
HAL Id: hal-01501705
https://hal.science/hal-01501705

Submitted on 4 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Efficient Migration-Aware Algorithms for Elastic
BPMaaS

Guillaume Rosinosky, Samir Youcef, François Charoy

To cite this version:
Guillaume Rosinosky, Samir Youcef, François Charoy. Efficient Migration-Aware Algorithms for
Elastic BPMaaS. 15th International Conference on Business Process Management (BPM), Sep 2017,
Barcelona, Spain. �hal-01501705�

https://hal.science/hal-01501705
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Efficient migration-aware algorithms for elastic
BPMaaS

Guillaume Rosinosky12, Samir Youcef2, and François Charoy2

1 Bonitasoft, Grenoble, France,
guillaume.rosinosky@bonitasoft.com,

http://www.bonitasoft.com
2 Inria Nancy Grand Est - Université de Lorraine - CNRS

Abstract. As for all kind of software, customers expect to find business
process execution provided as a service (BPMaaS). They expect it to
be provided at the best cost with guaranteed SLA. From the BPMaaS
provider point of view it can be done thanks to the provision of an elastic
cloud infrastructure. The provider still have to provide the service at the
lowest possible cost while meeting customers expectation. We propose a
customer-centric service model that link the BPM execution requirement
to cloud resources, and that optimize the deployment of customer’s (or
tenants) processes in the cloud to adjust constantly the provision to the
needs. However, migrations between cloud configurations can be costly
in terms of quality of service and a provider should reduce the number
of migration. We propose a model for BPMaaS cost optimization that
take into account a maximum number of migrations for each tenants. We
designed a heuristic algorithm and experimented using various customer
load configurations based on customer data, and on an actual estimation
of the capacity of cloud resources.

Keywords: BPM, cloud, elasticity, BPM as a service

1 Introduction

During the last decade, we witnessed a major change in the way companies are
delivering software. It is more often distributed as a service, operated by software
producers, hosted in public clouds instead of as a package and installed install on
premises. BPM systems vendors and operators start to propose this distribution
modality. It removes the burden for customers to operate the BPMS and the
corresponding infrastructure. They pay for process instances they execute or on
a fixed monthly rate per user [1]. The service provider aims at providing the
required service quality at the lowest possible cost. Thanks to the public cloud
and the elasticity it supports, providers can deliver that quality while minimiz-
ing resource consumption, and thus the operational cost. Public cloud providers
allow to add and remove dynamically computing resources. However, it does
not fit well with the deployment stack of a BPMS that include web servers and
databases. In this paper, we propose a method that allows to distribute process

execution on a set of cloud computing resources, and to adjust the resources
based on the load that the customers require. We call a customer a tenant, and
we ensure that all the processes of a tenant are executed on a BPMS installa-
tion. We consider that resources are paid by discrete time units. We assume that
we know for each tenant what will be its maximal resource consumption time
unit per time unit. More precisely, we want to take into account the knowledge
we can get from the business dimension, i.e. the number of task execution per
hour. In our previous work [2], we proposed to optimize resource consumption
from a timeslot to the next. In this paper, we extend the method to optimize
resource consumption on an arbitrary number of timeslots. We also limit tenant
migrations from an installation to another to avoid unwanted service disruption.
Migrations generally occurs when the resource on which a tenant is deployed is
not sufficient to support its required load for the coming period of time. For each
studied duration, based on the knowledge of the resource consumption profile
that we can get from all the tenants, we compute a deployment plan that mini-
mize resource consumption while maintaining the number of migrations for each
tenant at an acceptable level. This is the contribution of this paper. We pro-
pose a linear optimization model and then an heuristic in two parts. A first that
computes good times for each tenant to migrate using time series segmentation
methods. Then we show how this method coupled to the a restricted version of
the timeslot heuristic from the previous paper provides substantial gains com-
pared to more simple or naive ones. We validate it with an experimentation using
realistic values for the size customers and the size and price of cloud resources.
In the next section, we present the state of art regarding BPM elasticity in cloud
computing field. In section 3 we describe the model that we want to optimise. In
the following section (4), we explain the condition of the experimentation. Then
in section 5 we describe and discuss our results. In the last section, we conclude
and present possible extensions to this work.

2 Elasticity in BPM

Some attempts have already been done at managing BPMaaS elasticity in the
cloud. Schulte et al. [3] made a review on the current status on BPM elasticity,
and the different important criteria. We focus here on the scheduling and resource
allocation parts, with an emphasis on the multitenancy functionality.

