Immobilization of membrane-bounded (S)-mandelate dehydrogenase in sol-gel matrix for electroenzymatic synthesis - Archive ouverte HAL
Article Dans Une Revue Bioelectrochemistry Année : 2015

Immobilization of membrane-bounded (S)-mandelate dehydrogenase in sol-gel matrix for electroenzymatic synthesis

Résumé

Membrane-bounded (S)-mandelate dehydrogenase has been immobilized on the surface of glassy carbon and carbon felt electrodes by encapsulation in a silica film obtained by sol-gel chemistry. Such bioelectrochemical system has been used for the first time for electroenzymatic conversion of (S)-mandelic acid to phenylglyoxylic acid. Apparent Km in this sol-gel matrix was 0.7 mM in the presence of ferrocenedimethanol, a value in the same order of magnitude as reported previously for vesicles in solution with other electron acceptors, i.e., Fe(CN)(6)(3-) or 2,6-dichloroindophenol. The bioelectrode shows very good operational stability for more than 6 days. This stability was definitively improved by comparison to a bioelectrode prepared by simple adsorption of the proteins on the electrode surface (fast activity decrease during the first 15 h of experiment). Optimal electroenzymatic reaction was achieved at pH 9 and 40 degrees C. Apparent Km of the protein activity was 3 times higher in carbon felt electrode than on glassy carbon surface, possibly because of transport limitations in the porous architecture of the carbon felt A good correlation was found between electrochemical data and chromatographic characterization of the reaction products in the bioelectrochemical reactor.

Domaines

Chimie
Fichier non déposé

Dates et versions

hal-01501638 , version 1 (04-04-2017)

Identifiants

Citer

Ievgen Mazurenko, Wissam Ghach, Gert-Wieland Kohring, Christelle Despas, Alain Walcarius, et al.. Immobilization of membrane-bounded (S)-mandelate dehydrogenase in sol-gel matrix for electroenzymatic synthesis . Bioelectrochemistry, 2015, 104, pp.65-70. ⟨10.1016/j.bioelechem2015.03.004⟩. ⟨hal-01501638⟩
54 Consultations
0 Téléchargements

Altmetric

Partager

More