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Automata completion and regularity preservation

Thomas Genet

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France, genet@irisa.fr

Abstract
We consider rewriting of a regular language with a left-linear term rewriting system. We show
two completeness theorems. The first one shows that, if the set of reachable terms is regular, then
the equational tree automata completion can compute it. This was known to be true for some
term rewriting system classes preserving regularity, but was still an open question in the general
case. The proof is not constructive because it depends on regularity of the set of reachable terms,
which is undecidable. The second theorem states that, if there exists a regular over-approximation
of the set of reachable terms then completion can compute it (or safely under-approximate it).
This theorem also provides an algorithmic way to safely explore regular approximations with
completion. This has been implemented and used to verify safety properties, automatically, on
first-order and higher-order functional programs. To carry out the proof, we also generalize and
improve two results of completion: the Termination and the Upper-Bound theorems.

1998 ACM Subject Classification I.2.3 Deduction and Theorem Proving, F.4.2 Grammars and
Other Rewriting Systems

Keywords and phrases term rewriting systems, regularity preservation, over-approximation,
completeness, tree automata, tree automata completion

1 Introduction

Given a term rewriting system (TRS for short) R and a tree automaton A recognizing a reg-
ular tree language L(A), the set of reachable terms is R∗(L(A)) = {t | s ∈ L(A) and s→R

∗

t}. In this paper, we show that the equational tree automata completion algorithm [16] is
complete w.r.t. regular approximations. IfR is left-linear and there exists a regular language
L over-approximating R∗(L(A)), i.e., R∗(L(A)) ⊆ L then completion can build a tree
automaton B such that R∗(L(A)) ⊆ L(B) ⊆ L . We also shows that completion is complete
w.r.t. TRSs preserving regularity. If the regular language L is such that L = R∗(L(A))
then completion can build a tree automaton B such that R∗(L(A)) = L(B) = L . On
the one hand, automata built by completion-like algorithms are known to recognize exactly
the set of reachable terms, for some restricted classes of TRSs [18, 24, 10, 12]. On the
other hand, automata completion is able to build over-approximations for any left-linear
TRS [11, 23, 16], and even for non-left-linear TRSs [2]. Such approximations are used for
program verification [4, 3, 12, 14] as well as to automate termination proofs [17, 21]. To
define approximations, completion uses an additional set of equations E and builds a tree au-
tomaton A∗R,E such that L(A∗R,E) ⊇ R∗(L(A)). Until now it was an open question whether
completion can build any regular over-approximation or compute the set of reachable terms
if this set is regular. The first contribution of this paper is to answer this two questions in
the positive, for left-linear TRSs. The proofs are not constructive because they rely on the
assumption that a particular regular over-approximation exists or that R∗(L(A)) is regular,
which is undecidable. For the approximated case, the proof is organized as follows. If there
exists a regular over-approximation L such that R∗(L(A)) ⊆ L , we know that there exists
a tree automaton B such that L(B) = L . From B, using the Myhill-Nerode theorem, we
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2 Automata completion and regularity preservation

can infer a set of equations E such that the set of E-equivalence classes T (F)/=E
is finite.

Then we prove the following theorems:

(a) If T (F)/=E
is finite, then it is possible to build from E a set of equations E′, equivalent

to E, such that completion of any (reduced) automaton A by any TRS R with E′ always
terminates. This generalizes the termination theorem of [12];

(b) If T (F)/=E
is finite, then it is possible to build from E and A a tree automaton A

recognizing the same language as A such that the completed automaton A∗R,E has the
following precision property: L(A∗R,E) ⊆ R∗E(L(A)), where R∗E(L(A)) is the set of
reachable terms by rewriting modulo E. It generalizes the Upper Bound theorem of [16].

(c) Then, we show that R∗E(L(A)) ⊆ L(B), and we get the main completeness theorem:
L(A∗R,E) ⊆ R∗E(L(A)) ⊆ L(B).

Besides, we know from [16] that R∗(L(A)) ⊆ L(A∗R,E). Thus, when using the set of equa-
tions defined from B to run completion, (c) implies that we can only get an approximation
of R∗(L(A)) equivalent or better than L = L(B). This result has a practical impact when
approximations are used for software verification. In particular, for TRSs encoding func-
tional programs, the search space of sets of equations E can be sufficiently constrained for
enumeration to be possible. This has been implemented in the Timbuk [13] tool. The ex-
periments show that this makes completion automatic enough to carry out efficiently safety
proofs on first-order and higher-order functional programs. A corollary of (c) is another
completeness result when L is not an approximation:

(d) If L = L(B) = R∗(L(A)), we can use R∗(L(A)) ⊆ L(A∗R,E) to close-up the chain of ⊆
and get that L(A∗R,E) = R∗(L(A)). Thus if R∗(L(A)) is regular, there exists a set of
equations E s.t. L(A∗R,E) = R∗(L(A))

Section 2 defines some basic notions in term rewriting and tree automata and Section 3 recalls
the tree automata completion algorithm and the related theorems. Section 4 recalls the
Myhill-Nerode theorem for trees and defines the functions to transform a set of equations into
a tree automaton and vice versa. Section 5 proves Result (a) and Section 6 shows Result (b).
Section 7 assembles (a) and (b) to prove results (c) and (d) using the proof sketched above.
Section 8, shows how to take advantage of those results to program verification and presents
some experiments. Finally, Section 9 concludes.

2 Preliminaries

In this section we introduce some definitions and concepts that will be used throughout the
rest of the paper (see also [1, 6]). Let F be a finite set of symbols, each associated with
an arity function. For brevity, we write f : n if f is a symbol of arity n and Fn = {f ∈
F | f : n}. Let X be a countable set of variables, T (F ,X ) denotes the set of terms and
T (F) denotes the set of ground terms (terms without variables). The set of variables of a
term t is denoted by V ar(t). A substitution is a function σ from X into T (F ,X ), which
can be uniquely extended to an endomorphism of T (F ,X ). A position p in a term t is a
finite word over N, the set of natural numbers. The empty sequence λ denotes the top-most
position. The set Pos(t) of positions of a term t is inductively defined by Pos(t) = {λ} if
t ∈ X or t is a constant and Pos(f(t1, . . . , tn)) = {λ} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}
otherwise. If p ∈ Pos(t), then t(p) denotes the symbol at position p in t, t|p denotes the
subterm of t at position p, and t[s]p denotes the term obtained by replacing the subterm
t|p at position p by the term s. A ground context C[ ] is a term in T (F ∪ {2}) containing
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exactly one occurrence of the symbol 2. If t ∈ T (F) then C[t] denotes the term obtained
by the replacement of 2 by t in C[ ]. A context is empty if it is equal to 2. If C[ ] is a
context, then C1[ ] = C[ ] and for n > 1, Cn[ ] = C[Cn−1[ ]].

A term rewriting system (TRS) R is a set of rewrite rules l → r, where l, r ∈ T (F ,X ),
l 6∈ X , and V ar(l) ⊇ V ar(r). A rewrite rule l → r is left-linear if each variable occurs only
once in l. A TRS R is left-linear if every rewrite rule l → r of R is left-linear. The TRS
R induces a rewriting relation →R on terms as follows. Let s, t ∈ T (F ,X ) and l→ r ∈ R,
s →R t denotes that there exists a position p ∈ Pos(s) and a substitution σ such that
s|p = lσ and t = s[rσ]p. The set of ground terms irreducible by a TRS R is denoted by
Irr(R) (Irr(R) ⊆ T (F)). A set L ⊆ T (F) is R-closed if for all s ∈ L and s →R t

then t ∈ L . The reflexive transitive closure of →R is denoted by →∗R, and s→!
R t denotes

that s →∗R t and t is irreducible by R. The set of R-descendants of a set of ground terms
I is defined as R∗(I) = {t ∈ T (F) | ∃s ∈ I s.t. s →∗R t}, i.e., the smallest R-closed set
containing I.

Let E be a set of equations l = r, where l, r ∈ T (F ,X ). The relation =E is the smallest
congruence such that for all equations l = r of E and for all substitutions σ we have
lσ =E rσ. The set of equivalence classes defined by =E on T (F) is denoted by T (F)/=E

.
Given a TRS R and a set of equations E, a term s ∈ T (F) is rewritten modulo E into
t ∈ T (F), denoted s →R/E t, if there exist an s′ ∈ T (F) and a t′ ∈ T (F) such that
s =E s′ →R t′ =E t. The reflexive transitive closure →∗R/E of →R/E is defined as usual
except that reflexivity is extended to terms equal modulo E, i.e., if for all s, t ∈ T (F),
s =E t then s →∗R/E t. The set of R-descendants modulo E of a set of ground terms I is
defined as R∗E(I) = {t ∈ T (F) | ∃s ∈ I s.t. s→∗R/E t}.

