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A GUTZWILLER TYPE TRACE FORMULA FOR THE
MAGNETIC DIRAC OPERATOR

NIKHIL SAVALE

Abstract. For manifolds including metric-contact manifolds with non-resonant
Reeb flow, we prove a Gutzwiller type trace formula for the associated mag-
netic Dirac operator involving contributions from Reeb orbits on the base. As
an application, we prove a semiclassical limit formula for the eta invariant.

1. Introduction

The trace formulas of Gutzwiller [19] and Duistermaat-Guillemin [13] are a
clear statement of the semiclassical correspondence, expressing the spectrum of
(h-) pseudo-differential operators in terms of periodic orbits of the underlying
Hamiltonian dynamics as h → 0. We refer to [7, 29] for a historical survey of
trace formulas and the associated calculus of Fourier integral operators. For non-
scalar pseudo-differential operators this calculus is often unavailable due to the
non-diagonalizability of the principal symbol σ (A). Indeed when the eigenvalues of
σ (A) are not smooth functions on the cotangent space, their corresponding Hamil-
tonian dynamics is not well-defined. The purpose of this article is to investigate
the trace formula in one such case.

More precisely, let
(
X, gTX

)
be an oriented Riemannian manifold of odd di-

mension n = 2m + 1 equipped with a spin structure. Let S be the corresponding
spin bundle and let L be an auxiliary Hermitian line bundle. Fix a unitary con-
nection A0 on L and let a ∈ Ω1 (X;R) be a contact one form (i.e. one satisfying
a∧ (da)

m
> 0). This gives a family of unitary connections on L via ∇h = A0 + i

ha
and a corresponding family of coupled magnetic Dirac operators

(1.1) Dh := hDA0
+ ic (a) : C∞ (S ⊗ L)→ C∞ (S ⊗ L)

for h ∈ (0, 1].
Define the contact hyperplane H = ker (a) ⊂ TX as well as the Reeb vector

field R via iRda = 0, iRa = 1. We shall now further assume that the Reeb flow
of a is non-resonant. To state this assumption, let γ denote a Reeb orbit. For a
fixed point p ∈ γ, the linearized Poincare return map Pγ : TpX → TpX has Rp as
an eigenvector with eigenvalue 1 and restricts to a symplectic map on the contact
hyperplane P+

γ : Hp → Hp. We call the Reeb orbit γ non-degenerate if P+
γ has

n − 1 distinct eigenvalues not equal to 1. There now exists a symplectic basis for
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Hp in which P+
γ decomposes as

(1.2) P+
γ =

 Ne⊕
j=1

P+,e
γ;βj

⊕
N+

h⊕
j=1

P+,h

γ;α+
j

⊕
N−h⊕
j=1

−P+,h

γ;α−j

⊕
 Nl⊕
j=1

P+,l
γ;α0

j ,β
0
j


for

P+,e
γ;β =

[
cosβ − sinβ
sinβ cosβ

]
, β ∈ (0, 2π)

(1.3)

P+,h
γ;α =

[
eα 0
0 e−α

]
, α > 0

(1.4)

P+,l
γ;α0,β0 =


e−α

0

cosβ0 0 −e−α0

sinβ0 0

0 eα
0

cosβ0 0 −eα0

sinβ0

e−α
0

sinβ0 0 e−α
0

cosβ0 0

0 eα
0

sinβ0 0 eα
0

cosβ0

 , α0 > 0, β0 ∈ (0, π) .

(1.5)

We note that the summands in the decomposition (1.2) each correspond to: a
pair of elliptic eigenvalues e±iβ (of P+,e

γ;β ), a pair of positive/negative hyperbolic
eigenvalues ±e±α (of ±P+,h

γ;α ) and a quartet of loxodromic eigenvalues e±α
0±iβ0

(of
P+,l
γ;α0,β0). We call the Reeb orbit γ non-resonant if the two sets{

α+
j

}N+
h

j=1
∪
{
α−j
}N−h
j=1
∪
{
α0
j

}Nl
j=1

and

{2π} ∪ {βj}Nej=1 ∪
{
β0
j

}Nl
j=1

are rationally (Q−) independent. We call the Reeb flow of a non-resonant if all its
Reeb orbits are non-resonant.

Next, we shall assume that the metric g is strongly suitable to the contact form
a. To define this, consider the contracted endomorphism J : TxX → TxX defined
at each point x ∈ X via

(1.6) da (v1, v2) = gTX (v1, Jv2) , ∀v1, v2 ∈ TxX.
The contact assumption on the one form a implies that J has a one dimensional
kernel spanned by the Reeb vector field R. The endomorphism J is clearly anti-
symmetric with respect to the metric

gTX (v1, Jv2) = −gTX (Jv1, v2)

and hence its non-zero eigenvalues come in purely imaginary pairs ±iµ ; µ > 0. We
now say that the metric is strongly suitable to the contact form a if the spectrum
of Jx is independent of x: there exist positive constants 0 < µ1 ≤ µ2 ≤ . . . ≤ µm
such that

(1.7) Spec (Jx) = {0,±iµ1,±iµ2, . . . ,±iµm} , ∀x ∈ X.
We note that this is a slight strengthening of the suitability assumption from [26]
wherein Spec (Jx) was allowed to vary in x with one single function ν (x) ∈ C∞ (X).
Here are two examples of strongly suitable suitable metrics.
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(1) The dimension of the manifold dim X = 3. In this case a metric gTX is
strongly suitable if the magnetic field |da| = µ1 has constant strength.

(2) There is a smooth endomorphism J : TX → TX, such that(
X2m+1, a, gTX , J

)
is a metric contact manifold. That is, we have

J2v1 = −v1 + a (v1)R,

gTX (v1, Jv2) = da (v1, v2) , ∀v1, v2 ∈ TxX.(1.8)

In this case the nonzero eigenvalues of Jx = Jx are ±i (each with multi-
plicity m). For any given contact form a there exists an infinite dimen-
sional space of

(
gTX , J

)
satisfying (1.8). This case in particular includes

all strictly pseudo-convex CR manifolds.

Our first result is now a Gutzwiller type trace formula for the magnetic Dirac
operator (1.1). To state it precisely choose f ∈ C∞c

(
−
√

2µ1,
√

2µ1

)
. Let θ ∈

C∞c (R; [0, 1]) be any compactly supported supported function, such that θ = 1
near 0, and set

F−1θ (x) := θ̌ (x) =
1

2π

ˆ
eixξθ (ξ) dξ

F−1
h θ (x) :=

1

h
θ̌
(x
h

)
=

1

2πh

ˆ
e
i
hxξθ (ξ) dξ

to be its classical and semi-classical inverse Fourier transforms respectively. We
shall then prove.

Theorem 1.1. Let a be a non-resonant contact form and gTX a strongly suitable
metric. We then have a trace expansion

tr
[
f

(
D√
h

)(
F−1
h θ

) (
λ
√
h−D

)]
=

(1.9)

tr

[
f

(
D√
h

)
1

h
θ̌

(
λ
√
h−D
h

)]
= h−m−1

 N∑
j=0

f (λ)uj (λ)hj/2


(1.10)

+
∑
γ

e
i
hTγei

π
2 mγ

N−2m−2∑
j=0

hj/2
j∑

k=0

λkAγ,j,kθ (Lγ)(1.11)

+O
(
hN/2−m−1

)
(1.12)

for each N ∈ N,λ ∈ R. Here the second line on the right hand side above is a sum
over the Reeb orbits of a. Furthermore; the terms appearing on the right hand side
are as follows

(1) each uj is a polynomial function in λ
(2) each Aγ,j,k is a differential operator on R of order between k and j
(3) Tγ and Lγ denote the period and Riemannian length of the Reeb orbit re-

spectively
(4) mγ denotes the Maslov index of a metaplectic lift of P+

γ .
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Finally, the leading contribution of each Reeb orbit γ is given by the multiplication
operator

Aγ,0,0θ =
L#
γ

2π

1√∣∣det
(
1− P+

γ

)∣∣θ
with L#

γ denoting the primitive length of the orbit.

An immediate consequence of the above trace formula is a little o estimate on
the dimension of the kernel of Dh

(1.13) kh := dim ker (Dh) = o
(
h−m

)
.

As another application, we shall prove a semiclassical limit formula for the (rescaled)
eta invariant of the magnetic Dirac operator Dh. To state this, first let R⊥ ⊂ TX
denote the 2m-dimensional orthogonal complement to the Reeb vector field. We
may now define the endomorphisms

(
∇TXJ

)0
: R⊥ → R⊥, |J| : R⊥ → R⊥, via(

∇TXJ
)0
v :=

(
∇TXv J

)
R, ∀v ∈ R⊥,

|J| :=
√
−J2.(1.14)

We then have the following.

Theorem 1.2. Let a be a non-resonant contact form and gTX a strongly suitable
metric. The rescaled eta invariant of the Dirac operator (1.1) satisfies

(1.15) lim
h→0

hmη (Dh) = −1

2

1

(2π)
m+1

1

m!

ˆ
X

[
tr |J|−1 (∇TXJ

)0]
a ∧ (da)

m
.

Before proceeding further we look at the limit formula formula above in the two
special cases mentioned earlier.

(1) The dimension of the manifold dim X = 3 and |da| = µ1 has constant
strength. In this case the limit (1.15) is given by the volume integral

lim
h→0

hmη (Dh) = − µ1

8π2

ˆ
X

[iRd
∗da] dx.

(2) There is a smooth endomorphism J : TX → TX, such that(
X2m+1, a, gTX , J

)
is a metric contact manifold (1.8). In this case the limit

(1.15) is simply the volume

lim
h→0

hmη (Dh) = −m
2

1

(2π)
m+1 vol (X) .

A small time trace formula (1.9) was already proved in [26] assuming θ to
be supported sufficiently close to the origin; much of this article attempts to ex-
tend the arguments therein to large supports. By the construction of appropri-
ate trapping functions it is shown that the formula of [26] extends to large time
when microlocalized away from the Reeb orbits. Near the Reeb orbits, the trace is
studied via understanding the Birkhoff normal form of Dh near each orbit, using
which it is reduced to the trace of a scalar effective Hamiltonian. The Birkhoff
normal form procedure here combines the one in [26] with ones for scalar Hamilto-
nians [16, 17, 21, 30, 31] near periodic Hamiltonian orbits and hence requires the
non-resonance assumption. The semiclassical asymptotics for the Dirac operator
considered here were originally motivated by Taubes’s proof of the three dimen-
sional Weinstein conjecture [28] on the existence of Reeb orbits. The existence of



TRACE FORMULA 5

Reeb orbits, or the necessity of dynamical contributions (1.11), is still unresolved
in higher dimensions.

The behavior of the eta invariant of Dirac operators has been studied under
various operations (cf. [15] for a survey) and the formula (1.15) adds to a long list.
A more precise relation between the eta invariant and the dynamics of geodesic
flow has been studied on compact hyperbolic manifolds [23] and locally symmetric
spaces of non-compact type [24]. The proof of such precise relations on general
negatively curved manifolds is the subject of the hypo-elliptic Laplacian program
of Bismut [4, 5].

Under the well known correspondence between semi-classical and microlocal
analysis, the operator (1.1) corresponds to a hypo elliptic sub-Riemannian (sR)
Dirac operator on the product X ×S1. The Reeb orbits on X correspond to singu-
lar geodesics on the quasi-contact product suggesting a more general trace formula
for sR Dirac operators. The eigenvalues of the symbol of the sR Dirac operator
being the square root of the symbol of the sR Laplacian up to sign, similar trace
formulas could be expected for the half-wave equation of the sR Laplacian. A sys-
tematic study of spectral asymptotics for sR Laplacians and related dynamics has
been recently undertaken [9, 8].

The paper is organized as follows. In Section 2 we begin with the preliminaries
of Dirac operators, Clifford representations and semi-classical analysis used in the
paper. In Section 3 we breakup the trace (1.9) using a partition of unity adapted
to the Reeb dynamics. By the construction of appropriate trapping functions it is
shown here that the trace does not have non-local contributions when microlocalized
away from the Reeb orbits. In Section 4 we generalize the Birkhoff normal form of
[26] to one in a neighborhood of each Reeb orbit. This normal form is then used,
via the construction of a similar trapping functions to reduce the trace asymptotics
to S1×R2m in Section 5 leading to a proof of Theorem 1.1 in Section 6. In Section
7 we compute the second term in the local trace expansion of (1.10). This leads to
the semi-classical limit formula for the eta invariant (1.15) in the final Section 8.

2. Preliminaries

2.1. Spectral invariants of the Dirac operator. Here we review the basic facts
about Dirac operators used throughout the paper with [3] providing a standard
reference. Consider a compact, oriented, Riemannian manifold

(
X, gTX

)
of odd

dimension n = 2m + 1. Let X be equipped with spin structure, i.e. a principal
Spin (n) bundle Spin (TX) → SO (TX) with an equivariant double covering of
the principal SO (n)-bundle of orthonormal frames SO (TX). The corresponding
spin bundle S = Spin (TX) ×Spin(n) S2m is associated to the unique irreducible
representation of Spin (n). Let∇TX denote the Levi-Civita connection on TX. This
lifts to the spin connection ∇S on the spin bundle S. The Clifford multiplication
endomorphism c : T ∗X → S ⊗ S∗ may be defined (see 2.2) satisfying

c(a)2 = −|a|2, ∀a ∈ T ∗X.
Let L be a Hermitian line bundle on X. Let A0 be a fixed unitary connection on
L and let a ∈ Ω1(X;R) be a 1-form on X. This gives a family ∇h = A0 + i

ha

of unitary connections on L. We denote by ∇S⊗L = ∇S ⊗ 1 + 1 ⊗ ∇h the tensor
product connection on S⊗L. Each such connection defines a coupled Dirac operator

Dh := hDA0
+ ic (a) = hc ◦

(
∇S⊗L

)
: C∞(X;S ⊗ L)→ C∞(X;S ⊗ L)
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for h ∈ (0, 1]. The operator Dh is elliptic and self-adjoint. It hence possesses a
discrete spectrum of eigenvalues.

We define the eta function of Dh by the formula

η (Dh, s) :=
∑
λ6=0

λ∈Spec(Dh)

sign(λ)|λ|−s =
1

Γ
(
s+1

2

) ˆ ∞
0

t
s−1

2 tr
(
Dhe

−tD2
h

)
dt,(2.1)

∀s ∈ C. Here, and in the remainder of the paper, we use the convention that
Spec(Dh) denotes a multiset with each eigenvalue of Dh being counted with its
multiplicity. The above series converges for Re(s) > n. It was shown in [1, 2] that
the eta function possesses a meromorphic continuation to the entire complex s-
plane and has no pole at zero. Its value at zero is defined to be the eta invariant of
the Dirac operator

ηh := η (Dh, 0) .

By including the zero eigenvalue in (2.1), with an appropriate convention, we may
define a variant known as the reduced eta invariant by

η̄h :=
1

2
{kh + ηh} .

The eta invariant is unchanged under positive scaling

(2.2) η (Dh, 0) = η (cDh, 0) ; ∀c > 0.

Let Lt,h denote the Schwartz kernel of the operator Dhe
−tD2

h on the product X×X.
Throughout the paper all Schwartz kernels will be defined with respect to the
Riemannian volume density. Denote by tr (Lt,h (x, x)) the point-wise trace of Lt,h
along the diagonal. We may now analogously define the function

η (Dh, s, x) =
1

Γ
(
s+1

2

) ˆ ∞
0

t
s−1

2 tr (Lt,h (x, x)) dt,(2.3)

∀s ∈ C, x ∈ X. In [6] theorem 2.6, it was shown that for Re(s) > −2, the function
η (Dh, s, x) is holomorphic in s and smooth in x. From (2.3) it is clear that this is
equivalent to

tr (Lt,h) =O
(
t

1
2

)
, as t→ 0.(2.4)

The eta invariant is then given by the convergent integral

(2.5) ηh =

ˆ ∞
0

1√
πt

tr
(
Dhe

−tD2
h

)
dt.

2.2. Clifford algebra and and its representations. Here we review the con-
struction of the spin representation of the Clifford algebra. The following being
standard, is merely used to setup our conventions.

Consider a real vector space V of even dimension 2m with metric 〈, 〉. Recall
that its Clifford algebra Cl (V ) is defined as the quotient of the tensor algebra
T (V ) := ⊕∞j=0V

⊗j by the ideal generated from the relations v⊗ v+ |v|2 = 0. Fix a
compatible almost complex structure J and split V ⊗ C = V 1,0 ⊕ V 0,1 into the ±i
eigenspaces of J . The complexification V ⊗ C carries an induced C-bilinear inner
product 〈, 〉C as well as an induced Hermitian inner product hC (, ). Next, define
S2m = Λ∗V 1,0. Clearly S2m is a complex vector space of dimension 2m on which
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the unique irreducible (spin)-representation of the Clifford algebra Cl (V ) ⊗ C is
defined by the rule

c2m (v)ω =
√

2
(
v1,0 ∧ ω − ιv0,1ω

)
, v ∈ V, ω ∈ S2m.

The contraction above is taken with respect to 〈, 〉C. It is clear that c2m (v) :

Λeven/odd → Λodd/even switches the odd and even factors. For the Clifford algebra
Cl (W ) ⊗ C of an odd dimensional vector space W = V ⊕ R [e0] there are exactly
two irreducible representations. The first (spin)-representation S2m+1 = Λ∗V 1,0 is
defined via

c2m+1 (v) = c2m (v) , v ∈ V

c2m+1 (e0)ωeven/odd = ±1

i
ωeven/odd(2.6)

while the other corresponds to the opposite sign convention in (2.6) above. We shall
often use the shorthand’s c = c2m = c2m+1 with the index 2m, 2m + 1 implicitly
understood.

Pick an orthonormal basis e1, e2, . . . , e2m for V in which the almost complex
structure is given by Jej = ej+m, 1 ≤ j ≤ m. An hC-orthonormal basis for V 1,0

is now given by wj = 1√
2

(ej+m + iej), 1 ≤ j ≤ m. A basis for S2m and S±2m+1 is
given by

(2.7) wk = wk1
1 ∧ . . . ∧ wkmm , with k = (k1, k2, . . . , km) ∈ {0, 1}m .

Ordering the above chosen bases lexicographically in k, we may define the Clifford
matrices, of rank 2m, via

γmj = c (ej) , 0 ≤ j ≤ 2m,

for each m . We note that the above is a slightly different convention from [26]
adopted to simplify some formulas in Section 7. Again, we often write γmj = γj with
the index m implicitly understood. Giving representations of the Clifford algebra,
these matrices satisfy the relation

(2.8) γiγj + γjγi = −2δij .

We also set σj = iγj .
Next, one may further define the Clifford quantization map on the exterior al-

gebra

c : Λ∗W ⊗ C → End (S2m)

c
(
ek0

0 ∧ . . . ∧ e
k2m
2m

)
= c (e0)

k0 . . . c (e2m)
k2m .(2.9)

An easy computation yields

γ0 (γ1γm+1) . . . (γmγ2m) =
1

im+1

and hence
tr [γ0 . . . γ2m] =

1

im+1
2m.

Furthermore, if e0 ∧ . . . ∧ e2m is designated to give a positive orientation for W
then for ω ∈ ΛkW we have

c (∗ω) = im+1 (−1)
k(k+1)

2 c (ω)(2.10)

c (ω)
∗

= (−1)
k(k+1)

2 c (ω)(2.11)
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under the Hodge star and hC-adjoint. The Clifford quantization map (2.9) is a linear

surjection with kernel spanned by elements of the form ∗ω − im+1 (−1)
k(k+1)

2 ω.
Thus, in particular one has linear isomorphisms

(2.12) c : Λeven/oddW ⊗ C→ End (S2m) .

