defined 

using the Euclidian norm), a high one (25) and a low one (5). For these two cases, the reconstruction 

of the transient intensity and of the dose could be reached, within 5.5% for the dose in the most 

difficult case.  

Next, validation of the method was made on an experimental basis, using the same sanding dust 

injection system in the calibration and unknown source estimation experiments. Even if some 

assumptions required by the implementation of a convolution model could be questioned, for example 

a wide distribution (0.5 to 20 µm) of the characteristic size of the non spherical particles with possible 
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different diffusion coefficients for each species in the turbulent air flow, the potential of the method was 

confirmed, with the same qualitative conclusions as above. 

In a parallel study, the method has been applied with success on a real sanding experiment, after a 

calibration experiment with the same sanding dust injection system. These results are not presented 

here but can be found in [23].  

Other versions or other applications of this method can be considered:  

- There is no problem to apply the same methodology for a sequential “on line” input estimation: 

the only change is to replace Truncated Singular Value Decomposition by J. V. Beck’s 

function specification method (also called “Future times” method), which is quite popular for 

sequential regularized inversion, see [16]. 

- The deposition rate in the model and in the experiment can be taken into account, with a 

Robin’s boundary conditions at the wall. 

- The same type of impedances can be used in order to estimate the time variation of several 

sources (a number p) that are active simultaneously in a “real experiment”, using at least as 

many sensor responses (a number q)  as the number of sources (this is commonly called the 

“source separation problem” in the inverse literature). This requires as many calibration 

experiments as the number of sources in a first step, with each experiment corresponding to a 

single active source at the time. In the second step, once the p x q impedances identified, a 

superposition of the responses corresponding to each source allows to get a model for the 

global response of each sensor. Of course, the ill-posed nature of the inverse problem is 

increased, with respect to each of the individual impedance estimation problem met in the 

calibration step: two nearby sources will be difficult to separate for example. However, this is 

possible, as it has been shown experimentally  in reference [14] (see the introduction section 

of this paper). The reduced model used was different (Modal Identification Method), but the 

underlying physical problem was the same. 

 

- This type of transfer function approach can be applied to other systems based on a transport 

law (characterization of heat exchangers for example). 
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