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The spherical p-harmonic eigenvalue problem
in non-smooth domains

Konstantinos Gkikas∗

Laurent Véron†

Abstract
We prove the existence of p-harmonic functions under the form u(r, σ) = r−βω(σ) in any cone CS

generated by a spherical domain S and vanishing on ∂CS . We prove the uniqueness of the exponent β
and of the normalized function ω under a Lipschitz condition on S.
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1 Introduction
Let p > 1, S a domain of the unit sphere SN−1 of RN and CS := {(r, σ) : r > 0, σ ∈ S} the positive
cone generated by S. If one looks for p-harmonic functions in CS under the form u(x) = u(r, σ) =
r−βω(σ) vanishing on ∂CS \ {0}, then ω satisfies the spherical p-harmonic eigenvalue problem on S

−div′
((

β2ω2 + |∇′ω|2
) p−2

2 ∇′ω
)

= (p− 1)β(β − β0)
(
β2ω2 + |∇′ω|2

) p−2
2

ω in S

ω = 0 in ∂S

(1.1)
∗kgkikas@dim.uchile.cl
†veronl@univ-tours.fr
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with β0 = N−p
p−1 and were div′ and ∇′ denote the divergence operator and the covariant gradient on

SN−1 endowed with the metric induced by its isometric inbedding into RN . Separable solutions play
a key role for describing the boundary behaviour and the singularities of solutions of a large variety
of quasilinear equations. When N = 2 the equation is completely integrable and has been solved by
Kroll in the regular case β < 0 and Kichenassamy and Véron in the the singular case β > 0. In higher
dimension, Tolksdorff [15] proved the following:
Theorem A If S is a smooth spherical domain, there exist two couples (βS , ωS) and (β′S , ω

′
S) where

βS > 0 and β′S < 0, ωS and ω′S are positive C2(S)-functions vanishing on ∂S which solve (1.1) with
(β, ω) = (βS , ωS) or (β, ω) = (β′S , ω

′
S). Furthermore βS and β′S are unique, and ωS and ω′S are

unique up to an homothety.
A more general and transparent proof has been obtained by Porretta and Véron [13], but always in the
case of a smooth spherical domain. The aim of this article is to extend Theorem A to a general spherical
domain. If we consider an increasing sequence of smooth domains {Sk} such that Sk ⊂ Sk ⊂ Sk+1

and ∪kSk = S we prove the following:
Theorem B Assume that Sc is not polar. Then the sequence of the βSk > 0 from Theorem A is decreasing
and converges to βS > 0. There exists ωS ∈ W 1,p

0 (S) ∩ L∞(S) weak solution of (1.1) with β = βS .
Furthermore βS > 0 is the largest exponent β such that (1.1) admits a positive solution ωS ∈W 1,p

0 (S).

Under a mild assumption on S it is possible to approximate it by a decreasing sequence of smooth
domains S′k such that S′k ⊂ S

′
k ⊂ S′k−1 and ∩kS′k = S

Theorem C Assume that S =
o

S. Then the sequence βS′k > 0 is increasing and converges to β̂S > 0

and there exists ω̂S ∈ W 1,p
0 (S) ∩ L∞(S) weak solution of (1.1) with β = β̂S . Furthermore β̂S is the

smallest exponent β such that (1.1) admits a positive solution ωS ∈W 1,p
0 (S).

We prove the uniqueness of the exponent β, under a Lipschitz assumption on S.
Theorem D Assume that S is a Lipschitz domain, then βS = β̂S and if ω and ω′ are two positive
solutions of (1.1) in W 1,p

0 (S), there exists a constant c > 0 such that c−1ω′ ≤ ω ≤ cω′.
The proof of Theorem C is based upon a sharp form of boundary Harnack inequality proved in [10],∣∣∣ln ω(σ1)

ω′(σ1)
− ln ω(σ2)

ω′(σ2)

∣∣∣ ≤ c1 |σ1 − σ2|α ∀σ1, σ2 ∈ S, (1.2)

for some c1 = c1(N, p, S) > 0 and α ∈ (0, 1). Actually we have a stronger result, much more delicate
to obtain.
Theorem E Let S be a Lipschitz subdomain of SN−1. Then two positive solutions of (1.1) in W 1,p

0 (S)
are proportional.

The proof is based upon a non trivial adaptation of a series of deep results of Lewis and Nyström
[10] concerning the p-Martin boundary of domains.

Acknowledgements This article has been prepared with the support of the collaboration programs ECOS
C14E08.

2 Existence

2.1 Estimates
Through this article we assume that Sc is not polar, or equivalently that it has positive cS

N−1

1,p -capacity.
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Lemma 2.1. Assume p > 1. Then any solution ω ∈W 1,p
0 (S) of (1.1) satisfies

‖ω‖Cγ(S) ≤ c1 ‖ω‖Lp(S) , (2.1)

if p > N − 1 where γ = 1− N−1
p if p > N − 1 and

‖ω‖L∞(S) ≤ c1 ‖ω‖Lp(S) , (2.2)

if 1 < p ≤ N − 1, where c1 > 0 depends on p, N , β.

Proof. Multiplying the equation by ω and using Hölder’s inequality, we derive

(i)

∫
S

(
β2ω2 + |∇′ω|2

) p
2

dS ≤ (β(pβ − (p− 1)β0))
p
2

∫
S

|ω|p dS if p ≥ 2,

(ii)

∫
S

(
β2ω2 + |∇′ω|2

) p
2

dS ≤ βp−1(pβ − (p− 1)β0)

∫
S

|ω|p dS if 1 < p < 2.

