
HAL Id: hal-01501826
https://hal.science/hal-01501826v1

Submitted on 4 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized vs set median strings for histogram-based
distances: algorithms and classification results in the

image domain
Christine Solnon, Jean-Michel Jolion

To cite this version:
Christine Solnon, Jean-Michel Jolion. Generalized vs set median strings for histogram-based distances:
algorithms and classification results in the image domain. Graph based Representation for Pattern
Recognition (GbR’07), Jun 2007, Alicante, Spain. pp.404-414. �hal-01501826�

https://hal.science/hal-01501826v1
https://hal.archives-ouvertes.fr

Generalized vs set median strings for
histogram-based distances: algorithms and
classification results in the image domain

Christine SOLNON & Jean-Michel JOLION

LIRIS, UMR 5205 CNRS / Université de Lyon 1 / INSA de Lyon
Nautibus, 43 bd du 11 novembre, 69622 Villeurbanne Cedex, France

email: {christine.solnon,jean-michel.jolion}@liris.cnrs.fr

Abstract. We compare different statistical characterizations of a set of
strings, for three different histogram-based distances. Given a distance,
a set of strings may be characterized by its generalized median, i.e., the
string —over the set of all possible strings— that minimizes the sum
of distances to every string of the set, or by its set median, i.e., the
string of the set that minimizes the sum of distances to every other
string of the set. For the first two histogram-based distances, we show
that the generalized median string can be computed efficiently; for the
third one, which biased histograms with individual substitution costs, we
conjecture that this is a NP-hard problem, and we introduce two different
heuristic algorithms for approximating it. We experimentally compare
the relevance of the three histogram-based distances, and the different
statistical characterizations of sets of strings, for classifying images that
are represented by strings.

1 Motivations

To manage the huge data sets that are now available, and more particularly
classify, recognize or search them, one needs statistical measures to characterize
them. This statistical characterization is both well defined and easily computed
when data are numerical values, or more generally vectors of numerical values.
However, many objects are poorly modelized with such vectors of numerical
values, that cannot express the sequentiality of attributes. Strings are symbolic
structures that allow a richer modelization by integrating a notion of order.

To exploit sets of strings, one needs a statistical characterization of these
sets. This characterization depends on a distance measure, that quantifies the
dissimilarity of two strings: given a distance, a set of strings may be characterized
by its generalized median, i.e., the string —over the set of all possible strings—
that minimizes the sum of distances to every string of the set, or by its set
median, i.e., the string of the set that minimizes the sum of distances to every
other string of the set.

The complexity of the computation of generalized and set median strings
depends on the considered distance. For example, for the well known edit distance

of Levenshtein, the set median string may be computed in polynomial time,
whereas the computation of the generalized median string is a NP-hard problem
[dlHC00,SP01].

In this paper, we focus on three histogram-based distances for strings: the
first one, called dH , considers strings as sets of symbols and is basically defined
as a sum of differences of distributions of symbols; the second one, called dHω

integrates a notion of order by associating weights to positions in strings; the
third one, called dHω,c

, biased distances with individual substitution costs of
symbols occurring at a same position, in order to express the fact that some
symbols are rather similar, whereas some others are very different. These three
histogram-based distances have the same computational complexity, which is
linear with respect to the size of the strings and the alphabet, and are an order
quicker than the edit distance.

A goal of this paper is to study statistical characterizations of sets of strings
when considering these histogram-based distances. For the first two distances, we
show that the generalized median string can be computed efficiently; for the third
one, that biased histograms with individual substitution costs, we conjecture that
this is a NP-hard problem, and we introduce two different heuristic algorithms
for approximating it.

An application in image classification is proposed as an illustration of these
results.

2 Background

2.1 Notations

The alphabet is noted A and symbols of A are noted αi with 1 ≤ i ≤ |A|. Strings
are finite length sequences of symbols from A and are noted sj with j ≥ 1. The
set of all strings from A is noted A∗. The length of a string sj is noted |sj |, and
the kth symbol of a string sj is noted sk

j .