Hoenisch et al. [4] proposes an interesting approach : the Service Instance
Placement Problem, a cost optimization model concerning the assignment of
process instances to VM, scheduling of service invocations, and the provision-
ing of VM. The authors consider the underline structure of the BPM processes
and propose to optimize the cost while taking into account penalties for violated
deadlines. However, they consider only the BPM engine’s CPU and RAM capac-
ity in their model - and not the database tier- and do not consider multitenancy
or migrations. Other previous attempts have the same drawbacks such as [5],
[6], [7].

Hachicha et al. [8] addresses multi-tenant BPMaaS with the concept of config-
urable resource assignment operator. It consists of an enrichment of the process
with meta informations on the required resources for the tasks execution. How-
ever, it needs to add informations in the BPM schema, thus needing to alter
BPM engine and the processes of the customers and do not propose a resource
allocation and scheduling method. Another attempts to tackle the multi-tenant
problem is done in [9] by Sellami et al. They propose a multi tenant approach
based on customizable thresholds, however, it does not take into account migra-
tion cost or the database tier.

There are many papers on Virtual Machine assignment or reassignment in
data centers such as [10], [11], [12], [13], however as in datacenters the physical
machines are already reserved, only the scheduling part is studied and for the
reassignment papers, the migrations are usually counted as part of the objective
function instead of a separated entity.

Our work is an evolution of our precedent paper [2] where we proposed an
bi-objective optimization model for cost and migrations quantity for all tenants
scrambled from a timeslot to the next, and a corresponding efficient heuristic.
Simply repeating this heuristic on multiple timeslots could provoke the migration
of the same tenants, thus provoking breaks of quality of service. We propose here
to harness the problematic of optimization on multiple consecutive timeslots,
with a limitation on the number of migrations for each tenant.

3 The BPM execution model

In this section we introduce the model for the BPMS execution we want to
optimize. Our model relies on a few assumptions regarding the BPM system.
First, it must be multi-tenant, i.e. several customers (or tenants) can share the
same BPMS installation. Second, it is possible to migrate a tenant from one
installation to another with minimal disruption. The main issue here is the data
migration from a database to another [14, 15]. We also only consider that IaaS
providers bill the computing resources per studied timeslot (for instance per
hour). Main public cloud providers like AWS, and IBM Bluemix, follow this
pattern per hour, while Google Compute Engine or Azure propose also a per
minute billing.

The operation of a BPMS requires a complex production software stack. It
may combine a BPM engine, load balancers and relational databases. They are
often deployed on distinct hardware instances or virtual machines from the BPM
engine, mostly for performance reasons. We call “cloud configuration” the set of
resources that we use to execute process instances for a group of tenants. Last,
we assume that we know the usage requirement for each tenant timeslot by
timeslot in term of the maximum task throughput per second. This metric has
the advantages of being representative of the system usage of both the database
tier and the application server tier. We must also know the capability of each
cloud configuration type in term of BPM task throughput.

We aim at minimizing the cloud resource cost while ensuring that the through-
put for each tenant is at the required level. Migrations count for each tenant
should not exceed a fixed number in order to avoid disruptions. We propose here
a linear model where we wish to optimize the cost of placement.

Let the following variables :

– T , the set of cloud configuration types, with t its cardinality.
– I, the set of tenants with n its cardinality
– J , is T × I the set of all possible cloud configurations associated with each

tenant. its cardinality is m = t× n
– Cj , and Wj , respectively the cost and the capacity for the configuration j,

with j in J
– wi(k), the required capacity for the tenant i during time slot k
– K defines all the time slots, from 0 to D, where D + 1 is the number of time

slots.
– xj

i(k), the assignment of tenant i to configuration instance j during time
slot k

– yj(k), the activation of configuration j during time slot k
– M is the defined maximum number of migrations for each tenant

min

j∈J∑
j

k∈K∑
k

Cjyj(k) (1)

We have the following constraints :

∀i ∈ I,∀k ∈ K
j∈J∑
j

xj
i(k) = 1 (2)

∀j ∈ J ,∀k ∈ K
i∈I∑
i

wi(k)xj
i(k) ≤Wjyj(k) (3)

∀i ∈ I
j∈J∑
j

k∈K\{D}∑
k

xj
i(k)xj

i(k + 1) ≥ |K| −M (4)

∀i ∈ I,∀j ∈ J ,∀k ∈ K, xi
j(k) ∈ {0, 1}, yj(k) ∈ {0, 1} (5)

Equation 1 is our optimization objective. We want to minimize the total
cost of cloud configurations for all the time slots (a day for instance). The con-
straint described in equation 2 means that, for each timeslot, each tenant must
be located on one and only cloud configuration. The constraint described in
equation 3 means that, for each timeslot, the sum of required throughput of
the tenants co-located on a cloud resource do not exceed the capacity of this
resource.