(2.3)

Notice that these inequalities hold for all p > 1. If p > N − 1 (2.1) follows by Morrey’inequality. Here
after we assume 1 < p ≤ N − 1. Let α ≥ 1 and k > 0. Then ζ = min{|ω| , k}α−1ω is an admissible
test function, hence
1- If p ≥ 2,∫

S

(
β2ω2 + |∇′ω|2

) p−2
2 〈∇′ω.∇′ζ〉dS = (p− 1)β(β − β0)

∫
S

(
β2ω2 + |∇′ω|2

) p−2
2

ωζdS

≤ c2
∫
S

|∇′ω|p−2 ω2 min{|ω| , k}α−1dS + c2β
p

∫
S

|ω|p min{|ω| , k}α−1dS

≤ c2
(∫

S

|ω|p min{|ω| , k}α−1dS
) p−2

p
(∫

S

|∇′ω|p min{|ω| , k}α−1dS
) 2
p

+ c2β
p

∫
S

|ω|p min{|ω| , k}α−1dS,

(2.4)

where c2 = c2(N, p, β) > 0. Since∫
S

(
β2ω2 + |∇′ω|2

) p−2
2 〈∇′ω.∇′ζ〉dS ≥ c3(p)

∫
S

|∇′ω|p min{|ω| , k}α−1dS,

it implies that there exists c4 = c4(N, p, β) such that∫
S

|∇′ω|p min{|ω| , k}α−1dS ≤ c4
∫
S

|ω|p min{|ω| , k}α−1dS, (2.5)

which yields ∫
S

|∇′j(ω)|p dS ≤ c4
∫
S

|j(ω)|p dS, (2.6)

where j(ω) = min{|ω| , k}
α−1
p ω.

2- If 1 < p < 2, then∫
S

(
β2ω2 + |∇′ω|2

) p−2
2 〈∇′ω.∇′ζ〉dS =

∫
S

(
β2ω2 + |∇′ω|2

) p−2
2 |∇′ω|2 min{|ω| , k}α−1dS

+ (α− 1)

∫
S∩{|ω|<k}

(
β2ω2 + |∇′ω|2

) p−2
2 |∇′ω|2 |ω|α−1 dS.

(2.7)
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Since∫
S

(
β2ω2 + |∇′ω|2

) p−2
2 |∇′ω|2 min{|ω| , k}α−1dS =

∫
S

(
β2ω2 + |∇′ω|2

) p
2

min{|ω| , k}α−1dS

− β2

∫
S

(
β2ω2 + |∇′ω|2

) p−2
2

min{|ω| , k}α−1ω2dS

≥
∫
S

|∇′ω|p min{|ω| , k}α−1dS − β2

∫
S

(
β2ω2 + |∇′ω|2

) p−2
2

min{|ω| , k}α−1ω2dS,

we derive∫
S

|∇′ω|p min{|ω| , k}α−1dS ≤ βp−1(pβ − (p− 1)β0)

∫
S

|ω|p min{|ω| , k}α−1dS, (2.8)

which leads to (2.6). Letting k →∞ we infer by Fatou’s lemma,∫
S

∣∣∣∇′ |ω|α−1
p +1

∣∣∣p dS ≤ c4∫
S

|ω|α−1+p dS. (2.9)

If p < N − 1 we derive from Sobolev inequality and putting q = α− 1 + p and s = N−1
N−1−p > 1(∫

S

|ω|sq dS
) 1
s

≤ c5
∫
S

|ω|q dS, (2.10)

and c5 > 0 depends on N , p and β. Iterating this estimate by Moser’s method we derive (2.10).
If p = N − 1 we have for 1 ≤ m < p− 1 and m∗ = m(N−1)

N−1−m

c6

(∫
S

|ω|(
α−1
p +1)m∗

dS

) pm
m∗

≤
(∫

S

∣∣∣∇′ |ω|α−1
p +1

∣∣∣m dS) p
m

≤ |S|
p
m−1 c4

∫
S

|ω|α−1+p dS,

and c6 = c6(N, p), hence (∫
S

|ω|tq dS
) 1
t

≤ c5
∫
S

|ω|q dS, (2.11)

with t = m(N−1)
p(N−1−m) = m

N−1−m . The proof follows again by Moser’s iterative scheme. �

Proposition 2.2. Let S1 and S2 be two subdomains of SN−1 such that S1 ⊂ S1 ⊂ S2 and S2 not polar.
Let βj > 0, j=1,2, such that there exist positive solutions ωj ∈W 1,p

0 (Sj) solutions of

−div′
((

β2
jω

2
j + |∇′ωj |2

) p−2
2 ∇′ωj

)
= (p− 1)βj(βj − β0)

(
β2
jω

2
j + |∇′ωj |2

) p−2
2

ωj in Sj

ωj = 0 in ∂Sj .

(2.12)
Then β1 ≥ β2.

Proof. Set uj(r, σ) = r−βjωj(σ), CSj = (0,∞) × SJ and assume β1 < β2. By Harnack inequality
ω2 ≥ c > 0 on S1, thus

u2(r, σ) ≥ cr−β2 a.e. in CS1
.

For ε > 0 there exist rε > 0 such that

εu2(x) ≥ u1(x) ∀x ∈ CS1
∩Brε .
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Let δ > 0, there exists Rδ > 0 such that

u1(x) ≤ δ ∀x ∈ CS1 ∩BcRδ .

Hence ζ = (u1 − εu2 − δ)+ ∈ W 1,p
0 (Qrε,RδS1

), where Qrε,RδS1
= {x ∈ CS1

: rε < |x| < Rδ}. This
implies

0 =

∫
Q
rε,Rδ
S1

〈
|∇u1|p−2∇u1 − |∇(εu1)|p−2∇(εu1).∇ζ

〉
dx

=

∫
Q
rε,Rδ
S1

∩{u1−εu2≥δ}

〈
|∇u1|p−2∇u1 − |∇(εu1)|p−2∇(εu1).∇(u1 − u2)

〉
dx.

Therefore ∇(u1 − εu2 − δ)+ = 0 a.e. in Qrε,RδS1
, which leads to u1 − εu2 ≤ δ in the same set. Letting

δ → 0 yields Rδ → ∞, thus we obtain u1 ≤ εu2 in CS1
∩ Bcrε hence u1 ≤ 0 in CS1

, contradiction.
�

2.2 Approximations from inside
Proof of Theorem B. Let {Sk} be an increasing sequence of smooth domains such that Sk ⊂ Sk ⊂ Sk+1.
We denote by {(βSk , ωk)} the corresponding sequence of solutions of (1.1) with β = βSk and ω = ωk.
The sequence {βSk} is uniquely determined by [15], it admits a limit β := βS , and the ωk are the unique
positive solutions such that ∫

Sk

|ωk| dS = 1.

