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The spherical p-harmonic eigenvalue problem in non-smooth domains

with β 0 = N -p p-1 and were div and ∇ denote the divergence operator and the covariant gradient on S N -1 endowed with the metric induced by its isometric inbedding into R N . Separable solutions play a key role for describing the boundary behaviour and the singularities of solutions of a large variety of quasilinear equations. When N = 2 the equation is completely integrable and has been solved by Kroll in the regular case β < 0 and Kichenassamy and Véron in the the singular case β > 0. In higher dimension, Tolksdorff [START_REF] Tolksdorf | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF] proved the following: Theorem A If S is a smooth spherical domain, there exist two couples (β S , ω S ) and (β S , ω S ) where β S > 0 and β S < 0, ω S and ω S are positive C 2 (S)-functions vanishing on ∂S which solve (1.1) with (β, ω) = (β S , ω S ) or (β, ω) = (β S , ω S ). Furthermore β S and β S are unique, and ω S and ω S are unique up to an homothety.

A more general and transparent proof has been obtained by Porretta and Véron [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF], but always in the case of a smooth spherical domain. The aim of this article is to extend Theorem A to a general spherical domain. If we consider an increasing sequence of smooth domains {S k } such that S k ⊂ S k ⊂ S k+1 and ∪ k S k = S we prove the following: Theorem B Assume that S c is not polar. Then the sequence of the β S k > 0 from Theorem A is decreasing and converges to β S > 0. There exists ω S ∈ W 1,p 0 (S) ∩ L ∞ (S) weak solution of (1.1) with β = β S . Furthermore β S > 0 is the largest exponent β such that (1.1) admits a positive solution ω S ∈ W 1,p 0 (S). Under a mild assumption on S it is possible to approximate it by a decreasing sequence of smooth domains S k such that S k ⊂ S k ⊂ S k-1 and ∩ k S k = S Theorem C Assume that S = o S. Then the sequence β S k > 0 is increasing and converges to βS > 0 and there exists ωS ∈ W 1,p 0 (S) ∩ L ∞ (S) weak solution of (1.1) with β = βS . Furthermore βS is the smallest exponent β such that (1.1) admits a positive solution ω S ∈ W 1,p 0 (S). We prove the uniqueness of the exponent β, under a Lipschitz assumption on S. Theorem D Assume that S is a Lipschitz domain, then β S = βS and if ω and ω are two positive solutions of (1.1) in W 1,p 0 (S), there exists a constant c > 0 such that c -1 ω ≤ ω ≤ cω . The proof of Theorem C is based upon a sharp form of boundary Harnack inequality proved in [START_REF] Lewis | Boundary behavior and the Martin boundary problem for p-harmonic functions in Lipschitz domains[END_REF],

ln ω(σ1) ω (σ1) -ln ω(σ2) ω (σ2) ≤ c 1 |σ 1 -σ 2 | α ∀ σ 1 , σ 2 ∈ S, (1.2) 
for some c 1 = c 1 (N, p, S) > 0 and α ∈ (0, 1). Actually we have a stronger result, much more delicate to obtain.

Theorem E Let S be a Lipschitz subdomain of S N -1 . Then two positive solutions of (1.1) in W 1,p 0 (S) are proportional.

The proof is based upon a non trivial adaptation of a series of deep results of Lewis and Nyström [START_REF] Lewis | Boundary behavior and the Martin boundary problem for p-harmonic functions in Lipschitz domains[END_REF] concerning the p-Martin boundary of domains.
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Existence

Estimates

Through this article we assume that S c is not polar, or equivalently that it has positive c S N -1

1,p -capacity. Lemma 2.1. Assume p > 1. Then any solution ω ∈ W 1,p 0 (S) of (1.1) satisfies ω C γ (S) ≤ c 1 ω L p (S) , (2.1 
)

if p > N -1 where γ = 1 -N -1 p if p > N -1 and ω L ∞ (S) ≤ c 1 ω L p (S) , (2.2 
)

if 1 < p ≤ N -1, where c 1 > 0 depends on p, N , β.
Proof. Multiplying the equation by ω and using Hölder's inequality, we derive

(i) S β 2 ω 2 + |∇ ω| 2 p 2 dS ≤ (β(pβ -(p -1)β 0 )) p 2 S |ω| p dS if p ≥ 2, (ii) S β 2 ω 2 + |∇ ω| 2 p 2 dS ≤ β p-1 (pβ -(p -1)β 0 ) S |ω| p dS if 1 < p < 2.
(2.3)

Notice that these inequalities hold for all p > 1. If p > N -1 (2.1) follows by Morrey'inequality. Here after we assume