The constraint described in equation 4 means that we want to limit the
number of migrations per tenant to M . If xj

i(k) and xj
i(k + 1) are both equal

to 1 for the resource j and the tenant i on two consecutive timeslots k and k+1,
their product will be equal to 1, the tenant did not migrate. In the other cases,
the product will be equal to 0. They occur when tenant i migrated from or to

another resource from timeslot k to timeslot k + 1 or when tenant i remained
on a different resource on both timeslots. We sum these products resource per
resource, on each timeslot pair for each tenant. We obtain the number of timeslot
where a tenant remained on the same configuration. The difference between the
total number of timeslots and this number is the number of migration. Limiting
the number of migrations is then straightforward.

Since we have multiplication between two variables, we obtain a quadratic
optimization problem. As can become is very slow to compute, we linearized
the equation 4, following the usual method. The result for this linearization is
described in equation 6 :

∀i ∈ I
j∈J∑
j

k∈K\{D}∑
k

wj
i(k + 1) ≥ |K| −M

∀i ∈ I
j∈J∑
j

k∈K\{D}∑
k

xj
i(k) + xj

i(k + 1)− 2wj
i(k + 1) ≤ 1

∀i ∈ I
j∈J∑
j

k∈K\{D}∑
k

wj
i(k + 1) ≤ xj

i(k)

∀i ∈ I
j∈J∑
j

k∈K\{D}∑
k

wj
i(k + 1) ≤ xj

i(k + 1)

∀i ∈ I,∀j ∈ J ,∀k ∈ K, wi
j(k) ∈ {0, 1}

(6)

Even with the linearization, the resolution of this problem can be very time
consuming. The number of variables will be of tn(D + 1) + tn2(D + 1), and the
number of constraints will be of tn(D+1)+tn2(D+1)+4n. For 7 cloud resource
types(t), 100 tenants (n), and 24 time-slots (D+ 1), it makes 1696800 variables,
and 1697200 constraints. It is not reasonable to try to compute the optimal
solution when the number of tenants grows, as we will see in the experiment
part. In the next section, we propose a heuristic that provide solutions to the
problem with reasonable computation time even with large number of tenants.

4 Heuristic optimization proposition

4.1 Iterative timeslot algorithm

This algorithm is based on our previous timeslot heuristic [2]. Its principle is to
consider that, regarding an initial distribution, we search the best distribution
for the next timeslot, knowing that the required capacity of each tenant can
change. With the timeslot algorithm, we search for a Pareto front of the lowest
global number of migrations and resources cost. As the number of migrations is
discrete and limited by the number of tenants, we can compute the lowest cost
for each number. First, we look at overloading and overloaded tenants as shown
in figure 1.

Fig. 1. Example of distribution of tenants on cloud resources at T and T+1

It depicts the distribution of tenants on different cloud configurations. The
initial state is at time T . At time T +1, the requirement for each tenant changes.
Some of them have to migrate (orange and red). The heuristic principle is, that
for each possible number of migrations we consider the combination of resources
containing the corresponding number of tenants, added to the number of ten-
ants that we must migrate. As we consider the total quantity of tenants, there
are several possibilities for each number of migrations. This is a classic subset
sum problem. For instance, in figure 1, in order to compute the results for 5
migrations, we should move the tenants t8, t6, and remove the combinations of
resources with 3 remaining tenants (R1 or R2 and R3). Once we have selected
the tenants, we first repack the possible tenants in existing resources, and then
use a Variable Cost and Size Bin Packing [16] algorithm for the remaining ones.
The last step consists by iteratively try to replace by cheaper ones the resources
with only moved tenants.

This approach provides good results timeslot by timeslot. Still, we must adapt
it to ensure the number of migrations per tenant described by constraint 4 that
limit the number of migration for a given duration per tenant. In the next section
we propose an adaptation of this algorithm to enforce this constraint.

4.2 A migration aware optimization strategy

For this new strategy, we add the list of tenants allowed to migrate as an ad-
ditional parameter to the previous method. For instance if, for a timeslot, we
allow to migrate every tenant but T5 and T2 because they have reached their
maximum number of migration (M), the new timeslot algorithm must ignore
them and maintain them on their resources. We cannot delete resources with
tenants.