Let Q be a countably infinite set of symbols with arity 0, called states, such that Q∩F =
∅. Terms in T (F ∪Q) are called configurations. A transition is a rewrite rule c→ q, where c
is a configuration and q is a state. A transition is normalized when c = f(q1, . . . , qn), f ∈ F
is of arity n, and q1, . . . , qn ∈ Q. An ε-transition is a transition of the form q → q′ where
q and q′ are states. A bottom-up non-deterministic finite tree automaton (tree automaton
for short) over the alphabet F is a tuple A = 〈F ,Q,Qf ,∆〉, where Qf ⊆ Q is the set of
final states, ∆ is a finite set of normalized transitions and ε-transitions. An automaton is
epsilon-free if it is free of ε-transitions. The transitive and reflexive rewriting relation on
T (F ∪Q) induced by the set of transitions ∆ (resp. all transitions except ε-transitions) is
denoted by →∗∆ (resp. →Cε ∗∆ ). When ∆ is attached to a tree automaton A we also denote
those two relations by→A

∗ and→Cε ∗A , respectively. A tree automaton A is complete if for all
s ∈ T (F) there exists a state q of A such that s →A

∗ q. The language recognized by A in
a state q is defined by L(A, q) = {t ∈ T (F) | t →∗A q}. We define L(A) =

⋃
q∈Qf

L(A, q).
A state q of an automaton A is reachable if L(A, q) 6= ∅. An automaton is reduced if all
its states are reachable. An automaton A is Aε-reduced if for all state q of A there exists
a ground term t ∈ T (F) such that t →Cε ∗A q. An automaton A is deterministic if for all
ground terms s ∈ T (F) and all states q, q′ of A, if s →A

∗ q and s →A
∗ q′ then q = q′. An

automaton A is R-closed if for all terms s, t and all states q ∈ Q, s →A
∗ q and s →R t

implies t→A
∗ q.

3 Equational Tree Automata Completion

Starting from a tree automaton A0 = 〈F ,Q,Qf ,∆0〉 and a left-linear TRS R, the com-
pletion algorithm computes an automaton A∗ such that L(A∗) = R∗(L(A0)) or L(A∗) ⊇
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R∗(L(A0)).

3.1 Completion General Principles
From A0

R = A0, Tree automata completion successively computes tree automata A1
R, A2

R,
. . . such that for all i ≥ 0 : L(Ai

R) ⊆ L(Ai+1
R ) and if s ∈ L(Ai

R), and s →R t then
t ∈ L(Ai+1

R ). For k ∈ N, if L(Ak
R) = L(Ak+1

R ) then Ak
R is a fixpoint and we denote it by

A∗R. To construct Ai+1
R from Ai

R, we perform a completion step which consists in finding
critical pairs between →R and →Ai

R
. For a substitution σ : X 7→ Q and a rule l → r ∈ R,

a critical pair is an instance lσ of l such that there exists a state q ∈ Q satisfying lσ →∗Ai
R
q

and rσ 6→∗Ai
R
q. For rσ to be recognized by the same state and thus model the rewriting of

lσ into rσ, it is enough to add the necessary transitions to Ai
R in order to obtain Ai+1

R such
that rσ →∗Ai+1

R
q. In [24, 16], critical pairs are joined in the following way:

lσ
R
//

Ai
R

��

rσ

Ai+1
R
��

q q′
Ai+1

R

oo

From an algorithmic point of view, there remain two problems to solve: find all the
critical pairs (l → r, σ, q) and find the transitions to add to Ai

R to have rσ →∗Ai+1
R

q. The
first problem, called matching, can be efficiently solved using a specific algorithm [10]. The
second problem is solved using a normalization algorithm [12]. To have rσ →∗Ai+1

R
q′ we

need a transition of the form rσ → q′ in Ai+1
R . However, it is possible that this transitions

is not normalized. In this case, it is necessary to introduce new states and new transitions.
For instance, to normalize a transition f(g(a), h(q1))→ q′ w.r.t. a tree automaton Ai

R with
transitions a → q1, b → q1, g(q1) → q1, we first rewrite f(g(a), h(q1)) with transitions of
Ai

R as far as possible. We obtain f(q1, h(q1)). Then we introduce the new state q2 and the
new transition h(q1) → q2 to recognize the term h(q1). The new transitions to add to Ai

R
are thus: h(q1)→ q2, f(q1, q2)→ q′, and q′ → q.

3.2 Simplification of Tree Automata by Equations
Since completion creates new transitions and new states to join critical pairs, it may diverge.
Divergence is avoided by simplifying the tree automaton with a set of equations E. This
operation permits to over-approximate languages that cannot be recognized exactly using
tree automata completion, e.g., non-regular languages. The simplification operation consists
in finding E-equivalent terms recognized in A by different states and then by merging those
states.

I Definition 1 (Simplification relation). Let A = 〈F ,Q,Qf ,∆〉 be a tree automaton and
E be a set of equations. For s = t ∈ E, σ : X 7→ Q, qa, qb ∈ Q such that sσ →Cε ∗A qa,
tσ →Cε ∗A qb, i.e.,

sσ
E

A,Cε ∗
��

tσ

∗ A,Cε
��

qa qb
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and qa 6= qb then A is simplified into A′, denoted by A ;E A′, where A′ is A where qb is
replaced by qa in Q, Qf and ∆. �

I Example 2. Let E = {s(s(x)) = s(x)} and A be the tree automaton with Qf = {q2}
and set of transitions ∆ = {a → q0, s(q0) → q1, s(q1) → q2}. Hence L(A) = {s(s(a))}.
We can perform a simplification step using the equation s(s(x)) = s(x) because we found a
substitution σ = {x 7→ q0} such that:

s(s(q0))
E

A,Cε ∗

��

s(q0)

∗ A,Cε
��

q2 q1

Hence, A ;E A′ where A′ is A where q2 is replaced by q1 i.e., A′ is the automaton with
Q′f = {q1}, ∆ = {a→ q0, s(q0)→ q1, s(q1)→ q1}. Note that L(A′) = {s∗(s(a))}.

The simplification relation ;E is terminating and confluent (modulo state renaming) [16].
In the following, by SE(A) we denote the unique automaton (modulo renaming) A′ such
that A ;∗E A′ and A′ is irreducible (it cannot be simplified further).

3.3 The full Completion Algorithm
I Definition 3 (Automaton completion). Let A be a tree automaton, R a left-linear TRS
and E a set of equations.

A0
R,E = A,

An+1
R,E = SE(CR(An

R,E)), for n ≥ 0 where CR(An
R,E) is the tree automaton such that all

critical pairs of An
R,E are joined.

If there exists k ∈ N such that Ak
R,E = Ak+1

R,E , then we write A∗R,E for Ak
R,E .

I Example 4. Let R = {f(x, y) → f(s(x), s(y))}, E = {s(s(x)) = s(x)} and A0 be
the tree automaton with set of transitions ∆ = {f(qa, qb) → q0, a → qa, b → qb}, i.e.,
L(A0) = {f(a, b)}. The completion ends after two completion steps on A2

R,E which is a
fixpoint A∗R,E . Completion steps are summed up in the following table. To simplify the
presentation, we do not repeat the common transitions: Ai

R,E and CR(Ai) columns are
supposed to contain all transitions of A0, . . . ,Ai−1

R,E .

A0 CR(A0) A1
R,E CR(A1

R,E) A2
R,E

f(qa, qb)→ q0 f(q1, q2)→ q3 f(q1, q2)→ q3 f(q4, q5)→ q6 f(q1, q2)→ q6

a→ qa s(qa)→ q1 s(qa)→ q1 s(q1)→ q4 s(q1)→ q1

b→ qb s(qb)→ q2 s(qb)→ q2 s(q2)→ q5 s(q2)→ q2

q3 → q0 q3 → q0 q6 → q3

On A0, there is one critical pair f(qa, qb) →∗A0
q0 and f(qa, qb) →R f(s(qa), s(qb)). The

automaton CR(A0) contains all the transitions of A0 with the new transitions (and the
new states) necessary to join the critical pair, i.e., to have f(s(qa), s(qb)) →∗CR(A0) q0. The
automaton A1

R,E is exactly CR(A0) because simplification by equations do not apply. Then,
CR(A1

R,E) contains all the transitions of A1
R,E and A0 plus those obtained by the resolution

of the critical pair f(q1, q2) →∗A1
R,E

q3 and f(q1, q2) →R f(s(q1), s(q2)). On CR(A1
R,E)

simplification using the equation s(s(x)) = s(x) can be applied on the following instances:
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s(s(qa)) = s(qa) and s(s(qb)) = qb. Since s(s(qa)) →∗CR(A1
R,E

) q4 and s(qa) →∗CR(A1
R,E

) q1,
simplification merges q4 with q1. Similarly, simplification on s(s(qb)) = qb merges q5 with
q2. Thus, A2

R,E = CR(A1
R,E) where q4 is replaced by q1 and q5 is replaced q2. This

automaton is a fixed point because it has no other critical pairs (they are all joined).

3.4 Three Theorems on Completion
Tree automata completion enjoys three theorems defining its main properties. The first
theorem is about termination. It defines a sufficient condition on E for completion to ter-
minate. The second is a sound approximation theorem guaranteeing that completion always
computes a tree automaton recognizing an over-approximation of reachable terms. This
result is called the Lower Bound theorem. The third one, a Precision theorem, guarantees
that the computed automaton recognizes only R/E-reachable terms. This result is called
the Upper Bound theorem. We first state the soundness theorem.

I Theorem 5 (Lower Bound [16]). Let R be a left-linear TRS, A be a tree automaton and
E be a set of equations. If completion terminates on A∗R,E then L(A∗R,E) ⊇ R∗(L(A)).

To state the upper bound theorem, we need the notion of R/E-coherence we now define.

I Definition 6 (Coherent automaton). Let A = 〈F ,Q,Qf ,∆〉 be a tree automaton, R a
TRS and E a set of equations. The automaton A is said to be R/E-coherent if ∀q ∈ Q :
∃s ∈ T (F) :

s→Cε ∗A q ∧ [∀t ∈ T (F) : (t→Cε ∗A q =⇒ s =E t) ∧ (t→A
∗ q =⇒ s→∗R/E t)].