1 < p ≤ N -1. Let α ≥ 1 and k > 0. Then ζ = min{|ω| , k} α-1 ω is an admissible test function, hence 1-If p ≥ 2, S β 2 ω 2 + |∇ ω| 2 p-2 2 ∇ ω.∇ ζ dS = (p -1)β(β -β 0 ) S β 2 ω 2 + |∇ ω| 2 p-2 2 ωζdS ≤ c 2 S |∇ ω| p-2 ω 2 min{|ω| , k} α-1 dS + c 2 β p S |ω| p min{|ω| , k} α-1 dS ≤ c 2 S |ω| p min{|ω| , k} α-1 dS p-2 p S |∇ ω| p min{|ω| , k} α-1 dS 2 p + c 2 β p S |ω| p min{|ω| , k} α-1 dS, (2.4) 
where

c 2 = c 2 (N, p, β) > 0. Since S β 2 ω 2 + |∇ ω| 2 p-2 2 ∇ ω.∇ ζ dS ≥ c 3 (p) S |∇ ω| p min{|ω| , k} α-1 dS, it implies that there exists c 4 = c 4 (N, p, β) such that S |∇ ω| p min{|ω| , k} α-1 dS ≤ c 4 S |ω| p min{|ω| , k} α-1 dS, (2.5) 
which yields

S |∇ j(ω)| p dS ≤ c 4 S |j(ω)| p dS, (2.6) 
where j(ω) = min{|ω| , k}

α-1 p ω. 2-If 1 < p < 2, then S β 2 ω 2 + |∇ ω| 2 p-2 2 ∇ ω.∇ ζ dS = S β 2 ω 2 + |∇ ω| 2 p-2 2
|∇ ω| 2 min{|ω| , k} α-1 dS

+ (α -1) S∩{|ω|<k} β 2 ω 2 + |∇ ω| 2 p-2 2 |∇ ω| 2 |ω| α-1 dS. (2.7) Since S β 2 ω 2 + |∇ ω| 2 p-2 2 |∇ ω| 2 min{|ω| , k} α-1 dS = S β 2 ω 2 + |∇ ω| 2 p 2 min{|ω| , k} α-1 dS -β 2 S β 2 ω 2 + |∇ ω| 2 p-2 2 min{|ω| , k} α-1 ω 2 dS ≥ S |∇ ω| p min{|ω| , k} α-1 dS -β 2 S β 2 ω 2 + |∇ ω| 2 p-2 2 
min{|ω| , k} α-1 ω 2 dS, we derive (2.9)

S |∇ ω| p min{|ω| , k} α-1 dS ≤ β p-1 (pβ -(p -1)β 0 ) S |ω| p min{|ω| , k} α-1 dS, (2.8 
If p < N -1 we derive from Sobolev inequality and putting q = α -1 + p and s 

= N -1 N -1-p > 1 S |ω| sq dS 1 s ≤ c 5 S |ω| q dS, (2.10 
1 t ≤ c 5 S |ω| q dS, (2.11) 
with t = m(N -1) p(N -1-m) = m N -1-m .
The proof follows again by Moser's iterative scheme. Proposition 2.2. Let S 1 and S 2 be two subdomains of S N -1 such that S 1 ⊂ S 1 ⊂ S 2 and S 2 not polar. Let β j > 0, j=1,2, such that there exist positive solutions ω j ∈ W 1,p 0 (S j ) solutions of

-div β 2 j ω 2 j + |∇ ω j | 2 p-2 2 ∇ ω j = (p -1)β j (β j -β 0 ) β 2 j ω 2 j + |∇ ω j | 2 p-2 2 ω j in S j ω j = 0 in ∂S j .
(2.12)

Then β 1 ≥ β 2 .
Proof. Set u j (r, σ) = r -βj ω j (σ), C Sj = (0, ∞) × S J and assume β 1 < β 2 . By Harnack inequality ω 2 ≥ c > 0 on S 1 , thus u 2 (r, σ) ≥ cr -β2 a.e. in C S1 .

For > 0 there exist r > 0 such that

u 2 (x) ≥ u 1 (x) ∀ x ∈ C S1 ∩ B r .
Let δ > 0, there exists R δ > 0 such that

u 1 (x) ≤ δ ∀ x ∈ C S1 ∩ B c R δ . Hence ζ = (u 1 -u 2 -δ) + ∈ W 1,p 0 (Q r ,R δ S1 ), where Q r ,R δ S1 = {x ∈ C S1 : r < |x| < R δ }. This implies 0 = Q r ,R δ S 1 |∇u 1 | p-2 ∇u 1 -|∇( u 1 )| p-2 ∇( u 1 ).∇ζ dx = Q r ,R δ S 1 ∩{u1-u2≥δ} |∇u 1 | p-2 ∇u 1 -|∇( u 1 )| p-2 ∇( u 1 ).∇(u 1 -u 2 ) dx. Therefore ∇(u 1 -u 2 -δ) + = 0 a.e. in Q r ,Rδ S1 , which leads to u 1 -u 2 ≤ δ in the same set. Letting δ → 0 yields R δ → ∞, thus we obtain u 1 ≤ u 2 in C S1 ∩ B c r hence u 1 ≤ 0 in C S1 , contradiction.