Let a migration strategy the set of hi(k) with 0 ≤ k ≤ D − 1 where each
tenant i is allowed to be migrated. hi(k) is equal to 0 if the tenant is not allowed
to move between timeslot k and k + 1, and equal to 1, if it is allowed. The

equation 7 describe the maximum number of migrations.

∀i ∈ I
k∈K\{D}∑

k

hi(k) = M (7)

We need to find the optimal values for each hi(k) respecting the maximum
number of migrations to obtain the best cost.

Once we have determined the different migrations timeslots, we choose the
required capacity level. As our algorithm does not consider multiple timeslots
simultaneously, we assign a fixed capacity for each tenant for each period where
it does not migrate. We call Ci(m) the capacity during the period between
migrations m1 and m2. In order to avoid overloads, we consider the maximum
capacity required for the corresponding timeslots, as in equation 8. An example
of a maximum load strategy is presented in figure 2. These capacities are used
instead of the initial capacities of the tenants in the timeslot algorithm.

∀i ∈ I∀m1 ≤ k < m2, Ci(m2) = max
m1≤k<m2

(wi(k)) (8)

Fig. 2. Migration strategy of 6 tenants on 24 hours

As testing every migration strategy possibilities would be require too much
time, we need an efficient way to evaluate which one we should use. It should give
better results than a naive approach, and respect the constraint on the number
of migrations for each tenant.

4.3 Time series segmentation

We propose a method to identify good migrations strategies. We consider first
that the variations in load will produce the need for migrations. If for instance
a tenant needs a throughput of 10 tasks per seconds between 12pm and 6am,
and then a throughput of 50 tasks per second between 6am and 12am, the best
time to migrate is at 6am. Our approach here is, for k migrations, to find a way
to fragment the load time series in k + 1 consecutive fragments, in a way where

they have the minimum load. Time series segmentation techniques address this
kind of problems.

As Lovric[17] explains, we can see time series segmentation as a processing
step and core task for variety of data mining tasks, as a trend analysis technique,
as a discretization problem in function of dimensionality reduction, etc. . . The
latter point interests us as we want to find a way to discretize the load time
series, with discrete periods of remaining tenants, separated by migrations. The
main common algorithms based on Piecewise Linear Representation are origi-
nally reported by Keogh et al. [18] : top-down, bottom-up and sliding window.
As our approach is offline (we know the future load), we focus only top-down
and bottom-up.

The principle is to iteratively separate (top-down) or merge (bottom-up)
consecutive sets of observations in the time series, so they keep a minimal error
related to real observations. As it can be seen in [18] and [17], the main version
of the algorithm segments the time series using Piecewise Linear Approximation
(PLA), fitting each segment with an affine function found by linear regression of
the values for each segment. This approach is interesting for our needs. Indeed,
as we explained earlier, we want to segment the time series considering the
maximum load instead of the mean of segment (we consider for each segment
its maximum load as described in equation 8). As we will see in the experiment
section, we also tested a mean constant piecewise approximation, that consider
a fixed mean for the segmentation.

Once we obtain the segments, we compute the corresponding migration strat-
egy. We initialize the matrix to zero, except for the timeslots where there is a
change of segments, that we initialize to one. We then use this migration strategy
with the restricted iterative timeslot algorithm as we can see in the next part.

4.4 The optimization algorithm

Here is a synthesis of our timeslot algorithm :

– First, compute the desired migration strategy using a time series segmenta-
tion algorithm.

– Second, initialize the initial timeslot (zero) with the initial distribution.

– Then, for each timeslot from k = 1 to k = D :

• Launch a timeslot algorithm, using the distribution of the previous times-
lot. Only the tenants able to move in the migration strategy for this
timeslot migrate. Thus we ensure constraint 4 of the model

• Keep the less expensive distribution with the least number of migrations.
This is the distribution we choose for the current timeslot.

This algorithm provides a solution that enforces the constraints. In the next
section we describe our experimentation that shows how it provides better re-
sults than a naive solution and with a reasonable computation time even for an
hundred of tenants.

5 Experimentation

To test our solution we made a few assumptions and relied as much as possible on
datasets that gives us realistic foundations for the resolution of the model. As we
can see in the model part, we needed to have a good estimation of the customer
loads, timeslot by timeslot on one side, and of the price and capability in task
throughput per timeslot of a cloud configuration on the other side. We have then
compared several segmentation methods on the same datasets of customer loads
and cloud configurations to find the best ones. In the next part we describe the
datasets.