If p ≥ 2, we have∫
Sk

|∇′ωk|p dS ≤
∫
Sk

(
β2
Sk
ω2
k + |∇′ωk|2

) p−2
2 |∇′ωk|2 dS

= (p− 1)βSk(βSk − β0)

∫
Sk

(
β2
Sk
ω2
k + |∇′ωk|2

) p−2
2

ω2
kdS

≤ 2
(p−4)+

2 (p− 1)βSk(βSk − β0)

∫
Sk

(
βp−2Sk

ωpk + |∇′ωk|p−2 ω2
k

)
dS

≤ c7(N, p, βSk)

∫
Sk

ωpkdS +
1

2

∫
Sk

|∇′ωk|p dS.

Since βSk ≤ β1, we derive ∫
Sk

|∇′ωk|p dS ≤ c8, (2.13)

from the normalization assumption with c8 = 2c7(N, p, β1).
If 1 < p < 2, we have∫

Sk

|∇′ωk|p dS ≤
∫
Sk

(
β2
Sk
ω2
k + |∇′ωk|2

) p
2

dS

≤ βSk(pβSk + (p− 1)β0)

∫
Sk

(
β2
Sk
ω2
k + |∇′ωk|2

) p−2
2

ω2
kdS

≤ βp−1k (pβSk + (p− 1)β0)

∫
Sk

ωpkdS,
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and we obtain (2.13) with c8 = βp−11 (pβ1 + (p− 1)β0).
Next we extend ωk by 0 in Sck. Then there exists ω ∈ W 1,p

0 (S) such that ωk ⇀ ω weakly in
W 1,p

0 (S), up to subsequence that we still denote {ωk}, and ωk → ω in Lp(S).
Step 1: We claim that ∇′ωk converges to∇′ω locally in Lp(S).
Let a ∈ S and r > 0 such that B4r(a) ⊂ S. Then for k ≥ k0, B2r(a) ⊂ Sk. Let ζ ∈ C∞0 (B2r(a)) such
that 0 ≤ ζ ≤ 1, ζ = 1 in Br(a). For test function we choose ηk = ζ(ω − ωk), then∫
Sk

(
β2
Sk
ω2
k + |∇′ωk|

2
) p−2

2 〈∇′ωk.∇′ηk〉dS = (p−1)βSk(βSk−β0)

∫
Sk

(
β2
Sk
ω2
k + |∇′ωk|

2
) p−2

2

ωkηkdS.

By the above inequality, we have∫
B2r(a)

〈(
β2ω2 + |∇′ω|2

) p−2
2 ∇′ω −

(
β2
Sk
ω2
k + |∇′ωk|2

) p−2
2 ∇′ωk.∇′ηk

〉
dS

=

∫
B2r(a)

(
β2ω2 + |∇′ω|2

) p−2
2 〈∇′ω.∇′ηk〉dS

− (p− 1)βSk(βSk − β0)

∫
Sk

(
β2
Sk
ω2
k + |∇′ωk|2

) p−2
2

ωkηkdS.

Using the weak convergence of the gradient, we have

lim
k→∞

∫
B2r(a)

(
β2ω2 + |∇′ω|2

) p−2
2 〈∇′ω.∇′ηk〉dS = 0.

Since ωk is uniformly bounded in W 1,p
0 (S) and ωk → ω in Lp(S), we have

lim
k→∞

∫
B2r(a)

(
β2
Sk
ω2
k + |∇′ωk|

2
) p−2

2

ωkηkdS = 0,

and

lim
k→∞

∫
B2r(a)

(ω − ωk)

〈(
β2ω2 + |∇′ω|2

) p−2
2 ∇′ω −

(
β2
Sk
ω2
k + |∇′ωk|

2
) p−2

2 ∇′ωk.∇′ζ
〉
dS = 0.

Combining the above relations we infer

lim
k→∞

∫
B2r(a)

ζ

〈(
β2ω2 + |∇′ω|2

) p−2
2 ∇′ω −

(
β2
Sk
ω2
k + |∇′ωk|

2
) p−2

2 ∇′ωk.∇′(ω − ωk)

〉
dS = 0.

(2.14)
Next we write∫
B2r(a)

ζ

〈(
β2ω2 + |∇′ω|2

) p−2
2 ∇′ω −

(
β2
Sk
ω2
k + |∇′ωk|2

) p−2
2 ∇′ωk.∇′(ω − ωk)

〉
dS

=
1

2

∫
B2r(a)

ζ

((
β2ω2 + |∇′ω|2

) p−2
2

+
(
β2
Sk
ω2
k + |∇′ωk|2

) p−2
2

)
|∇′(ω − ωk)|2 dS

+
1

2

∫
B2r(a)

ζ

((
β2ω2 + |∇′ω|2

) p−2
2 −

(
β2
Sk
ω2
k + |∇′ωk|2

) p−2
2

)
×
(
|∇′ω|2 + β2ω2 − β2

Sk
ω2
k − |∇′ωk|

2
)
dS

− 1

2

∫
B2r(a)

ζ

((
β2ω2 + |∇′ω|2

) p−2
2 −

(
β2
Sk
ω2
k + |∇′ωk|2

) p−2
2

)(
β2ω2 − β2

Sk
ω2
k

)
dS.

(2.15)
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If p ≥ 2, we have from (2.4),∫
B2r(a)

ζ

〈(
β2ω2 + |∇′ω|2

) p−2
2 ∇′ω −

(
β2
Sk
ω2
k + |∇′ωk|2

) p−2
2 ∇′ωk.∇′(ω − ωk)

〉
dS

≥ 1

2

∫
B2r(a)

ζ
(
|∇′ω|p−2 + |∇′ωk|p−2

)
|∇′(ω − ωk)|2 dS

− 1

2

∫
B2r(a)

ζ

((
β2ω2 + |∇′ω|2

) p−2
2 −

(
β2
Sk
ω2
k + |∇′ωk|2

) p−2
2

)(
β2ω2 − β2

Sk
ω2
k

)
dS

≥ min{2−1, 22−p}
∫
B2r(a)

ζ |∇′(ω − ωk)|p dS

− 1

2

∫
B2r(a)

ζ

((
β2ω2 + |∇′ω|2

) p−2
2 −

(
β2
Sk
ω2
k + |∇′ωk|2

) p−2
2

)(
β2ω2 − β2

Sk
ω2
k

)
dS.