The intuition behind R/E-coherence is the following. A R/E-coherent is Aε-reduced, its
ε-transitions represent rewriting steps and normalized transitions recognize E-equivalence
classes. More precisely, in an R/E-coherent tree automaton, if two terms s, t are recognized
in the same state q using only normalized transitions then they belong to the same E-
equivalence class. Otherwise, if at least one ε-transition is necessary to recognize, say, t in
q then at least one step of rewriting was necessary to obtain t from s.

I Example 7. Let R = {a → b}, E = {c = d} and A = 〈F ,Q,Qf ,∆〉 with ∆ = {a →
q0, b → q1, c → q2, d → q2, q1 → q0}. The automaton A is R/E-coherent because it is

Aε-reduced and the state q2 recognizes with →Cε∆ two terms c and d but they satisfy c =E d.
Finally, a→∗∆ q0 and b→∗∆ q0 but a→Cε∆ q0, b→Cε∆ q1 → q0 and a→R b.

I Theorem 8 (Upper Bound [16]). Let R be a left-linear TRS, E a set of equations and
A an R/E-coherent automaton. For any i ∈ N: L(Ai

R,E) ⊆ R∗E(L(A)) and Ai
R,E is

R/E-coherent.

Finally, we state the termination theorem which relies on E-compatibility. Roughly speak-
ing, E-compatibility is the symmetric of E-coherence. An automaton A is E-compatible if
for all states q1, q2 ∈ A and all terms s, t ∈ T (F) such that s→Cε ∗A q1, t→Cε ∗A q2 and s =E t

then we have q1 = q2.

I Theorem 9 (Termination of completion [12]). Let A be a Aε-reduced tree automaton, R a
left-linear TRS, j ∈ N, and E a set of equations such that T (F)/=E

is finite. If for all i ≥ j,
Ai

R,E is E-compatible then there exists a natural number n such that An
R,E is a fixpoint.

To prove our final result, we first have to generalize Theorems 8 and 9 to discard the technical
R/E-coherence and E-compatibility assumptions. This is the objective of the next sections.



T. Genet 7

4 From automata to equations and vice versa

The above termination theorem uses the assumption that the automata Ai
R,E are all E-

compatible. This assumption is not true in general and is not preserved by tree automaton
completion: Ai+1

R,E may not be E-compatible even if Ai
R,E is.

I Example 10. Let F = {f : 1, a : 0, b : 0, c : 0}, R = {f(x)→ f(f(x)), f(f(x))→ a}, A be
the automaton such that ∆ = {a→ q1, c→ q1, f(q1)→ qf} and E = {f(x) = b}. Note that
T (F)/=E

has 3 equivalence classes: the class of {a}, the class of {b, f(a), f(b), f(c), . . .} and
the class of {c}. However, completion does not terminate on this example. Automaton A is
E-compatible (f(a) =E f(c) and both terms are recognized by the same state: qf ) but A1

R,E
is not: it has one new state q2 and contains additional transitions {f(qf ) → q2, q2 → qf}.
We thus have f(f(a))→Cε ∗A1

R,E

q2 and f(a)→Cε ∗A1
R,E

qf and f(f(a)) =E f(a) but q2 6= qf . Since
b is not recognized by An

R,E for any n, the equation f(x) = b never applies and completion
diverges.

Note that E-compatibility can be satisfied and preserved for particular cases of R and E,
e.g., for typed functional programs [12]). Here, we show how to transform the set E into a set
EB for which completed automata are EB-compatible, and completion is thus terminating.1
We also build EB so that its precision is similar to E, i.e., =E ≡ =EB . This transformation
is based on the Myhill-Nerode theorem for trees [19, 6]. We first produce a tree automaton
B whose states recognize the equivalence classes of E. Then, from B, we perform the inverse
operation and obtain a set EB whose set of equivalence classes is similar to the classes of E,
but whose equations avoid the problem shown in Example 10. Since deciding finiteness of
T (F)/=E

and deciding =E is not always possible, we also propose an alternative version of
this transformation using standard tools of rewriting: termination proofs and normalization.
With this alternative transformation, EB still ensures the termination of completion but can
be more precise than E, i.e., =E ⊇ =EB .

4.1 From equations to automata
Provided that T (F)/=E

is finite, the Myhill-Nerode theorem for trees [19, 6] strongly relates
T (F)/=E

with tree automata. This theorem is constructive and provides an algorithm to
switch from one form to the other, provided that =E is decidable. In the following we
denote by MN the function that builds a tree automaton from a set of equations E, using
the algorithm of [19].

I Theorem 11 (Myhill-Nerode theorem for trees [19]). If T (F)/=E
is finite and =E decidable,

B = MN(E) is a reduced, deterministic, epsilon-free and complete tree automaton such that
for all s, t ∈ T (F), s =E t ⇐⇒ (∃q : {s, t} ⊆ L(B, q)).

However, determining whether T (F)/=E
is finite is not decidable in general. This is

an unpublished result of S. Tison [25]. Since termination of the translation from E to B
depends on the finiteness of T (F)/=E

, to use this algorithm we need, at least, a criterion
for this property. Besides, the algorithm proposed in [19] needs =E to be decidable, which
is not always true.

1 We could also complete the automaton An
R,E with transitions recognizing the complement of L(An

R,E).
All equations could be applied. Although it solves the termination problem, it may introduce additional
approximations. In particular, the precision theorem of completion no longer holds.
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Thus, we propose an alternative technique based on the TRS −→E = {u→ v | u = v ∈ E},
where all equations u = v are oriented so that −→E can be shown terminating. If we can orient
E in −→E so that it is weakly terminating and Irr(−→E ) is finite then so is T (F)/=E

. This
is due to the fact that card(T (F)/=E

) ≤ card(Irr(−→E )).2 Note that the opposite is not
true and, in particular, that Irr(−→E ) may be infinite though T (F)/=E

is finite.3 Hopefully,
finiteness of Irr(−→E ) is decidable [6]. Besides, we replace checking s =E t by a (weaker) test
on normal forms of s and t. If −→E is weakly terminating, then we check if there exists a term
u such that s →!−→

E
u, t →!−→

E
u. Note that, without confluence of −→E , irreducible terms of

Irr(−→E ) may not coincide with equivalence classes of T (F)/=E
. We will see in Section 5.2

that weak termination of −→E and finiteness of Irr(−→E ) are, in fact, sufficient to guarantee
termination of completion. Now, we propose a function E2A which is a relaxed version
of MN , i.e., E2A(−→E ) can have more states than MN(E): MN(E) has card(T (F)/=E

)
states and E2A(−→E ) has card(Irr(−→E )) states, where card(T (F)/=E

) ≤ card(Irr(−→E )), as
shown above.

I Definition 12 (Function E2A). Let −→E be a TRS, Q be a set of states and ∆ be a set
of transitions. Let state : T (F) 7→ Q be an injective function mapping ground terms to
state symbols. E2A(−→E ) = 〈F ,Q,Q,∆〉 where Q = {state(u) | u ∈ Irr(−→E )} and ∆ =
{f(state(u1), . . . , state(un))→ state(u) | u1, . . . , un, u ∈ Irr(−→E ) and f(u1, . . . , un)→!−→

E
u}

Note that E2A builds a finite automaton as soon as Irr(−→E ) is finite. Weak termination of
−→
E is enough because for each term s we only need one term t such that s→!−→

E
t. We assume

that the strategy for rewriting s into t is known. Besides, for E2A(−→E ) to be deterministic,
we need the assumption that →!−→

E
is, itself, deterministic. Thus, we assume that →!−→

E

uses a deterministic strategy leading to irreducible terms. For instance, if −→E is innermost
terminating, we can assume that →!−→

E
uses leftmost innermost rewriting.

I Example 13. Consider the E = {f(x) = b} of Example 10. Let us choose −→E = {f(x)→
b}. Since −→E is left-linear, we can build a tree automaton recognizing Irr(−→E ) in an effective
way [7, 5]. This tree automaton recognizes only 3 irreducible terms a, b, c. Furthermore −→E
is terminating, we can thus build the automaton E2A(−→E ). It has 3 states q0, q1, q2 such
that state(a) = q0, state(b) = q1 and state(c) = q2. It has six transitions a → q0 (because
a →!−→

E
a), b → q1 (because b →!−→

E
b), c → q2 (because c →!−→

E
c), f(q0) → q1 (because

f(a)→!−→
E
b), f(q1)→ q1 (because f(b)→!−→

E
b), f(q2)→ q1 (because f(c)→!−→

E
b).

The automaton E2A(−→E ) enjoys properties close to the ones of MN(E).

I Lemma 14. Let B = E2A(−→E ). For all states q ∈ B there exists an irreducible term
u ∈ Irr(−→E ) such that u→∗B q and state(u) = q.

Proof. For any state q, there exists an irreducible term u such that q = state(u). Now, we
prove by induction on the height of u that u →∗B q. If u is a constant then, by definition

2 For all terms s ∈ T (F), since −→E is weakly terminating, there exist a natural number k and a finite
rewriting sequence s→−→

E
s1 →−→E . . .→−→

E
sk such that sk ∈ Irr(−→E ). Thus, we can build an equational

derivation s =E s1 =E . . . =E sk. Since s =E sk and sk ∈ Irr(−→E ) there cannot be more than
card(Irr(−→E )) equivalence classes in T (F)/=E .