5.1 Datasets

In order to get meaningful cost and task throughput for our cloud configurations,
we have used the data obtained in our test framework experimentation [19].
In this paper, we have set up an experiment on AWS with a BPMN process
composed of 20 consecutive automated tasks launching a Fibonacci script. We
launched tests on several r3 (storage-oriented) family instance types for the
database, and c4 (CPU-oriented) family instance types for the application server.
We used the BPM system BonitaBPM 7.3.2 3 in its Open Source version. We
compared the obtained throughput with the price of each cloud configuration.
Results are described in table 1. It provides the number of tasks for one $ for
each configuration type.

DB inst. type AS inst. type price task TP task TP per $

db.m3.medium m3.medium 0.177 16.400 92.656
db.m3.medium c4.large 0.223 23.157 103.845
db.r3.large c4.large 0.399 55.164 138.255
db.r3.large c4.xlarge 0.518 58.067 112.100
db.r3.xlarge c4.large 0.674 65.113 96.607
db.r3.large c4.2xlarge 0.757 61.474 81.208
db.r3.xlarge c4.xlarge 0.793 83.236 104.963
db.r3.xlarge c4.2xlarge 1.032 89.149 86.384
db.r3.2xlarge c4.2xlarge 1.587 105.794 66.663
db.r3.2xlarge c4.4xlarge 2.063 107.585 52.150
db.r3.4xlarge c4.4xlarge 3.173 115.283 36.332
db.r3.4xlarge c4.8xlarge 4.126 129.279 31.332

Table 1. Price, mean task throughput, and mean task throughput by dollar of used
cloud configurations.

For the customer load part, we wanted to test multiple tenant quantities
(5, 10, 25, 50 and 100), having different throughputs based on real data from
BonitaBPM customers. More precisely, we used minimum and maximum through-
put per second found in the anonymized execution history tables. The used
thresholds are described in table 2. We have then generated each tenants ini-
tial timeslot load randomly following an uniform distribution between the two
thresholds.

3 http://www.bonitasoft.com/

customer days minimum maximum

A 4 1 120
B 1 14 16
C 45 0 120
D 7 1 3
E 45 5 120
F 550 0 4

Table 2. For each customer, the observed interval in days, the minimum and the
maximum task throughput per second for each hour.

To avoid too much variation between timeslots, we also used another param-
eter we name tenant gap, a percentage of the gap between a tenant’s minimum
and maximum throughput. Using a totally random behaviour makes tenants
throughput very chaotic. In general, the required load is relatively stable, as we
have noticed in customers data. For each timeslot, we compute randomly the
percentage of the gap, and we add it to the previous timeslot’s load. If we obtain
a load lower than the minimum, we cap it to the minimum (respectively capped
to the maximum for loads superior to the maximum). For instance, for customer
E and a gap of 0.25, the change between hours would follow an uniform distri-
bution between −0.25(120− 5) = −28.75 and 0.25(120− 5) = 28.75, capped on
the minimum and maximum for the customer, here respectively 5 and 120. We
have experimented with various values for the gap. A gap percentage of 1 will
correspond to a complete random behavior between the minimum and maximum
loads. A gap percentage of 0 will correspond to a load who stays fixed at the
initial timeslot load. For each number of tenants, we wanted to test multiple
tenant gaps as it shows multiple levels of variability. More precisely, we have
tested the tenant gaps 0.25, 0.5, 0.75 and 1. We have not tested the 0 tenant
gap, because it provokes a stable load, and the algorithm would converge to a
stable distribution and then stop moving tenants.

As we said, the main parameters we varied are the tenant quantity, and
the tenant gap. Nonetheless, given the random nature of the obtained load, we
ran the tests multiple times with different random distributions for each couple
tenant gap and tenant quantity. In order to keep repeatable configurations and
be able to test multiple algorithms, we have used twenty different random seeds
for each tenant parameter couple. Using the same random seed on a same couple
tenant gap/tenant quantity gives every time the same load distribution.

For each generated set (the cartesian product between twenty seeds, the 4
tenant gaps, and the 5 different tenant quantities), we tested several migration
plan algorithms that we describe in the next part.

5.2 Software and methods

Our goal here is to determine between the different methods and for differ-
ent number of migrations, which one gives the better migration strategies i.e.
which one between top-down and bottom-up algorithms, grouped and individual
strategies, and ConstantMaxPieceWise, ConstantPieceWise and Linear Regres-
sion fitters gives the best results.