Next, given (r1, . . . , rm) ∈ Rm \ 0, we define

Ir := {j|rj 6= 0} ⊂ {1, 2, . . . ,m}(2.13)
Zr := |Ir|(2.14)

Vr :=
⊕
j∈Ir

C [wj ] ⊂ V 1,0(2.15)

and wr :=

m∑
j=1

rjwj ∈ Vr.(2.16)

Clearly, ‖wr‖ = |r|. Denoting by w⊥r the hC-orthogonal complement of wr ⊂ Vr,
one clearly has Vr = C [wr]⊕ w⊥r . We set

ir : Λ∗Vr → Λ∗Vr, via(2.17)

ir (ω) :=
wr
|r|
∧ ω

ir

(
wr
|r|
∧ ω
)

:= ω

for ω ∈ Λ∗w⊥r . Clearly, i2
r = 1 and ir is a linear isomorphism between

ir : ΛevenVr → ΛoddVr

ir : ΛoddVr → ΛevenVr.

Next, the endomorphism

c

(
wr − w̄r√

2

)
= (wr ∧+ιw̄r ) : Λ*Vr → Λ*Vr(2.18)

has the form

(2.19) c

(
wr − w̄r√

2

)
=

[
|r| ir

|r| ir

]
with respect to the decomposition Λ*Vr = ΛoddVr ⊕ΛevenVr. This finally allows us
to write the eigenspaces of (2.18) as

(2.20) V ±r = (1± ir) (ΛevenVr)

with eigenvalue ± |r| respectively.
Finally we shall need an almost diagonalizability result for the restriction of

Clifford multiplication to the sphere. Define S (W ) = {v ∈W | |v| = 1} as well as
the restriction

c : S (W )→ u (S2m+1)(2.21)

c (v)
2

=− Id.

The restriction of the spin bundle S2m+1 to the sphere S (W ) splits S2m+1|S(W ) =

S+ (W ) ⊕ S− (W ) into the ±i eigenspaces of the c respectively. The summands
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S+ (W ) , S− (W ) maybe identified with the (non-trivial) bundle of positive and neg-
ative spinors on the sphere. The restriction c (2.21) is hence not globally diagonaliz-
able over the sphere. We now identify S (W ) =

{
θ0e0 + . . . θ2me2m ∈W |θ2

0 + . . .+ θ2
2m = 1

}
with the standard sphere in Sn−1 ⊂ Rn using the chosen basis for W ; with the in-
duced basis (2.7) of S2m+1 giving identifications u (S2m+1) = u

(
C2m

)
, U (S2m+1) =

U
(
C2m

)
. Thus

(2.22) c (θ) := c (θ0e0 + . . . θ2me2m) =

2m∑
j=0

θjγj ∈ C∞
(
Sn−1, u

(
C2m

))
in this trivialization/coordinates. We now have.

Lemma 2.1. For each ρ ∈
(
0, 1

8

)
, there exist smooth family of maps/functions

v
ρ
t ∈ C∞

(
Sn−1;U

(
C2m

))
; aρ0,t, a

ρ
1,t ∈ C∞

(
[−1, 1]θ0

)
, t ∈ [0, 1], such that

(1)
∣∣aρj,t∣∣ ≤ ( 8

ρ

)1/2

,
∣∣∂θ0aρj,t∣∣ ≤ ( 8

ρ

)2

, t ∈ [0, 1], j = 0, 1.

(2) ‖∂tvρt ‖ ≤
(

8
ρ

)2

,
∥∥∂θjvρt∥∥ ≤ ( 8

ρ

)4

, t ∈ [0, 1], j = 0, . . . , 2m.
(3)

(2.23) aρ0,t (θ0) =

{
θ0; t ∈

[
0, 1

2

]
1; t = 1, θ0 < 1− ρ,

(2.24) aρ1,t (θ0) =

{
−1; t ∈

[
0, 1

2

]
0; t = 1, θ0 < 1− ρ,

(2.25) v
ρ
t = σ0; t ∈

[
0,

1

2

]
,

(4) we have the almost diagonalizability equation

(2.26) v
ρ
t (θ)

∗
c (θ) vρt (θ) = aρ0,t (θ0) γ0 + aρ1,t (θ0)

 2m∑
j=1

θjγj

 .
Proof. The matrix

v :Sn−1 \ {θ0 = 1} → U
(
C2m

)
(2.27)

v (θ) :=

√
(1− θ0)

2
σ0 −

θj√
2 (1− θ0)

σj(2.28)

diagonalizes

(2.29) v∗c (θ) v = −γ0

away from the north-pole {θ0 = 1}. To get a map defined on the entire sphere, let
χρ1 ∈ C∞

(
[−1, 1]θ0 ;

[
−1, 1− ρ

2

])
such that

(2.30) χρ1 (θ0) =

{
θ0; −1 ≤ θ0 < 1− ρ,
−1; 1− ρ

2 ≤ θ0 ≤ 1,

with
∣∣∣(χρ1)

′
∣∣∣ ≤ 4

ρ . Further let χ0 ∈ C∞c ([−1, 1]t ; [0, 1]) with χ0 = 1 on
(
− 1

2 ,
1
2

)
and

|∂tχ0| ≤ 4. Finally set χρ1,t = [1− χ0 (t)]
2
χρ1−

[
1− (1− χ0 (t))

2
]
∈ C∞

(
[−1, 1]θ0 ;

[
−1, 1− ρ

2

])
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satisfying
∣∣∣(χρ1,t)′∣∣∣ ≤ 4

ρ ,
∣∣∂tχρ1,t∣∣ ≤ 8. Now χρ2,t (θ0) =

√
1−χρ1,t(θ0)2

1−θ2
0

∈ C∞
(
[−1, 1]θ0

)
satisfies

∣∣χρ2,t∣∣ ≤ ( 2
ρ

)1/2

,
∣∣∣(χρ2,t)′∣∣∣ ≤ ( 4

ρ

)2

,
∣∣∂tχρ2,t∣∣ ≤ ( 4

ρ

)2

. The family

χρt : Sn−1 → Sn−1 \ {θ0 = 1}
χρt (θ) :=

(
χρ1,t (θ0) , χρ2,t (θ0) θ1, . . . , χ

ρ
2,t (θ0) θ2m

)
(2.31)

now defines a family of maps on the entire sphere

v
ρ
t : Sn−1 → U

(
C2m

)
v
ρ
t (θ) := v (χρt (θ)) .(2.32)

The equation (2.26) now follows from (2.28), (2.29), (2.31) and (2.32) with

aρ0,t =− θ0χ
ρ
1,t −

(
1− θ2

0

)
χρ2,t

aρ1,t =χρ1,t − θ0χ
ρ
2,t.

�

2.2.1. Magnetic Dirac operator on Rm. Here we recall the spectrum of the magnetic
Dirac operator

(2.33) DRm =

m∑
j=1

(µj
2

) 1
2 [
γ2j

(
h∂xj

)
+ iγ2j−1xj

]
∈ Ψ1

cl

(
Rm;C2m

)
.

on Rm computed in [26]. Its square is computed in terms of the harmonic oscillator

D2
Rm = H2 − ihR2m+1, with(2.34)

H2 = 1
2

m∑
j=1

µj

[
−
(
h∂xj

)2
+ x2

j

]
(2.35)

R2m+1 = 1
2

m∑
j=1

µj [γ2j−1γ2j ] .

Define the lowering and raising operators Aj = h∂xj + xj , A
∗
j = −h∂xj + xj for

1 ≤ j ≤ m, and the Hermite functions

ψτ,k (x) := ψτ (x)⊗ wk

ψτ (x) :=
1

(πh)
m
4 (2h)

|τ|
2
√
τ !

[
Πm
j=1

(
A∗j
)τj ]

e−
|x|2
2h ,(2.36)

for τ = (τ1, τ2, . . . , τm) ∈ Nm0 .

We also set

Eτ :=
⊕

b∈{0,1}Iτ
C

∏
j∈Iτ

(
c (wj)Aj√

2τjh

)bj
ψτ,0


with Iτ , Vτ as in (2.13), (2.15). One clearly has an isomorphism

Iτ : Λ∗Vτ → Eτ

Iτ

 ∧
j∈Iτ

w
bj
j

 :=
∏
j∈Iτ

(
c (wj)Aj√

2τjh

)bj
ψτ,0.
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If iτ := IτirτI
−1
τ : E

even/odd
τ → E

odd/even
τ , the restriction of DRm to Eτ is of the

form

DRm =

[
|rτ | iτ

|rτ | iτ

]
.(2.37)

We may set

Eeven/odd
τ := Iτ

(
Λeven/oddVτ

)
E±τ = Iτ

(
V ±τ
)

(2.38)

and observe the Landau decomposition

(2.39) L2
(
Rm;C2m

)
= C [ψ0,0]⊕

⊕
τ∈Nm0 \0

(
Eeven
τ ⊕ Eodd

τ

)
.

The spectrum of (2.33) is given by Prop. 2.1 of [26].

Proposition 2.2. An orthogonal decomposition of L2
(
Rm;C2m

)
consisting of eigenspaces

of the magnetic Dirac operator DRm (2.33) is given by

L2
(
Rm;C2m

)
= C [ψ0,0]⊕

⊕
τ∈Nm0 \0

(
E+
τ ⊕ E−τ

)
.

Here E±τ , as in (2.38), have dimension 2Zτ−1 and correspond to the eigenvalues
±
√
µ.τh respectively.

2.3. The Semi-classical calculus. Finally, here we review the semi-classical pseudo-
differential calculus used throughout the paper with [18, 32] being the detailed ref-
erences. Much of this being reviewed in [26], we only highlight some new aspects.
Let gl (l) denote the space of all l × l complex matrices. For A = (aij) ∈ gl (l)
we denote |A| = maxij |aij |. Denote by S

(
Rn;Cl

)
the space of Schwartz maps

f : Rn → Cl. We define the symbol space Sm
(
R2n;Cl

)
as the space of maps

a : (0, 1]h → C∞
(
R2n
x,ξ; gl (l)

)
such that each of the semi-norms

‖a‖α,β := supx,ξ,h〈ξ〉−m+|β|
∣∣∣∂αx ∂βξ a(x, ξ;h)

∣∣∣
is finite ∀α, β ∈ Nn0 . Such a symbol is said to lie in the more refined class
a ∈ Smcl

(
R2n;Cl

)
if there exists an h-independent sequence ak, k = 0, 1, . . . of

symbols such that a−
(∑N

k=0 h
kak

)
∈ hN+1Sm

(
R2n;Cl

)
, ∀N. The symbol classes

Sm
(
R2n;Cl

)
, Smcl

(
R2n;Cl

)
as above can be Weyl quantized to define one-parameter

families of operators aW ∈ Ψm
(
R2n;Cl

)
,Ψm

cl
(
R2n;Cl

)
with Schwartz kernels given

by

aW :=
1

(2πh)
n

ˆ
ei(x−y).ξ/ha

(
x+ y

2
, ξ;h

)
dξ

This class of operators is closed under the standard operations of composition
and formal-adjoint. Furthermore the class is invariant under changes of coordi-
nates and basis for Cl. This allows one to define invariant classes of operators
Ψm (X;E) ,Ψm

cl (X;E) on C∞ (X;E) associated to any complex, Hermitian vector
bundle

(
E, hE

)
on a smooth compact manifold X.

For A ∈ Ψm
cl (X;E), its principal symbol is well-defined as an element in σ (A) ∈

Sm (X;End (E)) ⊂ C∞ (X;End (E)) . One has that σ (A) = 0 if and only if
A ∈ hΨm

cl (X;E). We remark that σ (A) is the restriction of standard symbol
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in [32] to the refined class Ψm
cl (X;E) and is locally given by the first coefficient a0

in the expansion in h of its Weyl symbol. The principal symbol satisfies the basic
relations σ (AB) = σ (A)σ (B), σ (A∗) = σ (A)

∗ with the formal adjoints being
defined with respect to the same Hermitian metric hE . The principal symbol map
has an inverse given by the quantization map Op : Sm (X;End (E))→ Ψm

cl (X;E)
satisfying σ (Op (a)) = a ∈ Sm (X;End (E)). We remark that this quantization
map is non-canonical and depends on the choice of an open cover, with local triv-
ializations for E, and a subordinate partition of unity. We often use the alternate
notation Op (a) = aW . For a scalar function b ∈ S0 (X), it is clear from the mul-
tiplicative property of the symbol that

[
aW , bW

]
∈ hΨm−1

cl (X;E) and we define
Hb (a) := i

hσ
([
aW , bW

])
∈ Sm−1 (X;End (E)). We note that Hb (a) depends on

the quantization scheme, in particular the local trivializations used in defining Op.
However one has Hb (a) = {a, b} is given by the Poisson bracket when both sides
are computed in the same defining trivialization.

The wavefront set of an operator A ∈ Ψm
cl (X;E) can be defined invariantly as

a subset WF (A) ⊂ T ∗X of the fibrewise radial compactification of its cotangent
bundle. If the local Weyl symbol of A is given by a then (x0, ξ0) /∈ WF (A) if
and only if there exists an open neighborhood (x0, ξ0; 0) ∈ U ⊂ T ∗X × (0, 1]h
such that a ∈ h∞ 〈ξ〉−∞ Ck

(
U ;Cl

)
for all k. The wavefront set satisfies the basic

properties WF (A+B) ⊂ WF (A) ∩ WF (B), WF (AB) ⊂ WF (A) ∩ WF (B)
and WF (A∗) = WF (A). The wavefront set WF (A) = ∅ is empty if and only if
A ∈ h∞Ψ−∞ (X;E). We say that two operators A = B microlocally on U ⊂ T ∗X
if WF (A−B) ∩ U = ∅.

An operator A ∈ Ψm
cl (X;E) is said to be elliptic if 〈ξ〉m σ (A)

−1 exists and is
uniformly bounded on T ∗X. If A ∈ Ψm

cl (X;E), m > 0, is formally self-adjoint such
that A + i is elliptic then it is essentially self-adjoint (with domain C∞c (X;E))
as an unbounded operator on L2 (X;E). Its resolvent (A− z)−1 ∈ Ψ−mcl (X;E),
z ∈ C, Imz 6= 0, now exists and is pseudo-differential by an application of Beals’s
lemma. Given a Schwartz function f ∈ S (R), the Helffer-Sjöstrand formula now
expresses the function f (A) of such an operator in terms of its resolvent and an
almost analytic continuation f̃ via

f (A) =
1

π

ˆ
C
∂̄f̃ (z) (A− z)−1

dzdz̄.

We then also have WF (f (A)) ⊂ ΣAspt(f)
:=
⋃
λ∈spt(f) ΣAλ where

(2.40) ΣAλ = {(x, ξ) ∈ T ∗X|det (σ (A) (x, ξ)− λI) = 0} .

is classical λ-energy level of A.

2.3.1. The class Ψm
δ (X;E). We shall need also more exotic class of scalar symbols

Smδ
(
R2n;C

)
defined for each 0 < δ < 1

2 . A function a : (0, 1]h → C∞
(
R2n
x,ξ;C

)
is

said to be in this class if and only if

(2.41) ‖a‖α,β := supx,ξ,h〈ξ〉−m+|β|h(|α|+|β|)δ
∣∣∣∂αx ∂βξ a(x, ξ;h)

∣∣∣
is finite ∀α, β ∈ Nn0 . This class of operators is closed under the standard opera-
tions of composition, adjoint and changes of coordinates allowing the definition of
the exotic pseudo-differential algebra Ψm

δ (X) on a compact manifold. The class
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Smδ (X) is a family of functions a : (0, 1]h → C∞ (T ∗X;C) satisfying the esti-
mates (2.41) in every coordinate chart and induced trivialization. Such a family
can be quantized to aW ∈ Ψm

δ (X) satisfying aW bW = (ab)
W

+h1−2δΨm+m′−1
δ (X),

i
h1−2δ σ

([
aW , bW

])
= [{a, b}] for another b ∈ Sm′δ (X). The operators in Ψ0

δ (X) are
uniformly bounded on L2 (X). Finally, the wavefront an operator A ∈ Ψm

δ (X;E)
is similarly defined and satisfies the same basic properties as before.

3. Dynamical partitions

The trace formula of Theorem 1.1 was proved in [26] assuming θ to be supported
in a sufficiently small interval near 0. In this case only the local contribution to the
trace (1.10) appears. It now thus suffices to consider θ supported away from 0 and
prove the following.

Lemma 3.1. For θ ∈ C∞c ((T0,∞) ; [0, 1]), T0 > 0, one has

tr
[
f

(
D√
h

)(
F−1
h θ

) (
λ
√
h−D

)]
=

(3.1)

tr

[
f

(
D√
h

)
1

h
θ̌

(
λ
√
h−D
h

)]
=
∑
γ

e
i
hLγei

π
2 mγ

N−2m−2∑
j=0

hj/2
j∑

k=0

λkAγ,j,kθ (Tγ)

+O
(
hN/2−m−1

)
(3.2)

for all λ ∈ R, with the right hand side above being the same as the dynamical
contribution (1.11) in (1.12).

To prove Lemma 3.1 we shall split the trace via a microlocal partition of unity
adapted to the Reeb dynamics. To this end we first need a description of the contact
form in a neighborhood of each Reeb orbit.

3.1. Normal structure for the contact form. Let γ ⊂ X be a primitive closed
Reeb orbit with period Tγ . For a point p ∈ γ, the linearized Poincare return map
P+
γ : Hp → Hp restricted to the contact hyperplane then has the decomposition

(1.2) as before. For each corresponding eigenvalue in this decomposition, define the
following model quadratic functions on R2m

Elliptic case: Qej =
1

2

(
x2
j + x2

j+m

)
, 1 ≤ j ≤ Ne

Hyperbolic case: Qhj = xNe+jxNe+j+m, 1 ≤ j ≤ Nh
Loxodromic case: Ql,Re

j = xm−2j+2x2m−2j+1 − xm−2j+1x2m−2j+2, 1 ≤ j ≤ Nl
Ql,Imj = xm−2j+1x2m−2j+1 + xm−2j+2x2m−2j+2, 1 ≤ j ≤ Nl(3.3)

Also let Qh,− = π
2

∑N−h
j=1

(
x2
Ne+j

+ x2
Ne+j+m

)
be the quadratic whose Hamiltonian

flow rotates negative hyperbolic blocks by π.
In the theorem below we let γ0 := S1 × {0} ⊂ S1 × R2m. We shall use θ or x0

interchangeably to denote the circular S1 variable. We also let χ− ∈ C∞c
(
0, 1

2

)
θ
,

χ+ ∈ C∞c
(

1
2 , 1
)
θ
be non-negative functions with total integral 1. We now have the

following normal structure for the contact form a near a nonresonant γ.
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Proposition 3.2. There exists a diffeomorphism κ : Ω0
γ → Ωγ between some

neighborhood of γ0 ⊂ Ω0
γ and some neighborhood of the Reeb orbit γ ⊂ Ωγ such

that

(3.4) κ∗a =
(
Tγ + χ−Qh,− + χ+ϕ+

)︸ ︷︷ ︸
=:ϕ

dθ +
1

2

m∑
j=1

(xjdxj+m − xj+mdxj)

modulo O (Q∞). Here ϕ+ = ϕ+ (Q) in (3.4) is a function on R2m of the quadratics
(3.3) with linear term

(3.5) ϕ+ =

Ne∑
j=1

βjQ
e
j +

Nh∑
j=1

αjQ
h
j +

Nl∑
j=1

(
α0
jQ

l,Re
j + β0

jQ
l,Im
j

)
+O

(
Q2
)
.