(2.16)
Since ωk → ω in Lp(S), βSk → β and ωk, ω are uniformly bounded in W 1,p

0 (S) , we derive∫
B2r(a)

ζ

((
β2ω2 + |∇′ω|2

) p−2
2 −

(
β2
Sk
ω2
k + |∇′ωk|

2
) p−2

2

)(
β2ω2 − β2

Sk
ω2
k

)
dS → 0

as k →∞. Jointly with (2.14) we infer that

lim
k→∞

∫
Br(a)

|∇′(ω − ωk)|p dS = 0. (2.17)

If 1 < p < 2, then∫
B2r(a)

ζ

〈(
β2ω2 + |∇′ω|2

) p−2
2 ∇′ω −

(
β2
Sk
ω2
k + |∇′ωk|

2
) p−2

2 ∇′ωk.∇′(ω − ωk)

〉
dS

=

∫
B2r(a)

ζ

〈(
β2
Sk
ω2
k + |∇′ω|2

) p−2
2 ∇′ω −

(
β2
Sk
ω2
k + |∇′ωk|2

) p−2
2 ∇′ωk.∇′(ω − ωk)

〉
dS

+

∫
B2r(a)

ζ

〈((
β2ω2 + |∇′ω|2

) p−2
2 −

(
β2
Sk
ω2
k + |∇′ω|2

) p−2
2

)
∇′ω.∇′(ω − ωk)

〉
dS.

(2.18)
Up to extracting a subsequence, we have that ωk → ω a.e. in S and that there exists Φ ∈ L1(S) such
that

|ωk|p + |ω|p ≤ Φ a.e. in S and ∀ k ≥ 1. (2.19)

Since (
β2
Sk
ω2
k + |∇′ω|2

) p−2
2 |∇ω| ≤

(
β2
Sk
ω2
k + |∇′ω|2

) p−1
2 ≤ βp−1Sk

ωp−1k + |∇′ω|p−1 ,

and (
β2ω2 + |∇′ω|2

) p−2
2 |∇ω| ≤ βp−1ωp−1 + |∇′ω|p−1 ,

we derive that∣∣∣∣(β2ω2 + |∇′ω|2
) p−2

2 −
(
β2
Sk
ω2
k + |∇′ω|2

) p−2
2

∣∣∣∣ |∇′ω| ≤ 2
(
βp−1Φp−1 + |∇′ω|p−1

)
,

which implies that

ζ

((
β2ω2 + |∇′ω|2

) p−2
2 −

(
β2
Sk
ω2
k + |∇′ω|2

) p−2
2

)
∇′ω → 0 in Lp

′
(S)
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where p′ is the conjugate of p, and finally∫
B2r(a)

ζ〈
((

β2ω2 + |∇′ω|2
) p−2

2 −
(
β2
Sk
ω2
k + |∇′ω|2

) p−2
2

)
∇′ω.∇′(ω − ωk)〉dS → 0 as k →∞.

(2.20)
For the last term on the right-hand side of (2.18), we have, for γ ∈ R+ and A,B ∈ RN ,(
γ + |B|2

) p−2
2

B−
(
γ + |A|2

) p−2
2

A =

∫ 1

0

d

dt

((
γ + |tB + (1− t)A|2

) p−2
2

(tB + (1− t)A)

)
dt

=

(∫ 1

0

(
γ + |tB + (1− t)A|2

) p−2
2

dt

)
(B−A)

+ (p− 2)

∫ 1

0

(
γ + |tB + (1− t)A|2

) p−4
2 〈tB + (1− t)A .B−A〉(tB + (1− t)A)dt.

This implies

〈
(
γ + |B|2

) p−2
2

B−
(
γ + |A|2

) p−2
2

A .B−A〉 =

(∫ 1

0

(
γ + |tB + (1− t)A|2

) p−2
2

dt

)
|B−A|2

+ (p− 2)

∫ 1

0

(
γ + |tB + (1− t)A|2

) p−4
2 〈tB + (1− t)A .B−A〉2dt.

We observe that∫ 1

0

(
γ + |tB + (1− t)A|2

) p−4
2 〈tB + (1− t)A .B−A〉2dt

≤ |B−A|2
∫ 1

0

(
γ + |tB + (1− t)A|2

) p−2
2

dt,

and since 1 < p < 2, we finally obtain

〈
(
γ + |B|2

) p−2
2

B−
(
γ + |A|2

) p−2
2

A .B−A〉

≥ (p− 1)

(∫ 1

0

(
γ + |tB + (1− t)A|2

) p−2
2

dt

)
|B−A|2

≥ (p− 1) |B−A|2
(
γ + 1 + |B|2 + |A|2

) p−2
2

.

(2.21)

We plug this estimate into (2.18) with γ = β2
kω

2
k, A = ∇′ω and B = ∇′ωk, then∫

B2r(a)

ζ〈
(
β2
Sk
ω2
k + |∇′ω|2

) p−2
2 ∇′ω −

(
β2
Sk
ω2
k + |∇′ωk|2

) p−2
2 ∇′ωk.∇′(ω − ωk)〉dS

≥
∫
B2r(a)

ζ |∇′(ω − ωk)|2
(
β2
kω

2
k + 1 + |∇′ωk|2 + |∇′ω|2

) p−2
2

dS.

(2.22)

Set φ(.) = β2
kω

2
k + 1 + |∇′ωk|2 + |∇′ω|2, then∫

Br(a)

|∇′ω −∇′ωk|p dS =

∫
Br(a)

|∇′ω −∇′ωk|p φ
p(p−2)

4 φ−
p(p−2)

4 dS

≤

(∫
Br(a)

|∇′ω −∇′ωk|2 φ
p−2
2 dS

) p
2
(∫

Br(a)

φ
p
2 dS

) 2−p
2

.