3 For instance, if E = {f(a) = b, a = b} and −→E = {f(a)→ b, a→ b}.
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of B, for all irreducible term t such that u →!−→
E
t, the transition u → state(t) belongs to

B. Since u is irreducible then u = t. If u = f(u1, . . . , un), since u is irreducible then so are
ui, 1 ≤ i ≤ n. Applying the induction hypothesis on the ui’s, we get that ui →∗B qi where
qi = state(ui) for 1 ≤ i ≤ n. We conclude the proof by remarking that, by construction of
B, the transition f(q1, . . . , qn)→ q necessarily belongs to B. J

I Lemma 15. If Irr(−→E ) is finite, −→E weakly terminates, and →!−→
E

is deterministic then
B = E2A(−→E ) is a reduced, deterministic, epsilon-free and complete tree automaton.

Proof. The first two assumptions are necessary to be sure that B exists. Automaton B is
reduced because of Lemma 14. If →!−→

E
is deterministic, then in the definition of ∆, there is

only one possible term t s.t. f(t1, . . . , tn) →!−→
E
t. Thus, for each configuration f(q1, . . . , qn)

there is only one possible state q. This proves that B is deterministic. Automaton B
is trivially epsilon-free. Finally, for completeness of B, we can show that for all terms
s ∈ T (F), there exists a state q s.t. s →∗B q by induction on the height of s. If s is a
constant a, then by definition of B, we know that there exists a transition a→ state(t). For
the inductive case, if s = f(s1, . . . , sn) then we know that there exists irreducible terms ti
and states qi, 1 ≤ i ≤ n such that si →∗B qi. Then, by construction of B, we know that there
exists a transition f(q1, . . . , qn)→ q, which concludes the proof. J

Theorem 11 tightly relates equivalence classes of T (F)/=E
with languages recognized by

MN(E). This relation also exists in E2A(−→E ) but is slightly relaxed.

I Lemma 16. Let E be a set of equations such that Irr(−→E ) is finite, −→E weakly terminates
and B = E2A(−→E ). For all states q ∈ B, for all terms s, t ∈ T (F) if s →∗B q and t →∗B q

then s =E t.

Proof. First we prove that for all states q ∈ B, for all terms s ∈ T (F) such that s →∗B q,
there exists an irreducible term u such that q = state(u) and s→!−→

E
u. We prove this property

by induction on the height of s. If s is a constant a, for a→∗B q to hold we know that there
is necessarily an irreducible term u and a transition a→ q in B such that q = state(u) and
a→!−→

E
u. For the inductive case, let s = f(s1, . . . , sn). Since s→∗B q we know that si →∗B qi

and there exists a transition f(q1, . . . , qn) → q ∈ B. Applying the induction hypothesis on
si, 1 ≤ i ≤ n, we get that there exists irreducible terms ui such that qi = state(ui) and
si →!−→

E
ui for 1 ≤ i ≤ n. Thus f(s1, . . . , sn) →!−→

E
f(u1, . . . , un). Besides, for transition

f(q1, . . . , qn)→ q to belong to B, we know that there exists an irreducible term u such that
q = state(u) and f(u1, . . . , un)→!−→

E
u. We thus have f(s1, . . . , sn)→!−→

E
f(u1, . . . , un)→!−→

E
u.

This ends the proof by induction. Now, since s→∗B q and t→∗B q, we know that there exists
irreducible terms u and u′ such that q = state(u), s →!−→

E
u, q = state(u′), t →!−→

E
u′.

Since state is an injective function, we get u = u′. Finally, s →!−→
E
u, t →!−→

E
u implies

s =E u =E t. J

4.2 From automata to equations
In the other direction, starting from a tree automaton B it is possible to build a set of equa-
tions EB such that languages recognized by states of B and equivalence classes of T (F)/=EB
coincide. This is the function A2E that is also described in [19]. We reformulate this
function because we need some additional properties on the generated set of equations for
completion to terminate. For simplicity we assume that B is Reduced and epsilon-Free.
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Some properties of EB will hold only if B is also Complete and Deterministic. In the fol-
lowing, we use the RF and RDFC short-hands for automata having the related properties.
Recall that for any tree automaton, there exists an equivalent RF or RDFC automaton [6].

For RF automata, the construction of EB is straightforward and follows [19]: for all
states q we identify a ground term recognized by q, a representative, and for all transitions
f(q1, . . . , qn) → q we generate an equation f(t1, . . . , tn) = t where ti, 1 ≤ i ≤ n are
representatives for qi and t is a representative for q. However, for this set of equations to
guarantee termination of completion it needs some redundancy: for each state we generate
a set of state representatives and the equations are defined for each representative of the set.
As shown in Example 10, the equation f(x) = b cannot be applied during completion because
b does not occur in the tree automaton. However, a logic consequence of this equation is
that f(f(a)) =E f(a) and terms f(f(a)) and f(a) that occur in the tree automaton could
be merged. In our setting the term f(a) will be a state representative and the equation
f(f(a)) = f(a) will appear in the set of generated equations. Roughly speaking, every
constant symbol a appearing in a transition a→ q is a state representative for q. Every term
of the form f(u1, . . . , un) is a state representative for q if (1) ui’s are not state representatives
of q, (2) f(q1, . . . , qn)→ q is a transition of B and (3) ui’s are state representatives for the
qi’s. The property (1) ensures finiteness of the set of representatives.

I Definition 17 (State representatives). Let B = 〈F ,Q,Qf ,∆〉 be an RF tree automaton
and q ∈ Q. The set of state representatives of q of height lesser or equal to n, denoted by
JqKnB, is inductively defined by:

JqK1
B = {a | a→ q ∈ ∆}

JqKnB = JqKn−1
B ∪ {f(u1, . . . , un) | f(q1, . . . , qn)→ q ∈ ∆ and ∀i ∈ {1, . . . , n} : ui ∈ JqiKB,

and ∀p ∈Pos(ui) : ui|p 6∈ JqKn−1
B }

In the above definition, the fact that B is reduced and epsilon-free ensures that there exists
at least one (non-epsilon) transition for every state and that each state has at least one state
representative.

I Example 18. Let B be the RF automaton that we obtained in Example 13 and whose
set of transitions is a→ q0, b→ q1, c→ q2, f(q0)→ q1, f(q1)→ q1, f(q2)→ q1.

Jq0K1
B = {a}, Jq1K1

B = {b}, and Jq2K1
B = {c}.

Jq0K2
B = Jq0K1

B, Jq1K2
B = {b, f(a), f(c)}, and Jq2K2

B = Jq2K1
B. The term f(b) of height 2 and

recognized by q1 is not added to Jq1K2
B because its subterm b belongs to Jq1K1

B.
The fixpoint is reached because terms f(f(a)) and f(f(c)) recognized by q1 are not added
to Jq1K3

B because f(a) and f(c) belong to Jq1K2
B.

We denote by JqKB the set of all state representatives for the state q i.e., the fixpoint of
the above equations. Now, we show that for all reduced and epsilon-free automata, such a
fixpoint exists and is always a finite set.

I Lemma 19 (The set of state representatives is finite). For all RF tree automata B, for all
state q ∈ B there exists a natural number n for which the set JqKnB is a fixpoint.

Proof. We make a proof by contradiction. Assume that one set of state representatives
JqKB is infinite. Let Q be the set of states of B and t ∈ JqKB be a term s.t. |t| > Card(Q).
Assume that we label each subterm of t by the state recognizing it in B. Since height of t is
greater than Card(Q), by the pigeonhole principle we know that there exists q′ ∈ B and a
path in the tree t such that q′ appears at least two times. Let p, r ∈Pos(t) be the positions
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of the two subterms recognized by q′. By definition of state representatives, we know that
t|p ∈ Jq′KB and t|r ∈ Jq′KB. Since p and r are on the same path, we know that t|p is a strict
subterm of t|r (or the opposite). This contradicts Definition 17 that forbids a term and a
strict subterm to belong to the same set of representatives.

J

I Definition 20 (Function A2E: set of equations EB from a tree automaton B). Let B =
〈F ,Q,Qf ,∆〉 be an RF tree automaton. The set of equations EB inferred from B is
A2E(B) = EB = {f(u1, . . . , un) = u | f(q1, . . . , qn) → q ∈ B, u ∈ JqKB and ui ∈
JqiKB for 1 ≤ i ≤ n}.

I Example 21. Starting from the automaton B and the state representatives of Example 18,
the set A2E(B) contains the following equations: a = a (because of transition a→ q0), c = c

(because of transition c → q2), b = b, b = f(a), b = f(c) (because of transition b → q1),
f(a) = f(a), f(a) = b, f(a) = f(c) (because of transition f(q0) → q1), f(f(a)) = f(a),
f(f(a)) = b, f(f(a)) = f(c), f(b) = f(a), f(b) = b, f(b) = f(c), f(f(c)) = f(a), f(f(c)) = b,
f(f(c)) = f(c) (because of transition f(q1) → q1), f(c) = f(a), f(c) = b, and f(c) = f(c)
(because of transition f(q2)→ q1).

Since B is finite, since the set of state representatives is finite, then so is EB. Note that
many equations of EB are useless w.r.t. the underlying equational theory. This is the case,
in the above example, for equations of the form a = a as well as the equation f(a) = f(c)
which is redundant w.r.t. b = f(a) and b = f(c). However, as shown in Example 10 those
equations are necessary for equational simplification to produce EB-compatible automata
and completion to terminate. With the above EB, completion of Example 10 terminates.
Below, Theorem 26 shows that, if B is RDFC then completion with A2E(B) always ter-
minates. Unsurprisingly, if B is deterministic then equivalence classes of EB coincide with
languages recognized by states of B. This is the purpose of the next two lemmas.