Approximations from inside

Proof of Theorem B. Let {S k } be an increasing sequence of smooth domains such that S k ⊂ S k ⊂ S k+1 . We denote by {(β S k , ω k )} the corresponding sequence of solutions of (1.1) with β = β S k and ω = ω k . The sequence {β S k } is uniquely determined by [START_REF] Tolksdorf | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF], it admits a limit β := β S , and the ω k are the unique positive solutions such that

S k |ω k | dS = 1. If p ≥ 2, we have S k |∇ ω k | p dS ≤ S k β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 |∇ ω k | 2 dS = (p -1)β S k (β S k -β 0 ) S k β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ω 2 k dS ≤ 2 (p-4) + 2 (p -1)β S k (β S k -β 0 ) S k β p-2 S k ω p k + |∇ ω k | p-2 ω 2 k dS ≤ c 7 (N, p, β S k ) S k ω p k dS + 1 2 S k |∇ ω k | p dS. Since β S k ≤ β 1 , we derive S k |∇ ω k | p dS ≤ c 8 , (2.13) 
from the normalization assumption with c 8 = 2c 7 (N, p, β 1 ). If 1 < p < 2, we have

S k |∇ ω k | p dS ≤ S k β 2 S k ω 2 k + |∇ ω k | 2 p 2 dS ≤ β S k (pβ S k + (p -1)β 0 ) S k β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ω 2 k dS ≤ β p-1 k (pβ S k + (p -1)β 0 ) S k ω p k dS,
and we obtain (2.13) with c 8 = β p-1

1 (pβ 1 + (p -1)β 0 ). Next we extend ω k by 0 in S c k .
Then there exists ω ∈ W 1,p 0 (S) such that ω k ω weakly in W 1,p 0 (S), up to subsequence that we still denote {ω k }, and

ω k → ω in L p (S). Step 1: We claim that ∇ ω k converges to ∇ ω locally in L p (S). Let a ∈ S and r > 0 such that B 4r (a) ⊂ S. Then for k ≥ k 0 , B 2r (a) ⊂ S k . Let ζ ∈ C ∞ 0 (B 2r (a)) such that 0 ≤ ζ ≤ 1, ζ = 1 in B r (a). For test function we choose η k = ζ(ω -ω k ), then S k β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ∇ ω k .∇ η k dS = (p-1)β S k (β S k -β 0 ) S k β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ω k η k dS.
By the above inequality, we have

B2r(a) β 2 ω 2 + |∇ ω| 2 p-2 2 ∇ ω -β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ∇ ω k .∇ η k dS = B2r(a) β 2 ω 2 + |∇ ω| 2 p-2 2 ∇ ω.∇ η k dS -(p -1)β S k (β S k -β 0 ) S k β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ω k η k dS.
Using the weak convergence of the gradient, we have lim k→∞ B2r(a)

β 2 ω 2 + |∇ ω| 2 p-2 2 ∇ ω.∇ η k dS = 0.
Since ω k is uniformly bounded in W 1,p 0 (S) and ω k → ω in L p (S), we have

lim k→∞ B2r(a) β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ω k η k dS = 0, and 
lim k→∞ B2r(a) (ω -ω k ) β 2 ω 2 + |∇ ω| 2 p-2 2 ∇ ω -β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ∇ ω k .∇ ζ dS = 0.
Combining the above relations we infer

lim k→∞ B2r(a) ζ β 2 ω 2 + |∇ ω| 2 p-2 2 ∇ ω -β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ∇ ω k .∇ (ω -ω k ) dS = 0.
(2.14) Next we write

B2r(a) ζ β 2 ω 2 + |∇ ω| 2 p-2 2 ∇ ω -β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ∇ ω k .∇ (ω -ω k ) dS = 1 2 B2r(a) ζ β 2 ω 2 + |∇ ω| 2 p-2 2 + β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 |∇ (ω -ω k )| 2 dS + 1 2 B2r(a) ζ β 2 ω 2 + |∇ ω| 2 p-2 2 -β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 × |∇ ω| 2 + β 2 ω 2 -β 2 S k ω 2 k -|∇ ω k | 2 dS - 1 2 B2r(a) ζ β 2 ω 2 + |∇ ω| 2 p-2 2 -β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 β 2 ω 2 -β 2 S k ω 2 k dS. (2.15)
If p ≥ 2, we have from (2.4), 

B2r(a) ζ β 2 ω 2 + |∇ ω| 2 p-2 2 ∇ ω -β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ∇ ω k .∇ (ω -ω k ) dS ≥ 1 2 B2r(a) ζ |∇ ω| p-2 + |∇ ω k | p-2 |∇ (ω -ω k )| 2 dS - 1 2 B2r(a) ζ β 2 ω 2 + |∇ ω| 2 p-2 2 -β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 β 2 ω 2 -β 2 S k ω 2 k dS ≥ min{2 -1 , 2 2-p } B2r(a) ζ |∇ (ω -ω k )| p dS - 1 2 B2r(a) ζ β 2 ω 2 + |∇ ω| 2 p-2 2 -β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 β 2 ω 2 -β 2 S k ω 2 k dS. (2.16) Since ω k → ω in L p (S), β S k → β and ω k , ω are uniformly bounded in W 1,p 0 (S) , we derive B2r(a) ζ β 2 ω 2 + |∇ ω| 2 p-2 2 -β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 β 2 ω 2 -β 2 S k ω 2 k dS → 0 as k → ∞.
|∇ (ω -ω k )| p dS = 0. (2.17) If 1 < p < 2, then B2r(a) ζ β 2 ω 2 + |∇ ω| 2 p-2 2 ∇ ω -β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ∇ ω k .∇ (ω -ω k ) dS = B2r(a) ζ β 2 S k ω 2 k + |∇ ω| 2 p-2 2 ∇ ω -β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ∇ ω k .∇ (ω -ω k ) dS + B2r(a) ζ β 2 ω 2 + |∇ ω| 2 p-2 2 -β 2 S k ω 2 k + |∇ ω| 2 p-2 2 ∇ ω.∇ (ω -ω k ) dS.
(2.18) Up to extracting a subsequence, we have that ω k → ω a.e. in S and that there exists