As our metrics are hourly based on the different configurations and tenant
loads, we used hourly timeslots, more precisely 48 timeslots. The initial setting
is the following : for each tenant, we select the least expensive resource that is
suited for the maximum required throughput on the study time. We name this
method adapted heuristic.

For the segmentation part we implemented a fixed and updated version of
the Alchemyst library4. This library implements top-down and bottom-up algo-
rithms, with mean constant and linear regression fitters. We added max constant
fitter as described in section 4.3. We also tested the algorithms for several num-
ber of migrations, more precisely 2, 3 and 4 per day, so 4, 6 and 8 for the 48
hours studied. Last, we tested two grouping strategies : considering each tenant
in a separated manner (individual strategy), or executing the segmentation on
the sum of the loads, and moving every tenant simultaneously at the obtained
migration timeslots (grouped strategy) .

We also enhanced our previous timeslot algorithm implementation [2] with
the restriction on the tenant list. For performance reasons we don’t consider here
the subset sum for each number of migrations but only all the tenants.

To obtain reference values, we used a naive method to compute the cost. This
gives us a reference cost that we can obtain without calculation. We also com-
pared a subset of our test dataset with the solving of the linear model described
in chapter 3 during a limited time, for the lowest number of tenants. For this we
used the solver Gurobi [21].

Table 3 summarize the different parameters we used in this experiment. Ex-
periments have been executed on c4.xlarge (CPU optimized) instances on Ama-
zon Web Services. In the next part, we discuss our results.

group variable size values

data tenant gap % 4 0.25,0.5, 0.75,1
data seed number 20 -
data number of days 1 2
data number of tenants 6 5,10,25,50,100,200
data number of migrations 3 2,3,4

segmentation algorithm 2 bottom-up,top-down
segmentation fitter 3 mean constant,max constant,linear regression
grouping strategy tenant load 2 grouped,individual
timeslot algorithm subset sum size 1 1

Table 3. Synthesis of the experiment dataset and algorithm used values.

5.3 Results and discussion

As we explained in the previous part, we compare our results with the adapted
heuristic cost we obtained (in figure 3). The mean cost is between 370.15 $ for
5 tenants and a tenant gap of 0.25 and 18853.56 $ for 200 tenants and a tenant
gap of 1. We can see here that the higher the gap, the higher the cost. Since
the variation of the load is less restricted, the maximum load can be higher,
and the strategy principle is to consider each tenant’s higher load for each cloud
resource.

4 https://github.com/alchemyst/Segmentation developed by Carl Sandrock for his pa-
per [20]

Fig. 3. Distribution of experimentation adapted heuristic costs in dollars

Fig. 4. Gain in percentage of the algorithm regarding the naive approach, compared
to the number of tenants, for a tenant gap of 0.25 and 4 migrations per day.

We see in figure 4 the results we obtained for a tenant gap of 0.25 and 4 mi-
grations a day with the heuristic. We compute the gain percentage by observing
for each experiment run (one seed, one tenant gap percent, on tenant quantity,
one number of migrations) the ratio of the difference of the result related to the
corresponding adapted cost. We can see that the different strategies give dif-
ferent level of results. Top-down algorithms give better results than top-down,
except for top-down individual with linear regression fitter. Grouped strategies
give almost every time the best results, except for the top-down algorithm on
individual strategy with a constant maximum piecewise fitter, who gives results
near to the two bests, (top-down grouped constant strategies), and is even more
efficient for 200 tenants. For top-down algorithms, constant maximum piecewise
is the best algorithm, followed by constant mean piecewise. It is more difficult
to compare for bottom-up strategies.

Figure 5 shows a global overview of the results. Most of the time, the top-
down algorithm gives better results than the bottom-up. The best global ap-
proach are usually more efficient on small number of tenants or with less varia-

tion (low tenant gap). The best fitters here are top-down grouped constant max
piecewise, top-down individual constant max piecewise and top-down constant
piecewise. As expected, we obtain better results when we allow more migrations
(from 5 to 10 percent for 2 migrations to 15 to 25 percent for 4 migrations).
A higher gap percentage generates worse results. The top-down individual Con-
stant Max Piecewise strategy gives the best results for more than 5 tenants
almost every time.

Fig. 5. Gain in percentage of the algorithm regarding the naive approach in y axis,
compared to the number of tenants in the x axis. The legend of figure 4 applies here.

Figure 6 show the running time of the algorithm with different parameters.
It stays relatively stable, for a defined strategy and number of tenants, mainly
for grouped strategies. Individual strategies are always longer, and the duration
seems to be multiplied by 3 to 4 each time the number of tenants doubles.