Proof. Choose Darboux coordinates (x, y; z) centered at p in which a = dz +
1
2

∑m
j=1 (xjdxj+m − xj+mdxj). Then Σ = {z = 0} ⊂ X defines a local Poincare

section transverse to the Reeb vector field ∂z in these coordinates. The Reeb flow
gives rise to a symplectic return map and a return time function

PΣ : (Σ, da) → (Σ, da)

TΣ : Σ → R(3.6)

which satisfy the relation

(3.7) P ∗Σa− a = dTΣ

(cf. [14] Prop. 2.1). The linearization of PΣ at 0 being P+
γ , has the same spec-

trum Spec
(
P+
γ

)
. Under the nonresonance assumption, such a symplectic map is a

composition of the Hamiltonian diffeomorphisms

(3.8) PΣ = eHϕ+ ◦ eHQh,− ,

modulo O (Q∞), for a function ϕ+ of the form (3.5) (cf. [20, 27]). We now compute(
eHQh,−

)∗
a = a and

d

dt

(
etHϕ+

)∗
a

∣∣∣∣
t=0

= iHϕ+da+ diHϕ+a

= dϕ+ − d

1

2

m∑
j=1

(
xjϕ

+
xj + xj+mϕ

+
xj+m

) .(3.9)

From (3.7), (3.8) and (3.9) we now have

(3.10) TΣ = Tγ + ϕ+ − 1

2

m∑
j=1

(
xjϕ

+
xj + xj+mϕ

+
xj+m

)
︸ ︷︷ ︸

T+
Σ

:=

.

Next, let us compute the return map and return time, associated to the Poincare
section Σ0 = {θ = 0}, for the model contact form (3.4) on S1×R2m. Its Reeb vector
field R0 is easily computed

R0 =

{
1
Tγ

(
∂θ + χ−HQh,−

)
, θ ∈

(
0, 1

2

)
1

Tγ+χ+T+
Σ

(
∂θ + χ+Hϕ+

)
, θ ∈

(
1
2 , 1
)
.

(3.11)
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To compute the return map and time, first note that each of the quadratics (3.3)
Poisson commutes with ϕ+ of the form (3.5). Hence each of these quadratics is
constant along the Hamilton flow of Hϕ+ . An easy calculation upon differentiating

(3.5) yields that the quantity 1
2

∑m
j=1

(
xjϕ

+
xj + xj+mϕ

+
xj+m

)
maybe expressed in

terms of the same quadratic functions and is thus also constant along the Hamilton
flow of Hϕ+ . Thus T+

Σ (3.10) is constant along the Hamilton flow of Hϕ+ . The
return map and time of (3.11) are now easily computed to be eHϕ+ ◦ eHQh,− and
TΣ respectively.

Finally, with the return map and time of the Poincare section Σ being the same as
in the model case, a Moser style argument maybe applied to complete the proof. �

In the proof above we have modified arguments from [16] Thm. 2.7 from the
elliptic case. A general non-degenerate case appears for geodesic flows in [31]. We
shall call a chart κ : Ω0

γ → Ωγ given by the Proposition above a Darboux-Reeb
chart near γ.

Next fix a constant δ ∈
(
0, 1

2

)
. Define a dilation on each Darboux-Reeb chart

%δ : Ω0
γ → Ω0

γ

%δ (x0;x1, . . . , x2m) =
(
x0;hδx1, . . . , h

δx2m

)
and also denote by %δ : Ωγ → Ωγ the corresponding dilation of Ωγ . For each
subset S of Ω0

γ (or Ωγ) we denote by Sδ := %δ (S) its (h-dependent) image under
the dilation. We also denote by S̃ ⊂ T ∗X the inverse image under the projection
π : T ∗X → X. Letting Γ := {γv}Mv=1 be the set of all primitive Reeb orbits, we set
Ω := ∪Mv=1Ωγv . Below let Γ ⊂ Ω ⊂ Ω be any subcover of the system of Darboux-
Reeb charts and denote Cε,T := BR2m (ε) × (−T, T )x0

⊂ Rnx the cylinder of radius
ε and height T in Euclidean space. We now have the following elementary lemma.

Lemma 3.3. For each δ ∈
(
0, 1

2

)
, T > 0 there exists an ε > 0 of the following

significance: each point x ∈ X \ Ωδ has a Darboux chart ϕx : Nx
∼−→ Cεhδ,T ⊂ Rn,

Nx ⊂ X \ Γ, centered at x satisfying

(3.12)
(
ϕ−1
x

)∗
a = dx0 +

m∑
j=1

(xjdxj+m − xj+mdxj) .

Proof. The Reeb trajectory γx := etR (x) ,−T < t < T , x ∈ X \Ωδ, being non-self-
intersecting the existence of a chart of height T is similar to the Darboux theorem. It
only remains to show that one may choose a chart into a cylinder of radius εhδ for ε
uniform in h. By compactness, a radius of an h-independent size ε = O (1) works for
points in the h-independent set x ∈ X\Ω0, for Ω0 ⊂ Ω. For points x ∈ Ω̄0\Ωδ, non-
resonance implies that the linearizations

(
P+
γ

)k − (P+
γ

)l, k, l ∈ Z, of the Poincare
return maps P kΣ − P lΣ (3.6) at 0 are invertible. Here the Poincare sections are
again given by {x0 = 0} in terms of the Darboux-Reeb coordinates on Ω0. One
may hence shrink Ω0 to arrange

∥∥P kΣ (x)− P lΣ (x)
∥∥ ≥ C ‖(x1, . . . x2m)‖ , ∀x ∈ Ω̄0,

|k| ≤ NT , |l| ≤ NT , where NT := maxγ∈Γ
T
Tγ

. From here one finds a uniform
ε such that ∀x ∈

(
Ω̄0 \ Ωδγ

)
∩ {x0 = 0} the first N iterates under PΣ of the ball

BR2m

(
εxh

δ
)
are disjoint. The Reeb flow-outs etR

[
BR2m

(
εxh

δ
)]
,−T < t < T , of

the balls being non-self-intersecting, a chart satisfying (3.12) comes from a Moser
style argument. �



16 NIKHIL SAVALE

For each Darboux chart ϕx : Nx
∼−→ Cεhδ,T ⊂ Rn as above we set N0

x :=

ϕ−1
x

(
C εhδ

8 ,T8

)
. The chart is called trivialized if it comes equipped with an or-

thonormal trivialization of the spin bundle. Below for each h-independent constant
c we denote by a shorthand the h-dependent constant cδ := chδ .

We now come to the construction of dynamical partitions. Below, the energy
levels ΣDI above are as in (2.40). Let T > 0, τ > 0, δ ∈

(
0, 1

2

)
and Γ ⊂ Ω ⊂ Ω be

a subcover of the system of Darboux-Reeb charts as before. A (Ω, τ, δ)-microlocal
partition of unity is defined to be a collection of zeroth-order pseudo-differential
operators P =

{
Au ∈ Ψ0

δ (X) |0 ≤ u ≤ Nh
}
∪
{
Bv ∈ Ψ0

δ (X) |1 ≤ v ≤M
}
satisfying

Nh∑
u=0

Au +

M∑
v=1

Bv = 1

Nh = O
(
h−δ

)
WF (A0) ⊂ U0 ⊂ T ∗X \ ΣD[− τδ64 ,

τδ
64 ]

WF (Au) b Uu ⊂ ΣD[−τδ,τδ] ∩ Ñ
0
xu , 1 ≤ u ≤ N

WF (Bv) b Vv ⊂ ΣD[−τδ,τδ] ∩ Ω̃δγv , 1 ≤ v ≤M(3.13)

for some open cover {Uu}Nu=0∪{Vv}
M
v=1 of T ∗X and for some collection of trivialized

Darboux charts N := {Nxu}
N
u=1 ⊂ X \ Γ . For such a partition P define the pairs

of indices

IP = {(u, u′) |u ≤ u′, WF (Au) ∩WF (Au′) 6= ∅}
JP = {(u, v) |WF (Au) ∩WF (Bv) 6= ∅} .(3.14)

An augmentation (P;V,W) of this partition consists of an additional collection of
open sets V =

{
V 1
uu′

}
(u,u′)∈IP

∪
{
V 2
uv

}
(u,v)∈JP

,W =
{
W 1
uu′

}
(u,u′)∈IP

∪
{
W 2
uv

}
(u,v)∈JP

satisfying

WF (Au) ∩WF (Au′) ⊂ W 1
uu′

∩
WF (Au) ∪WF (Au′) ⊂ V 1

uu′ b ΣD[−2τδ,2τδ]
∩ Ñxu ,

WF (Au) ∩WF (Bv) ⊂ W 2
uv

∩
WF (Au) ∪WF (Bv) ⊂ V 2

uv b ΣD[−2τδ,2τδ]
∩ Ñxu .(3.15)

Next with d = σ (D), for each pair of indices in (3.14) we set

Tuu′ :=
1

inf(g,v)∈Guu′×S0
δ (X;U(S)) |Hg,vd|

,(3.16)

Suv :=
1

inf(g,v)∈Huv×S0
δ (X;U(S)) |Hg,vd|

, with(3.17)

Guu′ :=
{
g ∈ S0

δ (X; [0, 1]) | g|W 1
uu′

= 1, g|(V 1
uu′)

c = 0
}

(3.18)

Huv :=
{
g ∈ S0

δ (X; [0, 1]) | g|W 2
uv

= 1, g|(V 2
uv)c = 0

}
(3.19)
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and |Hg,vd| := sup ‖{v∗dv, g}‖ with the bracket being computed in terms of the
chosen and induced trivialization/coordinates on Nxu , Ñxu . A function in Guu′ or
Huv shall be referred to as a trapping/microlocal weight function.

Finally, the extension/trapping time of an augmented (Ω, τ, δ)-partition (P;V,W)
is set to be

(3.20) T(P;V,W) := min
{

min {Tuu′}(u,u′)∈IP ,min {Suv}(u,v)∈JP

}
.

Proposition 3.4. Let T > 0, δ ∈
(
0, 1

2

)
and Γ ⊂ Ω ⊂ Ω be a subcover. Then for

each τ sufficiently small one has an augmented (Ω, τ, δ)-partition of unity (P;V,W)
with

(3.21) T(P;V,W) > T.

Proof. By Lemma 3.3 there exists ε > 0 such that each x ∈ X \Ωδ has a Darboux
chart ϕx : Nx

∼−→ Cεhδ,T ⊂ Rn centered at x of radius εδ = εhδ and height T . Next
with (x′′, ξ′′) = (xm+1, . . . , x2m; ξm+1, . . . , ξ2m) being a subset of the coordinates
on R2n

x,ξ set C ′′εδ,T :=
{
x′′2 + ξ′′2 < ε2

δ , −T < x0 < T
}
⊂ R2n

x,ξ. Also for each τ > 0,
set

Uεδ,τδ,T :=

ξ2
0 + 2

m∑
j=1

µj
(
x2
j + ξ2

j

)
< τ2

δ ,

x′′2 + ξ′′2 <
(εδ

2

)2

, −T
2
< x0 <

T

2

}
⊂ C ′′εδ,T .(3.22)

Then by the preliminary Birkhoff normal form procedure of [26] Sec. 5 (eqns
5.1, 5.5, 5.6, 5.7, 5.8) there exists 0 < τ � 1 sufficiently small of the following
significance: there is a neighborhood Mu ⊂ Ñxu of Ñ0

xu ∩ ΣD0 , a Hamiltonian
symplectomorphism

κu := eHf1 ◦ eHf0 :Uεδ,τδ,T →Mu

κu (x0, 0, x
′′; 0, 0, ξ′′) =

(
x0,−

ξ′′√
2
,
x′′√

2
;−1,

x′′√
2
,
ξ′′√

2

)
(see [26] pgs. 1812-1813 for f0, f1) in terms of the chosen coordinates on each, a self-
adjoint endomorphism cA ∈ C∞ (Uεδ,τδ,T ; iu (2m)) and functions {rj ∈ C∞ (Uεδ,τδ,T )}2mj=0

vanishing to second order along ΣD0 such that

eicA
[(
eHf1 ◦ eHf0

)∗
d
]
e−icA = H1 + σjrj , with

H1 := ξ0σ0 +

m∑
j=1

(2µj)
1
2 (xjσ2j−1 + ξjσ2j) .(3.23)

Taylor expand r0 =
∑
r00 (x0, x

′′; ξ0, ξ
′′) ξ2

0 + r1
jxj + r2

j ξj , with r1
j , r

2
j vanishing to

first order along ΣD0 . A further conjugation of the above (3.23) by e
[
r1
j (2µj)

− 1
2 σ2j−1+r2

j (2µj)
− 1

2 σ2j

]
σ0

sets r1
j = r2

j = 0 while a symplectic change of variables in x0 sets r00 = 0. Now set(
θ̃0, θ̃1, . . . , θ̃2m

)
:=
(
ξ0, (2µ1)

1
2 x1, (2µ1)

1
2 ξ1, . . . , (2µm)

1
2 xm, (2µm)

1
2 ξm

)
(3.24)

+ (0, r1, . . . , r2m)

θ̃′ =
(
θ̃1, . . . , θ̃2m

)
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and note from (3.23) that the eigenvalues of the symbol d are ±
∣∣∣θ̃∣∣∣. We clearly

have

κ−1
u (Mu) ∩ ΣD0 = Uεδ,τδ,T ∩

{
θ̃ = 0

}
= Uεδ,τδ,T ∩ {ξ0 = x1 = ξ1 = . . . = xm = ξm = 0}(3.25)

and we may set

θj =
θ̃j∣∣∣θ̃∣∣∣ ∈ C∞

(
Uεδ,τδ,T \ ΣD0 ;Sn−1

)
.(3.26)

If we denote by oN the set of functions that vanish to order N along ΣD0 , we have{
θ̃0, x0

}
− 1 = o1{

θ̃j , x0

}
= o1,j ≥ 1,{

θ̃j , x
′′
}

= o1,j ≥ 0,{
θ̃j , ξ

′′
}

= o1,j ≥ 0,{
θ̃0, θ̃j

}
= o2,j ≥ 0,{

θ̃j , θ̃k

}
or
{
θ̃j , θ̃k

}
− 1 = o1,k > j ≥ 0,

rj = o2,j ≥ 0.(3.27)

By (3.22), (3.25) Uεδ,τδ,T denotes a collar neighborhood of radius τδ of ΣD0 . Hence
by shrinking τ if necessary, we may assume∣∣∣{θ̃j , x0

}∣∣∣ ≤ 2, j ≥ 0,∣∣∣{∣∣∣θ̃∣∣∣ , x0

}∣∣∣ ≤ 2,
∣∣∣θ̃∣∣∣ 6= 0,∣∣∣∣∣∣

 θ̃j∣∣∣θ̃∣∣∣ , x0


∣∣∣∣∣∣ ≤ 4∣∣∣θ̃∣∣∣ ,

∣∣∣θ̃∣∣∣ 6= 0, j ≥ 0,

∣∣∣∣ 1

εδ

{
θ̃j , |(x′′, ξ′′)|

}∣∣∣∣ ≤ 1

T
, j ≥ 0,∣∣∣∣ 1

εδ

{∣∣∣θ̃∣∣∣ , |(x′′, ξ′′)|}∣∣∣∣ ≤ 1

T
,

∣∣∣θ̃∣∣∣ 6= 0,∣∣∣∣∣∣ 1

εδ

 θ̃j∣∣∣θ̃∣∣∣ , |(x′′, ξ′′)|

∣∣∣∣∣∣ ≤ 1

T
∣∣∣θ̃∣∣∣ ,

∣∣∣θ̃∣∣∣ 6= 0, j ≥ 0,

∣∣∣{θ̃0, θ̃j

}∣∣∣ ≤
∣∣∣θ̃∣∣∣
T
, j ≥ 0,

∣∣∣{θ̃0,
∣∣∣θ̃∣∣∣}∣∣∣ ≤

∣∣∣θ̃∣∣∣
T
,

∣∣∣θ̃∣∣∣ 6= 0,
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θ̃0,

θ̃j∣∣∣θ̃∣∣∣

∣∣∣∣∣∣ ≤ 1

T
,

∣∣∣θ̃∣∣∣ 6= 0, j ≥ 0,

1

4

ξ2
0 + 2

m∑
j=1

µj
(
x2
j + ξ2

j

) ≤ 2m∑
j=0

θ̃2
j ≤ 4

ξ2
0 + 2

m∑
j=1

µj
(
x2
j + ξ2

j

)(3.28)

on Uεδ,τδ,T and set

Ũεδ,τδ,T :=


2m∑
j=0

θ̃2
j <

(τδ
8

)2

, x′′2 + ξ′′2 <
(εδ

8

)2

, −T
8
< x0 <

T

8

 ⊂ Uεδ,τδ,T .
It is clear from the above construction that a finite set

{
κpu

(
Ũ 2εδ

3 ,
2τδ
3 , 2T3

)}Nh
u=1

,

Nh = O
(
h−δ

)
, covers ΣD

[− τδ16 ,
τδ
16 ]
\ Ω̃δγv . Next define

U0 = T ∗X \ ΣD[− τδ32 ,
τδ
32 ]

Uu = κpu

(
Ũ 2εδ

3 ,
2τδ
3 , 2T3

)
Vv = ΣD[− τδ8 ,

τδ
8 ] ∩ Ω̃δγv .

Choose P =
{
Au ∈ Ψ0

δ

}
0≤u≤N ∪

{
Bv ∈ Ψ0

δ (X)
}

1≤v≤M to be any microlocal parti-
tion of unity subordinate to this cover. We then augment this partition by

W 1
uu′ = κpu

(
Ũεδ,τδ,T

)
⊂ Ñxu

W 2
uv = κpu

(
Ũεδ,τδ,T

)
⊂ Ñxu

V 1
uu′ = κpu

(
Ũ4εδ,4τδ,4T

)
⊂ Ñxu

V 2
uv = κpu

(
Ũ4εδ,4τδ,4T

)
⊂ Ñxu

where (u, u′) ∈ IP and (u, v) ∈ JP lie in the corresponding index sets. Clearly the
above satisfy (3.13), (3.15).

It remains to verify (3.21). To this end, let χ ∈ C∞c ([−4, 4] ; [0, 1]), be a cutoff
such that χ = 1 on [−2, 2] and |χ′| ≤ 1. For ρ ∈

(
0, 1

8

)
fixed, define a function ϕρ ∈

C∞
(
[−1, 1]θ0 ; [0, 1]

)
such that ϕρ (θ0) =

{
1; for θ0 ∈ [1− ρ, 1]

0; for θ0 ∈ [−1, 1− 2ρ]
and

∣∣ϕ′ρ∣∣ ≤ 2
ρ .

Set

β
(
θ̃
)

:=

√∣∣∣θ̃∣∣∣2 − ϕρ (θ0)
∣∣∣θ̃′∣∣∣2

=

√∣∣∣θ̃0

∣∣∣2 + (1− ϕρ)
∣∣∣θ̃′∣∣∣2.