2.2 Statistical characterisation of a set of strings

Let d : A∗ × A∗ → R+ be a distance or a dissimilarity measure for any pair
of strings from A (see 3). The first moment, also called generalized median, of
a set of strings S ⊆ A∗ is defined as a string of A∗ that minimizes the sum of
distances to every string of S, i.e.,

generalized median(S) = arg min
sj1∈A∗

∑
sj2∈S

d(sj1 , sj2) (1)

The complexity of the computation of the generalized median string depends
on the distance considered. When this complexity is too high, one may approx-
imate the generalized median string by constraining the search to the set S,
yielding the set median of S as

set median(S) = arg min
sj1∈S

∑
sj2∈S

d(sj1 , sj2) (2)

3 Distances between strings

3.1 Edit distance

The most famous distance between strings has been proposed by Levenshtein,
e.g., the edit distance [Lev66]. The edit distance between two strings sj1 and sj2 ,
denoted by de(sj1 , sj2), is defined by the minimum cost set of edit operations
required to transform sj1 into sj2 . Three edit operations are allowed (substitu-
tion of a symbol by another symbol, deletion of a symbol, and insertion of a
symbol); costs are associated with these operations. A simple algorithm using
dynamic programming for computing the edit distance can be found in [WF74].
Its computational time complexity is in O(|sj1 | · |sj2 |).

For this edit distance, the computation of the generalized median string is
a NP-hard problem [dlHC00,SP01]. The generalized median string may be ap-
proximated by using heuristic algorithms, such as greedy algorithms [MHJC00]
or genetic search [JBC04].

3.2 Histogram-based distance dH

An alternative to the edit distance is to consider a sequence not as a string but
as a set of symbols. Thus a basic distance between two sets is the comparison of
the distributions of symbols defined as:

dH(sj1 , sj2) =
∑

αi∈A
abs(H(sj1 , αi)−H(sj2 , αi)) (3)

where H(sj , αi) is the number of occurrences of symbol αi in string sj , and abs
is the function that returns the absolute value1. The main advantage of this
distance is its computational cost which is in O(|sj1 |+ |sj2 |+ |A|)2. For strings
of different sizes, the histograms must be normalized before comparison.

For this histogram-based distance, the generalized median string of a set
of strings S can be constructed as follows: starting from an empty string, for
each symbol αi ∈ A, insert k times the symbol αi to the string, where k is the
median value of the set {H(sj , αi), sj ∈ S}. This generalized median string can
be computed in O(|S| · (l + |A|)), where l is the length of the strings of S3.
1 There exists many other different histogram-based distances such as, e.g., kullback-

Leibler or Kolmogorov-Smirnov. Our work, based on a distance defined by means
of absolute differences of distributions, could be extended to other histogram-based
distances as well.

2 In case of very large alphabets, one may use a hashing table in order to consider
only the symbols of the alphabet that actually occur in the strings, thus computing
the distance in O(|sj1 | + |sj2 |).

3 Note that the median element of a set can be selected in linear time with respect to
the size of the set by using a “divide-and-conquer” approach similar to the one used
for the quicksort [CLR90]: the idea is to partition the set in two parts containing
elements greater than (resp. lower or equal to) a given element; depending on the
cardinalities of these two parts, the search for the median element can be recursively
continued in one of the two parts.

3.3 Weighted histogram-based distance dHω

The histogram-based distance dH does not take into account the order the sym-
bols appear in the strings. One could integrate information on the sequentiality of
the symbols by using n-grams, thus comparing the distributions of sub-sequences
of n symbols. However, in some applications (as the one described in section 5),
the order of the symbols in a string may not express a strong sequentiality, but
a difference in the importance of the symbols. In this case, the fact that a sym-
bol is just before another symbol is not very significant; the main information
contained in the string structuring is the global position of symbols, those at the
beginning of a string being more important than those at the end.