I Lemma 22. Let B = 〈F ,Q,Qf ,∆〉 be an RDFC tree automaton and EB = A2E(B).
For all s ∈ T (F), there exists a unique state q ∈ Q such that s →∗B q and for all state
representatives u ∈ JqKB, s =EB u.

Proof. Wemake a proof by induction on the height of s. If s is a constant, since B is complete
and deterministic there exists a unique transition s → q ∈ ∆. By construction of EB, we
know that there are equations with s on the left-hand side and all state representatives of
JqKB on the right-hand side. For all equation s = u with u ∈ JqKB we thus trivially have
s =EB u. This concludes the base case.

Now, we assume that the property is true for terms of height lesser or equal to n.
Let s = f(t1, . . . , tn) where t1, . . . , tn are terms of height lesser or equal to n. Since B is
complete, we know that there exists a state q such that f(t1, . . . , tn)→∗B q, i.e., there exists
states q1, . . . , qn such that f(q1, . . . , qn) → q ∈ ∆ and ti →∗B qi for 1 ≤ i ≤ n. Using the
induction hypothesis we get that there exist states q′i in B and terms Jq′iKB such that ti →∗B qi
and ti =EB ui for ui ∈ Jq′iKB and for 1 ≤ i ≤ n. Since B is deterministic, from ti →∗B qi and
ti →∗B q′i we get that qi = q′i and thus ti =EB ui for ui ∈ JqiKB, with 1 ≤ i ≤ n. Besides,
since f(q1, . . . , qn)→ q ∈ ∆, we know that EB contains the equations f(u1, . . . , un) = u for
all ui ∈ JqiKB, for all 1 ≤ i ≤ n and for all u ∈ JqKB. Thus q is the unique state such that
f(t1, . . . , tn) →∗B q. Furthermore, f(t1, . . . , tn) =EB f(u1, . . . , un) =EB u for all ui ∈ JqiKB,
for all 1 ≤ i ≤ n and for all u ∈ JqKB. J

Now we can relate equivalence classes of EB and languages recognized by states of B.
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I Lemma 23 (Equivalence classes of EB coincide with languages recognized by states of B). Let
B = 〈F ,Q,Qf ,∆〉 be an RDFC tree automaton and EB = A2E(B). For all s, t ∈ T (F),
s =EB t ⇐⇒ (∃q : {s, t} ⊆ L(B, q)).

Proof. For s and t, using Lemma 22, we know that there exist unique states q, q′ ∈ Q
such that s →∗B q, t →∗B q′ and for all state representatives u ∈ JqKB and v ∈ Jq′KB, we
have s =EB u and t =EB v. We first prove the left to right implication. From s =EB t

we obtain that u =EB v, where u and v are state representatives. By construction of term
representatives, for all states q we know that JqKB only contains terms recognized by q in
B. Since B is deterministic, if q 6= q′ then we can conclude that JqKB ∩ Jq′KB = ∅. Thus, the
only possibility to have u =EB v is to have an equation u = v in EB. This entails that u and
v belong to the same set of representatives: JqKB = Jq′KB, which entails that q = q′. Then
s →∗B q and t →∗B q entails that {s, t} ⊆ L(B, q). To prove the right to left implication,
it is enough to point out that because of the determinism of B having t →∗B q′ (the initial
assumption) and having t →∗B q (the fact that t ∈ L(B, q)) is possible only if q = q′. This
entails that u and v have a common set of representatives and thus for all representatives u
of this set s =EB u =EB t. J

I Corollary 24 (T (F)/=EB
is finite). Let B = 〈F ,Q,Qf ,∆〉 be an RDFC tree automaton.

If EB is the set of equations inferred from B then T (F)/=EB
is finite.

Proof. Using Lemma 22, we know that for all terms t ∈ T (F) there exist a state q ∈ Q
and a state representative u ∈ JqKB such that t →∗B q and t =EB u. Since the number of
states of B is finite, and since the set of state representatives u is finite for all states of B
(Lemma 19), so is the number of equivalence classes of T (F)/=EB

. J

5 Generalizing the termination theorem

Now, we prove that using EB built from an RDFC tree automaton B, completion terminates.

5.1 Proving termination with EB

To prove this result, we need to show several results on the limit automaton of completion.
In the following, the automaton A∗ is the limit of the (possibly) infinite completion of
an initial Aε-reduced tree automaton A with R and EB. If the initial automaton is not Aε-
reduced then completion may diverge. For instance, completion of the automaton whose set
of transitions is {f(q0) → q1}, with R = {f(x) → f(f(x))} and E = {f(a) = a} diverges
(simplification never happens because q0 does not recognize any term). Now we show that
all state representatives are recognized by epsilon-free derivations in A∗.

I Lemma 25 (All states of A∗ recognize at least one state representative). Let R be a TRS,
A a Aε-reduced tree automaton, B an RDFC tree automaton and EB = A2E(B). Let A∗ be
the limit of the completion of A by R and EB. For all states q ∈ A∗, for all terms s ∈ T (F)
such that s →Cε ∗A∗ q, there exists a state q′B ∈ B, a term u ∈ Jq′BKB such that u =EB s and
u→Cε ∗A∗ q.

Proof. Note that if A is Aε-reduced, then so is A∗ (cf. Lemma 44 of [12]). This is easy to
figure out since all states added during completion recognize at least one term with →Cε ∗A ,
and this is trivially preserved by simplification. By induction on the height of s we show
that the representative u exists and is recognized by q. If s is of height 1 (it is a constant)
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then, by construction of state representatives, we know that s is a representative. Thus
s = u→Cε ∗A∗ q.

For the inductive case, assume that the property is true for all terms of height lesser or
equal to n. Let s = f(s1, . . . , sn) be a term of height n+ 1. By assumption, we know that
f(s1, . . . , sn)→Cε ∗A∗ q. From f(s1, . . . , sn)→Cε ∗A∗ q, we obtain that there exists states q1, . . . , qn

of A∗ such that si →Cε ∗A∗ qi for i = 1, . . . , n and a transition f(q1, . . . , qn) → q in A∗. Using
the induction hypothesis on qi, i = 1, . . . , n we get that there exist state representatives
ui such that si =EB ui and ui →Cε ∗A∗ qi for i = 1, . . . , n. Then, since f(q1, . . . , qn) → q

in A∗ we know that f(u1, . . . , un) →Cε ∗A∗ q. If f(u1, . . . , un) is a state representative we
are done since f(s1, . . . , sn) =EB f(u1, . . . , un) and f(u1, . . . , un) →Cε ∗A∗ q. Otherwise, by
definition of state representatives, for u = f(u1, . . . , un) not to belong to the representatives
there is a position p in u, different from the root position such that the subterm u|p is
itself a state representative and it belongs to the same class as u, i.e., u =EB u|p. Since
u1, . . . , un are state representatives and f(u1, . . . , un) is in the same equivalence class as u|p
which is a state representative, we know that the equation f(u1, . . . , un) = u|p necessarily
belongs to EB. Besides, for u →Cε ∗A∗ q to hold, we know that there exists a state q′ such
that u[u|p]p →Cε ∗A∗ u[q′]p →Cε ∗A∗ q. Thus, f(u1, . . . , un) →Cε ∗A∗ q and u|p →Cε ∗A∗ q′. Then, since
EB contains the equation f(u1, . . . , un) = u|p, and since A∗ is simplified w.r.t. EB, we
necessarily have q = q′ in A∗. Finally, we have f(s1, . . . , sn) =EB f(u1, . . . , un) =EB u|p and
u|p →Cε ∗A∗ q where u|p is a state representative. J

Now, we can state the termination Theorem with EB.

I Theorem 26 (Completion with EB terminates). Let R be a TRS, A a Aε-reduced tree
automaton, B be an RDFC tree automaton and EB = A2E(B). Let n be the number of all
states representatives of B. The automaton A∗, limit of the completion of A with R and
EB, has n states or less.

Proof. Recall that the number n of state representatives is finite (cf. Lemma 19). Assume
that A∗ has m distinct states with m > n. From Lemma 25 we know that for all state
q ∈ A∗, there exists a state representative u such that u →Cε ∗A∗ q. Since there are only n

state representatives, by pigeon hole principle, we know that there is necessarily one state
representative u recognized by two distinct states q1 and q2 of A∗. Thus, u →Cε ∗A∗ q1 and
u→Cε ∗A∗ q2. Besides, by construction of EB, we know that the equation u = u is part of EB.
This contradicts the fact that A∗ is simplified w.r.t. EB. J

5.2 Building EB from any set of equations E

Now, we combine the transformations A2E and E2A (or A2E and MN) to produce a set
of equations EB (from E) that ensures termination of completion and that is equivalent to
E. We first prove that EB is at least as precise as E.

I Lemma 27. Let E be a set of equations. If T (F)/=E
is finite and =E is decidable then

EB = A2E(MN(E)) and =E ≡ =EB .

Proof. Let B = MN(−→E ). From Lemma 15, we know that B is RDFC and languages
recognized by states of B coincide with equivalence classes of E. Then, let EB = A2E(B).
Using Lemma 23, we get that languages of B coincide with equivalence classes of EB. Thus,
=E ≡ =EB . J



14 Automata completion and regularity preservation

I Lemma 28. Let E be a set of equations. If Irr(−→E ) is finite and −→E weakly terminating
then EB = A2E(E2A(−→E )) and =E ⊇ =EB .