For θ0 ∈ [−1, 1− 2ρ], ϕρ = 0 and β
(
θ̃
)

=
∣∣∣θ̃∣∣∣. While for θ0 ∈ [1− 2ρ, 1], we have∣∣∣θ̃∣∣∣ ≥ √∣∣∣θ̃∣∣∣2 − ϕρ (θ0)

∣∣∣θ̃′∣∣∣2 = β
(
θ̃
)

=

√∣∣∣θ̃0

∣∣∣2 + (1− ϕρ)
∣∣∣θ̃′∣∣∣2 ≥ ∣∣∣θ̃0

∣∣∣ = θ0

∣∣∣θ̃∣∣∣ ≥
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1
2

∣∣∣θ̃∣∣∣ for ρ ∈ (0, 1
8

)
as chosen. Thus

∣∣∣θ̃∣∣∣ ≥ β
(
θ̃
)
≥ 1

2

∣∣∣θ̃∣∣∣in both cases and we may
for each 1 ≤ u ≤ N , define the microlocal weight function

gu :=
(
κ−1
pu

)∗
χ

16β
(
θ̃
)

τδ

χ

(
16x0

T

)
χ

(
16 |(x′′, ξ′′)|

εδ

)
∈ C∞c

(
κpu

(
Ũεδ,τδ,T

))
in terms of the relevant coordinates on Ũεδ,τδ,T .

Next, with v
ρ
t ∈ C∞

(
Sn−1;U

(
C2m

))
as in Lemma 2.1, we choose for each

1 ≤ u ≤ N a symbol ṽu ∈ S0
δ (X;U (S)) satisfying

ṽu :=

v
ρ

8|θ̃|/τδ (θ) ;
∣∣∣θ̃∣∣∣ < τδ

8

v
ρ
1 (θ) ;

∣∣∣θ̃∣∣∣ ≥ τδ
8 ,

on κpu

(
Ũεδ,τδ,T

)
, with θ̃, θ given by (3.24), (3.26). Since the conjugate of the

symbol d of the Dirac operator is eicAde−icA = σj θ̃j = i
∣∣∣θ̃∣∣∣ c (θ) by (3.23) on

κpu

(
Ũε,τ,T

)
, we may compute from Lemma 2.1

(3.29) (ṽu)
∗
eicAde−icA ṽu =

θ̃0σ0 −
[∑2m

j=1 θ̃jσj

]
;
∣∣∣θ̃∣∣∣ ≤ τ

16∣∣∣θ̃∣∣∣ vρ1 (θ)
∗
c (θ) vρ1 (θ) ;

∣∣∣θ̃∣∣∣ ≥ τ
8

on κpu
(
Ũε,τ,T

)
. Furthermore; Lemma 2.1 also gives

∣∣∣θ̃∣∣∣ vρ1 (θ)
∗
c (θ) vρ1 (θ) =


∣∣∣θ̃∣∣∣σ0; θ0 ≤ 1− ρ,∣∣∣θ̃∣∣∣ [aρ0,1 (θ0)σ0 + aρ1,1 (θ0)

∑2m
j=1 θjσj

]
; θ0 > 1− ρ.

Choose vu ∈ S0
δ (X;U (S)) to be a symbol satisfying

(3.30) vu = e−icA ṽu

on κpu
(
Ũε,τ,T

)
.

We now compute for
∣∣∣θ̃∣∣∣ > τδ

8 , θ0 ≤ 1− 2ρ;

|Hgu,vu (d)| = |{v∗udvu, gu}|

=
∣∣∣{∣∣∣θ̃∣∣∣ , gu}σ0

∣∣∣
=

∣∣∣∣∣16

T

{∣∣∣θ̃∣∣∣ , x0

} χ′ ( 16x0

T

)
χ
(

16x0

T

) gu
+

16

εδ

{∣∣∣θ̃∣∣∣ , |(x′′, ξ′′)|} χ′
(

16|(x′′,ξ′′)|
εδ

)
χ
(

16|(x′′,ξ′′)|
εδ

) gu

∣∣∣∣∣∣∣∣
≤ 64

T
(3.31)

using (3.28).
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While for
∣∣∣θ̃∣∣∣ > τδ

8 , 1− 2ρ ≤ θ0 ≤ 1− ρ;

|Hgu,vu (d)| = |{v∗udvu, gu}|

=
∣∣∣{∣∣∣θ̃∣∣∣ , gu}σ0

∣∣∣
=

∣∣∣∣∣16

T

{∣∣∣θ̃∣∣∣ , x0

} χ′ ( 16x0

T

)
χ
(

16x0

T

) gu+

+
16

εδ

{∣∣∣θ̃∣∣∣ , |(x′′, ξ′′)|} χ′
(

16|(x′′,ξ′′)|
εδ

)
χ
(

16|(x′′,ξ′′)|
εδ

) gu

+
8ϕρ
βτδ

{∣∣∣θ̃∣∣∣ , ∣∣∣θ̃′∣∣∣2} χ′
(

16β(θ̃)
τδ

)
χ

(
16β(θ̃)
τδ

) gu

+
8ϕ′ρ
βτδ

∣∣∣θ̃∣∣∣ , θ̃0∣∣∣θ̃∣∣∣
∣∣∣θ̃′∣∣∣2

χ′
(

16β(θ̃)
τδ

)
χ

(
16β(θ̃)
τδ

) gu
∣∣∣∣∣∣∣∣

≤ 84

ρT
(3.32)

using (3.28).
Now for

∣∣∣θ̃∣∣∣ > τδ
8 , θ0 > 1− ρ; we compute

|Hgu,vu (d)| = |{v∗udvu, gu}|

=

∣∣∣∣∣∣
∣∣∣θ̃∣∣∣

aρ0,1 (θ0)σ0 + aρ1,1 (θ0)

2m∑
j=1

θjσj

 , gu

∣∣∣∣∣∣

≤
∣∣∣{∣∣∣θ̃∣∣∣ , gu}∣∣∣+

∣∣∣∣∣∣
∣∣∣θ̃∣∣∣
aρ0,1 (θ0)σ0 + aρ1,1 (θ0)

2m∑
j=1

θjσj , gu


∣∣∣∣∣∣
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with

∣∣∣{∣∣∣θ̃∣∣∣ , gu}∣∣∣ =

∣∣∣∣∣16

T

{∣∣∣θ̃∣∣∣ , x0

} χ′ ( 16x0

T

)
χ
(

16x0

T

) gu
+

16

εδ

{∣∣∣θ̃∣∣∣ , |(x′′, ξ′′)|} χ′
(

16|(x′′,ξ′′)|
εδ

)
χ
(

16|(x′′,ξ′′)|
εδ

) gu

+
8

βτδ

{∣∣∣θ̃∣∣∣ , θ̃2
0

} χ′( 16β(θ̃)
τδ

)
χ

(
16β(θ̃)
τδ

) gu
∣∣∣∣∣∣∣∣

≤ 84

T
(3.33)

and ∣∣∣∣∣∣
∣∣∣θ̃∣∣∣
aρ0,1 (θ0)σ0 + aρ1,1 (θ0)

2m∑
j=1

θjσj , gu


∣∣∣∣∣∣

=

∣∣∣∣∣∣
16
∣∣∣θ̃∣∣∣
T

(
aρ0,1

)′
σ0

 θ̃0∣∣∣θ̃∣∣∣ , x0

 χ′
(

16x0

T

)
χ
(

16x0

T

) gu
+

16
∣∣∣θ̃∣∣∣
T

(
aρ1,1

)′ 2m∑
j=1

θjσj

 θ̃0∣∣∣θ̃∣∣∣ , x0

 χ′
(

16x0

T

)
χ
(

16x0

T

) gu
+

16
∣∣∣θ̃∣∣∣
T

aρ1,1

 2m∑
j=1

 θ̃j∣∣∣θ̃∣∣∣ , x0

σj

 χ′
(

16x0

T

)
χ
(

16x0

T

) gu

+ 16
∣∣∣θ̃∣∣∣ (aρ0,1)′ σ0

1

εδ

 θ̃0∣∣∣θ̃∣∣∣ , |(x′′, ξ′′)|

χ′
(

16|(x′′,ξ′′)|
εδ

)
χ
(

16|(x′′,ξ′′)|
εδ

) gu

+ 16
∣∣∣θ̃∣∣∣ (aρ1,1)′

 2m∑
j=1

θjσj

 1

εδ

 θ̃0∣∣∣θ̃∣∣∣ , |(x′′, ξ′′)|

χ′
(

16|(x′′,ξ′′)|
εδ

)
χ
(

16|(x′′,ξ′′)|
εδ

) gu

+ 16
∣∣∣θ̃∣∣∣ aρ1,1

 2m∑
j=1

1

εδ

 θ̃j∣∣∣θ̃∣∣∣ , |(x′′, ξ′′)|
σj

 χ′
(

16|(x′′,ξ′′)|
εδ

)
χ
(

16|(x′′,ξ′′)|
εδ

) gu

+
∣∣∣θ̃∣∣∣ 8

βτδ

(
aρ0,1

)′
σ0

 θ̃0∣∣∣θ̃∣∣∣ , θ̃2
0


χ′
(

16β(θ̃)
τδ

)
χ

(
16β(θ̃)
τδ

) gu
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+
∣∣∣θ̃∣∣∣ 8

βτδ

(
aρ0,1

)′ 2m∑
j=1

θjσj

 θ̃0∣∣∣θ̃∣∣∣ , θ̃2
0


χ′
(

16β(θ̃)
τδ

)
χ

(
16β(θ̃)
τδ

) gu

+
∣∣∣θ̃∣∣∣ 8

βτδ
aρ1,1

 2m∑
j=1

 θ̃j∣∣∣θ̃∣∣∣ , θ̃2
0

σj

 χ′
(

16β(θ̃)
τδ

)
χ

(
16β(θ̃)
τδ

) gu
∣∣∣∣∣∣∣∣

≤
(

8

ρ

)2
84

T
.(3.34)

using Lemma 2.1 and (3.28).

Now for τδ
16 ≤

∣∣∣θ̃∣∣∣ ≤ τδ
8 , χ

(
16β(θ̃)
τδ

)
= 1 and we may compute

|Hgu,vu (d)| = |{v∗udvu, gu}|

=

∣∣∣∣{vρ8|θ̃|/τδ∗ [σj θ̃j] vρ8|θ̃|/τδ , gu
}∣∣∣∣

=

∣∣∣∣∣16

T
v
ρ

8|θ̃|/τδ
∗
[
σj

{
θ̃j , x0

}]
v
ρ

8|θ̃|/τδ
χ′
(

16x0

T

)
χ
(

16x0

T

) gu
+

128

τδT

[
∂tv

ρ
t |t=8|θ̃|/τδ

]∗ [
σj θ̃j

] [
v
ρ

8|θ̃|/τδ

]{∣∣∣θ̃∣∣∣ , x0

} χ′ ( 16x0

T

)
χ
(

16x0

T

) gu
+

128

τδT

[
v
ρ

8|θ̃|/τδ

]∗ [
σj θ̃j

] [
∂tv

ρ
t |t=8|θ̃|/τδ

]{∣∣∣θ̃∣∣∣ , x0

} χ′ ( 16x0

T

)
χ
(

16x0

T

) gu
+

16

T

[
∂θkv

ρ
t |t=8|θ̃|/τδ

]∗ [
σj θ̃j

] [
v
ρ

8|θ̃|/τδ

] θ̃k∣∣∣θ̃∣∣∣ , x0

 χ′
(

16x0

T

)
χ
(

16x0

T

) gu
+

16

T

[
v
ρ

8|θ̃|/τδ

]∗ [
σj θ̃j

] [
∂θkv

ρ
t |t=8|θ̃|/τδ

] θ̃k∣∣∣θ̃∣∣∣ , x0

 χ′
(

16x0

T

)
χ
(

16x0

T

) gu

+
16

εδ
v
ρ

8|θ̃|/τδ
∗
[
σj

{
θ̃j , |(x′′, ξ′′)|

}]
v
ρ

8|θ̃|/τδ

χ′
(

16|(x′′,ξ′′)|
εδ

)
χ
(

16|(x′′,ξ′′)|
εδ

) gu
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+
128

τδεδ

[
∂tv

ρ
t |t=8|θ̃|/τδ

]∗ [
σj θ̃j

] [
v
ρ

8|θ̃|/τδ

]{∣∣∣θ̃∣∣∣ , |(x′′, ξ′′)|} χ′
(

16|(x′′,ξ′′)|
εδ

)
χ
(

16|(x′′,ξ′′)|
εδ

) gu

+
128

τδεδ

[
v
ρ

8|θ̃|/τδ

]∗ [
σj θ̃j

] [
∂tv

ρ
t |t=8|θ̃|/τδ

]{∣∣∣θ̃∣∣∣ , |(x′′, ξ′′)|} χ′
(

16|(x′′,ξ′′)|
εδ

)
χ
(

16|(x′′,ξ′′)|
εδ

) gu

+
16

εδ

[
∂θkv

ρ
t |t=8|θ̃|/τδ

]∗ [
σj θ̃j

] [
v
ρ

8|θ̃|/τδ

] θ̃k∣∣∣θ̃∣∣∣ , |(x′′, ξ′′)|

χ′
(

16|(x′′,ξ′′)|
εδ

)
χ
(

16|(x′′,ξ′′)|
εδ

) gu

+
16

εδ

[
v
ρ

8|θ̃|/τδ

]∗ [
σj θ̃j

] [
∂θkv

ρ
t |t=8|θ̃|/τδ

] θ̃k∣∣∣θ̃∣∣∣ , |(x′′, ξ′′)|

χ′
(

16|(x′′,ξ′′)|
εδ

)
χ
(

16|(x′′,ξ′′)|
εδ

) gu

∣∣∣∣∣∣∣∣
≤
(

8

ρ

)4
84

T

(3.35)

using Lemma 2.1 and (3.28).

Finally for
∣∣∣θ̃∣∣∣ ≤ τδ

16 again χ
(

16β(θ̃)
τδ

)
= 1 and we may use (3.29) to compute

|Hgu,vu (d)| = |{v∗udvu, gu}|

=

∣∣∣∣∣∣
θ̃0σ0 −

 2m∑
j=1

θ̃jσj

 , gu

∣∣∣∣∣∣

=

∣∣∣∣∣16

T

{
θ̃0, x0

}
σ0

χ′
(

16x0

T

)
χ
(

16x0

T

) gu
− 16

T

 2m∑
j=1

{
θ̃j , x0

}
σj

 χ′
(

16x0

T

)
χ
(

16x0

T

) gu
+

16

εδ

{
θ̃0, |(x′′, ξ′′)|

}
σ0

χ′
(

16|(x′′,ξ′′)|
εδ

)
χ
(

16|(x′′,ξ′′)|
εδ

) gu

−16

εδ

 2m∑
j=1

{
θ̃j , |(x′′, ξ′′)|

}
σj

 χ′
(

16|(x′′,ξ′′)|
εδ

)
χ
(

16|(x′′,ξ′′)|
εδ

) gu

∣∣∣∣∣∣∣∣
≤ 82

T
(3.36)

using (3.28). Since ρ ∈
(
0, 1

8

)
is fixed and T arbitrary, the proposition follows from

(3.31)-(3.36). �
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Next, given an augmented (Ω, τ, δ)-partition of unity (P;V,W) the trace (3.1)
from the Helffer-Sjöstrand formula is clearly the sum of traces of the following four
kinds

T θAu,Av (D) :=
1

π

ˆ
C
∂̄f̃ (z) θ̌

(
λ− z√
h

)
tr

[
Au

(
1√
h
D − z

)−1

Av

]
dzdz̄

T θAu,Bv (D) :=
1

π

ˆ
C
∂̄f̃ (z) θ̌

(
λ− z√
h

)
tr

[
Au

(
1√
h
D − z

)−1

Bv

]
dzdz̄

T θBv,Au (D) :=
1

π

ˆ
C
∂̄f̃ (z) θ̌

(
λ− z√
h

)
tr

[
Bv

(
1√
h
D − z

)−1

Au

]
dzdz̄

T θBu,Bv (D) :=
1

π

ˆ
C
∂̄f̃ (z) θ̌

(
λ− z√
h

)
tr

[
Bu

(
1√
h
D − z

)−1

Av

]
dzdz̄.(3.37)

Next we state a modification of [26] Lemma 3.3. Below V 1
uu′ , W

1
uu′ , Tuu′ are as in

(3.15), (3.16).

Lemma 3.5. Let D′ ∈ Ψ1
cl (X;S) be essentially self-adjoint such that D = D′

microlocally on V 1
uu′ . Then for θ ∈ C∞c ((T0, Tuu′) ; [0, 1]) one has

T θAu,Av (D) = T θAu,Av (D′) mod h∞.

Proof. The lemma is essentially the same as [26] Lemma 3.3 with a couple of
changes. First our cutoffs lie in the more exotic class Ψ0

δ (X). However these
have the same basic composition and wavefront properties needed in the proof of
[26]. Next our definition of trapping time (3.16) is more general than that in [26]
eq. 3.5 since an additional conjugation by a unitary symbol v ∈ S0

δ (X;U (E))
is allowed in the definition (3.16) here. This is however easily overcome; let
θ ∈ C∞c

((
T ′0, T

0
uu′

)
; [0, 1]

)
be such that T0 < T ′0, T

0
uu′ < Tuu′ . There hence ex-

ists (g, v) ∈ Guu′ × S0 (X;U (S)) with |Hg,vd| < 1
Suu′

. We choose V ∈ Ψ0
δ (X;S)

unitary with σ (V) = [v] and note Hg,vd = Hg (V∗dV) in terms a quantization defined
using the chosen coordinates/trivialization on Nxu . Now, the proof of [26] Lemma
3.3 carries through with the conjugates V∗DV, V∗D′V, V∗AuV and V∗AvV. �

We also note that similar lemmas as above hold for the traces T θAu,Bv (D) and
T θBv,Au (D) in (3.37). Next we show that the first three traces in (3.37) are O (h∞)

when spt (θ) is contained within the extension time.

Lemma 3.6. Let (P;V,W) be an augmented (Ω, τ, δ)-partition of unity. Then for
each θ ∈ C∞c ((T0, T ) ; [−1, 1]) with T < T(P;V,W) one has

T θAu,Av (D) , T θAu,Bv (D) , T θBv,Au (D) = O (h∞) .

Proof. The proof is the same as [26] Lemma 3.1 (cf. eq. 3.2). One only has to
quantify the smallness of spt (θ) assumed therein. The proof in [26] carries through
in so far as spt (θ) is contained in each of {(T0, Tuu′)}(u,u′)∈IP , {(T0, Suv)}(u,v)∈JP
as required by Lemma 3.5. This is guaranteed for T < T(P;V,W) by (3.20). �

Given θ,Ω there exists by 3.4 an (Ω, τ, δ)-partition of unity with an extension
time large enough to guarantee the hypothesis of Lemma 3.6. Splitting the trace
in such fashion, it then suffices to consider the asymptotics of the fourth trace
T θBu,Bv (D) in (3.37). Since Bu and Bv have disjoint micro-supports for u 6= v; it
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suffices to consider T θBv,Bv (D). Since these are localized near the Reeb orbits, they
shall first require an understanding of the Birkhoff normal form for D near each
orbit done in the next section. We shall return to T θBv,Bv (D) in Section 5.