Φ ∈ L 1 (S) such that |ω k | p + |ω| p ≤ Φ a.e. in S and ∀ k ≥ 1. (2.19) Since β 2 S k ω 2 k + |∇ ω| 2 p-2 2 |∇ω| ≤ β 2 S k ω 2 k + |∇ ω| 2 p-1 2 ≤ β p-1 S k ω p-1 k + |∇ ω| p-1 , and 
β 2 ω 2 + |∇ ω| 2 p-2 2 |∇ω| ≤ β p-1 ω p-1 + |∇ ω| p-1 ,
we derive that

β 2 ω 2 + |∇ ω| 2 p-2 2 -β 2 S k ω 2 k + |∇ ω| 2 p-2 2 |∇ ω| ≤ 2 β p-1 Φ p-1 + |∇ ω| p-1 ,
which implies that

ζ β 2 ω 2 + |∇ ω| 2 p-2 2 -β 2 S k ω 2 k + |∇ ω| 2 p-2 2 ∇ ω → 0 in L p (S)
where p is the conjugate of p, and finally

B2r(a) ζ β 2 ω 2 + |∇ ω| 2 p-2 2 -β 2 S k ω 2 k + |∇ ω| 2 p-2 2 ∇ ω.∇ (ω -ω k ) dS → 0 as k → ∞.
(2.20) For the last term on the right-hand side of (2.18), we have, for

γ ∈ R + and A, B ∈ R N , γ + |B| 2 p-2 2 B -γ + |A| 2 p-2 2 A = 1 0 d dt γ + |tB + (1 -t)A| 2 p-2 2 (tB + (1 -t)A) dt = 1 0 γ + |tB + (1 -t)A| 2 p-2 2 
dt (B -A)

+ (p -2) 1 0 γ + |tB + (1 -t)A| 2 p-4 2 tB + (1 -t)A . B -A (tB + (1 -t)A)dt.
This implies

γ + |B| 2 p-2 2 B -γ + |A| 2 p-2 2 A . B -A = 1 0 γ + |tB + (1 -t)A| 2 p-2 2 dt |B -A| 2 + (p -2) 1 0 γ + |tB + (1 -t)A| 2 p-4 2 tB + (1 -t)A . B -A 2 dt.
We observe that

1 0 γ + |tB + (1 -t)A| 2 p-4 2 tB + (1 -t)A . B -A 2 dt ≤ |B -A| 2 1 0 γ + |tB + (1 -t)A| 2 p-2 2 
dt, and since 1 < p < 2, we finally obtain

γ + |B| 2 p-2 2 B -γ + |A| 2 p-2 2 A . B -A ≥ (p -1) 1 0 γ + |tB + (1 -t)A| 2 p-2 2 dt |B -A| 2 ≥ (p -1) |B -A| 2 γ + 1 + |B| 2 + |A| 2 p-2 2 
.

(2.21)

We plug this estimate into (2.18)

with γ = β 2 k ω 2 k , A = ∇ ω and B = ∇ ω k , then B2r(a) ζ β 2 S k ω 2 k + |∇ ω| 2 p-2 2 ∇ ω -β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ∇ ω k .∇ (ω -ω k ) dS ≥ B2r(a) ζ |∇ (ω -ω k )| 2 β 2 k ω 2 k + 1 + |∇ ω k | 2 + |∇ ω| 2 p-2 2 
dS.

(2.22)

Set φ(.) = β 2 k ω 2 k + 1 + |∇ ω k | 2 + |∇ ω| 2 , then Br(a) |∇ ω -∇ ω k | p dS = Br(a) |∇ ω -∇ ω k | p φ p(p-2) 4 φ -p(p-2) 4 dS ≤ Br(a) |∇ ω -∇ ω k | 2 φ p-2 2 dS p 2
Br(a)

φ p 2 dS 2-p 2 .
(2.23)

Jointly with (2.14) and (2.22) we conclude that (2.17).

Step 1 follows by a standard covering argument.

Step 2: We claim that ω k converges to ω in W 1,p 0 (S). Up to a subsequence that we denote again by {k}, we can assume that ω k → ω and ∇ ω k → ∇ ω a.e. in S. Let ζ ∈ C ∞ 0 (S), then there exists k ∈ N such that the support

K of ζ is a compact subset of S k for all k ≥ k . If 1 < p < 2, β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 |∇ ω k | ≤ |∇ ω k | p-1 ,
which bounded in L p (K), then uniformly integrable in K and by Vitali's convergence theorem

β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ∇ ω k → β 2 ω 2 + |∇ ω| 2 p-2 2 ∇ ω, in L 1 loc (S). Similarly β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ω k → β 2 ω 2 + |∇ ω| 2 p-2 2 ω, in L 1 loc (S). If p ≥ 2 β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 |∇ ω k | ≤ c |ω k | p-1 + |∇ ω k | p-1 ,
and we conclude again by Vitali's convergence theorem that the previous convergences hold. Since

S k β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ∇ ω k .∇ ζ dS = (p-1)β S k (β S k -β 0 ) S k β 2 S k ω 2 k + |∇ ω k | 2 p-2 2 ω k ζdS
we conclude that ω is a weak solution of (1.1) with β = β S .