(2.23)
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Jointly with (2.14) and (2.22) we conclude that (2.17). Step 1 follows by a standard covering argument.

Step 2: We claim that ωk converges to ω in W 1,p
0 (S).

Up to a subsequence that we denote again by {k}, we can assume that ωk → ω and ∇′ωk → ∇′ω a.e.
in S. Let ζ ∈ C∞0 (S), then there exists kε ∈ N such that the support K of ζ is a compact subset of Sk
for all k ≥ kε. If 1 < p < 2,(

β2
Sk
ω2
k + |∇′ωk|

2
) p−2

2 |∇′ωk| ≤ |∇′ωk|
p−1

,

which bounded in Lp
′
(K), then uniformly integrable in K and by Vitali’s convergence theorem(
β2
Sk
ω2
k + |∇′ωk|

2
) p−2

2 ∇′ωk →
(
β2ω2 + |∇′ω|2

) p−2
2 ∇′ω,

in L1
loc(S). Similarly (

β2
Sk
ω2
k + |∇′ωk|

2
) p−2

2

ωk →
(
β2ω2 + |∇′ω|2

) p−2
2

ω,

in L1
loc(S). If p ≥ 2 (

β2
Sk
ω2
k + |∇′ωk|

2
) p−2

2 |∇′ωk| ≤ c
(
|ωk|p−1 + |∇′ωk|

p−1
)
,

and we conclude again by Vitali’s convergence theorem that the previous convergences hold. Since∫
Sk

(
β2
Sk
ω2
k + |∇′ωk|

2
) p−2

2 〈∇′ωk.∇′ζ〉dS = (p−1)βSk(βSk−β0)

∫
Sk

(
β2
Sk
ω2
k + |∇′ωk|

2
) p−2

2

ωkζdS

we conclude that ω is a weak solution of (1.1) with β = βS . �

2.3 Approximations from outside
Proof of Theorem C. Since S

c
has a non-empty interior, the existence of a sequence {ω′k} corresponding

to solutions of (1.1) in S′k with β = βS′k is the consequence of [13]. The fact that {βS′k} is increasing
follows from Proposition 2.2. We denote by β̂ := β̂S its limit, and it is smaller or equal to βS . Estimates
(2.4) are valid with S′k, ω′k and βS′k instead of S, ω and β. If we extend ω′k by 0 in S′ck these estimates
are valid with SN−1 instead of S′k. Then up to a subsequence the exists ω ∈ W 1,p(SN−1) and a
subsequence stil denoted by {k} such that ω′k ⇀ ω weakly in W 1,p(SN−1), strongly in Lp(SN−1) and
a.e. in SN−1. Furthermore, as in the proof of Theorem A, for any compact set K ⊂ S, ∇′ω′k → ∇′ω′
in Lp(K). This is sufficient to assert that ω is a weak solution of

−div′
((

β̂2ω′2 + |∇′ω′|2
) p−2

2 ∇′ω′
)

= (p− 1)β̂(β̂ − β0)
(
β̂2ω2 + |∇′ω′|2

) p−2
2

ω′ in S.

Moreover ω′bS′k belongs to W 1,p
0 (S′k) for all k. Since ω′k = 0 in Sck and converges a.e. to ω, this last

function vanishes a.e. in ∪kSck = (∩kSk)c = S
c
. Therefore ω vanishes a.e. in S

c
and since it is quasi

continuous, it vanishes, (1− p)- quasi everywhere in S
c
. From Netrusov’s theorem (see [1, Th 10.1.1]-

(iii)) there exists a sequence {ηn} ⊂ C∞0 (S) which converges to ω in W 1,p(S), thus ω ∈ W 1,p
0 (S).

�
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3 Uniqueness

3.1 Uniqueness of exponent β
Proof of Theorem D. If S is Lipschitz, CS is also Lipschitz. We fix z ∈ S ≈ SN−1 ∩ ∂CS and we
apply [10, Th 2] in Gz = CS ∩ B 1

2
(z) to two separable p-harmonic functions u(r, σ) = r−βω(σ) and

u′(r, σ) = r−β
′
ω′(σ). There exist γ ∈ (0, 12 ), c10 > 0 and α ∈ (0, 1) such that∣∣∣∣ln u(y1)

u′(y1)
− ln

u(y2)

u′(y2)

∣∣∣∣ ≤ c10 |y1 − y2|α ∀ y1, y2 ∈ CS ∩Bγ(z). (3.24)

Assume |y1| = |y2| = 1, then∣∣∣∣ln ω(y1)

ω′(y1)
− ln

ω(y2)

ω′(y2)

∣∣∣∣ ≤ c10 |y1 − y2|α ∀ y1, y2 ∈ S ∩Bγ(z). (3.25)

We denote by `(x, y) the geodesic distance on SN−1 and by `(x,K) the geodesic distance from a point
x ∈ SN−1 to a subset K. Since the set Sγ = {σ ∈ S : `(σ, ∂S) ≤ γ

2 } can be covered by a finite number
of balls with center on ∂S, we infer that∣∣∣∣ln ω(y1)

ω′(y1)
− ln

ω(y2)

ω′(y2)

∣∣∣∣ ≤ c11 ∀ y1, y2 ∈ Sγ . (3.26)

In S \ S γ
2

we can use Harnack inequality to obtain

−c12 ≤ ln
ω(y1)

ω(y2)
≤ c12 ∀ y1, y2 ∈ S \ S γ

2
s.t. `(y1, y2) ≤ γ

2 . (3.27)

Hence there exists a constant c13 > 0 such that (3.27) holds for any y1, y2 ∈ S \ S γ
2

, with c12 replaced

by c13. Furthermore ω′ satisfies the same inequality in S \ S γ
2

. Combining the two inequalities we

obtain

−2c13 ≤ ln
ω(y1)

ω(y2)
− ln

ω′(y1)

ω′(y2)
≤ 2c13 ∀ y1, y2 ∈ S \ S γ

2
. (3.28)

Combining this estimate with (3.25) we derive that it holds for all y1, y2 ∈ S. This implies

e−2c13
ω(y2)

ω′(y2)
≤ ω(y1)

ω′(y1)
≤ e2c13 ω(y2)

ω′(y2)
∀ y1, y2 ∈ S. (3.29)

Assume now that there exist two exponents β > β′ > 0 such that r−βω(.) and r−β
′
ω′(.) are p-

harmonic and positive in the cone CS and vanishes on ∂CS . Put θ = β
β′ , η = ω′θ and

T (η) = −div′
((

β2η2 + |∇′η|2
) p−2

2 ∇′η
)
− (p− 1)β(β − β0)

(
β2η2 + |∇′η|2

) p−2
2

η,

then

T (η) = −θp−2
(
β′2ω′2 + |∇′ω′|2

) p−2
2
(

(β − β′)ω′2 + (p− 1)θ(θ − 1) |∇′ω′|2
)
≤ 0.