4. Birkhoff normal form near a Reeb orbit

In this section we derive a Birkhoff normal form for the Dirac operator in a
neighborhood of each Reeb orbit. First, consider a Darboux-Reeb chart near γ
and choose an orthonormal frame

{
ej = wkj ∂xk

}
, 0 ≤ j ≤ 2m for the tangent

bundle on Ωγ . Here we use the convention that x0 = θ is the circular variable on
Ω0
γ ⊂ S1 × R2m and shall use these interchangeably. We hence have

(4.1) wkj gklw
l
r = δjr,

where gkl is the metric in these coordinates and the Einstein summation convention
is being used. Let Γljk be the Christoffel symbols for the Levi-Civita connection
in the orthonormal frame ei satisfying ∇ejek = Γljkel. This orthonormal frame
induces an orthonormal frame uj , 1 ≤ j ≤ 2m, for the spin bundle S. We further
choose a local orthonormal section l (x) for the Hermitian line bundle L and define
via ∇A0

ej l = Υj (x) l, 0 ≤ j ≤ 2m the Christoffel symbols of the unitary connection
A0 on L. In terms of the induced frame uj ⊗ l, 1 ≤ j ≤ 2m, for S ⊗ L the Dirac
operator (1.1) has the form (cf. [3] Section 3.3)

D = γjwkjPk + h

(
1

4
Γljkγ

jγkγl + Υjγ
j

)
, where(4.2)

Pk = h∂xk + iak,(4.3)

and the one form a is given by (3.4).
The expression in (4.2) is formally self-adjoint with respect to the Riemannian

density e0 ∧ . . . ∧ e2m =
√
gdx :=

√
gdx0 ∧ . . . ∧ dx2m with g = det (gij). To get

an operator self-adjoint with respect to the Euclidean density dx one expresses
the Dirac operator in the framing g

1
4uj ⊗ l, 1 ≤ j ≤ 2m. In this new frame the

expression (4.2) for the Dirac operator needs to be conjugated by g
1
4 and hence the

term hγjwkj g
− 1

4

(
∂xkg

1
4

)
added. Hence, the Dirac operator in the new frame has

the form
D =

[
σjwkj (ξk + ak)

]W
+ hE ∈ Ψ1

cl

(
Ω0
γ ;C2m

)
,

with σj = iγj , for some self-adjoint endomorphism E (x) ∈ C∞
(
Ω0
γ ; iu

(
C2m

))
.

The one form a is given in terms of these Darboux-Reeb coordinates by the same
formula (3.4)

a = ϕdθ +
1

2

m∑
j=1

(xjdxj+m − xj+mdxj) + a∞γ

with a∞γ denoting a form on Ωγ vanishing to infinite order along γ. Picking a cutoff
χγ ∈ C∞c (Ωγ) that equals 1 on Ωγ we may extend the one form to all of S1 ×R2m

via

a = ϕdθ +
1

2

m∑
j=1

(xjdxj+m − xj+mdxj)︸ ︷︷ ︸
=:a0

+χγa
∞
γ
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The functions wkj are extended such that

(
wkj ∂xk ⊗ dxj

)∣∣
(K0

s )c
= ∂x0

⊗ dx0 +

m∑
j=1

µ
1
2
j

(
∂xj ⊗ dxj + ∂xj+m ⊗ dxj+m

)

(and hence g|(K0
s )c = dx2

0 +
∑m
j=1 µj

(
dx2

j + dx2
j+m

)
) outside a compact neighbor-

hood Ω0
γ b K0

s . The endomorphism E (x) ∈ C∞c
(
Rn; iu

(
C2m

))
is extended to

an arbitrary self-adjoint endomorphism of compact support. This now gives the
operator

D0 =
[
σjwkj

(
ξk + a0

k

)]W
+ χγσ

ja∞γ,j + hE ∈ Ψ1
cl

(
S1 × R2m;C2m

)
(4.4)

as a well defined formally self adjoint operators on S1 × R2m. Furthermore, the
symbols of D0 + i being elliptic in the class S0 (g) for the order functions g =√

1 +
∑2m
k=0 (ξk + ak)

2 it is essentially self adjoint (see [12] Ch. 8).

4.1. Birkhoff normal form for the Dirac operator. Next, we derive a Birkhoff
normal form for the Dirac operator (4.4) on S1 ×R2m. First consider the function

f0 :=

m∑
j=1

(xjxj+m + ξjξj+m) ∈ C∞
(
R2m

)
.

If Hf0
and etHf0 denote the Hamilton vector field and time t flow of f0 respectively

then it is easy to compute

e
π
4Hf0 (xj , ξj ;xj+mξj+m) =

(
xj + ξj+m√

2
,
−xj+m + ξj√

2
;
xj+m + ξj√

2
,
−xj + ξj+m√

2

)
.

We abbreviate (x′, ξ′) = (x1, . . . , xm; ξ1, . . . , ξm),
(x′′, ξ′′) = (xm+1, . . . , x2m; ξm+1, . . . , ξ2m) and (x, ξ) = (x0, x

′, x′′; ξ0, ξ
′, ξ′′).

Using Egorov’s theorem, the operator (4.4) is conjugated to

e
iπ
4h f

W
0 D0e

− iπ4h f
W
0 = dW0 , with

(4.5)

d0 = σjw0
j,f0

(ξ0 + ϕf0
) +
√

2
(
σjwkj,f0

ξk + σjwk+m
j,f0

xk

)
+ σjr∞j +O (h)(4.6)

where wkj,f0
=
(
e−

π
4Hf0

)∗
wkj

(4.7)

ϕf0
=
(
e−

π
4Hf0

)∗
ϕ

r∞j =
(
e−

π
4Hf0

)∗
χγa

∞
γ,j(4.8)
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Using the formulas (3.3), (3.5) we may also calculate

ϕf0
= Tγ + χ−Q̃h,− + χ+ϕ+

(
Q̃
)

with,

Q̃ej =
1

4

[
(xj − ξj+m)

2
+ (xj+m − ξj)2

]
Q̃hj =

1

2
(xNe+j − ξNe+j+m) (xNe+j+m − ξNe+j)

Q̃l,Re
j =

1

2
(xm−2j+2 − ξ2m−2j+2) (x2m−2j+1 − ξm−2j+1)

−1

2
(xm−2j+1 − ξ2m−2j+1) (x2m−2j+2 − ξm−2j+2)

Q̃l,Imj =
1

2
(xm−2j+1 − ξ2m−2j+1) (x2m−2j+1 − ξm−2j+1)

+
1

2
(xm−2j+2 − ξ2m−2j+2) (x2m−2j+2 − ξm−2j+2) and

Q̃h,− =
π

4

N−h∑
j=1

[
(xNe+j − ξNe+j+m)

2
+ (xNe+j+m − ξNe+j)

2
]

Next, set

ϕ̄f0
= ϕ̄ = Tγ + χ−Q̄h,− + χ+ϕ+

(
Q̄
)

with,(4.9)

Q̄ej =
1

4

[
ξ2
j+m + x2

j+m

]
Q̄hj = −1

2
xNe+j+mξNe+j+m

Q̄l,Re
j =

1

2
(x2m−2j+2ξ2m−2j+1 − x2m−2j+1ξ2m−2j+2)

Q̄l,Imj = −1

2
(x2m−2j+1ξ2m−2j+1 + x2m−2j+2ξ2m−2j+2) and

Q̄h,− =
π

4

N−h∑
j=1

[
ξ2
Ne+j+m + x2

Ne+j+m

]
(4.10)

Below denote by o′N , o
′′
N ⊂ S1

cl
(
T ∗S1 × R4m;Cl

)
the subspace of self-adjoint sym-

bols a : (0, 1]h → C∞
(
T ∗S1 × R4m; iu (2m)

)
such that each of the coefficients ak,

k = 0, 1, 2, . . . in its symbolic expansion vanishes to order N in (ξ0 + ϕ̄, x′, ξ′) and
(x′′, ξ′′) respectively. We also denote by o′N , o

′′
N the space of Weyl quantizations of

the respective symbols. One clearly has ϕf0 = ϕ̄+ o′1o
′′
1 . A Taylor expansion of d0

(4.6) now gives r0
j ∈ o′2, r1

j ∈ o′1o′′1 , r∞j ∈ o′′∞, 0 ≤ j ≤ 2m, such that

d0 =
√

2σj
(
w̄0
j (ξ0 + ϕ̄) + w̄kj ξk + w̄k+m

j xk
)

+ σj
(
r0
j + r1

j + r∞j
)

+O (h)

and where w̄kj (x0) = wkj (x0, 0, 0).
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On squaring using (4.1) we obtain(
dW0
)2

= QW0 + o′2o
′′
1 + o′′∞ +O (h) , with

Q0 =
[
ξ0 + ϕ̄ ξ′ x′

]  ḡ00 (x0) ḡk0 (x0) ḡ(k+m)0 (x0)
ḡ0l (x0) ḡkl (x0) ḡk(l+m) (x0)

ḡ0(l+m) (x0) ḡ(k+m)l (x0) ḡ(k+m)(l+m) (x0)

ξ0 + ϕ̄
ξ′

x′

 .
(4.11)

Here ḡkl (x0) = 2gkl (x0, 0, 0) and gkl the components of the inverse metric in Reeb
Darboux coordinates along the orbit and

ḡ00 (x0) =
1

T 2
γ |R|

2 .

Next we consider another function f1 of the form

f1 =
1

2

[
x′ ξ′

] [αm×m (x0) γm×m (x0)
γtm×m (x0) βm×m (x0)

] [
x′

ξ′

]
where α, β and γ are matrix valued functions of the given orders with α, β sym-
metric. An easy computation now shows

(
eHf1

)∗ ξ0 + ϕ̄
x′

ξ′

 = eΛ

ξ0 + ϕ̄
x′

ξ′

+ o′2 with

Λ (x0) =

0 0 0
0 0 −Im×m
0 Im×m 0

0 0 0
0 αm×m (x0) γm×m (x0)
0 γtm×m (x0) βm×m (x0)

 .
From the suitability assumption (1.7), we have that there exists a smooth matrix
valued functions α, β and γ such that

(
eHf1

)∗
Q0 =

[
ξ0 + ϕ̄ ξ′ x′

]
eΛt

 ḡ00 (x0) ḡk0 (x0) ḡ(k+m)0 (x0)
ḡ0l (x0) ḡkl (x0) ḡk(l+m) (x0)

ḡ0(l+m) (x0) ḡ(k+m)l (x0) ḡ(k+m)(l+m) (x0)

 eΛ

ξ0 + ϕ̄
ξ′

x′


= Q1 := ḡ00 (x0) (ξ0 + ϕ̄)

2
+

 m∑
j=1

µj
(
x2
j + ξ2

j

)

+ 2

m∑
j=1

(ξ0 + ϕ̄)
[
h0
j (x0) ξj + h1

j (x0)xj
]

+ o′3

(4.12)

and where ḡ00 (x0)
h0
j (x0)
h1
j (x0)

 = eΛt

 ḡ00 (x0)
ḡ0l (x0)

ḡ0(l+m) (x0)

 .
Next, if

f2 = (ξ0 + ϕ̄)
[ 1
µξ
′ 1

µx
′] [ 0 −Im×m

Im×m 0

] [
h0
j (x0)
h1
j (x0)

]
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we may compute

(4.13)
(
eHf2

)∗
Q1 = Q2 := ḡ00 (x0) (ξ0 + ϕ̄)

2
+

 m∑
j=1

µj
(
x2
j + ξ2

j

)+ o′3.

Finally, letting Lγ denote the length of the Reeb orbit note

Lγ = exp

{
−1

2

´ 1

0
dx0

(
g00
)−1/2 (

ln g00
)

´ 1

0
dx0 (g00)

−1/2

}
and set

a (x0) :=
(
g00
)1/2 ˆ θ

0

dθ′
(
g00
)−1/2

ln
[
TγLγ

(
g00
)1/2]

to compute

(4.14)
(
eHaξ

)∗
Q2 =

1

L2
γ

(ξ0 + ϕ̄)
2

+

 m∑
j=1

µj
(
x2
j + ξ2

j

)+ o′3.

Letting

H2 =
1

2

m∑
j=1

µj
(
x2
j + ξ2

j

)
,

using (4.11), (4.12), (4.13) and (4.14) Egorov’s theorem now gives

dW00 := e
i
haξ

W

e
i
h f

W
2 e

i
h f

W
1 dW0 e−

i
h f

W
1 e−

i
h f

W
2 e−

i
haξ

W

=

 2m∑
j=0

σjbj

W

+ ho0 with

(4.15)

2m∑
j=0

b2j =

(
1

L2
γ

(ξ0 + ϕ̄)
2

+ 2H2

)W
+ o′2o

′′
1 + o′′∞.

Another Taylor expansion in the variables (ξ0 + ϕ̄, x′, ξ′;x′′, ξ′′) givesA = (ajk (x0)) ∈
C∞

(
S1; so (n)

)
and rj,0 ∈ o′1o′′1 ,rj,1 ∈ o′2, rj,∞ ∈ o′′∞, j = 0, . . . , 2m, such that

e−A

 b0
...

b2m

 =



1
Lγ

(ξ0 + ϕ̄)

(2µ1)
1
2 x1

(2µ1)
1
2 ξ1

...
(2µm)

1
2 xm

(2µm)
1
2 ξm


+

 r0,0

...
r2m,0

+

 r0,1

...
r2m,1

+

 r0,∞
...

r2m,∞

 .

We may now set cA = 1
i ajkσ

jσk ∈ C∞
(
S1; iu (2m)

)
and compute

eic
W
A dW00e

−icWA = dW1 , where(4.16)

d1 = H1 + σj (rj,0 + rj,1 + rj,∞) +O (h) , and(4.17)

H1 :=
1

Lγ
(ξ0 + ϕ̄)σ0 +

m∑
j=1

(2µj)
1
2 (xjσ2j−1 + ξjσ2j) .(4.18)
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Finally, if we further Taylor expand r0,0+r0,1 = l00

(
x0,

1
L (ξ0 + ϕ̄) , x′′, ξ′′

)
+x1l01+

ξ1l02 + . . .+ ξml0(2m), then a further conjugation of dW1 by eic
W
2 ; c2 = 1

i l0kσ
0σk, it

is possible to make r0,0 + r0,1 independent of (x′, ξ′) in (4.17).

4.1.1. Weyl product and Koszul complexes. We now derive a formal Birkhoff normal
form for the symbol d1 in (4.17). Since much of what follows here proceeds in a
similar fashion to [26] Section 5, we refer there for necessary modifications to avoid
repetition of arguments. First denote by R = C∞

(
S1
x0

)
the ring of real valued

functions on the circle. Further define

S := R Jξ0 + ϕ̄, x′, ξ′;x′′, ξ′′;hK

the ring of formal power series in the further given 4m+2 variables with coefficients
in R. The ring S ⊗ C is now equipped with the Weyl product

a ∗ b :=
[
e
ih
2 (∂r1∂s2−∂r2∂s1) (a (s1, r1;h) b (s2, r2;h))

]
x=s1=s2,ξ=r1=r2

,

(again using the convention θ = x0) corresponding to the composition formula for
pseudo-differential operators, with

[a, b] := a ∗ b− b ∗ a

being the corresponding Weyl bracket. It is an easy exercise to show that for
a, b ∈ S real valued, the commutator i [a, b] ∈ S is real valued.

Next, we define a filtration on S. Each monomial hk (ξ0 + Tγ)
a

(x′)
α′

(ξ′)
β′

(x′′)
α′′

(ξ′′)
β′′

in S is given the weight 2k + a + |α′| + |β′| + |α′′| + |β′′|. The ring S is equipped
with a decreasing filtration

S = O0 ⊃ O1 ⊃ . . . ⊃ ON ⊃ . . . ,⋂
N

ON = {0} ,

where ON consists of those power series with monomials of weight N or more.
Similar filtrations

S = O′0 ⊃ O′1 ⊃ . . . ⊃ O′N ⊃ . . .
S = O′′0 ⊃ O′′1 ⊃ . . . ⊃ O′′N ⊃ . . .

maybe defined with O′N , O′′N consisting of power series in those monomials with
2k + a+ |α′|+ |β′| ≥ N and 2k + |α′′|+ |β′′| ≥ N respectively. It is an exercise to
show that

ON ∗OM ⊂ ON+M

[ON , OM ] ⊂ ihON+M−2

and similar inclusions holding for its primed versions. The associated grading is
given by

S =

∞⊕
N=0

SN

where SN consists of those power series with monomials of weight exactly N . We
also define the quotient ring DN := S/ON+1 whose elements may be identified with
the set of homogeneous polynomials with monomials of weight at most N . The
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ring DN is also similarly graded and filtered. In similar vein, we may also define
the ring

S (m) = S ⊗ glC (2m)

of R ⊗ glC (2m) valued formal power series in (ξ0 + ϕ̄, x′, ξ′;h). The ring S (m) is
equipped with an induced product ∗ and decreasing filtration

O0 (m) ⊃ O1 (m) ⊃ . . . ⊃ ON (m) ⊃ . . . ,⋂
N

ON (m) = {0} ,

where ON (m) = ON ⊗ glC (2m). It is again a straightforward exercise to show
that for a, b ∈ S ⊗ iuC (2m) self-adjoint, the commutator i [a, b] ∈ S ⊗ iuC (2m) is
self-adjoint.

4.1.2. Koszul complexes. Let us now again consider the 2m and 2m + 1 dimen-
sional real inner product spaces V = R [e1, . . . , e2m] and W = R [e0] ⊕ V from
2.2. Considering the chain groups DN ⊗ ΛkV , k = 0, 1, . . . , n, one may define four
differentials

w0
x =

m∑
j=1

µ
1
2
j (xje2j−1 ∧+ξje2j∧)

i0x =

m∑
j=1

µ
1
2
j

(
xjie2j−1

+ ξjie2j
)

w0
∂ =

m∑
j=1

µ
1
2
j

(
∂xje2j−1 ∧+∂ξje2j∧

)
i0∂ =

m∑
j=1

µ
1
2
j

(
∂xj ie2j−1

+ ∂ξj ie2j
)
.

Similarly, we may consider the chain groups DN ⊗ ΛkW , k = 0, 1, . . . , n, one
may define four differentials

wx =
1

Lγ
(ξ0 + ϕ̄) e0 ∧+2

1
2w0

x

ix =
1

Lγ
(ξ0 + ϕ̄) ie0 + 2

1
2 i0x

w∂ = ∂ξ0e0 ∧+2
1
2w0

∂

i∂ = ∂ξ0ie0 + 2
1
2 i0∂ .

Next, we define twisted Koszul differentials on DN ⊗ ΛkV via

w̃0
∂ =

i

h

m∑
j=1

µ
1
2
j

(
adxje2j−1 ∧+adξje2j∧

)
=

m∑
j=1

µ
1
2
j

(
∂xje2j ∧ −∂ξje2j−1∧

)
ĩ0∂ =

i

h

m∑
j=1

µ
1
2
j

(
adxj ie2j−1

+ adξj ie2j
)

=

m∑
j=1

µ
1
2
j

(
∂xj ie2j − ∂ξj ie2j−1

)
.

We note that the above are symplectic adjoints to their untwisted counterparts
with respect to the symplectic pairing

∑m
j=1 e2j−1 ∧ e2j on V .

Similar twisted Koszul differentials on DN ⊗ ΛkW are defined via
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w̃∂ =
1

Lγ
(adξ0+ϕ̄) e0 ∧+2

1
2 w̃0

∂

ĩ∂ =
1

Lγ
(adξ0+ϕ̄) ie0 + 2

1
2 ĩ0∂ .

We note that in what follows works with any leading terms replacing e0∧ and ie0
above that would serve as differentials.

We now compute the twisted combinatorial Laplacian to be

∆̃0 = w̃0
∂i

0
x + i0xw̃

0
∂

= −
(
w0
xĩ

0
∂ + ĩ0∂w

0
x

)
=

m∑
j=1

µj
[
ξj∂xj − xj∂ξj + e2jie2j−1

− e2j−1ie2j
]
.