Proof. Assume that s =EB t. From Lemma 23, we get that there exists a state q in B such
that s→∗B q and t→∗B q. Then, with Lemma 16, we get that s =E t. J

I Theorem 29 (Generalized termination theorem for completion). Let E be a set of equations
such that T (F)/=E

is finite and =E is decidable (resp. Irr(−→E ) is finite and −→E weakly
terminating). For all Aε-reduced tree automata A and TRSs R, completion of A with R and
A2E(MN(E)) (resp. A2E(E2A(−→E ))) terminates.

Proof. Let B = MN(E) (resp. B = E2A(−→E )). Using Lemma 15 (resp. Lemma 14), we
know that B is RDFC. Let EB be the set of equations A2E(B). Using Theorem 26, we
know that completion of A with R and EB is terminating. J

The above theorem shows how to tune a set of equations E into EB to guarantee termination
of completion. Note that tuning E into EB does not jeopardize the precision of the comple-
tion since Lemma 28 guarantees that =E ⊇ =EB . This Lemma combined with Theorem 8
(the Upper Bound Theorem) ensures that completion with EB can only be more precise
than completion with E. In the next section, we improve the precision theorem itself.

6 Improving the Precision of Equational completion

Looking at our overall goal, we are half way there. If R∗(L(A)) is regular then it can be
recognized by an automaton B and, using the results of the last section, we can build a
set of equations EB guaranteeing termination of completion. What remains to be proved
is that completion with EB ends on a tree automaton recognizing exactly R∗(L(A)). As
it is, Theorem 8 (the Upper Bound Theorem) fails to tackle this goal because it needs
R/E-coherence of A. However, if A is not R/E-coherent the full precision, granted by this
theorem, cannot be obtained.

I Example 30. Starting from Example 10, together with the set of equations EB of Exam-
ple 21, the initial tree automaton is not R/EB-coherent (nor R/E-coherent): a→Cε ∗A q1 and
c→Cε ∗A q1 though a 6=EBc. As a consequence, if we complete A with R and EB, we obtain an
automaton that roughly approximates R∗(L(A)). In particular, this automaton recognizes
the term c that is not reachable by rewriting the initial language L(A) = {f(a), f(c)} with
R (nor by rewriting with R/EB). The completed automaton can be obtained using the
Timbuk tool [13]:

States q0 q1 Final States q0 Transitions c->q1 a->q1 c->q0 f(q0)->q0 f(q1)->q0 a->q0

When E is an empty set of equations, it is possible to transform R and A to have a R/E-
coherent initial completion setting [12]. However, such a transformation is not usable, in
general, when E 6= ∅. Here, for a given E possibly not empty, we propose to transform A
so that it becomes R/E-coherent: we build the product between A and either MN(E) or
E2A(−→E ). We recall the definition of product automata and we show that the product is
R/E-coherent.

I Definition 31 (Product automaton [6]). Let A = (F , Q,QF ,∆A) and B = (F , P, PF ,∆B)
be automata. The product of A and B is A × B = (F , Q × P,QF × PF ,∆) where ∆ =
{f((q1, p1), . . . , (qk, pk))→ (q′, p′) | f(q1, . . . , qk)→ q′ ∈ ∆A and f(p1, . . . , pk)→ p′ ∈ ∆B}.
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I Theorem 32 (Generalized Upper Bound). Let R be a left-linear TRS, A an epsilon-free
automaton, and E a set of ground equations such that T (F)/=E

is finite. If B = MN(E)
and A = A × B then for any i ∈ N: L(AiR,E) ⊆ R∗E(L(A)).

Proof. Since L(A) = L(A × B) = L(A) ∩ L(B) and L(B) = T (F), we get that L(A) =
L(A). Since both A and B are epsilon-free, so is B. Thus, to prove R/E-coherence of A,
we only have to prove that for all states q of A and for all two terms s, t ∈ T (F) such
that (1) s →Cε ∗A q and (2) t →Cε ∗A q then s =E t. Since A is a product automaton, q is a
pair of the form (q1, q2) where q1 ∈ A and q2 ∈ B. From (1) and (2) we can deduce that
s →Cε ∗B q2 and t →Cε ∗B q2. Then, using Lemma 11, we get s =E t. Thus A is R/E-coherent
and from Theorem 8, we get that L(AiR,E) ⊆ R∗E(L(A)). The fact that L(A) = L(A) ends
the proof. J

I Example 33. Starting from Example 30, we can build the product between A and the
automaton B found in Example 13. In A×B, a and c are recognized by two different states,
avoiding the R/E-coherence problem of Example 30. The Aε-reduced product A = A × B
(where product states are renamed) is the automaton with Qf = {q2} and ∆ = {c →
q0, a → q1, f(q0) → q2, f(q1) → q2}. Running Timbuk on A, R, and EB, we obtain A∗R,E
whose precision is now bounded by R∗EB

(L(A)) and does not recognize c in a final state:

States q0 q1 q2 Final States q0 Transitions a->q1 f(q0)->q0 f(q1)->q0 f(q2)->q0
a->q0 c->q2

Now, we have hints to define equations for completion. For instance, it is possible to start
from an automaton B defining a rough approximation of the target language and build
E = A2E(B). Then, we complete A = A × B with R and E and obtain a tree automaton
A∗R,E whose precision is better or equal to B. The set R∗E(L(A)) acts as a safeguard for
completion (see Figure 1). In particular, terms of R∗E(L(A)) may not belong to L(A∗R,E).
This is the case in Example 33, where the term b belongs to R∗EB

(L(A)) but not to L(A∗R,E).
For this result to be usable in practice, we still need to know if E always exists (next Section)
and to generate a satisfactory E (Section 8).

R∗(L(A))

L(A∗R,E)
R∗E(L(A))

L(B)L(A)

T (F)

Figure 1 The Generalized Upper Bound theorem (precision of completion).

7 Completeness Theorems

In this section, we prove two completeness theorems on completion. The first theorem
states that if the set of reachable terms can be over-approximated by a regular language
L , then we can find it using equational completion. The second theorem states that if the



16 Automata completion and regularity preservation

set of reachable terms is regular then completion can build it. Since the upper-bound of
completion depends on R∗E , we first need a lemma showing that if E is built from L then
R∗E upper-bounded by L .

I Lemma 34. Let R be a TRS over F , S ⊆ T (F), and B an RDFC automaton such that
L(B) ⊇ R∗(S) and L(B) is R-closed. If EB = A2E(B) then R∗EB

(S) ⊆ L(B).

Proof. We prove that for all natural number k >= 0, if s ∈ S and s→k
R/EB

t then t ∈ L(B)
where →k

R/EB
denotes k steps of rewriting by R modulo EB. By induction on k. If k = 0

then s =EB t. Using Lemma 23 on s =EB t, we get that there exists a state q of B such
that s →∗B q and t →∗B q. Since s ∈ S and S ⊆ L(B) there exists a final state qf of B
such that s →∗B qf . Since B is deterministic we obtain that q = qf . Thus t is recognized
by B. For the inductive case, we assume that the property is true for a given k and we
show that it is true for k + 1. Let s →k+1

R/E t, i.e., we have terms s′, s′′, and t′ such that
s→k

R/E s′ =EB s
′′ →R t′ =EB t. Using the induction hypothesis, we get that s′ is recognized

by B. Since L(B) is R-closed, we know that t′ is also recognized by B. Thus, there exists
a final state qf such that t′ →∗B qf . Finally, as above, applying Lemma 23 on the fact that
t′ →∗B qf and t′ =EB t gives us that t→∗B qf . J

Next example shows that the R-closed assumption on L is necessary for the lemma to hold.

I Example 35. Let F = {a : 0, b : 0, c : 0, d : 0}, S = {a}, R = {a → b, c → d}, and
L = {a, b, c} where L ⊇ R∗(L(A)) but L is not R-closed. A possible RDFC automaton
B, s.t. L(B) = L , has a unique final state q and transitions {a → q, b → q, c → q}. Thus
EB = A2E(B) will include the equation b = c. Finally R∗EB

(S) = {a, b, c, d} 6⊆ L .

I Theorem 36 (Completeness). Let A be a reduced epsilon-free tree automaton and R a left-
linear TRS. Let T (F) ⊇ L ⊇ R∗(L(A)). If L is regular and R-closed then there exists
a set of ground equations E such that A = A ×MN(E), A∗R,E exists and R∗(L(A)) ⊆
L(A∗R,E) ⊆ L .

Proof. Since L is regular, we know that there exists an RDFC tree automaton, say B,
recognizing L . From B we can infer EB = A2E(B) and then use completion to compute
reachable terms. From Theorem 26, we know that completion of the automaton A with R
and the set of equations EB always terminates on a tree automaton A∗R,EB

. From Theorem 8,
we know that L(A∗R,EB

) ⊆ R∗EB
(L(A)) provided that A is R/EB-coherent. To enforce

R/EB-coherence of A, we apply the transformation presented in Section 6. Let A = A ×
MN(EB). Note that since EB is obtained by using the A2E transformation, T (F)/=E

is
finite (Corollary 24) and since equations of EB are ground, =EB is decidable. The resulting
automaton A is R/EB-coherent. Besides, Theorem 26 also applies to A. Thus, completion
of A with R and EB always ends on an automaton A∗R,EB

. The automaton A∗R,EB
satisfies

R∗(L(A)) ⊆ L(A∗R,EB
) (by Theorem 5) and L(A∗R,EB

) ⊆ R∗EB
(L(A)) (by Theorem 32).