Approximations from outside

Proof of Theorem C. Since S c has a non-empty interior, the existence of a sequence {ω k } corresponding to solutions of (1.1) in S k with β = β S k is the consequence of [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF]. The fact that {β S k } is increasing follows from Proposition 2.2. We denote by β := βS its limit, and it is smaller or equal to β S . Estimates (2.4) are valid with S k , ω k and β S k instead of S, ω and β. If we extend ω k by 0 in S c k these estimates are valid with S N -1 instead of S k . Then up to a subsequence the exists ω ∈ W 1,p (S N -1 ) and a subsequence stil denoted by {k} such that ω k ω weakly in W 1,p (S N -1 ), strongly in L p (S N -1 ) and a.e. in S N -1 . Furthermore, as in the proof of Theorem A, for any compact set K ⊂ S, ∇ ω k → ∇ ω in L p (K). This is sufficient to assert that ω is a weak solution of

-div β2 ω 2 + |∇ ω | 2 p-2 2 ∇ ω = (p -1) β( β -β 0 ) β2 ω 2 + |∇ ω | 2 p-2 2 ω in S.
Moreover ω S k belongs to W 3 Uniqueness

Uniqueness of exponent β

Proof of Theorem D. If S is Lipschitz, C S is also Lipschitz. We fix z ∈ S ≈ S N -1 ∩ ∂C S and we apply [START_REF] Lewis | Boundary behavior and the Martin boundary problem for p-harmonic functions in Lipschitz domains[END_REF]Th 2] in G z = C S ∩ B 1 2 (z) to two separable p-harmonic functions u(r, σ) = r -β ω(σ) and u (r, σ) = r -β ω (σ). There exist γ ∈ (0, 1 2 ), c 10 > 0 and α ∈ (0, 1) such that

ln u(y 1 ) u (y 1 ) -ln u(y 2 ) u (y 2 ) ≤ c 10 |y 1 -y 2 | α ∀ y 1 , y 2 ∈ C S ∩ B γ (z). (3.24) Assume |y 1 | = |y 2 | = 1, then ln ω(y 1 ) ω (y 1 ) -ln ω(y 2 ) ω (y 2 ) ≤ c 10 |y 1 -y 2 | α ∀ y 1 , y 2 ∈ S ∩ B γ (z). (3.25)
We denote by (x, y) the geodesic distance on S N -1 and by (x, K) the geodesic distance from a point x ∈ S N -1 to a subset K. Since the set S γ = {σ ∈ S : (σ, ∂S) ≤ γ 2 } can be covered by a finite number of balls with center on ∂S, we infer that Assume now that there exist two exponents β > β > 0 such that r -β ω(.) and r -β ω (.) are pharmonic and positive in the cone C S and vanishes on ∂C S . Put θ = β β , η = ω θ and

ln ω(y 1 ) ω (y 1 ) -ln ω(y 2 ) ω (y 2 ) ≤ c 11 ∀ y 1 , y 2 ∈ S γ . ( 3 
T (η) = -div β 2 η 2 + |∇ η| 2 p-2 2 ∇ η -(p -1)β(β -β 0 ) β 2 η 2 + |∇ η| 2 p-2 2 η, then 
T (η) = -θ p-2 β 2 ω 2 + |∇ ω | 2 p-2 2 (β -β )ω 2 + (p -1)θ(θ -1) |∇ ω | 2 ≤ 0.
Up to multiplying ω by λ, we can assume that η ≤ ω and that the graphs of η and ω are tangent in S. Since ω ≤ cω, η = o(ω) near ∂S. Hence there exists σ 0 ∈ S such that ω(σ 0 ) = η(σ 0 ) and the coincidence set of η and ω is a compact subset of S. We put w = ω -η, since ∇ω(σ 0 ) = ∇η(σ 0 ) we proceed as in [14, Th 4.1] (see also [START_REF] Friedman | Singular Solutions of Some Quasilinear Elliptic Equations[END_REF] in the flat case) and derive that w satisfies, in a system of local coordinates (σ 1 , ..., σ N -1 ) near σ 0 ,

Lw := - ,j ∂ ∂σ A j, ∂w ∂σ j + j C j ∂w ∂σ + Cw ≥ 0,
where the matrix (A j, ) is smooth, symmetric and positive near σ 0 and the C j and C are bounded. Hence w is locally zero. By a standard argument of connectedness, this implies that the zero set of w must be empty, contradiction. Hence β = β .

Uniqueness of eigenfunction

The proof is based upon a delicate adaptation of the characterisation of the p-Martin boundary obtained in [START_REF] Lewis | Boundary behavior and the Martin boundary problem for p-harmonic functions in Lipschitz domains[END_REF], but we first give a proof in the convex case.

The convex case

Theorem 3.1. Assume S is a convex spherical subdomain. Then two positive solutions of (1.1) are proportional.