One may similarly define ∆̃. Next, we define the space of twisted ∆̃0-harmonic,
ϕ̄-commuting, x0- independent elements

HkN =
{
ω ∈ DN ⊗ ΛkW | ∆̃0ω = 0, ∂x0

ω = 0, adϕ̄ω = 0
}

Hk =
{
ω ∈ S ⊗ ΛkW | ∆̃0ω = 0, ∂x0

ω = 0, adϕ̄ω = 0
}
.

The following version of the Hodge decomposition theorem follows in a similar
fashion to [26] Lemma 5.1. We only note that the ξ0-independence in the definition
of HkN from [26] is here replaced by the condition adξ0+ϕ̄ω = 0, which on account
of non-resonance is equivalent to adξ0ω = ∂x0ω = 0, adϕ̄ω = 0.

Lemma 4.1. The k-th chain group is spanned by the three subspaces

DN ⊗ ΛkW = R
[
Im (ixw̃∂) , Im (w̃∂ix) ,HkN

]
.

4.1.3. Formal Birkhoff normal form. As in [26] section 5.2 the Koszul complexes
now allow us to complete the Birkhoff normal form procedure for the symbol d1 in
(4.17). Define the Clifford quantization of an element in a ∈ S ⊗ΛkW , using (2.9)
as an element in

c0 (a) := i
k(k+1)

2 c (a) ∈ S (m) .

This gives an isomorphism

(4.19) c0 : S ⊗ Λodd/evenW → S ⊗ iuC (2m)

of real elements of the even or odd exterior algebra with self-adjoint elements in
S (m). In a fashion similar to [26] we may now prove the following formal Birkhoff
normal form for the symbol d1. Below the symbol H1is as in (4.18).

Proposition 4.2. There exist f ∈ O′1∩O3, a ∈ O2⊗ΛevenW and ω ∈ Hodd∩O′1∩O2

such that

(4.20) eic0(a)e
i
h fd1e

− i
h fe−ic0(a) = H1 + c0 (ω) .
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5. Reduction to S1 × R2m

We now return to the study of the traces T θBv,Bv (D) of the fourth kind in (3.37).
The asymptotics of these traces can be reduced to S1 × R2m. This however first
requires a modification lemma as Lemma 3.5 and the definition and construction
of another trapping time/function.

Let Γ ⊂ Ω ⊂ Ω be any subcover δ ∈
(
0, 1

2

)
and τ > 0 as before. We define an

trapping time in a similar fashion to (3.16)

Tv :=
1

inf(g,v)∈Gv×S0(X;U(S)) |Hg,vd|

Gv :=

{
g ∈ S0

δ (X; [0, 1]) | g|ΣD
[−τ,τ]

∩Ω̃γv
= 1, g|(

ΣD
[−8τ,8τ]

∩Ω̃γv
)c = 0

}
and set

T τ(Ω,Ω) := min
1≤v≤M

Tv.

We now have an analog of 3.4.

Proposition 5.1. Let Ω be a collection of Darboux-Reeb charts and T > 0. Then
for each τ sufficiently small there exists an open sub-cover Γ ⊂ Ω ⊂ Ω such that

(5.1) T τ(Ω,Ω) > T.

Proof. The proof is similar to 3.4 with a some modifications that we precise. Let
0 < ε � 1, be sufficiently small such that for each Reeb orbit γv the set Aε :=
S1
x0
× BR2m (ε) ⊂ Ω0

γv is contained inside the Darboux-Reeb chart 3.2. Next for
(x′, ξ′) = (x1, . . . , xm; ξ1, . . . , ξm), (x′′, ξ′′) = (xm+1, . . . , x2m; ξm+1, . . . , ξ2m) set
C̃ε :=

{
x′′2 + ξ′′2 < ε2

}
⊂ T ∗S1

x0
× R4m

x′,x′′,ξ′,ξ′′ . Also set

Uε,τ :=

 1

L2
γ

(ξ0 + ϕ̄)
2

+ 2

m∑
j=1

µj
(
x2
j + ξ2

j

)
< τ2, x′′2 + ξ′′2 < ε2

 ⊂ C̃ε
with ϕ̄ = ϕ̄ (x′′, ξ′′) as in (4.9). Also denote by o′N , o′′N functions which vanish
to order N in (ξ0 + ϕ̄, x′, ξ′) and (x′′, ξ′′) respectively. Then as in 4.1 (eqns (4.5),
(4.15), (4.16), (4.17) and (4.18)) there exists 0 < τ � 1 sufficiently small of the
following significance: for each 1 ≤ v ≤M there exists a neighborhood Mv ⊂ Ãε of
Ã ε

8
∩ ΣD0 , a Hamiltonian symplectomorphism

κv := eHf1 ◦ eHf0 : Uε,τ →Mv

κv (x0, 0, x
′′;−ϕ̄, 0, ξ′′) =

(
x0,−

ξ′′√
2
,
x′′√

2
;−ϕ̄, x

′′
√

2
,
ξ′′√

2

)
a self-adjoint endomorphism cA ∈ C∞ (Uε,τ ; iu (2m)), functions rj,0 ∈ o′1o′′1 ,rj,1 ∈
o′2, rj,∞ ∈ o′′∞, j = 0, . . . , 2m, such that

eicA
((
eHf1 ◦ eHf0

)∗
d
)
e−icA = H1 + σjrj,0 + σjrj,1 + σjrj,∞,(5.2)

with H1 as in (4.18).
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Also note that the terms r0,0 + r0,1 maybe assumed to be (x′; ξ′) independent as
observed after (4.18). Now set

(
θ̃0, θ̃1, . . . , θ̃2m

)
=

(
1

Lγ
(ξ0 + ϕ̄) , (2µ1)

1
2 x1, (2µ1)

1
2 ξ1, . . . , (2µm)

1
2 xm, (2µm)

1
2 ξm

)(5.3)

+ (r0,0, r1,0, . . . , r2m,0) + (r0,1, r1,1, . . . , r2m,1) + (r0,∞, r1,∞, . . . , r2m,∞)

θ̃′ =
(
θ̃1, . . . , θ̃2m

)
and note from (3.23) that the eigenvalues of the symbol d are ±

∣∣∣θ̃∣∣∣. We clearly

have Uε,τ ∩ ΣD0 =
{
θ̃ = 0

}
∩ ΣD0 and we may set

θj =
θ̃j∣∣∣θ̃∣∣∣ ∈ C∞

(
Uε,τ \ ΣD0 ;Sn−1

)
.(5.4)

We now compute {
θ̃0, x0

}
− 1

Lγ
= o′1 + o′′1 + o′′∞{

θ̃j , x0

}
= o′1 + o′′1 + o′′∞, j ≥ 1,{

θ̃j , x
′′
}

= o′1 + o′′∞, j ≥ 1,{
θ̃j , ξ

′′
}

= o′1 + o′′∞, j ≥ 1,{
θ̃0, θ̃j

}
= o′2 + o′1o

′′
1 + o′′∞, j ≥ 0,{

θ̃j , θ̃k

}
or
{
θ̃j , θ̃k

}
− 1 = o′1 + o′′1 + o′′∞ k > j ≥ 0,(5.5)

similar to (3.27). Note that the bracket
{
θ̃0, θ̃j

}
is still o2 + o∞ due to the

(x′; ξ′)-independence of r0 in θ̃0. In this case however, unlike (3.27) the brack-
ets

{
θ̃0, x

′′
}
,
{
θ̃0, ξ

′′
}

may not be o′1 + o′′∞ due to the presence of the ϕ̄ (x′′, ξ′′)

term in θ̃0 . However the quadratics

Q̂ej =
(
ξ2
j+m + x2

j+m

) ε
T

Q̂hj =
(
x2
Ne+j+m + ξ2

Ne+j+m

) ε
T

Q̂l,Re
j =

(
x2

2m−2j+1 + x2
2m−2j+2

) ε
T

Q̂l,Imj =
(
ξ2
2m−2j+1 + ξ2

2m−2j+2

) ε
T(5.6)

are seen to satisfy{
θ̃0, Q̂

}
− 1

L

{
ϕ̄, Q̂

}
= o′1 + o′′∞(5.7) ∣∣∣{ϕ̄, Q̂}∣∣∣ ≤ ε

T

(
m sup

(x′′,ξ′′)≤ε

∣∣∂Q̄ϕ̄∣∣
)

︸ ︷︷ ︸
=:c0

, Q̂ 6= 0,(5.8)
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where ϕ̄ is considered as a function of the quadratics Q̄ as in (4.9). Hence for ε, τ
sufficiently small, the bracket relations (5.5), (5.7) and (5.8) again imply∣∣∣{θ̃j , x0

}∣∣∣ ≤ 2, j ≥ 0,∣∣∣{∣∣∣θ̃∣∣∣ , x0

}∣∣∣ ≤ 2,
∣∣∣θ̃∣∣∣ 6= 0,∣∣∣∣∣∣

 θ̃j∣∣∣θ̃∣∣∣ , x0


∣∣∣∣∣∣ ≤ 4∣∣∣θ̃∣∣∣ ,

∣∣∣θ̃∣∣∣ 6= 0, j ≥ 0,

∣∣∣∣1ε {θ̃j , Q̂}
∣∣∣∣ ≤ 2c0

LT
, j ≥ 0,∣∣∣∣1ε {∣∣∣θ̃∣∣∣ , Q̂}

∣∣∣∣ ≤ 2c0
LT

,
∣∣∣θ̃∣∣∣ 6= 0,∣∣∣∣∣∣1ε

 θ̃j∣∣∣θ̃∣∣∣ , Q̂

∣∣∣∣∣∣ ≤ 2c0

LT
∣∣∣θ̃∣∣∣ ,

∣∣∣θ̃∣∣∣ 6= 0, j ≥ 0,

∣∣∣{θ̃0, θ̃j

}∣∣∣ ≤
∣∣∣θ̃∣∣∣
T
, j ≥ 0,

∣∣∣{θ̃0,
∣∣∣θ̃∣∣∣}∣∣∣ ≤

∣∣∣θ̃∣∣∣
T
,

∣∣∣θ̃∣∣∣ 6= 0,∣∣∣∣∣∣
θ̃0,

θ̃j∣∣∣θ̃∣∣∣

∣∣∣∣∣∣ ≤ 1

T
,

∣∣∣θ̃∣∣∣ 6= 0, j ≥ 0,

1

4

(ξ0 + ϕ̄)
2

+ 2

m∑
j=1

µj
(
x2
j + ξ2

j

) ≤ 2m∑
j=0

θ̃2
j ≤ 4

(ξ0 + ϕ̄)
2

+ 2

m∑
j=1

µj
(
x2
j + ξ2

j

)
(5.9)

on Uε,τ . Again define

Ũε,τ :=


2m∑
j=0

θ̃2
j < τ2, x′′2 + ξ′′2 < ε2

 ⊂ Uε,τ .
We now set

(5.10) Ωγv :=

{
Q̂j <

( ε

16m

)2
}

To verify (5.1) again let χ ∈ C∞c ([−4, 4] ; [0, 1]), be a cutoff such that χ =
1 on [−2, 2] and |χ′| ≤ 1. Also for ρ ∈

(
0, 1

8

)
fixed, define a function ϕρ ∈

C∞
(
[−1, 1]θ0 ; [0, 1]

)
such that ϕρ (θ0) =

{
1; for θ0 ∈ [1− ρ, 1]

0; for θ0 ∈ [−1, 1− 2ρ]
and

∣∣ϕ′ρ∣∣ ≤ 2
ρ .
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The trapping function in this case is now modified to

gv :=χ

β
(
θ̃
)

τ

∏
j

χ

(
Q̂j

(ε/16m)
2

) ∈ C∞c (ΣD[−8τ,8τ ] ∩ Ω̃γv
)

where

β
(
θ̃
)

:=

√∣∣∣θ̃∣∣∣2 − ϕρ (θ0)
∣∣∣θ̃′∣∣∣2

=

√∣∣∣θ̃0

∣∣∣2 + (1− ϕρ)
∣∣∣θ̃′∣∣∣2 satisfying∣∣∣θ̃∣∣∣

2
≤β
(
θ̃
)
≤
∣∣∣θ̃∣∣∣

as before in terms of the relevant coordinates on Ũε,τ . With vu now defined in
a similar fashion to (3.30), one may again estimate |Hgu,vu (d)| = O

(
1
T

)
as in

(3.31)-(3.36) using (5.7) and (5.9) to complete the proof. �

Next; we have a lemma reducing the trace asymptotics to S1×R2m. First choose
T sufficiently large such that spt (θ) ⊂ [−T, T ]. Then choose τ sufficiently small
and an open sub-cover Γ ⊂ Ω ⊂ Ω with T τ(Ω,Ω) > T . Finally and as observed before,
by choosing τ even smaller if necessary, one may also find an (Ω, τ, δ) partition to
arrange T(P;V,W) > T ; reducing us to study of the asymptotics of T θBv,Bv (D). We
now show that (5.1) allows a further reduction to S1 × R2m. Below, the operator
D0 is as in (4.4).

Proposition 5.2. For each 1 ≤ v ≤M , one has

T θBv,Bv (D) = tr

[
B0
vf

(
D0√
h

)
θ̌

(
λ
√
h−D0

h

)
B0
v

]
︸ ︷︷ ︸

:=T θ
B0
v,B

0
v

(D0)

mod h∞

for cutoffs B0
v ∈ Ψ0

δ

(
S1 × R2m

)
, with WF

(
B0
v

)
b ΣD0

[−τδ,τδ] ∩ Ω̃δγv .

Proof. The proof is again similar to [26] Prop. 4.1, provided the smallness of
spt (θ) is quantified. First one has an analog of Lemma 3.5: for D′ ∈ Ψ1

cl (X;S)

essentially self-adjoint, with D = D′ microlocally on ΣD[−8τ,8τ ] ∩ Ω̃γv , and θ ∈
C∞c ((T ′hε, Tv) ; [0, 1]) one has

T θBv,Bv (D) = T θBv,Bv (D′) mod h∞

(since Bv has microsupport in ΣD1

[−τδ,τδ] ∩ Ω̃δγv and hence on ΣD1

[−τ,τ ] ∩ Ω̃γv ). Now as
D = D0 on Ωγv by construction (4.4) and hence microlocally on ΣD[−8τ,8τ ] ∩ Ω̃γv ;
the proof in [26] is seen to carry through provided spt (θ) is contained in each of
{(T ′hε, Tv)} , 1 ≤ v ≤ M . But this is guaranteed by our choice of an appropriate
subcover Γ ⊂ Ω ⊂ Ω satisfying (5.1)and spt (θ) ⊂ [−T, T ]. �

Next, we show how the Birkhoff normal form maybe used to perform a further
reduction on the trace. First note that we may similarly use (2.9) to define a
self-adjoint Clifford-Weyl quantization map

cW0 := Op⊗ c0 : S0
cl
(
T ∗S1 × R4m;C

)
⊗ Λodd/evenW → Ψ0

cl

(
S1 × R2m;C2m

)
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which maps real valued symbols S0
cl
(
T ∗S1 × R4m;R

)
⊗ Λodd/evenW to self-adjoint

operators in Ψ0
cl
(
S1 × R2m;C2m

)
. Similarly we define a space of real-valued, twisted

∆̃0-harmonic, ϕ̄-commuting, x0- independent symbols

HkS0
cl :=

{
ω ∈ S0

cl
(
T ∗S1 × R4m;R

)
⊗ ΛkW | ∆̃0ω = 0, Hϕ̄ω = 0, ∂x0

ω = 0
}
.

Next, an application of Borel’s lemma by virtue of (4.5), (4.16) and (4.20) gives
the existence of

ā ∼
∞∑
j=0

hj āj ∈ S0
cl
(
T ∗S1 × R4m;R

)
⊗ ΛoddW

r̄ ∼
∞∑
j=0

hj r̄j ∈ S0
cl
(
T ∗S1 × R4m;R

)
⊗ ΛoddW

f̄ ∼
∞∑
j=0

hj f̄j ∈ S0
cl
(
T ∗S1 × R4m;R

)
ω̄ ∼

∞∑
j=0

hjω̄j ∈ HoddS0
cl

such that

(5.11) eic
W
0 (ā)e

i
h f̄

W

dW0 e−
i
h f̄

W

e−ic
W
0 (ā) = HW

1 + cW0 (ω̄)︸ ︷︷ ︸
:=D̄

+cW0 (r̄)

on S1 × R2m. Here {r̄j}j∈N0
,f̄0, ω̄0 vanish to infinite, second and second order

respectively along

Γ = {ξ0 + ϕ̄ = x′ = ξ′ = x′′ = ξ′′ = 0} .

Moreover f̄0, ω̄0 vanish to first order along

Γ ′ = {ξ0 + ϕ̄ = x′ = ξ′} .

We may hence choose ω̄0 having an expansion

(5.12) ω̄0 = (ξ0 + ϕ̄)ω00 +

m∑
j=1

(ω0jzj + ω̄0j z̄j)

in terms of the complex coordinates zj = x′j + iy′j with

‖ω̄0j‖C0 ≤ ε

arbitrarily small.
Next we show that one may pass from the trace asymptotics of D0 to D̄(4.4).

Below we set B̄v = eic
W
0 (ā)e

i
h f̄

W

B0
ve
− i
h f̄

W

e−ic
W
0 (ā). Note that B̄v = 1 on an hδ size

neighborhood of Γ by construction.

Proposition 5.3. For each 1 ≤ v ≤M , we have

T θB0
v,B

0
v

(D0) = T θB̄v,B̄v
(
D̄
)

mod h∞.
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Proof. By choosing an appropriately small Ω in terms of Reeb Darboux coordinates

as in (5.10), we may find a cutoff of the form A = χ

(
D̄2+(x′′2+ξ′′2)

W

h2δ

)
, χ ∈ C∞c (R),

that is microlocally 1 on WF
(
B̄v
)
. We then have by the Helffer-Sjöstrand formula

(5.13)

T θB0
v,B

0
v

(D0)−T θB̄v,B̄v
(
D̄
)

=
1

π

ˆ
C
∂̄f̃ (z) θ̌

(
λ− z√
h

)
tr
[
B̄v∆zAB̄v

]
dzdz̄ mod h∞,

with

∆z =

(
1√
h

(
D̄ + cW0 (r̄)

)
− z
)−1

cW0 (r̄)

(
1√
h

(
D̄
)
− z
)−1

.

Since r̄ vanishes to infinite order along Γ , symbolic calculus gives

cW0 (r̄) = RN

[
D̄N +

(
ϕ̄W
)N] ∀N,

for some RN ∈ Ψ0
cl
(
S1 × R2m;C2m

)
. From which the commutation

[
D̄, ϕ̄W

]
= 0

gives

∆z =

(
1√
h

(
D̄ + cW0 (r̄)

)
− z
)−1

SN

(
1√
h

(
D̄
)
− z
)−1 [

D̄2 +
(
x′′2 + ξ′′2

)W ]N ∀N,

for some SN ∈ Ψ0
cl
(
S1 × R2m;C2m

)
. Now

∆zA =

(
1√
h

(
D̄ + cW0 (r̄)

)
− z
)−1

SN

(
1√
h

(
D̄
)
− z
)−1

h2δNχN

(
D̄2 +

(
x′′2 + ξ′′2

)W
h2δ

)
∀N,

for χN (x) = xNχ (x) ∈ C∞c (R). Plugging this last equation into (5.13) gives the
result. �

6. Trace Asymptotics

In this section we finish the proof of Lemma 3.1 and hence Theorem 1.1. By the
reductions 5.2 and 5.3 of the last section it suffices to consider the trace T θ

B̄v,B̄v

(
D̄
)
.