Since L(A) = L(A), we have R∗(L(A)) ⊆ L(A∗R,EB
) and L(A∗R,EB

) ⊆ R∗EB
(L(A)). With

Lemma 34, we get that R∗EB
(L(A)) ⊆ L(B) = L . J

Note that, in general we do not have L(A∗R,E) ⊇ L because L(A∗R,E) can be more precise
than L . However, this is true when L = R∗(L(A)), as we show is the next theorem.

I Corollary 37. Let R be a TRS over F , S ⊆ T (F), and B an RDFC automaton such
that L(B) = R∗(S). If EB = A2E(B) then R∗EB

(S) = R∗(S).
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Proof. Note that since L(B) = R∗(S) it is R-closed. Then, using Lemma 34, we get that
R∗(S) ⊆ R∗EB

(S) ⊆ L(B). Since L(B) = R∗(S), we get the result. J

I Theorem 38 (Completeness for regularity preserving TRSs). Let A be a reduced epsilon-
free tree automaton and R a left-linear TRS. If R∗(L(A)) is regular then it is possible to
compute a tree automaton recognizing R∗(L(A)) by equational tree automata completion.

Proof. Let L = R∗(L(A)). It is R-closed. By assumption, it is also regular. Thus, we can
apply Theorem 36 to get that there exists a set of equations E and a tree automaton A =
A×MN(E) such that A∗R,E exists and R∗(L(A)) ⊆ L(A∗R,E) ⊆ L . Since L = R∗(L(A)),
we get L(A∗R,E) = R∗(L(A)). J

Thus, completion is complete w.r.t. all left-linear TRS classes preserving regularity.

8 Application of the Completeness Theorem

In the previous section, we have proved that if there exists a regular over-approximation
of sets of reachable terms, then we can build it using completion. Now, we show how to
take advantage of this theorem to automatically verify safety properties on programs. Given
an initial regular language S and a program represented by a TRS R, we can prove that
the program never reaches terms in a set Bad by checking that there exists a regular over-
approximation L ⊇ R∗(S) such that L ∩ Bad = ∅. This technique has been used to
verify cryptographic protocols [15], Java programs [3] and Functional Programs [12, 14].
Theorem 36 ensures that, if there exists an R-closed regular approximation L such that
L ∩ Bad = ∅, then we can build it (or under-approximate it) using completion and an
appropriate set E. To explore all the possible E, it is enough to explore GF (k) with k ∈ N∗.

I Definition 39 (Generated Equations for F and k ∈ N∗). Let B(k) be the set of all possible
RDFC tree automata on F with exactly k states. The set of generated equations of size k
is GF (k) = {E | B ∈ B(k) and E = A2E(B)}.

The semi-algorithm to prove that R∗(L(A)) ∩ Bad = ∅ works as follows: (a) We start
from k = 1, (b) we generate GF (k), (c) we try completion with A, R and all E ∈ GF (k)
(completion terminates with all those E, Theorem 26). If L(A∗R,E)∩Bad = ∅ for one E, we
are done. Otherwise if L(A∗R,E)∩Bad 6= ∅ for all E ∈ GF (k), we increase k and go back to
step (b). If there exists a regular over-approximation L ⊇ R∗(S), this algorithm eventually
reaches a tree automaton B such that L(B) = L , E = A2E(B, and by Theorem 36, we
know that L(A∗R,E) ⊆ L . Finally, since L ∩Bad = ∅, we have L(A∗R,E) ∩Bad = ∅.

For general TRSs, we can enumerate all equation sets but the search space is huge. When
the TRS R encodes a functional program, we can restrict the search space to equation sets
of the form E = ER ∪ Er ∪ EC [12], where ER and Er are fixed and EC only ranges over
Irr(R). If program’s functions are complete, Irr(R) is the set of are constructor terms,
i.e., terms containing no function call. The set F can be separated into a set of defined
symbols D = {f | ∃l→ r ∈ R s.t. Root(l) = f} and constructor symbols C = F \D.

IDefinition 40 (Er). For a given set of symbols F , Er = {f(x1, . . . , xn) = f(x1, . . . , xn) | f ∈
F , and arity of f is n}, where x1 . . . xn are pairwise distinct variables.

I Definition 41 (ER). Let R be a TRS, the set of R-equations is ER = {l = r | l→ r ∈ R}.
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I Definition 42 (EC contracting equations for T (C)). A set of equations is contracting for
T (C), denoted by EC , if all equations of EC are of the form u = u|p with u a linear term
of T (C,X ), p 6= λ, and Irr(−→EC) the set of terms of T (C) irreducible by −→EC is finite, where
−→
EC = {u→ u|p | u = u|p ∈ EC}.

Completion is terminating if E = ER ∪ Er ∪ EC and R encodes a functional program that
is terminating, complete, and either first order [12] or higher-order [14]. Now, our objective
is to define a completeness theorem for TRSs encoding those programs. Since E contains
ER, all completed automata A∗R,E will be R-closed because s→∗A∗

R,E
q, s→R t, t→∗A∗

R,E
q′

implies that s =E t and q = q′ because A∗R,E is simplified w.r.t. E. Thus, the completeness
theorem says that if there exists an R-closed automaton B s.t. L(B) ⊇ R∗(L(A)) then there
exists EC such that E = ER ∪ Er ∪ EC and L(A∗R,E) ⊆ L(B). To prove such a theorem,
we need to explain how to construct a satisfying EC from B. We propose to project B
on C (denoted by B/C), produce equations from B/C with A2E, and finally filter out all
equations that are not of the form u = u|p (this is function ct).

I Definition 43 (Automaton projection on C). Let B = 〈F ,Q,Qf ,∆〉 be an epsilon free
tree automaton. The automaton B/C is the tree automaton 〈C,QC ,Qf ∩ QC ,∆C〉 where
∆C = {s → q | s → q ∈ ∆ ∧ Root(s) ∈ C} and QC is the set of states occurring in the
right-hand side of transitions of ∆C .

Note that L(B/C) = L(B) ∩ T (C) and if B is RDFC so is B/C. In particular, if B is
complete for F , B/C is complete for C.

I Definition 44. Given a set of equations E, ct(E) = {l = r ∈ E | r = l|p and p 6= λ}.

In the following, we show that E = ct(A2E(B)) is a contracting set of equations, provided
that B is RDFC. In particular, we show that Irr(−→E ) is finite. Recall that −→E denotes the
TRS where all equations l = r of E are oriented so that r is a strict subterm of l.

I Lemma 45. Let B be an RDFC automaton on C and E = ct(A2E(B)). For all t ∈ T (C)
and q ∈ B, t can be rewritten by −→E iff t 6∈ JqKB.

Proof. By induction on the height of t.

If |t| = 1, then by Definition 17, t is necessarily a state representative of q, i.e., t ∈ JqKB.
By definition of ct and −→E , we know that −→E does not contain any rule with a constant
on the left-hand side. Thus t cannot be rewritten by −→E .
Assume that the property is true for terms of height lesser than k. Let t = f(t1, . . . , tn)
be a term of height k.

We prove that if t ∈ JqKB then t cannot be rewritten by −→E . We make a proof
by contradiction. Assume that t ∈ JqKB and t can be rewritten by −→E . Since t =
f(t1, . . . , tn) ∈ JqKB then ti, for 1 ≤ i ≤ n, are state representatives. Thus, using the
induction hypothesis, we get that ti (1 ≤ i ≤ n) are irreducible by

−→
E . Thus, the term t

can only be rewritten at position λ. For t to be rewritten at position λ there should be
an equation of the form t = t|p in E = ct(A2E(B)), with p ∈Pos(t) and p 6= λ. For
t = t|p to belong to A2E(B), we necessarily have a transition f(q1, . . . , qn) → q ∈ B
and t|p ∈ JqKB. By definition of state representatives, from t ∈ JqKB we deduce that no
subterm of t can be a state representative of q. This is a contradiction with t|p ∈ JqKB.
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We prove that if t 6∈ JqKB then t can be rewritten by −→E . From t = f(t1, . . . , tn)→∗B q,
we know that there exists states q1, . . . , qn ∈ B such that f(t1, . . . , tn)→∗B f(q1, . . . , qn)→B
q, i.e., ti →∗B qi for 1 ≤ i ≤ n. Applying the induction hypothesis on all the ti’s, we
obtain that ti can be rewritten by −→E iff ti 6∈ JqiKB. If there exists one ti s.t. ti 6∈ JqiKB
then ti can be rewritten by −→E and so is t = f(t1, . . . , tn). Thus, for all 1 ≤ i ≤ n,
ti ∈ JqiKB. Besides, recall that f(q1, . . . , qn) → q ∈ B and t = f(t1, . . . , tn) 6∈ JqKB.
By definition of state representatives, from t 6∈ JqKB we can deduce that there exists a
position p ∈Pos(t) and p 6= λ such that t|p ∈ JqKB. Since f(q1, . . . , qn)→ q ∈ B and
for all 1 ≤ i ≤ n, ti ∈ JqiKB, the equation f(t1, . . . , tn) = t|p belongs to A2E(B). The
equation also belongs to E = ct(A2E(B)). Thus t = f(t1, . . . , tn) can be rewritten by
−→
E .

J

I Lemma 46. If B is an RDFC automaton on C and E = ct(A2E(B)), then Irr(−→E ) is
finite and E is contracting for T (C).