Up to multiplying ω′ by λ, we can assume that η ≤ ω and that the graphs of η and ω are tangent in
S. Since ω′ ≤ cω, η = o(ω) near ∂S. Hence there exists σ0 ∈ S such that ω(σ0) = η(σ0) and the
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coincidence set of η and ω is a compact subset of S. We put w = ω − η, since ∇ω(σ0) = ∇η(σ0) we
proceed as in [14, Th 4.1] (see also [4] in the flat case) and derive that w satisfies, in a system of local
coordinates (σ1, ..., σN−1) near σ0,

Lw := −
∑
`,j

∂

∂σ`

(
Aj,`

∂w

∂σj

)
+
∑
j

Cj
∂w

∂σ`
+ Cw ≥ 0,

where the matrix (Aj,`) is smooth, symmetric and positive near σ0 and theCj andC are bounded. Hence
w is locally zero. By a standard argument of connectedness, this implies that the zero set of w must be
empty, contradiction. Hence β = β′. �

3.2 Uniqueness of eigenfunction
The proof is based upon a delicate adaptation of the characterisation of the p-Martin boundary obtained
in [10], but we first give a proof in the convex case.

3.2.1 The convex case

Theorem 3.1. Assume S is a convex spherical subdomain. Then two positive solutions of (1.1) are
proportional.

Proof. We recall that a domain S is (geodesically) convex if a minimal geodesic joining two points of
S is contained in S. If S ⊂ SN−1 is convex, the cone CS is convex too. Since S is convex, it is
Lipschitz and by Theorem D, βS = β̂S := β. Let ω and ω′ be two positive solutions of (1.1) satisfying
supS ω = supS ω

′ = 1. We denote by uω(x) = |x|−βω(.) and uω′(x) = |x|−βω′(.) the corresponding
separable p-harmonic functions defined in CS . If 0 < a < b, we set Ca,bS = CS ∩ (Bb \ Ba). Then for
0 < ε < 1 we denote by uε the unique function which satisfies

−∆puε = 0 in Cε,1S
uε = ε−βω in CS ∩ ∂Bε
uε = 0 in (CS ∩ ∂B1) ∪

(
∂CS ∩ (B1 \Bε)

)
.

(3.30)

Then
(uω − 1)+ ≤ uε ≤ uω in Cε,1S . (3.31)

Furthermore ε 7→ uε is increasing. When ε ↓ 0, uε ↑ u0 where u0 is positive and p-harmonic in C1,0
S ,

vanishes on ∂C1,0
S \ {0} and satisfies (3.30) with ε = 0. In particular

lim
r→0

rβu0(r, σ) = ω(σ) locally uniformly in S. (3.32)

We construct the same approximation u′ε in Cε,1S with ω′ instead of ω. Mutadis mutandis (3.31) holds
and u′ε ↑ u′0 which is positive and p-harmonic in C1

S , satisfies

(uω′ − 1)+ ≤ u′0 ≤ uω′ in C1,0
S ,

and thus
lim
r→0

rβu′0(r, σ) = ω′(σ) locally uniformly in S. (3.33)

However, by [10, Th 4] u0 and u′0 are proportional. Combined with (3.32), (3.33) it implies the claim.
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3.2.2 Proof of Theorem E

In what follows we borrow most of our construction from [10] that we adapt to the case of an infinite cone
a make explicit for the sake of completeness. The next nondegeneracy property of positive p-harmonic
functions is proved in [10, Lemma 4.28].

Proposition 3.2. Let Ω ⊂ RN be a bounded Lipschitz domain and 1 < p < ∞. Then there exist
constants ρ > 0, c14, c15 > 0 depending respectively on Ω (for ρ), and p, N and the Lipschitz norm M
of ∂Ω (for c14 and c15) with the property that for any w ∈ ∂Ω and any positive p-harmonic function u
in Ω, continuous in Ω∩B2ρ(w) and vanishing on ∂Ω∩Bρ(w), one can find ξ ∈ SN−1, independent of
u, such that

c−114

u(y)

dist (y, ∂Ω)
≤ 〈∇u(y), ξ〉 ≤ |∇u(y)| ≤ c14

u(y)

dist (y, ∂Ω)
, (3.34)

for all y ∈ CS ∩B ρ|w|
c15

(w).

If Ω is replaced by a cone CS , the nondegeneracy property still holds uniformly on ∂CS \ {0}.

Corollary 3.3. Let 1 < p <∞, S ⊂ SN−1 is a Lipschitz domain and CS the cone generated by S.

(i) Then there exist constants ρ < 1
2 , c14, c15 > 0 depending respectively on S (for ρ), and p, N and the

Lipschitz normM of ∂S and diam(S) (for c14 and c15) with the property that for any w ∈ ∂CS and any
positive p-harmonic function u in CS , continuous in CS ∩B2ρ|w|(w) and vanishing on ∂CS ∩Bρ|w|(w)
continuous, one can find ξ ∈ SN−1, independent of u, such that

c−114

u(y)

dist (y, ∂CS)
≤ 〈∇u(y), ξ〉 ≤ |∇u(y)| ≤ c14

u(y)

dist (y, ∂CS)
, (3.35)

for all y ∈ B ρ
c15

(w) ∩ CS .