Proof of Lemma 3.1. We begin with the orthogonal Landau decomposition (2.39)

L2
(
S1 × R2m;C2m

)
= L2

(
S1
x0
× Rmx′′

)
⊗

C [ψ0,0]⊕
⊕

Λ∈µ.(Nm0 \0)

[
Eeven
Λ ⊕ Eodd

Λ

]
︸ ︷︷ ︸

=L2(Rmx′ ;C
2m)

where

(6.1)

Eeven
Λ :=

⊕
τ∈Nm0 \0
Λ=µ.τ

Eeven
τ

Eodd
Λ :=

⊕
τ∈Nm0 \0
Λ=µ.τ

Eodd
τ

according to the eigenspaces of the squared magnetic Dirac operator D2
Rm (2.33)

on Rm. It is clear from (4.18) that

HW
1 =

1

Lγ
(ξ0 + ϕ̄)

W
σ0 +DRm
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in terms of the above decomposition. Furthermore one has the commutation rela-
tions [

σ0, D
2
Rm
]

= 0[
cW0 (ω̄) , D2

Rm
]

= ihcW0

(
∆̃0ω̄

)
= 0

since ω̄ in (5.11) is ∆̃0-harmonic. Hence D̄ preserves the decomposition (6.1) and
we may consider the restriction of its traces to the eigenspaces of D2

Rm . Namely, let
E0 := C [ψ0,0] , EΛ := Eeven

Λ ⊕ Eodd
Λ , E>0 :=

⊕
Λ∈µ.(Nm0 \0)

EΛ and P0, PΛ, P>0 :=⊕
Λ∈µ.(Nm0 \0)

PΛ denote the summands and the corresponding projections of (6.1).

It is then clear that T θ
B̄v,B̄v

(
D̄
)

= T θ
B̄v,B̄v

(
P0D̄P0

)
+ T θ

B̄v,B̄v

(
P>0D̄P>0

)
.

Set

D̄0 := P0D̄P0 : L2
(
S1
x0
× Rmx′′

)
→ L2

(
S1
x0
× Rmx′′

)
D̄Λ := PΛD̄PΛ : L2

(
S1
x0
× Rmx′′ ;Eeven

Λ ⊕ Eodd
Λ

)
→ L2

(
S1
x0
× Rmx′′ ;Eeven

Λ ⊕ Eodd
Λ

)
, Λ > 0.

The restrictions of the cW0 (ω̄) term in D̄ are

Ω0 := P0c
W
0 (ω̄) P0 : L2

(
S1
x0
× Rmx′′

)
→ L2

(
S1
x0
× Rmx′′

)
ΩΛ := PΛc

W
0 (ω̄) PΛ : L2

(
S1
x0
× Rmx′′ ;Eeven

Λ ⊕ Eodd
Λ

)
→ L2

(
S1
x0
× Rmx′′ ;Eeven

Λ ⊕ Eodd
Λ

)
, Λ > 0.

The operator Ω0 = αW0 ∈ Ψ0
cl
(
S1
x0
× Rmx′′

)
is pseudo-differential operator with sym-

bol vanishing to second order along Γ ′′ = {ξ0 + ϕ̄ = x′′ = ξ′′ = 0}. Also, quantizing
the expansion (5.12) gives

cW0 (ω̄) = (ξ0 + ϕ̄)
W

cW0 (ω00)︸ ︷︷ ︸
=OL2→L2 (ε)

+

m∑
j=1

 cW0 (ω0j)︸ ︷︷ ︸
=OL2→L2 (ε)

Aj +A∗j cW0 (ω̄0j)︸ ︷︷ ︸
=OL2→L2 (ε)

+O (h)

Knowing the action of the lowering and raising operators Aj , A∗j on each eigenstate
(2.36) of D2

Rm then gives the estimate

(6.2) ΩΛ = (ξ0 + ϕ̄)
W
OL2→L2 (ε) +OL2→L2

(
ε
√
Λh
)

+OL2→L2 (h)

with all constants above being uniform in Λ > 0.
Next, we consider T θ

B̄v,B̄v

(
P>0D̄P>0

)
by computing the restriction of

(
1√
h
D̄ − z

)
,

z ∈ C, to each EΛ, Λ > 0, eigenspace in (6.1). Using (2.37) this has the form

D̄Λ (z) := PΛ

(
1√
h
D̄ − z

)
PΛ

=
1√
h

− (ξ0 + ϕ̄)− z
√
h

(√
2Λh

)W(√
2Λh

)W
ξ0 + ϕ̄− z

√
h

+
1√
h
ΩΛ

with respect to the Z2- grading EΛ = Eeven
Λ ⊕Eodd

Λ . Here we leave the identification
iτ in (2.37) between the odd and even parts as being understood. Let ε0 > 0 be
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such that f ∈ C∞c
(
−
√

2µ1 + ε0,
√

2µ1 − ε0

)
. Set RΛ (z) = [rΛ (z)]

W

rΛ (z) :=

√
h

− (ξ0 + ϕ̄)− z
√
h

(√
2Λh

)(√
2Λh

)
ξ0 + ϕ̄− z

√
h


z2h− (ξ0 + ϕ̄)

2 − 2Λh

which is well defined for |Rez| ≤
√

2µ1 − ε0 < infRn
√

2Λ, and h sufficiently small.
We now compute ∥∥RΛ (z) D̄Λ (z)− I

∥∥ ≤ Cε+O (h)∥∥D̄Λ (z)RΛ (z)− I
∥∥ ≤ Cε+O (h)

using (6.2) with the constants above being uniform in Λ. Choosing ε sufficiently
small in (6.2) shows that the inverse D̄Λ (z)

−1 exists and is O (RΛ (z)) = O
(
h−

1
2

)
uniformly. Thus the resolvent

(
P>0D̄P>0 − z

)−1 extends holomorphically to the
strip |Rez| ≤

√
2µ1 − ε0 and picking an almost analytic continuation for f in the

Helffer-Sjöstrand formula (3.37) supported in this strip gives T θ
B̄v,B̄v

(
P>0D̄P>0

)
=

0.
We now consider T θ

B̄v,B̄v

(
P0D̄P0

)
. The cutoffs maybe taken to be of the form

B̄v = χ

(
(x′′2+ξ′′2)

W

h2δ

)
χ

(
H2+((ξ0+ϕ̄)W )

2

h2δ

)
, with H2 being the harmonic oscillator

(2.35), to compute

T θB̄v,B̄v
(
P0D̄P0

)
=

1

π

ˆ
C
∂̄f̃ (z) θ̌

(
λ− z√
h

)
tr

[
B̄0
v

(
1√
h
D̄0 − z

)−1

B̄0
v

]
dzdz̄(6.3)

where B̄0
v = χ

(
(x′′2+ξ′′2)

W

h2δ

)
χ

(
((ξ0+ϕ̄)W )

2

h2δ

)
and

D̄0 = − 1

Lγ
(ξ0 + ϕ̄)

W
+ αW0

being the effective Hamiltonian. The above being a scalar operator, (6.3) now
reduces to the usual trace formula microlocalized near the Hamiltonian trajectory
Γ ′′ = {ξ0 + ϕ̄ = x′′ = ξ′′ = 0} of 1

Lγ
(ξ0 + ϕ̄). The formula (3.1) now follows on

identifying the period, symplectic action and return map of this trajectory to be
Lγ , Tγ and P+

γ respectively (cf. [10, 11] Ch 7. for an identification of the Maslov
index in terms of the metaplectic group). �

7. Local trace expansion: computation of the second coefficient

In this section we study the trace expansion of a function of the operator D√
h
.

We first recall the following which appears as Proposition 7.1 of [26].

Proposition 7.1. There exist tempered distributions uj ∈ S ′ (Rs), j = 0, 1, 2, . . .,
such that one has a trace expansion

(7.1) tr φ
(
D√
h

)
= h−n/2

 N∑
j=0

uj (φ)hj/2

+h(N+1−n)/2O

(
n+1∑
k=0

∥∥∥〈ξ〉N φ̂(k)
∥∥∥
L1

)
for each N ∈ N, φ ∈ S (Rs).
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The coefficient u0 in (7.1) was computed in Proposition 7.4 of [26]. Our main
task here is the computation of the next coefficient u1. The calculation here is
similar to that of the second coefficient of the symplectic Bergman kernel (cf. [22]
Ch. 8) using the local index theory method.

To this end we first briefly recall the construction of the distributions uj . Fixing
the point p ∈ X there is an orthonormal basis e0,p = R

|R| ,{ej,p, ej+m,p}
m
j=1 ∈ R

⊥,
of the tangent space at p consisting of eigenvectors of Jp with eigenvalues 0,±iµj ,
j = 1, . . . ,m, such that

(7.2) da (p) =

m∑
j=1

µje
∗
j,p ∧ e∗j+m,p.

Using the parallel transport from this basis fix a geodesic coordinate system (x0, . . . , x2m)
on an open neighborhood of p ∈ Ω. Let ej = wkj ∂xk , 0 ≤ j ≤ 2m, be the local or-
thonormal frame of TX obtained by parallel transport of ej,p = ∂xj

∣∣
p
,0 ≤ j ≤ 2m,

along geodesics. Hence we again have wkj gklwlr = δjr; wkj
∣∣
p

= δkj with gkl being
the components of the metric in these coordinates. Choose an orthonormal basis
{sj,p}2

m

j=1for Sp in which Clifford multiplication

(7.3) c (ej)|p = γj

is standard. Choose an orthonormal basis lp for Lp. Parallel transport the bases
{sj,p}2

m

j=1, lp along geodesics using the spin connection ∇S and unitary family of

connections ∇h = A0 + i
ha to obtain trivializations {sj}2

m

j=1, l of S, L on Ω. Since
Clifford multiplication is parallel, the relation (7.3) now holds on Ω. The connection
∇S⊗L = ∇S ⊗ 1 + 1⊗∇h can be expressed in this frame and these coordinates as

(7.4) ∇S⊗L = d+Ahj dx
j + Γjdx

j ,

where each Ahj is a Christoffel symbol of ∇h and each Γj is a Christoffel symbol of
the spin connection ∇S . Since the section l is obtained via parallel transport along
geodesics, the connection coefficient Ahj maybe written in terms of the curvature
Fhjkdx

j ∧ dxk of ∇h via

(7.5) Ahj (x) =

ˆ 1

0

dρ
(
ρxkFhjk (ρx)

)
.

The dependence of the curvature coefficients Fhjk on the parameter h is seen to be
linear in 1

h via

(7.6) Fhjk = F 0
jk +

i

h
(da) jk

despite the fact that they are expressed in the h dependent frame l. This is because
a gauge transformation from an h independent frame into l changes the curvature
coefficient by conjugation. Since L is a line bundle this is conjugation by a function
and hence does not change the coefficient. Furthermore, the coefficients in the
Taylor expansion of (7.6) at 0 maybe expressed in terms of the covariant derivatives(
∇A0

)l
F 0
jk,
(
∇A0

)l
(da) jk evaluated at p. Next, using the Taylor expansion

(7.7) (da) jk = (da) jk (0) + xlajkl,
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we see that the connection ∇S⊗L has the form

(7.8) ∇S⊗L = d+

[
i

h

(
xk

2
(da) jk (0) + xkxlAjkl

)
+ xkA0

jk + Γj

]
dxj

where

A0
jk =

ˆ 1

0

dρ
(
ρF 0

jk (ρx)
)

Ajkl =

ˆ 1

0

dρ (ρajkl (ρx))

and Γj are all independent of h. Finally from (7.3) and (7.8) may write down the
expression for the Dirac operator (1.1) also given as D = hc ◦

(
∇S⊗L

)
in terms of

the chosen frame and coordinates to be

D = γrwjr

[
h∂xj + i

xk

2
(da) jk (0) + ixkxlAjkl + h

(
xkA0

jk + Γj
)](7.9)

= γr
[
wjrh∂xj + iwjr

xk

2
(da) jk (0) +

1

2
hg−

1
2 ∂xj

(
g

1
2wjr

)]
+

(7.10)

γr
[
iwjrx

kxlAjkl + hwjr
(
xkA0

jk + Γj
)
− 1

2
hg−

1
2 ∂xj

(
g

1
2wjr

)]
∈ Ψ1

cl

(
Ω0
s;C2m

)
In the second expression above both square brackets are self-adjoint with respect to
the Riemannian density e1∧. . .∧en =

√
gdx :=

√
gdx1∧. . .∧dxn with g = det (gij).

Again one may obtain an expression self-adjoint with respect to the Euclidean
density dx in the framing g

1
4uj ⊗ l, 1 ≤ j ≤ 2m, with the result being an addition

of the term hγjwkj g
− 1

4

(
∂xkg

1
4

)
.

Let ig be the injectivity radius of gTX . Define the cutoff χ ∈ C∞c (−1, 1) such
that χ = 1 on

(
− 1

2 ,
1
2

)
. We now modify the functions wkj , outside the ball Big/2 (p),

such that wkj = δkj (and hence gjk = δjk) are standard outside the ball Big (p) of
radius ig centered at p. This again gives

D = γr
[
wjrh∂xj + iwjr

xk

2
(da) jk (0) +

1

2
hg−

1
2 ∂xj

(
g

1
2wjr

)]
+(7.11)

χ (|x| /ig) γr
[
iwjrx

kxlAjkl + hwjr
(
xkA0

jk + Γj
)
− 1

2
hg−

1
2 ∂xj

(
g

1
2wjr

)]
∈ Ψ1

cl

(
Rn;C2m

)
as a well defined operator on Rn formally self adjoint with respect to √gdx. Again
D + i being elliptic in the class S0 (m) for the order function

m =

√
1 + gjl

(
ξj +

xk

2
(da)jk (0)

)(
ξl +

xr

2
(da)lr (0)

)
,

the operator D is essentially self adjoint. Also as observed in [26] Section 7

(7.12) tr φ
(
D√
h

)
(p, ·) = tr φ

(
D√
h

)
(0, ·)

mod h∞.
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We now introduce the rescaling operator R : C∞
(
Rn;C2m

)
→ C∞

(
Rn;C2m

)
;

(Rs) (x) := s
(
x√
h

)
. Conjugation by R amounts to the rescaling of coordinates

x → x
√
h. A Taylor expansion in (7.11) now gives the existence of classical (h-

independent) self-adjoint, first-order differential operators Dj = akj (x) ∂xk + bj (x),
j = 0, 1 . . ., with polynomial coefficients (of degree at most j + 1) as well as h-
dependent self-adjoint, first-order differential operators EN+1 =

∑
|α|=N+1 x

α
[
ckα (x;h) ∂xk + dα (x;h)

]
,

N ∈ N, with uniformly C∞ bounded coefficients ckj,α, dj,α such that

RDR−1 =
√
hD with(7.13)

D =

 N∑
j=0

hj/2Dj

+ h(N+1)/2EN+1, ∀N.(7.14)

The coefficients of the polynomials akj (x) , bj (x) again involve the covariant deriva-
tives of the curvatures FTX , FA0 and da evaluated at p. It is now clear from (7.13)
that

(7.15) φ

(
D√
h

)
(x, x′) = h−n/2φ (D)

(
x√
h
,
x′√
h

)
.

Next, let Ij = {k = (k0, k1, . . .) |kα ∈ N,
∑
kα = j} denote the set of partitions of

the integer j and set

(7.16) Czj =
∑
k∈Ij

(z − D0)
−1
[
ΠαDkα (z − D0)

−1
]
.

The coefficient uj in the expansion (7.1) is now the total integral overX of a smooth
family of distributions uj,p ∈ C∞ (X;S ′ (Rs)) parametrized by X

uj =

ˆ
X

uj,p, where

uj,p = tr Uj,p and

Uj,p (φ) = − 1

π

ˆ
C
∂̄φ̃ (z) Czj (0, 0) dzdz̄ ∈ EndSTXp .

It was further shown in [26] that each uj,p is point-wise given by a linear combi-
nation of the following elementary distributions

va (s) := sa, a ∈ N0(7.17)

va,b,c,Λ (s) := ∂as

[
|s| sb

(
s2 − 2Λ

)c− 1
2 H

(
s2 − 2Λ

)]
,(7.18)

(a, b, c;Λ) ∈ N0 × Z× N0 × µ. (Nm0 \ 0) .

To now state the computation of u1; first define P±
j : TpX → ker (±iµj − J), 1 ≤

j ≤ m, the projections onto the eigenspaces of J with eigenvalue ±iµj respectively
in (1.7). Also set dj

2 = d+
j = d−j = dim ker (±iµj − J) and Pj := P+

j + P−
j .

Next, define the endomorphism(
∇TXJ

)0
: TpX → TpX(

∇TXJ
)0
v :=

(
∇TXv J

)
R, v ∈ TpX,

agreeing with (1.14) on R⊥, and set
(
∇TXJ

)
j

:= Pj

(
∇TXJ

)0
Pj , 1 ≤ j ≤ m.

We then have the following.
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Proposition 7.2. The second coefficient u1 of (7.1) is given by

u1,p (s) = c1;1v1 +
∑

Λ∈µ.(Nm0 \0)

c1;1,−2,0,Λ (p) v1,−2,0,Λ (s)

+
∑

Λ∈µ.(Nm0 \0)

c1;0,−3,0,Λ (p) v0,−3,0,Λ (s) , where(7.19)

c1;1 = −
(
Πm
j=1µj

)
(2π)

m+1

[
tr J−2

(
∇TXJ

)0]
and(7.20)

c1;1,−2,0,Λ (p) = c1;0,−3,0,Λ (p) =

− (Πmj=1µj)
(2π)m+1 τ

[
1
dj
tr
(
∇TXJ

)
j

]
; if Λ = µjτ for some j,

0; otherwise.

(7.21)

Proof. We begin by noting the first two terms in (7.14)

D0 = γj
[
∂xj + i

xk

2
(da) jk (0)

]
(7.22)

= γ0∂x0
+ γj

[
∂xj +

iµj (p)

2
xj+m

]
+ γj+m

[
∂xj+m −

iµj (p)

2
xj

]
︸ ︷︷ ︸

:=D00

(7.23)

D1 =
i

3
γjxkxl (∇elda)jk (0)︸ ︷︷ ︸

=:Ajkl

(7.24)

=
i

3
γjxkxl gTX (ej , (∇elJ) ek)︸ ︷︷ ︸

=:Ajkl

(7.25)

using (7.2), (7.7). For future reference we also note that

D2
0 = −∂2

x0
+

m∑
j=1

[
−∂2

xj − ∂
2
xj+m + iµj

(
xj+m∂xj − xj∂xj+m

)
+

1

4

(
x2
j + x2

j+m

)]
− iFm︸ ︷︷ ︸

=:D2
00

Fm = µj

 m∑
j=1

γjγj+m


gives the complex harmonic oscillator.

As in the computation for u0 in [26], we compute u1 by computing the expansions
of the heat traces tr e−tD

2

, tr De−tD
2

. First note that following (7.13), (7.14) we
may compute

D2 = D2
0 +
√
h {D0, D1}+O (h) .