In this case of decreasing importance strings, one may associate a weight ωk

with every position k in strings. To emphasize differences at the beginning of
the strings, this weight may be defined, e.g., by ωk = 1 + l − k where l is the
length of the string. To compare strings of different sizes, it is then necessary to
complete the shortest string with a new extra symbol until the two strings have
the same size.

Hence, we define the weighted histogram associated with a string sj and a
symbol αi:

Hω(sj , αi) =
∑

1≤k≤|sj |,sk
j =αi

ωk

and the weighted histogram-based distance between two strings sj1 and sj2 :

dHω
(sj1 , sj2) =

∑
αi∈A

abs(Hω(sj1 , αi)−Hω(sj2 , αi)) (4)

This distance has the same computational cost than the basic histogram-based
distance dH .

For this weighted histogram-based distance, one can construct a “generalized
median weighted histogram” of a set of strings S as follows: for each symbol
αi ∈ A, set the weighted histogram value associated with αi to the median value
of the set {Hω(sj , αi), sj ∈ S}. This generalized median weighted histogram can
be computed within the same time complexity than for the histogram-based
distance, i.e., in O(|S| · (l + |A|)), where l is the length of the strings of S. Note
that it may not be possible to construct a string corresponding to this weighted
histogram. However, it may be used to statistically characterize a set of strings.

3.4 Weighted histogram-based distance with substitution costs
dHω,c

The histogram-based distances dH and dHω assume that all symbols are “equally
different”. However, some symbols may be considered as rather similar, whereas
some others may be very different. Therefore, [RLJS05] has proposed a new
distance, which has the same computational complexity as dH and dHω , but
which is biased with individual substitution costs of symbols occurring at a
same position.

This new distance is based on weighted histograms with substitution costs.
Given two strings sj1 and sj2 and a symbol αi, these histograms are defined as
follows

Hω,c(sj1 , αi) =
∑

1≤k≤|sj1 |,s
k
j1

=αi

ωk · c(αi, s
k
j2)

Hω,c(sj2 , αi) =
∑

1≤k≤|sj2 |,s
k
j2

=αi

ωk · c(sk
j1 , αi)

where c : A × A → R+ is a function which defines the cost of substituting one
symbol by another symbol.

Then, the weighted histogram-based distance with substitution costs is de-
fined by

dHω,c(sj1 , sj2) =
∑

αi∈A
abs(Hω,c(sj1 , αi)−Hω,c(sj2 , αi)) (5)

Note that this distance is not a metric, and does not satisfy the triangular
inequality property.

The fact that the histogram is biased by the individual substitution cost
of every pair of symbols occurring at a same position implies that one cannot
construct a “generalized median weighted histogram” of a set of strings S, inde-
pendently from any candidate median string. Therefore, we conjecture that the
computation of the generalized median string of a set of strings is NP-hard.

4 Approximations of the generalized median string for
dHω,c

This section describes two algorithms for approximating the generalized median
string of a set of strings S ⊆ A∗, when considering the weighted histogram-based
distance with substitution costs dHω,c

.
We shall assume that all strings of S have the same length l: if this is not the

case, it is always possible to complete every string that is shorter than l with a
new extra symbol.

4.1 Greedy algorithm

The generalized median string of S may be approximated in a greedy way:
starting from an empty string sgreedy , symbols are iteratively added at the end
of sgreedy until the length of sgreedy is equal to l. At each step, one selects the
symbol αi ∈ A that minimizes the sum of distances between sgreedy ·αi and every
string of S (restricted to the |sgreedy |+ 1 first symbols).