On the other side, computing the results with the exact model using a solver
is very time consuming and does not give very good results for more than 5
tenants and a defined time of 30 minutes as we can see in the table 4. We have
not tried to do the complete tests for more tenants. Even for 10 tenants, 24 hours
of computing time does not give the optimal results : we have obtained a MIP
gap of 7 % at best with the solver, while with our heuristic we obtained gains
of 20% with a mean duration of at most 0.4 seconds of running time. For 100
tenants, our heuristic duration is 100 seconds for a grouped strategy.

We can see the correlation between the number of migrations and the gain.
The results show us that the top-down algorithm works much better than the
bottom-up, and that constant maximum piecewise fitter give almost every time
better results than the other fitters. The constant mean piecewise fitter gives

Fig. 6. Mean duration in seconds for individual and grouped approaches, for each
studied number of tenants. The standard deviation is represented on each bar, with
the mean number of seconds.

Tenant qty Tenant gap Mean adapted Nb migr. Solver duration Solver gain Mean MIP gap

5 0.25 419.99 2 1800 41.05% 3.57%
5 0.25 421.91 3 1800 48.28% 3.45%
5 0.25 421.91 4 1800 51.64% 3.91%
10 0.25 685.82 2 1800 3.18% 48.33%
10 0.25 685.82 3 1800 1.28 % 52.68%
10 0.25 685.82 4 1800 1.28 % 55.33 %

Table 4. Solver results for the 10 first seeds. Mean MIP gap is the gap between the
solution and the inferior bound found.

also interesting results. Good results for global strategies can be explained by
the resource-oriented approach of our algorithm (except for overloading and over-
loaded tenants, it considers only resource removal for tenant displacement). The
very good performance of individual maximum constant piecewise, especially
for large number of tenants shows that this fitter is very efficient, but needs a
minimum number of tenants to become more efficient.

We have shown that our heuristic is fast, even when the number of tenants
grows, and permits substantial savings for the BPMaaS providers. A gain of 20
% on the adapted strategy for 100 tenants corresponds to a mean of 1373.48 $
for two days. Moreover, it is possible to test multiple strategies, as the comput-
ing time stays low (for 200 tenants an individual strategy lasts a mean of 11.75
seconds, and 5.02 seconds for a grouped one). The longer duration for the indi-
vidual strategy can be explained by the mechanics of the heuristic. Indeed, in
this case we segment every tenant instead of all at once in the grouped strategy.
Individual strategies could be more interesting to use in production environ-
ment. Indeed, even if we have not considered this constraint, migrating all the
tenants together could have some side effects on QoS because all the data of the
customers will migrate simultaneously, having negative effects on the available
network bandwidth. Of course an individual strategy could give the same results
if the tenants have identical workload patterns.

6 Conclusion

In this paper, we have proposed a new linear model for resource allocation and
scheduling of BPM execution in the cloud, and a quick, simple and straightfor-
ward heuristic giving good results compared to naive approaches and solving
of the model. This model relies on assumptions that makes it applicable in an
operational setting. First, we consider customers as a whole (tenants) and not a
distribution process instance by process instance. This reduces the scope of the
calculation and avoids security issues regarding access to the business data. Sec-
ond we assume that we can migrate a BPMS deployment from one installation
to another in a reasonable time. This is not available in current systems but it
is possible with very little service interruption.

We have tested it with data from an existing BPMS with a task metric. Of
course, we could also use it with other metrics such as the number of processes
and even for other services than BPMS. For instance, we could consider web
servers and the throughput of HTTP queries as soon as they have a strong data
management component. We can also use the algorithm with different temporal
dimensions, hours as in the experimentation, but also minutes or seconds. We
also plan to use it in an online manner, coupled with a predictive component
that computes dynamically the expected load for the following time slots. This
is our next step. We also think that can still improve our results using meta-
heuristics. Even if they are much better than with a naive approach, there is
room for improvement as shown by our experiments with a solver for 5 tenants.
Last, we want to test this heuristic with customer data, where the results should
be better considering the load patterns we can identify (day/night cycle, working
hours, lunch time, etc.).

The authors would like to thank Gurobi for the usage of their optimizer, and
Amazon Web Services for the EC2 instances credits (this paper is supported by
an AWS in Education Research Grant Award). The data and the results are
available at : http://doi.org/10.5281/zenodo.401374 . The source code of the
framework is not free for now, except for the segmentation library, available at
https://github.com/guillaumerosinosky/Segmentation/.