Proof. If Irr(−→E ) is finite, then we trivially have that E is contracting for T (C). We prove
that Irr(−→E ) is finite by contradiction. Assume that Irr(−→E ) is infinite. Since −→E is left-
linear, we know that Irr(−→E ) is regular. Thus, we know that there exists an automaton A
such that L(A) = Irr(−→E ). Let A = 〈C,QA,QA

f ,∆A〉 and B = 〈C,QB,QB
f ,∆B〉. Let D

be the automaton A × B where the set of final states of D, QD
f is QA

f × QB. Since B is
complete, we thus have L(D) = L(A). Let qf ∈ QD

f and a ground term t ∈ T (C) such that
t→∗∆ qf and t does not belong to state representatives of B. We know that such a t exists
because the set of state representatives of B is finite (Lemma 19) and L(D) is infinite. Since
D = A × B, we know that qf is of the form (qAf , qB) with qAf ∈ QA

f and qB ∈ QB, and we
necessarily have (a) t→A

∗ qAf and (b) t→∗B qB. The fact that t is not a state representative
of any state of B entails that, in particular, t 6∈ JqBKB. Finally, with (b) and t 6∈ JqBKB, we
can apply Lemma 45 and get that t can be rewritten with −→E . This contradicts (a) because
t→A

∗ qAf implies that t ∈ Irr(−→E ). J

The above lemma implies that any regular language (on C) can be defined using a set of
contracting equations on T (C).

I Lemma 47. For a TRS R and an automaton B on F , if B is RDFC and R-closed and
EB = A2E(B), EC = ct(A2E(B/C)), and E = ER ∪ Er ∪ EC then =E ⊆ =EB .

Proof. We prove that if s =E t then s =EB t by induction on the number k ∈ N of equational
steps necessary to have s =E t. If k = 0 then s = t and this is trivially true for =EB . For the
inductive case, we have s =E s2 =E . . . =E sk =E t. We can apply the induction hypothesis
to get s =EB s1 =EB . . . =EB sk. To prove sk =EB t from sk =E t, we do a proof by case on
the equation used in the step sk =E t.

If sk =EC t, because of a equation u = v in EC , then we know that u = v necessarily
appears in EB. This is due to the fact that the set of transitions of B/C is included in
the set of transitions of B and thus EC = ct(A2E(B/C)) is included in EB = A2E(B);
If sk =Er

t, then the equation is of the form u = u and sk = t which implies sk =EB t;
If sk =ER t then we either have sk →R t or t →R sk. Since B is RDFC we know that
there exists a state q ∈ B such that sk →∗B q. Furthermore, since B is R-closed, we know
that t→∗B q. By Lemma 23, we get that sk =EB t.
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J

I Theorem 48 (ER ∪ Er ∪ EC covers all R-closed approximation automata). Let R be a
left-linear TRS and A a reduced and epsilon-free tree automaton on F . Let B be an R-
closed RDFC tree automaton such that L(B) ⊇ R∗(L(A)). Let EC = ct(A2E(B/C)),
E = EC∪ER∪Er, and A = A×MN(E). If A∗R,E exists then R∗(L(A)) ⊆ L(A∗R,E) ⊆ L(B).

Proof. The fact that R∗(L(A)) ⊆ L(A∗R,E) is ensured by Theorem 5. Using the Generalized
Upper Bound theorem (Theorem 32), we deduce that (1) L(A∗R,E) ⊆ R∗E(L(A)). From
Lemma 47, we know that =E ⊆ =EB and thus that (2) R∗E(L(A)) ⊆ R∗EB

(L(A)). Besides,
since B isR-closed, L(B) isR-closed and we can use Lemma 34 to get that (3)R∗EB

(L(A)) ⊆
L(B). Finally, using transitivity of ⊆ on (1), (2) and (3) we get L(A∗R,E) ⊆ L(B). J

Note that, for functional programs classes of [12] and [14], since EC = ct(A2E(B/C)) is con-
tracting (Lemma 46), A∗R,E always exists. Thus, if there exists an R-closed tree automaton
B such that L(B) ⊇ R∗(L(A)) and L(B) ∩Bad = ∅, it is enough to enumerate all possible
E = ER ∪ Er ∪ EC to find it. Since ER and Er are fixed, it is enough to enumerate all
possible EC on C using Definition 39.

I Example 49. Let C = {0 : 0, s : 1}. For k = 1, there is only one RDFC automaton with
1 state. Its transitions are {s(q0) → q0, 0 → q0}. Thus, GC(1) = {{s(0) = 0}}. For k = 2
there are 2 RDFC automata : one with transitions {0 → q0, s(q0) → q1, s(q1) → q1} and
the other with transitions {0 → q0, s(q0) → q1, s(q1) → q0}. Thus, GC(2) = {{s(s(0)) =
s(0)}, {s(s(0)) = 0, s(s(s(0))) = s(0)}}.

We implemented this in Timbuk and used it verify safety properties of several first-order
functions on lists and trees, higher-order functions [14]: map, filter , exists, forall, foldRight,
foldLeft as well as higher-order sorting functions parameterized by an ordering function.
Most of examples are taken from [22, 20], except the examples of functions manipulating
trees. Contracting equations used in [14] contain variables and are generated from test
sets. Here, we generate ground contracting equations EC as shown above and use E =
ER∪Er∪EC for completion. We transform the initial automaton A into A as in Theorem 32.
The approximation is, thus, upper-bounded by R∗E and we can benefit from the coverage
guarantee of Theorem 48. On all the examples of [14], we managed to do the same proofs
(or find the counter-examples, see [14]), in a faster way. Full experiments can be found here:
http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/. Those experiments
show that, with equation enumeration, the general tree automata completion algorithm
becomes powerful enough to efficiently carry out safety proofs on first-order and higher-order
functional programs. In [22, 20], equivalent proofs require higher-order model-checking tools
that are specialized for this task.

9 Conclusion and perspectives

Tree automata completion is known to cover many TRS classes preserving regularity [10,
12]. For some other classes, such as the linear subclass of [8], the question was still open.
We established that, for all those classes (including those not known yet), given A and
R, there exists a set of equations E such that A∗R,E recognizes R∗(L(A)). We proved a
similar theorem (Theorem 36) for the approximated case. If there exists a regular R-closed
approximation L such that L ⊇ R∗(L(A)) then there exists a set of equations E such
that A∗R,E recognizes, or under-approximates, L . Since building R∗(L(A)) or guessing

http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/
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an over-approximation L is impossible in general, inferring E from A and R is impossible.
Nevertheless, this paper presents a technique to enumerate sets of equations E to search for a
completed automaton satisfying a particular property. Theorem 29 proves that completion
with those E will always terminate. Theorem 32 ensures that the completed automaton
will be as precise as possible w.r.t. R/E. Finally, Theorem 36 shows that if a regular
approximation satisfying the property exists, it will be found by enumerating the sets E and
running completion.

On functional programs, Theorem 48 shows that enumeration can be restricted to sets
of equations on constructor symbols. This makes enumeration efficient enough to auto-
matically verify properties on first-order and higher programs. Our experiments with this
approach shows that it can prove state-of-the-art regular properties on first-order on higher-
order programs. The completeness Theorem for functional programs ranges over R-closed
RDFC approximation automata. However, there exist R-closed approximations that are
not recognized by an R-closed RDFC tree automaton.

I Example 50. Let F = {f : 1, a : 0, b : 0}, R = {a → b} and L = {f(b), a, b}. The
language L is R-closed and regular. There exists no R-closed RDFC tree automaton
recognizing L . In any R-closed RDFC tree automaton, a and b needs to be recognized by
the same state, say q, and thus f(b) needs to be recognized using a transition f(q) → qf
where qf is final. Thus, this automaton recognizes f(a) which does not belong to L .

Such approximations are thus out of the scope of Theorem 48, and cannot be found by
enumerating EC . As explained in Section 8, since E contains ER, the completed automata
are R-closed. We think that some interesting approximations may be recognized by non-
R-closed automata. For instance, during our experiments, we succeeded in proving the
sortedness property on the insertion sort but it timed out on the merge sort. However,
when using the EC set generated for the insertion sort and Er and ER for merge sort,
completion succeeds if we remove some equations from ER. We do not know if there exists
an R-closed automaton proving the property but, this experimental result shows that the
smallest automaton proving the property is not R-closed. We think that it is possible to
explore the set of all possible equation sets using E = Er ∪ EC where EC is contracting on
T (F) and to prune the search space using CounterExample Guided Abstraction Refinement.
This would permit to have an efficient equation generation for general TRSs and widen its
applicability to non-terminating functional programs, cryptographic protocols, etc. This is
ongoing work.

Another perspective is to extend those results to non-left-linear TRSs. Dealing with
regular languages and non-left-linear rules is known to be more challenging than the left-
linear case [24, 2, 9]. Nevertheless, there could be a nice surprise here. For non-left-linear
TRSs, completion is known to be sound and precise as long as the completed tree automaton
is kept deterministic [10]. Completion itself does not preserve determinism but, in Section 8,
all the completed automata are deterministic. This is a consequence of the fact that E
contains Er (makes the automaton Aε-deterministic) and ER (merges all states related by
an ε-transition). Thus, when using E = ER ∪ Er ∪ EC , completion is likely to build over-
approximations for non-left-linear TRSs. This should be investigated further.

Acknowledgments I thank Sophie Tison for discussions about the finiteness of T (F)/=E

and Tristan Gillard for implementing the equation generation in Timbuk.
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