(ii) Then there exist positive constants κ and c16, c17 depending on S (for κ), and p, N and the Lipschitz
norm M of ∂S and diam(S) (for c16, c17 such that for any a > 0 and any positive p-harmonic function
u in CaS vanishing on ∂CS ∩Bca, there holds

c−116

u(y)

dist (y, ∂CS)
≤ |∇u(y)| ≤ c16

u(y)

dist (y, ∂CS)
∀y ∈ Cc17aS s.t. dist (y, ∂CS) ≤ κ |y| . (3.36)

Let ω, ω′ ∈W 1,p
0 (S) ∩ C(S) be positive solutions (1.1). Since ω

ω′ is bounded from above and from
below in S by positive constants, we can assume, as in the proof of Theorem D, that ω ≥ ω′ in S and
that the graphs of ω and ω′ are tangent. hence, if ω 6= ω′, then ω > ω′ in S and there exists a sequence
{σn} converging to σ0 ∈ ∂S as n→∞ such that

lim
n→∞

ω′(σn)

ω(σn)
= 1.

We define δ1 = sup{δ > 0 : δω < ω′}. For t ∈ (δ1, 1), we set

φt = sup {ω′, tω} and ψt = inf

{
t

δ1
ω′, ω

}
(3.37)

We also set

vφt(r, σ) = r−βφt(σ) and vψt(r, σ) = r−βψt(σ) ∀ (r, σ) ∈ (0,∞)× S. (3.38)
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Lemma 3.4. The functions φt and ψt are respectively a subsolution and a supersolution of (1.1) in
W 1,p

0 (S), vφt and vψt are respectively a subsolution and a supersolution of−∆p in CS , and there exists
η ∈W 1,p

0 (S) solution of (1.1) such that

ω′ ≤ φt ≤ η ≤ ψt ≤ ω ∀ t ∈ (δ1, 1). (3.39)

If St is the subset of η ∈ W 1,p
0 (S) solutions of (1.1) and satisfying (3.39), then ωt = sup{η : η ∈ St}

belongs to St. It is increasing with respect to t with uniform limits ω′ when t ↓ δ1 and ω when t ↑ 1.
Finally, if θt = t−δ1

1−δ1 , there holds

φt ≤ θtω + (1− θt)ω′ ≤ ψt. (3.40)

Proof. Clearly φt and ψt are respectively a subsolution and a supersolution of the operator T , they
belong to W 1,p

0 (S) ∩ L∞(S) and they satisfy ω′ ≤ φt ≤ ψt ≤ ω. Furthermore, by Dini convergence
theorem

lim
t↑1

φt = ω = lim
t↑1

ψt and lim
t↓δ1

φt = ω′ = lim
t↓δ1

ψt,

uniformly in S. Moreover, in spherical coordinates,

−∆pu(r, σ) =

((
u2r + r−2 |∇′u|2

) p−2
2

ur

)
r

− N − 1

r

(
u2r + r−2 |∇′u|2

) p−2
2

ur

− 1

r2
div′

((
u2r + r−2 |∇′u|2

) p−2
2 ∇′u

)
.

Hence, if u(r, σ) = r−βη(σ),

−∆pu(r, σ) = βp−2r−(p−1)(β+1)−1T (η).

Thus vφt is a subsolution −∆p in CS and vψt is a supersolution. Since the operator T is a Leray-Lions
operator, it follows by [3] that there exists η ∈W 1,p

0 (S)∩L∞(S) satisfying T (η) = 0 and φt ≤ η ≤ ψt
in S. We denote by St the set of η ∈ W 1,p

0 (S) ∩ L∞(S) satisfying T (η) = 0 and φt ≤ η ≤ ψt in
S. Then there exists a sequence {ηn} ⊂ St and ωt ∈ W 1,p

0 (S) ∩ L∞(S) such that ηn(σ) ↑ ωt(σ) for
all σ ∈ Σ, where Σ is a countable dense subset of S. By Lemma 2.1 {ηn} is bounded in Lp(S), hence
in Cγ(S) for some γ ∈ (0, 1). By the estimates of the proof of Theorem B-Step 2, {ηn} is bounded
in W 1,p

0 (S). By standard regularity theory, we can also assume that ηn → ωt in the C1
loc(S)-topology.

Hence ωt is a weak solution of (1.1), it belongs to W 1,p
0 (S) ∩ L∞(S) and satisfies φt ≤ ωt ≤ ψt.

Therefore it is the maximal element of St. The monotonity of ωt is a consequence of the monotonicity
of φt and ψt and the last statement (3.40) is a straightforward computation. �

Next we recall the deformation of p-harmonic functions already used in [10]. If τ ∈ (0, 1) and
0 < a < b, we denote by vτ,a,b the p-harmonic function defined in Ca,bS satisfying

vτ,a,b(x) =


a−β(τω + (1− τ)ω′)( x

|x| ) if x ∈ CS ∩ ∂Ba
0 if x ∈ CS ∩ ∂Bb
0 if x ∈ ∂CS ∩

(
Bb \Ba

)
.

(3.41)

Lemma 3.5. The mapping (τ, b) 7→ vτ,a,b is continuous and increasing. If vτ,a = lim
b→∞

vτ,a,b, then it is

a positive p-harmonic function in Ca,∞S vanishing on ∂S ∩Bca, and there holds

uω′(x) ≤ vφτ∗ (x) ≤ vτ,a(x) ≤ vψτ∗ (x) ≤ uω(x) ∀x ∈ Ca,∞S , (3.42)
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where τ∗ = (1− δ1)τ + δ1 and as a consequence

lim
τ↑1

sup
|x|≥a

|x|β (uω(x)− vτ,a(x)) = 0 and lim
τ↓0

sup
|x|≥a

|x|β (vτ,a(x)− uω′(x)) = 0 (3.43)

Furthermore

0 ≤ vτ ′,a − vτ,a
τ ′ − τ

≤
(

1

δ1
− 1

)
vτ ′,a ∀ 0 ≤ τ < τ ′ ≤ 1. (3.44)