A key point to keep a low time complexity is to incrementally evaluate the
sum of distances induced by each candidate symbol. This is done by maintaining,
at each iteration l′ ≤ l:

– for every string sj ∈ S, two arrays Hj
1 and Hj

2 such that for every symbol
αi ∈ A:

Hj
1 [αi] =

∑
1≤k<l′,sk

j =αi

ωk · c(αi, s
k
greedy)

Hj
2 [αi] =

∑
1≤k<l′,sk

greedy=αi

ωk · c(αi, s
k
j)

– an array sum such that for every string sj ∈ S,

sum[sj] =
∑

αi∈A
abs(Hj

1 [αi]−Hj
2 [αi])

Thanks to these data structures, the choice of the next symbol to add is done
in O(|A| · |S|). Each time a new symbol is added at the end of the string, these
data structures are updated in O(|S|). As a consequence, the time complexity
of the greedy algorithm is in O(l · |A| · |S|).

4.2 Local search

The generalized median string of S may also be approximated by iteratively
modifying an initial string of length l: at each iteration, a symbol of the string
is replaced by a new symbol such that the sum of distances to every string of S
is decreased; these replacements are performed until no more replacement can
decrease the sum of distances, thus obtaining a locally optimal string that cannot
be improved by a simple replacement.

We have compared different strategies (including meta-heuristics such as tabu
search) for selecting the next replacement to perform at each step. On average,
the best compromise between solution quality and CPU-time has been reached
when considering a “first-improvement” strategy, i.e., when selecting the first
found replacement that decreases the sum of distances.

This local search process may be started from different initial strings, e.g.,
from the set median string of S, from the string constructed by the greedy
algorithm, or a string which is randomly generated from A∗.

The same data structures than for the greedy algorithm may be used to
evaluate replacements at low cost. With such data structures, given a position
k and a new symbol αi, the replacement of the symbol at position k by αi may
be done in O(|S|) so that the time complexity of the local search algorithm is in
O(n · |S|) where n is the number of replacements that are evaluated. Of course,
n depends on the strategies considered for selecting the replacements to perform
and for building the initial string from which starting the local search; it also
depends on the length of the string.

4.3 Experimental results

Table 1 compares the quality of the different approximations of the general-
ized median string introduced previously, e.g., the set median string, the string

Length set median greedy LS(set median) LS(greedy) LS(random)

100 468.87 13.76% 13.63% 14.28% 14.31%

200 425.57 16.56% 16.50% 17.20% 16.98%

400 381.29 19.41% 19.18% 20.06% 19.79%

800 329.93 21.29% 20.93% 22.09% 21.63%

Table 1. Comparison of approximations of the generalized median string: each line
first gives the length of the strings and the sum of distances to the set median string,
and then the percentage of improvement of this sum of distances when considering
strings computed by the greedy and local search algorithms (average results for the 10
classes of the SIMPLIcity base described in 5, each class having 100 strings).

Length set median greedy LS(set median) LS(greedy) LS(random)

100 0.02 0.29 2.59 1.67 2.32

200 0.03 0.51 5.44 4.40 5.03

400 0.04 1.01 14.62 10.38 13.35

800 0.09 2.13 33.45 32.24 34.47

Table 2. Comparison of CPU-times: each line displays the length of the strings and
the CPU times (in seconds) spent to compute the different approximate generalized
median strings (average results for the 10 classes of the SIMPLIcity base described in
5, each class having 100 strings).

computed by the greedy algorithm (greedy), and the strings computed by the
local search algorithm starting from different initial strings, i.e., from the set
median string (LS(set median)), the string computed by the greedy algorithm
(LS(greedy)) and a randomly generated string (LS(random)).

This comparison is done on strings of the SIMPLIcity base described in
section 5. This base contains 10 classes of 100 strings of 4000 symbols. The table
gives average results on the 10 classes, when successively limiting the length of
the strings to the 100, 200, 400, and 800 first symbols. For each length, the table
first displays the sum of distances to the set median string, and then, for each
approximation of the generalized median string, the percentage of improvement
with respect to this sum of distances.