Proof. We recall that a domain S is (geodesically) convex if a minimal geodesic joining two points of 

S is contained in S. If S ⊂ S N -1 is convex, the cone C S is convex too. Since S is convex,
-∆ p u = 0 in C ,1 S u = -β ω in C S ∩ ∂B u = 0 in (C S ∩ ∂B 1 ) ∪ ∂C S ∩ (B 1 \ B ) . (3.30) 
Then (u ω -1) + ≤ u ≤ u ω in C ,1 S . (3.31) 
Furthermore → u is increasing. When ↓ 0, u ↑ u 0 where u 0 is positive and p-harmonic in C 1,0 S , vanishes on ∂C 1,0 S \ {0} and satisfies (3.30) with = 0. In particular

lim r→0 r β u 0 (r, σ) = ω(σ) locally uniformly in S. (3.32) 
We construct the same approximation u in C ,1 S with ω instead of ω. Mutadis mutandis (3.31) holds and u ↑ u 0 which is positive and p-harmonic in C 1 S , satisfies

(u ω -1) + ≤ u 0 ≤ u ω in C 1,0 S ,
and thus lim 

Proof of Theorem E

In what follows we borrow most of our construction from [START_REF] Lewis | Boundary behavior and the Martin boundary problem for p-harmonic functions in Lipschitz domains[END_REF] that we adapt to the case of an infinite cone a make explicit for the sake of completeness. The next nondegeneracy property of positive p-harmonic functions is proved in [START_REF] Lewis | Boundary behavior and the Martin boundary problem for p-harmonic functions in Lipschitz domains[END_REF]Lemma 4.28]. If Ω is replaced by a cone C S , the nondegeneracy property still holds uniformly on ∂C S \ {0}. Let ω, ω ∈ W 1,p 0 (S) ∩ C(S) be positive solutions (1.1). Since ω ω is bounded from above and from below in S by positive constants, we can assume, as in the proof of Theorem D, that ω ≥ ω in S and that the graphs of ω and ω are tangent. hence, if ω = ω , then ω > ω in S and there exists a sequence

{σ n } converging to σ 0 ∈ ∂S as n → ∞ such that lim n→∞ ω (σ n ) ω(σ n ) = 1.
We define δ 1 = sup{δ > 0 : δω < ω }. For t ∈ (δ 1 , 1), we set

φ t = sup {ω , tω} and ψ t = inf t δ 1 ω , ω (3.37) 
We also set

v φt (r, σ) = r -β φ t (σ) and v ψt (r, σ) = r -β ψ t (σ) ∀ (r, σ) ∈ (0, ∞) × S. (3.38) 
where τ * = (1 -δ 1 )τ + δ 1 and as a consequence 

lim τ ↑1 sup |x|≥a |x| β (u ω (x) -v τ,a (x)) = 0 and lim τ ↓0 sup |x|≥a |x| β (v τ,a (x) -u ω (x)) = 0 (3.43) Furthermore 0 ≤ v τ ,a -v τ,a τ -τ ≤ 1 δ 1 -1 v τ ,a ∀ 0 ≤ τ < τ ≤ 1. ( 3 
u ω (x) ≤ v φ τ * (x) ≤ v τ,a,b (x) ≤ v ψ τ * (x) ≤ u ω (x) ∀ x ∈ C a,b S , which yields (3.42). Similarly, we have on ∂C a,b S 0 ≤ v τ ,a,b -v τ,a,b τ -τ = u ω -u ω ≤ (δ -1 1 -1)u ω ≤ (δ -1 1 -1)v τ,a,b , (3.45 
) equivalently 0 ≤ v τ ,a,b ≤ 1 + (τ -τ )(δ -1 1 -1) v τ,a,b . (3 
i,j (x) = |∇v τ,a | p-4 (p -2) ∂v τ,a ∂x j ∂v τ,a ∂x i + δ ij |∇v τ,a | 2 .
L satisfies the following ellipticity condition End of the proof. By the differentiability property of v τ,a with respect to τ , there exists two countable dense sets {(r ν } ⊂ [a, ∞) and {σ µ } ⊂ [a, ∞) such that ∂ τ v τ,a (r ν , σ µ ) exists for almost all τ . We put x ν,µ = (r ν , σ µ ), hence 

min{1, p -1} |∇v τ,a | 2 |ξ| 2 ≤ i,j b i,j (x)ξ i ξ j ≤ max{1, p -1} |∇v τ,a | 2 |ξ| 2 ∀ξ ∈ R N . ( 3 
ln ω(σ µ ) ω (σ µ ) -ln ω(σ µ ) ω (σ µ ) = ln v 1,a (x ν,µ ) v 0,a (x ν,µ ) -ln v 1,a (x ν,µ ) v 0,a (x ν,µ ) = 1 0 ∂ τ v τ,a (x ν,µ ) v τ,a (x ν,µ ) - ∂ τ v τ,a (x ν,µ ) v τ,

) and c 5 >and c 6 =

 56 0 depends on N , p and β. Iterating this estimate by Moser's method we derive (2.10). If p = N -1 we have for 1 ≤ m < p -1 and m * = m(N -1) c 6 (N, p), hence S |ω| tq dS