Proof. The uniqueness and the (strict) monotonicity of (τ, b) 7→ vτ,a,b follow from the monotonicity of
τ 7→ τω+ (1− τ)ω′ and the strong maximum principle. The continuity is a consequence of uniqueness
and regularity theory for p-harmonic functions. It follows from (3.40) with t = τ∗ and the fact that vφτ∗
and vψτ∗ are respectively a subsolution and a supersolution of −∆p, that we have

uω′(x) ≤ vφτ∗ (x) ≤ vτ,a,b(x) ≤ vψτ∗ (x) ≤ uω(x) ∀x ∈ Ca,bS ,

which yields (3.42). Similarly, we have on ∂Ca,bS

0 ≤ vτ ′,a,b − vτ,a,b
τ ′ − τ

= uω − uω′ ≤ (δ−11 − 1)uω′ ≤ (δ−11 − 1)vτ,a,b, (3.45)

equivalently
0 ≤ vτ ′,a,b ≤

(
1 + (τ ′ − τ)(δ−11 − 1)

)
vτ,a,b. (3.46)

By the maximum principle (3.45) holds in Ca,bS . This implies (3.44). �

As a consequence of (3.44), ∂τvτ,a exists for almost all τ ∈ (0, 1) in W 1,p
0 (Ca,bS ) for all b > a and

it is a solution of
Lw = ∇.

(
(p− 2) |∇vτ,a|p−4 〈∇vτ,a.∇Z〉∇vτ,a

)
=
∑
i,j

∂

∂xj

(
bi,j(x)

∂w

∂xi

)
= 0

(3.47)

where

bi,j(x) = |∇vτ,a|p−4
(

(p− 2)
∂vτ,a
∂xj

∂vτ,a
∂xi

+ δij |∇vτ,a|2
)
.

L satisfies the following ellipticity condition

min{1, p− 1} |∇vτ,a|2 |ξ|2 ≤
∑
i,j

bi,j(x)ξiξj ≤ max{1, p− 1} |∇vτ,a|2 |ξ|2 ∀ξ ∈ RN . (3.48)

It is important to notice that Lvτ,a = (p − 1)∆pvτ,a = 0. The estimate (3.48) combined with (3.36)
and the decay of vτ,a and ∂τvτ,a implies that they satisfy Harnack inequality and boundary Harnack
inequality in CaS . There exists a constant ĉ > c17 > 1 (see 3.36) such that

1

ĉ

∂τvτ,a(xa)

vτ,a(xa)
≤ ∂τvτ,a(x)

vτ,a(x)
≤ ĉ ∂τvτ,a(xa)

vτ,a(xa)
∀x ∈ C ĉaS , (3.49)

where xa = (ĉa, σ0) for some σ0 ∈ S fixed. We set

M(t) = sup
x∈CtS

∂τvτ,a(x)

vτ,a(x)
and m(t) = inf

x∈CtS

∂τvτ,a(x)

vτ,a(x)
∀t > a (3.50)
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Lemma 3.6. For t > ĉa there holds

M(ĉt)−m(ĉt) ≤ ĉ2 − 1

ĉ2 + 1
(M(t)−m(t)) . (3.51)

Proof. There holds

∂τvτ,a −m(t)vτ,a ≥ 0 and M(t)vτ,a − ∂τvτ,a ≥ 0 ∈ CtS .

Estimate (3.49) is valid for any couple of positive solutions (h1, h2) of Lh = 0 in CaS vanishing on
∂CaS ∩Bca, in particular for (∂τvτ,a −m(t)vτ,a, vτ,a) and (M(t)vτ,a − ∂τvτ,a, vτ,a). Hence

1

ĉ

(
∂τvτ,a(xa)

vτ,a(xa)
−m(t)

)
≤ ∂τvτ,a(x)

vτ,a(x)
−m(t) ≤ ĉ

(
∂τvτ,a(xa)

vτ,a(xa)
−m(t)

)
∀x ∈ CtS . (3.52)

This implies
1

ĉ

(
∂τvτ,a(xa)

vτ,a(xa)
−m(t)

)
≤ m(ĉt)−m(t),

and
∂τvτ,a(x)

vτ,a(x)
−m(t) ≤ ĉ2(m(ĉt)−m(t)) ∀x ∈ CtS .

Finally
M(ĉt)−m(t) ≤ ĉ2(m(ĉt)−m(t)). (3.53)

Similarly
M(t)−m(ĉt) ≤ ĉ2(M(t)−M(ĉt)). (3.54)

Summing the two inequalities we get

(M(t)−m(t)) + (M(ĉt)−m(ĉt)) ≤ ĉ2 ((M(t)−m(t))− (M(ĉt)−m(ĉt))) ,

which yields (3.52). �

End of the proof. By the differentiability property of vτ,a with respect to τ , there exists two countable
dense sets {(rν} ⊂ [a,∞) and {σµ} ⊂ [a,∞) such that ∂τvτ,a(rν , σµ) exists for almost all τ . We put
xν,µ = (rν , σµ), hence

ln

(
ω(σµ)

ω′(σµ)

)
− ln

(
ω(σµ′)

ω′(σµ′)

)
= ln

(
v1,a(xν,µ)

v0,a(xν,µ)

)
− ln

(
v1,a(xν,µ′)

v0,a(xν,µ′)

)
=

∫ 1

0

(
∂τvτ,a(xν,µ)

vτ,a(xν,µ)
− ∂τvτ,a(xν,µ′)

vτ,a(xν,µ′)

)
dτ.

(3.55)

Using the continuity of ω
ω′ and the density of {σm} we derive∣∣∣∣ln( ω(σ)

ω′(σ)

)
− ln

(
ω(σ′)

ω′(σ′)

)∣∣∣∣ . ≤M(rν)−m(rν) ∀(σ, σ′) ∈ S × S. (3.56)

We can assume that rν ≥ ĉνna for some sequence {νn} tending to infinity with n, hence∣∣∣∣ln( ω(σ)

ω′(σ)

)
− ln

(
ω(σ′)

ω′(σ′)

)∣∣∣∣ ≤ θn (M(ĉν1)−m(ĉν1)) ∀(σ, σ′) ∈ S × S ∀n ∈ N∗, (3.57)

where θ = ĉ2−1
ĉ2+1 < 1. Letting n→∞ implies the claim. �
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