Both greedy and local search algorithms significantly better approximate the
generalized median string than the set median string. The best improvements
are usually obtained by local search, when it is started from the string gener-
ated by the greedy algorithm. Surprisingly, starting local search from the set
median string often leads to a slightly worse approximation than starting from
a randomly generated string. However, all approximations obtain rather close
results.

Table 1 also shows that the larger the strings, the better improvements: when
strings are limited to the 100 first symbols, the sum of distances to the greedy

approximation is 13.76% as small as the sum of distances to the set median string;
when considering the 200 (resp. 400 and 800) first symbols, this percentage of
improvement rises to 16.56 (resp. 19.41 and 21.29).

Table 2 compares CPU-times spent to compute the different approximations
on a 2.16GHz Intel dual core with a 2MB cache. This table shows us that
computing the set median string is more than ten times as fast as computing an
approximation with the greedy algorithm, which itself is more than ten times
as fast as computing an approximation with the local search approaches. Also,
when starting local search from the string generated by the greedy algorithm,
CPU time is slightly smaller than when starting from a set median or a randomly
generated string.

The quality improvement is thus balanced by the CPU-time cost. However, in
applications such as classification of unknown strings in already known clusters,
the best representative of each cluster, e.g., the generalized median string, is
computed off-line, one-for-all.

5 Classification results in the image domain

5.1 Representing images by strings

We introduced in [SJ05] a new representation of images based on strings of
symbols. This signature, both precise and compact, is based on notions such as
interest points, contrast and order. First, a given image is binarized such that it
keeps all the contrasts. Then local maxima of the contrast energy are extracted
and associated with their local 3×3 binary neighborhood in the binary image. We
thus get a 2D map of symbols, e.g. the 3×3 binary patterns. As any local maxima,
e.g. interest points, is also characterized by a measure of contrast energy, we
use this measure to sort the points, yielding a string of symbols. The contrast
energy measure is no longer kept in the final signature. In this application, the
alphabet is made of 512 symbols, corresponding to the 29 different 3× 3 binary
neighborhoods.

Note that with this representation of images by strings, the edit distance of
Levenshtein is not relevant and gives very disappointing results for classification
purposes. Indeed, the edit distance mainly considers the “local” order of symbols
—their relative positions— whereas we are more interested in a “global” order of
symbols —their global positions in the string, as symbols are sorted with respect
to their contrast energy and we consider very long strings: we mainly want to
distinguish symbols with high contrast energy, at the beginning of the strings,
from symbols with low contrast energy, at the end of the strings. Moreover, the
edit distance is an order slowler, which makes it prohibitive on large strings of
more than one thousand symbols length.

5.2 Test suite and experimental settings

We have performed experiments on the SIMPLIcity database [WLW01] which
contains 1000 images of size 384× 256 extracted from the well known old com-

mercial COREL database4. The database contains ten clusters representing se-
mantic generalized medianingful categories such as Africa people and villages,
beaches, buildings, buses, dinosaurs, elephants, flowers, food, forses and moun-
tains and glaciers. There are 100 images per cluster. Each image of the database
is represented by a string of 4000 symbols max, as described in the previous
section.

For distances dHω
and dHω,c

, which associate a weight ωk with every position
k in strings, we have defined ωk = l− k + 1, where l is the length of the strings,
in order to emphasize differences at the beginning of the strings.

For the distance dHω,c , which biased histograms with individual substitution
costs, we have tuned costs for this database by a basic adaptive process. Let M
be a 512× 512 matrix initialized to 0. We scan all the possible pairs of symbols
(sk

j1
, sk

j2
). If the strings sj1 and sj2 belong to the same cluster, M(sk

j1
, sk

j2
) is

decreased by 1 else it is increased by 1
1−NC where NC is the number of clusters

(in order to take into account the a priori probability of two strings to belong to
the same cluster). The final cost matrix is then discretized based on the sign of
M and we set each cost c(αi1 , αi2) to 1 (resp. 2 and 3) if M(αi1 , αi2) is negative
(resp. null and positive).