  1,p 0 (S k ) for all k. Since ω k = 0 in S c k and converges a.e. to ω, this last function vanishes a.e. in ∪ k S c k = (∩ k S k ) c = S c . Therefore ω vanishes a.e. in S c and since it is quasi continuous, it vanishes, (1 -p)quasi everywhere in S c . From Netrusov's theorem (see [1, Th 10.1.1]-(iii)) there exists a sequence {η n } ⊂ C ∞ 0 (S) which converges to ω in W 1,p (S), thus ω ∈ W 1,p 0 (S).

  it is Lipschitz and by Theorem D, β S = βS := β. Let ω and ω be two positive solutions of (1.1) satisfying sup S ω = sup S ω = 1. We denote by u ω (x) = |x| -β ω(.) and u ω (x) = |x| -β ω (.) the corresponding separable p-harmonic functions defined in C S . If 0 < a < b, we set C a,b S = C S ∩ (B b \ B a ). Then for 0 < < 1 we denote by u the unique function which satisfies

r→0 r β u 0

 0 (r, σ) = ω (σ) locally uniformly in S. (3.33) However, by [10, Th 4] u 0 and u 0 are proportional. Combined with (3.32), (3.33) it implies the claim.

Proposition 3 . 2 . 1 14u

 321 Let Ω ⊂ R N be a bounded Lipschitz domain and 1 < p < ∞. Then there exist constants ρ > 0, c 14 , c 15 > 0 depending respectively on Ω (for ρ), and p, N and the Lipschitz norm M of ∂Ω (for c 14 and c 15 ) with the property that for any w ∈ ∂Ω and any positive p-harmonic function u in Ω, continuous in Ω ∩ B 2ρ (w) and vanishing on ∂Ω ∩ B ρ (w), one can find ξ ∈ S N -1 , independent of u, such thatc -(y) dist (y, ∂Ω) ≤ ∇u(y), ξ ≤ |∇u(y)| ≤ c 14 u(y) dist (y, ∂Ω) , (3.34) for all y ∈ C S ∩ B ρ|w| c 15 (w).

Corollary 3 . 3 . 1 14u 15 ( 1 16u

 331151 Let 1 < p < ∞, S ⊂ S N -1 is a Lipschitz domain and C S the cone generated by S. (i) Then there exist constants ρ < 1 2 , c 14 , c 15 > 0 depending respectively on S (for ρ), and p, N and the Lipschitz norm M of ∂S and diam(S) (for c 14 and c 15 ) with the property that for any w ∈ ∂C S and any positive p-harmonic function u in C S , continuous in C S ∩ B 2ρ|w| (w) and vanishing on ∂C S ∩ B ρ|w| (w) continuous, one can find ξ ∈ S N -1 , independent of u, such that c -(y) dist (y, ∂C S ) ≤ ∇u(y), ξ ≤ |∇u(y)| ≤ c 14 u(y) dist (y, ∂C S ) , (3.35) for all y ∈ B ρ c w) ∩ C S . (ii) Then there exist positive constants κ and c 16 , c 17 depending on S (for κ), and p, N and the Lipschitz norm M of ∂S and diam(S) (for c 16 , c 17 such that for any a > 0 and any positive p-harmonic function u in C a S vanishing on ∂C S ∩ B c a , there holds c -(y) dist (y, ∂C S ) ≤ |∇u(y)| ≤ c 16 u(y) dist (y, ∂C S ) ∀y ∈ C c17a S s.t. dist (y, ∂C S ) ≤ κ |y| . (3.36)

  .44)Proof. The uniqueness and the (strict) monotonicity of (τ, b) → v τ,a,b follow from the monotonicity of τ → τ ω + (1 -τ )ω and the strong maximum principle. The continuity is a consequence of uniqueness and regularity theory for p-harmonic functions. It follows from (3.40) with t = τ * and the fact that v φ τ * and v ψ τ * are respectively a subsolution and a supersolution of -∆ p , that we have

=

  .46) By the maximum principle (3.45) holds in C a,b S . This implies (3.44). As a consequence of (3.44), ∂ τ v τ,a exists for almost all τ ∈ (0, 1) in W 1,p 0 (C a,b S ) for all b > a and it is a solution of Lw = ∇. (p -2) |∇v τ,a | p-4 ∇v τ,a .∇Z ∇v τ,a

Finally

  M (ĉt) -m(t) ≤ ĉ2 (m(ĉt) -m(t)). (3.53) Similarly M (t) -m(ĉt) ≤ ĉ2 (M (t) -M (ĉt)). (3.54) Summing the two inequalities we get (M (t) -m(t)) + (M (ĉt) -m(ĉt)) ≤ ĉ2 ((M (t) -m(t)) -(M (ĉt) -m(ĉt))) , which yields (3.52).

1 ĉ2 +1 < 1 .

 11 a (x ν,µ ) dτ.(3.55) Using the continuity of ω ω and the density of {σ m } we deriveln ω(σ) ω (σ) -ln ω(σ ) ω (σ ) . ≤ M (r ν ) -m(r ν ) ∀(σ, σ ) ∈ S × S. (3.56)We can assume that r ν ≥ ĉνn a for some sequence {ν n } tending to infinity with n, henceln ω(σ) ω (σ) -ln ω(σ ) ω (σ ) ≤ θ n (M (ĉ ν1 ) -m(ĉ ν1 )) ∀(σ, σ ) ∈ S × S ∀n ∈ N * ,(3.57)where θ = ĉ2 -Letting n → ∞ implies the claim.