References

1. Le, T.M.H., Alfredo, L.A., Choi, H.R., Cho, M.J., Kim, C.S.: A Study on BPaaS
with TCO Model, IEEE (December 2014) 249–256 00003.

2. Rosinosky, G., Youcef, S., Charoy, F.: An Efficient Approach for Multi-tenant
Elastic Business Processes Management in Cloud Computing Environment, IEEE
(June 2016) 311–318 00001.

3. Schulte, S., Janiesch, C., Venugopal, S., Weber, I., Hoenisch, P.: Elastic Business
Process Management: State of the art and open challenges for BPM in the cloud.
Future Generation Computer Systems (2014) 00011.

4. Hoenisch, P., Schuller, D., Schulte, S., Hochreiner, C., Dustdar, S.: Optimization
of Complex Elastic Processes. IEEE Transactions on Services Computing 9(5)
(September 2016) 700–713 00008.

5. Hoenisch, P., Schulte, S., Dustdar, S., Venugopal, S.: Self-Adaptive Resource Al-
location for Elastic Process Execution, IEEE (June 2013) 220–227 00014.

6. Janiesch, C., Weber, I., Kuhlenkamp, J., Menzel, M.: Optimizing the Performance
of Automated Business Processes Executed on Virtualized Infrastructure, IEEE
(January 2014) 3818–3826 00007.

7. Euting, S., Janiesch, C., Fischer, R., Tai, S., Weber, I.: Scalable Business Pro-
cess Execution in the Cloud. In: 2014 IEEE International Conference on Cloud
Engineering (IC2E). (March 2014) 175–184 00006.

8. Hachicha, E., Assy, N., Gaaloul, W., Mendling, J.: A configurable resource allo-
cation for multi-tenant process development in the cloud. In: International Con-
ference on Advanced Information Systems Engineering, Springer (2016) 558–574
00005.

9. Sellami, W., Kacem, H.H., Kacem, A.H.: Elastic Multi-tenant Business Process
Based Service Pattern in Cloud Computing, IEEE (December 2014) 154–161 00002.

10. Wolke, A., Tsend-Ayush, B., Pfeiffer, C., Bichler, M.: More than bin packing:
Dynamic resource allocation strategies in cloud data centers. Information Systems
52 (August 2015) 83–95 00003.

11. Li, Y., Tang, X., Cai, W.: On dynamic bin packing for resource allocation in the
cloud, ACM Press (2014) 2–11 00011.

12. Jaśkowski, W., Szubert, M., Gawron, P.: A hybrid MIP-based large neighbor-
hood search heuristic for solving the machine reassignment problem. Annals of
Operations Research (January 2015) 00002.

13. Brandt, F., Speck, J., Völker, M.: Constraint-based large neighborhood search
for machine reassignment: A solution approach to the ROADEF/EURO challenge
2012. Annals of Operations Research (December 2014) 00000.

14. Das, S., Agrawal, D., El Abbadi, A.: ElasTraS: An elastic, scalable, and self-
managing transactional database for the cloud. ACM Transactions on Database
Systems 38(1) (April 2013) 1–45 00095.

15. Barker, S.K., Chi, Y., Hacigümüs, H., Shenoy, P.J., Cecchet, E.: ShuttleDB:
Database-Aware Elasticity in the Cloud. In: 11th International Conference on Au-
tonomic Computing, ICAC ’14, Philadelphia, PA, USA, June 18-20, 2014. (2014)
33–43 00007.

16. Kang, J., Park, S.: Algorithms for the variable sized bin packing problem. European
Journal of Operational Research 147(2) (2003) 365–372 00116.

17. Lovrić, M., Milanović, M., Stamenković, M.: Algoritmic methods for segmentation
of time series: An overview. Journal of Contemporary Economic and Business
Issues 1(1) (2014) 31–53 00006.

18. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting
time series. In: Data Mining, 2001. ICDM 2001, Proceedings IEEE International
Conference on, IEEE (2001) 289–296 00859.

19. Rosinosky, G., Youcef, S., Charoy, F.: A Framework for BPMS Performance and
Cost Evaluation on the Cloud, IEEE (December 2016) 653–658 00000.

20. Sandrock, C.: Identification and Generation of Realistic Input Sequences for
Stochastic Simulation with Markov Processes. In Cakaj, S., ed.: Modeling Sim-
ulation and Optimization - Tolerance and Optimal Control. InTech (April 2010)
00000 DOI: 10.5772/9035.

21. Optimization, G.: Gurobi Optimizer Reference Manual (2015)