We have classified the strings extracted from the SIMPLIcity base according
to a nearest neighbour approach: to classify a string, we compute the distance
between this string and the representative of every class (the set median, or an
exact or approximated generalized median); the closest representative determines
the class. We have computed representatives of every class according to a “leave-
out-one” principle: the string which is classified is removed from its class before
computing its representatives.

We have performed experiments with different lengths of strings: strings ex-
tracted from images have 4000 symbols (some strings were shorter, but we have
completed them with a new extra symbol); to study the influence of the length
of the strings, we report experimental results obtained when limiting the number
of symbols to different lengths varying from 50 to 2500.

5.3 Experimental results

We now compare the different histogram-based distances (dH , dHω , and dHω,c),
and the different statistical characterizations (set median string, exact gener-
alized median string for dH and dHω , and approximated generalized median
string for dHω,c), for classifying strings representing images of the SIMPLIcity
database.

Table 3 compares global classification rates (GCR), i.e., percentages of strings
which have been assigned to the right classes. Let us first compare GCR when
classes are characterized by set median strings for the three different histogram-
based distances introduced in 3. We note that introducing weights ωk to empha-
size differences at the beginning of the strings improves GCR when strings are

4 The SIMPLIcity database can be downloaded on the James Z. Wang web site at
http://wang.ist.psu.edu/jwang/test1.tar.

set median strings (exact or approximated) generalized median strings

Length H Hω Hω,c H Hω Hω,c

Greedy LS(Greedy)

50 28.4 27.2 35.6 33.2 (+4.8) 33.4 (+6.2) 41.0 (+5.4) 43.9 (+8.3)

100 35.2 34.3 41.4 43.7 (+8.5) 41.0 (+6.7) 45.7 (+4.3) 44.6 (+3.2)

300 44.1 45.3 48.6 60.5 (+16.4) 57.8 (+12.5) 55.0 (+6.4) 56.8 (+8.2)

500 55.3 48.1 52.5 63.8 (+8.5) 61.8 (+13.7) 61.0 (+8.5) 61.7 (+9.2)

800 57.2 52.5 61.9 68.1 (+10.9) 66.4 (+13.9) 65.1 (+3.2) 63.9 (+2.0)

1000 59.5 57.8 60.8 69.6 (+10.1) 67.8 (+10.0) 65.1 (+4.3) 65.3 (+4.5)

1250 62.0 58.4 63.4 69.7 (+7.7) 68.9 (+10.5) 67.4 (+4.0) 66.8 (+3.4)

1500 60.7 61.9 65.5 70.3 (+9.6) 70.5 (+8.6) 68.6 (+3.1) 69.4 (+3.9)

1750 62.9 63.3 63.9 68.8 (+5.9) 71.8 (+8.5) 67.9 (+4.0) 68.7 (+4.8)

2000 57.5 64.3 62.7 63.9 (+6.4) 71.4 (+7.1) 68.2 (+5.5) 68.0 (+5.3)

2500 53.7 61.0 62.6 63.3 (+9.6) 70.1 (+9.1) 66.5 (+3.9) 65.9 (+3.3)

avg. 52.4 52.2 56.3 61.4 (+9.0) 61.9 (+9.7) 61.0 (+4.7) 61.4 (+5.1)

Table 3. Comparison of global classification rates (GCR) (average results for the 10
classes of the SIMPLIcity base, each class having 100 strings). Each line successively dis-
plays the length of the strings, the GCR obtained when representatives are set median
strings (for distances dH , dHω , and dHω,c), and the GCR obtained when representa-
tives are generalized median strings (for distances dH and dHω), and approximations
computed by greedy and local search algorithms (for distance dHω,c); GCR obtained
with (exact or approximated) generalized median strings are followed in brackets by
the improvement with respect to the set median string.

long enough (i.e., for lengths greater than a thousand or so symbols), whereas
it decreases GCR for shorter strings. Note also that introducing individual sub-
stitution costs significantly improves GCR.