  .48)It is important to notice that Lv τ,a = (p -1)∆ p v τ,a = 0. The estimate (3.48) combined with (3.36) and the decay of v τ,a and ∂ τ v τ,a implies that they satisfy Harnack inequality and boundary Harnack inequality in C a S . There exists a constant ĉ > c 17 > 1 (see 3.36) such that Lemma 3.6. For t > ĉa there holds Proof. There holds∂ τ v τ,a -m(t)v τ,a ≥ 0 and M (t)v τ,a -∂ τ v τ,a ≥ 0 ∈ C t S .Estimate (3.49) is valid for any couple of positive solutions(h 1 , h 2 ) of Lh = 0 in C a S vanishing on ∂C a S ∩ B c a , in particular for (∂ τ v τ,a -m(t)v τ,a , v τ,a ) and (M (t)v τ,a -∂ τ v τ,a , v τ,a ). Hence 1 ĉ ∂ τ v τ,a (x a ) v τ,a (x a ) -m(t) ≤ ∂ τ v τ,a (x) v τ,a (x) -m(t) ≤ ĉ ∂ τ v τ,a (x a ) v τ,a (x a )

	1 ĉ ∂ τ v τ,a (x a ) v τ,a (x a ) ĉ where x M (ĉt) -m(ĉt) ≤ ≤ ∂ τ v τ,a (x) v τ,a (x) This implies 1 ∂	≤ ĉ2 -1 ĉ ∂ τ v τ,a (x a ) v τ,a (x a ) ĉ2 + 1 (M (t) -m(t)) . ∀x ∈ C ĉa S , -m(t)	∀x ∈ C t S .	(3.49) (3.51) (3.52)

a = (ĉa, σ 0 ) for some σ 0 ∈ S fixed. We set

M (t) = sup x∈C t S ∂ τ v τ,a (x) v τ,a (x) and m(t) = inf x∈C t S ∂ τ v τ,a (x) v τ,a (x) ∀t > a (3.50) τ v τ,a (x a ) v τ,a (x a ) -m(t) ≤ m(ĉt) -m(t),

and

∂ τ v τ,a (x) v τ,a (x) -m(t) ≤ ĉ2 (m(ĉt) -m(t)) ∀x ∈ C t S .

Lemma 3.4. The functions φ t and ψ t are respectively a subsolution and a supersolution of (1.1) in W 1,p 0 (S), v φt and v ψt are respectively a subsolution and a supersolution of -∆ p in C S , and there exists η ∈ W 1,p 0 (S) solution of (1.1) such that

If S t is the subset of η ∈ W 1,p 0 (S) solutions of (1.1) and satisfying (3.39), then ω t = sup{η : η ∈ S t } belongs to S t . It is increasing with respect to t with uniform limits ω when t ↓ δ 1 and ω when t ↑ 1. Finally, if θ t = t-δ1 1-δ1 , there holds

Proof. Clearly φ t and ψ t are respectively a subsolution and a supersolution of the operator T , they belong to W 1,p 0 (S) ∩ L ∞ (S) and they satisfy ω ≤ φ t ≤ ψ t ≤ ω. Furthermore, by Dini convergence theorem lim

uniformly in S. Moreover, in spherical coordinates,

Thus v φt is a subsolution -∆ p in C S and v ψt is a supersolution. Since the operator T is a Leray-Lions operator, it follows by [START_REF] Boccardo | Résultats d'existence pour certains problèmes elliptiques quasilinéaires[END_REF] that there exists η ∈ W 1,p 0 (S) ∩ L ∞ (S) satisfying T (η) = 0 and φ t ≤ η ≤ ψ t in S. We denote by S t the set of η ∈ W 1,p 0 (S) ∩ L ∞ (S) satisfying T (η) = 0 and φ t ≤ η ≤ ψ t in S. Then there exists a sequence {η n } ⊂ S t and ω t ∈ W 1,p 0 (S) ∩ L ∞ (S) such that η n (σ) ↑ ω t (σ) for all σ ∈ Σ, where Σ is a countable dense subset of S. By Lemma 2.1 {η n } is bounded in L p (S), hence in C γ (S) for some γ ∈ (0, 1). By the estimates of the proof of Theorem B-Step 2, {η n } is bounded in W 1,p 0 (S). By standard regularity theory, we can also assume that η n → ω t in the C 1 loc (S)-topology. Hence ω t is a weak solution of (1.1), it belongs to W 1,p 0 (S) ∩ L ∞ (S) and satisfies φ t ≤ ω t ≤ ψ t . Therefore it is the maximal element of S t . The monotonity of ω t is a consequence of the monotonicity of φ t and ψ t and the last statement (3.40) is a straightforward computation.

Next we recall the deformation of p-harmonic functions already used in [START_REF] Lewis | Boundary behavior and the Martin boundary problem for p-harmonic functions in Lipschitz domains[END_REF]. If τ ∈ (0, 1) and 0 < a < b, we denote by v τ,a,b the p-harmonic function defined in C a,b S satisfying