Let us now compare GCR when classes are characterized by exact or approx-
imated generalized median strings. We note that these (approximated) general-
ized median strings are better representatives than set median strings. However,
exact generalized median strings, computed for the distances dH and dHω

, im-
prove more significantly GCR than approximated ones, computed for the dis-
tance dHω,c : on average, the GCR is improved by 9 (resp. 9.7) points for dH (resp.
dHω) when representing classes by generalized instead of set median strings; how-
ever, this GCR is only improved by 4.7 (resp. 5.1) points for dHω,c

when repre-
senting classes by approximations computed by the greedy (resp. local search)
algorithm.

Note finally that GCR obtained with approximations computed by local
search are not significantly better than GCR obtained with approximations com-
puted by the greedy algorithm: on average, the GCR is improved of 0.4 points
only.

6 Discussion

We introduced in this paper three histogram-based distances for strings. For the
first two ones, the generalized median string can be computed in polynomial
time, and we experimentally show that classification is significantly improved
when characterizing classes with generalized median strings instead of set me-
dian strings. However, we conjecture that the computation of generalized median
strings for the third histogram-based distance is a NP-hard problem, so that we
have proposed two heuristic algorithms for approximating generalized median
strings in this case. Experimental results showed us that, if classification is im-
proved when characterizing classes with these approximations, they are not as
relevant as we would like and improvements are twice as small as improvements
obtained with exact generalized median strings. Hence, further work will first
concern an explanation of these disappointing results: are they due to the fact
that our heuristic algorithms build approximations that are far from optimality,
or are they due to the distance itself? Actually, we need information on the
distribution of strings with respect to distances. We thus are currently working
on the definition of a probability density function on such space and algorithms
to approximate this function.

Another trend will be to relate our string-based approach to the more usual
graph-based representation of images. Of course, we shall investigate the seri-
ation of a graph-based representation of an image but also alternatives such as
graphs or trees of strings, each string being related to a localized area in an
image.

References

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms. MIT Press, 1990.

[dlHC00] C. de la Higuera and F. Casacuberta. Topology of strings: Median string is
np-complete. Theoretical Computer Science, 230(1/2):39–48, 2000.

[JBC04] X. Jiang, H. Bunke, and J. Csirik. Median strings: A review. In M. Last,
A. Kandel, and H. Bunke (eds) World Scientific, editors, Data Mining in
Time Series Databases, pages 173–192, 2004.

[Lev66] A. Levenstein. Binary codes capable of correcting deletions, insertions and
reversals. Sov. Phy. Dohl., 10:707–710, 1966.

[MHJC00] C.D. Martinez-Hinarejos, A. Juan, and F. Casacuberta. Use of median
string for classification. In International Conference on Pattern Recognition,
volume 2, pages 903–906, 2000.

[RLJS05] J. Ros, C. Laurent, J.M. Jolion, and I. Simand. Comparing string repre-
sentations and distances in a natural image classification task. In LNCS
Springer, editor, 4th IAPR International Workshop on Graph based Repre-
sentations, volume 3434, pages 71–83, 2005.

[SJ05] I. Simand and J.M. Jolion. Représentation d’images par châınes de sym-
boles: application à la recherche par le contenu. In Presses universitaires de
Louvain, editor, Actes du 20ème colloque GRETSI: Traitement du signal et
des images, volume 2, pages 925–928, 2005.

[SP01] J.S. Sim and K. Park. The consensus string problem for a metric is np-
complete. Journal of Discrete Algorithms, 2(1):115–121, 2001.

[WF74] R.A. Wagner and M.J. Fisher. The string to string correction problem.
Journal of the ACM, 21(1):168–173, 1974.

[WLW01] J.Z. Wang, J. Li, and G. Wiederhold. Simplicity: Semantics-sensitive inte-
grated matching for picture libraries. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 23(9):947–963, 2001.