An application of Duhamel’s principle then yields

(7.26) e−tD
2

= e−tD
2
0 −
√
h

ˆ t

0

e−(t−s)D2
0 {D0, D1} e−sD

2
0ds︸ ︷︷ ︸

=:U10

+O (h) .
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We compute

{D0, D1} =
i

3
Ajkl

{
−2xkxl∂xj + γkγjxl + γlγjxk − 2 (iaj)x

kxl
}
.(7.27)

Next set µj+m = µj , 1 ≤ j ≤ m, and note Mehler’s formula

e−tD
2
0 (x, y) = et∂

2
x0 e−tD

2
00

(7.28)

=
e−

(x0−y0)2

4t

√
4πt

 m∏
j=1

µj
4π sinhµjt

mt (x′, y′) eitFm ,

mt (x′, y′) = exp

{
− µj

4 tanhµjt

(
(xj − yj)2

+ (xj+m − yj+m)
2
)

+
µj
2

tanh

(
µjt

2

)
(xjyj + xj+myj+m)

}(7.29)

= exp

{
− µj

4 tanhµjt

(
xj

2 + x2
j+m + y2

j + y2
j+m

)
+

µj
2 sinhµjt

(xjyj + xj+myj+m)

}
,

where (x′; y′) = (x1, . . . , x2m; y1, . . . , y2m). We may now substitute (7.27) and(7.28)
into (7.26). This gives a formula for U10 (0, 0) as an integral over s and x. Further-
more one observes that the x -integral is an odd integral which must evaluate to 0.
Hence we have

(7.30) u1

(
e−ts

2
)

= −tr U10 (0, 0) = 0.

We now compute the second term in tr De−tD
2

. First differentiate (7.26) using
(7.14) to obtain

De−tD
2

= D0e
−tD2

0

−
√
h

(
D0

ˆ t

0

e−(t−s)D2
0 {D0, D1} e−sD

2
0ds− D1e

−tD2
0

)
+O (h) .

The O
(√

h
)
term above maybe rewritten symmetrically

U11

:= D0

ˆ t

0

e−(t−s)D2
0 {D0, D1} e−sD

2
0ds− D1e

−tD2
0(7.31)

=

ˆ t

0

(
D0e
−(t−s)D2

0

)
D1

(
D0e
−sD2

0

)
ds︸ ︷︷ ︸

=:K1

+
1

2

ˆ t

0

e−(t−s)D2
0
{
D2

0, D1

}
e−sD

2
0ds︸ ︷︷ ︸

=:K2

−1

2

(
D1e
−tD2

0 + e−tD
2
0D1

)
(7.32)
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using an integration by parts argument. It is clear from (7.24) that

D1e
−tD2

0 (0, 0) = 0

with the same being true of its adjoint

e−tD
2
0D1 (0, 0) = 0.

Similarly the adjointness property forˆ t

0

e−(t−s)D2
0
(
D2

0D1

)
e−sD

2
0ds and

ˆ t

0

e−(t−s)D2
0
(
D1D

2
0

)
e−sD

2
0ds

gives

K2 (0, 0) =

[ˆ t

0

e−(t−s)D2
0
(
D1D

2
0

)
e−sD

2
0ds

]
(0, 0) .

We now compute

K1

=

ˆ t

0

ds
(
D0e
−(t−s)D2

0

)
D1

(
D0e
−sD2

0

)
=

ˆ t

0

ds e−(t−s)D2
0
[
γµ
(
∂xµ + iaµ

)]( i
3
γjxkxlAjkl

)(
D0e
−sD2

0

)
=

ˆ t

0

ds e−(t−s)D2
0

(
i

3
γkγjxlAjkl

)(
D0e
−sD2

0

)
+

ˆ t

0

ds e−(t−s)D2
0

(
i

3
γlγjxkAjkl

)(
D0e
−sD2

0

)
−
ˆ t

0

ds 2e−(t−s)D2
0

(
i

3
xkxlAjkl

)(
∂xj + iaj

) (
D0e
−sD2

0

)
−
ˆ t

0

ds e−(t−s)D2
0

(
i

3
γjxkxlAjkl

)[
γµ
(
∂xµ + iaµ

)] (
D0e
−sD2

0

)
︸ ︷︷ ︸

=K2

.

Hence we now simplify (7.32) to

U11

=

ˆ t

0

ds e−(t−s)D2
0

(
i

3
γkγjxlAjkl

)(
D0e
−sD2

0

)
︸ ︷︷ ︸

=:L1

+

ˆ t

0

ds e−(t−s)D2
0

(
i

3
γlγjxkAjkl

)(
D0e
−sD2

0

)
︸ ︷︷ ︸

=:L2

− 2

ˆ t

0

ds e−(t−s)D2
0

(
i

3
xkxlAjkl

)(
∂xj + iaj

) (
D0e
−sD2

0

)
︸ ︷︷ ︸

=:L3

(7.33)

We now evaluate traces of each of the kernels L1, L2 and L3.
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First compute

D0e
−tD2

0 (x, 0) = −

[
γ0x0

2t
+

m∑
µ=1

µµ
2 tanhµµt

(
γµxµ + γµ+mxµ+m

)] e− x2
0

4t

√
4πt

mt (x′, 0) eitFm

+

[
m∑
µ=1

iµµ
2

(
γµxµ+m − γµ+mxµ

)] e− x2
0

4t

√
4πt

mt (x′, 0) eitFm .(7.34)

and set

m̃t (x, y) :=
e−

(x0−y0)2

4t

√
4πt

mt (x′, y′)

E (x′; s, t) := mt−s (0, x′)ms (x′, 0)

Ẽ (x; s, t) := m̃t−s (0, x) m̃s (x, 0)

1

ρµ (t)
:=

{
1
2t ; µ = 0,

µµ
2 tanhµµt

; 1 ≤ µ ≤ 2m.

Plugging (7.28) and (7.34) into (7.33) gives

tr L1 (0, 0) = Ajkl

−
ˆ t

0

ds

ˆ
dxE (x; s, t)

xµxl
ρµ (s)

tr
[
i

3
γkγjγµeitFm

]
︸ ︷︷ ︸

=:ljkl10

+

ˆ t

0

ds

ˆ
dxE (x; s, t) (iaµxl) tr

[
i

3
γkγjγµeitFm

]
︸ ︷︷ ︸

=:ljkl11

(7.35)

tr L2 (0, 0) = Ajkl

−
ˆ t

0

ds

ˆ
dxE (x; s, t)

xµxk
ρµ (s)

tr
[
i

3
γlγjγµeitFm

]
︸ ︷︷ ︸

=:ljkl20

+

ˆ t

0

ds

ˆ
dxE (x; s, t) (iaµxk) tr

[
i

3
γlγjγµeitFm

]
︸ ︷︷ ︸

=:ljkl21

 .(7.36)

Since the function E (x; s, t) is an even function in x, we must have µ = l for the x
integral in L

jkl
10 to be non-zero. Similarly, we must have µ, l > 0 with |µ− l| = m

for the x integral in l
jkl
11 to be non-zero. We now note that for indices p < q < r;

tr
[
iγpeitFm

]
=

{
2m
(
Πm
j=1 sinhµjt

)
; p = 0

0 otherwise.

tr
[
iγpγqγreitFm

]
=

{
−i2m (Πmj=1 sinhµjt)

tanh(µqt)
; p = 0 and r − q = m

0 otherwise.
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This now implies that the coefficient of Ajkl in L1 is zero unless exactly one of the
indices(i, j, k) is zero; and the other two are either equal or differ by m. A similar
analysis also give that the coefficient of Ajkl in L2, L3 is zero unless exactly one of
(i, j, k) is zero. Furthermore

tr L3 (0, 0) = 2Ajkl


ˆ t

0

ds

ˆ
dxE (x; s, t)xkxl

(
δ0j

2s
− x0xj

2sρj (s)

)
tr
[
i

3
γ0eitFm

]
︸ ︷︷ ︸

=:ljkl30

+

ˆ t

0

ds

ˆ
dxE (x; s, t)

(
iajx0xkxl

2s

)
tr
[
i

3
γ0eitFm

]
︸ ︷︷ ︸

=:ljkl31

 .(7.37)

For future reference we define ljkl1 = l
jkl
10 +l

jkl
11 , ljkl2 = l

jkl
20 +l

jkl
21 , ljkl3 = l

jkl
30 +l

jkl
31

and u
jkl
11 := l

jkl
1 + l

jkl
2 + l

jkl
3 .

We may now make the three cases.
Case (i) j = 0

Again as observed before we must have either k = l or |k − l| = m. If 1 ≤ k = l ≤ m,
we compute

l0kk
1 + l0kk

2

:= l0kk
10 + l0kk

11 + l0kk
20 + l0kk

21

= −
ˆ t

0

ds

ˆ
dxẼ (x; s, t)

µkx
2
k

tanh (µks)
tr
[
i

3
γkγ0γkeitFm

]
−
ˆ t

0

ds

ˆ
dxẼ (x; s, t)

(
iµkx

2
k

)
tr
[
i

3
γkγ0γk+meitFm

]
=

1

3
2m
(
Πm
j=1 sinhµjt

) ˆ t

0

ds

[
µk

tanh (µkt)
− µk

tanh (µks)

](ˆ
dxx2

kẼ (x; s, t)

)

=
1

3

1√
4πt

2m
(
Πm
j=1 sinhµjt

)ˆ t

0

ds

[
µk

tanh (µkt)
− µk

tanh (µks)

](ˆ
dx′ x2

kE (x′; s, t)

)(7.38)

=
1

3

2
(
Πm
j=1µj

)
(2π)

m
1√
4πt

ˆ t

0

ds

[
µk

tanh (µkt)
− µk

tanh (µks)

] [
sinhµks sinhµk (t− s)

µk sinhµkt

](7.39)

=
1

3

(
Πm
j=1µj

)
(2π)

m
1

µk

1√
4πt

1

sinhµkt

[
(µkt) cosh (µkt)− sinh (µkt)

tanh (µkt)
− (µkt) sinh (µkt)

](7.40)
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and

l0kk
3

=
1

t

1√
4πt

ˆ
E (x′; s, t)x2

ktr
[
i

3
γ0eitFm

]
=

1

3

1

t

1√
4πt

2m
(
Πm
j=1 sinhµjt

) ˆ
ds

ˆ
dx′E (x′; s, t)x2

k(7.41)

=
1

3

2
(
Πm
j=1µj

)
(2π)

m
1

t

1√
4πt

ˆ t

0

ds

[
sinhµks sinhµk (t− s)

µk sinhµkt

]
(7.42)

=
1

3

(
Πm
j=1µj

)
(2π)

m
1

µk

1√
4πt

1

(µkt) sinhµkt
[(µkt) cosh (µkt)− sinh (µkt)] .(7.43)

Here we have used one of the integrals

ˆ
dx′E (x′; s, t) =

m∏
j=1

µj
4π sinhµjt

ˆ
dx′ x2

kE (x′; s, t) = 2

 m∏
j=1

µj
4π sinhµjt

[ sinhµks sinhµk (t− s)
µk sinhµkt

]
ˆ
dx′ x2

kx
2
lE (x′; s, t) = 4

 m∏
j=1

µj
4π sinhµjt

[ sinhµks sinhµk (t− s)
µk sinhµkt

] [
sinhµls sinhµl (t− s)

µl sinhµlt

]
ˆ
dx′ x4

kE (x′; s, t) = 12

 m∏
j=1

µj
4π sinhµjt

[ sinhµks sinhµk (t− s)
µk sinhµkt

]2

in (7.38), (7.41) and one of

ˆ t

0

ds sinhµks sinhµk (t− s) =
1

2µk
[(µkt) cosh (µkt)− sinh (µkt)]

ˆ t

0

ds coshµks sinhµk (t− s) =
1

2µk
(µkt) sinh (µkt)

ˆ t

0

ds s sinhµks sinhµk (t− s) =
1

(2µk)
2 (µkt) [(µkt) cosh (µkt)− sinh (µkt)]

ˆ t

0

ds s sinhµks coshµk (t− s) =
1

(2µk)
2

[
(µkt) cosh (µkt)− sinh (µkt) + (µkt)

2
sinh (µkt)

]
in (7.39), (7.42). The sum of (7.40) and (7.43) now gives

u0kk
11 (0, 0) := l0kk

1 + l0kk
2 + l0kk

3

=
1

3

(
Πm
j=1µj

)
(2π)

m
1

µk

1√
4πt

[
µkt

(sinhµkt)
2 −

1

µkt

]
.(7.44)

A similar computation yields the same answer for u0kk
11 (0, 0) if k > m.
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We now consider the possibilityl = k +m and compute

l
0k(k+m)
1 + l

0k(k+m)
2

= l0kk
10 + l0kk

11 + l0kk
20 + l0kk

21

= −
ˆ t

0

ds

ˆ
dxE (x; s, t)

x2
k+m

ρk+m (s)
tr
[
i

3
γkγ0γk+meitFm

]
+

ˆ t

0

ds

ˆ
dxE (x; s, t)

(
iµkx

2
k+m

)
tr
[
i

3
γkγjγkeitFm

]
−
ˆ t

0

ds

ˆ
dxE (x; s, t)

x2
k

ρk (s)
tr
[
i

3
γk+mγjγkeitFm

]
+

ˆ t

0

ds

ˆ
dxE (x; s, t)

(
−iµkx2

k

)
tr
[
i

3
γk+mγjγk+meitFm

]
= 0

and

l
0k(k+m)
3

=
1

t

1√
4πt

ˆ
E (x′; s, t)xkxk+mtr

[
i

3
γ0eitFm

]
= 0.

Hence

(7.45) u
0k(k+m)
11 (0, 0) = 0.

A similar computation in the case k = l +m shows u0(k+m)k
11 (0, 0) = 0 .

Case (ii) k = 0
Again as observed before we must have either j = l or |j − l| = m. If 1 ≤ j = l ≤ m,
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we compute

l
j0j
1 + l

j0j
2

:= l
j0j
10 + l

j0j
11 + l

j0j
20 + l

j0j
21

=

ˆ t

0

ds

ˆ
dxẼ (x; s, t)

(
µj

2 tanh (µjs)

)
x2
j tr
[
i

3
γ0eitFm

]
−
ˆ t

0

ds

ˆ
dxẼ (x; s, t)

(
i
µj
2
x2
j

)
tr
[
i

3
γ0γjγj+meitFm

]
+

ˆ t

0

ds

ˆ
dxẼ (x; s, t)

x2
0

2s
tr
[
i

3
γ0eitFm

]
=

1

3

1√
4πt

(
Πm
j=1µj

)
(2π)

m

ˆ t

0

ds

(
µj

tanh (µjs)

)[
sinhµjs sinhµj (t− s)

µj sinhµjt

]
− 1

3

1√
4πt

(
Πm
j=1µj

)
(2π)

m

ˆ t

0

ds
µj

tanh (µjt)

[
sinhµjs sinhµj (t− s)

µj sinhµjt

]
+

1

3

1√
4πt

(
Πm
j=1µj

)
(2π)

m

ˆ t

0

ds

(
t− s
t

)
=

1

3

1√
4πt

(
Πm
j=1µj

)
(2π)

m
t

2

− 1

3

1√
4πt

(
Πm
j=1µj

)
(2π)

m
1

2µj

1

tanh (µjt)

1

sinhµjt
[(µjt) coshµjt− sinhµjt]

+
1

3

1√
4πt

(
Πm
j=1µj

)
(2π)

m
t

2
(7.46)

and

l
j0j
3

= −
ˆ t

0

ds

ˆ
dxẼ (x; s, t)

1

2s

µj
tanhµjs

x2
0x

2
j tr
[
i

3
γ0eitFm

]
= −1

3

2√
4πt

(
Πm
j=1µj

)
(2π)

m

ˆ t

0

ds

(
t− s
t

)[
coshµjs sinhµj (t− s)

sinhµjt

]

= −1

3

1√
4πt

(
Πm
j=1µj

)
(2π)

m
1

(µjt) sinhµjt

1

2µj

[
(µjt) coshµjt− sinhµjt+ µ2

j t
2 sinhµjt

](7.47)

The sum of (7.46) and (7.47) now gives

(7.48) u
j0j
11 (0, 0) =

1

3

(
Πm
j=1µj

)
(2π)

m
1

2µj

1√
4πt

[
1

µjt
− µjt

(sinhµjt)
2

]
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If l = j +m, we compute

l
j0(j+m)
1 + l

j0(j+m)
2

:= l
j0(j+m)
10 + l

j0(j+m)
11 + l

j0(j+m)
20 + l

j0(j+m)
21

= −
ˆ t

0

ds

ˆ
dxẼ (x; s, t)

(
µj

2 tanh (µjs)

)
x2
j+mtr

[
i

3
γ0γjγj+meitFm

]
−
ˆ t

0

ds

ˆ
dxẼ (x; s, t)

(
i
µj
2
x2
j+m

)
tr
[
i

3
γ0eitFm

]
−
ˆ t

0

ds

ˆ
dxẼ (x; s, t)

x2
0

2s
tr
[
i

3
γj+mγjγ0eitFm

]
=

1

3

i√
4πt

(
Πm
j=1µj

)
(2π)

m

ˆ t

0

ds
µj

tanh (µjs)

1

tanh (µjt)

[
sinhµjs sinhµj (t− s)

µj sinhµjt

]
− 1

3

i√
4πt

(
Πm
j=1µj

)
(2π)

m

ˆ t

0

ds

[
sinhµjs sinhµj (t− s)

µj sinhµjt

]
− 1

3

i√
4πt

(
Πm
j=1µj

)
(2π)

m

ˆ t

0

ds

(
t− s
t

)
1

tanh (µjt)

= −1

3

i√
4πt

(
Πm
j=1µj

)
(2π)

m
1

2µj

µjt

tanh (µjt)

− 1

3

i√
4πt

(
Πm
j=1µj

)
(2π)

m
1

2µ2
j sinhµjt

[(µjt) coshµjt− sinhµjt]

1

3

i√
4πt

(
Πm
j=1µj

)
(2π)

m
t

2 tanh (µjt)

= −1

3

i√
4πt

(
Πm
j=1µj

)
(2π)

m
1

2µj
[(µjt) coshµjt− sinhµjt](7.49)

and

l
j0(j+m)
3

= l
j0(j+m)
31

= 2

ˆ t

0

ds

ˆ
dxE (x; s, t)

(
iµjx

2
0x

2
j+m

4s

)
tr
[
i

3
γ0eitFm

]

=
1

3

2i√
4πt

(
Πm
j=1µj

)
(2π)

m

ˆ t

0

ds

(
t− s
t

)[
sinhµjs sinhµj (t− s)

µj sinhµjt

]
=

1

3

i√
4πt

(
Πm
j=1µj

)
(2π)

m
1

2µ2
j sinhµjt

[(µjt) coshµjt− sinhµjt](7.50)

The sum of (7.49) and (7.50) gives

(7.51) u
j0(j+m)
11 (0, 0) = 0.

A similar computation also yields u(j+m)0j
11 (0, 0) = 0.

Case (iii) l = 0
Again as observed before we must have either j = k or |j − k| = m. The tensor



54 NIKHIL SAVALE

Ajkl in (7.24) being anti-symmetric in j, k; we have u
jj0
11 (0, 0) = 0. On the other

hand, the expressions for ljkl1 + l
jkl
2 and l

jkl
3 are symmetric in k, l. Hence we find

u
j(j+m)0
11 (0, 0) = u

j0(j+m)
11 (0, 0) = 0(7.52)

u
(j+m)j0
11 (0, 0) = u

(j+m)0j
11 (0, 0) = 0(7.53)

as in the previous case.
To sum up, from (7.32), (7.33), (7.35), (7.36), (7.37), (7.44), (7.45), (7.48), (7.51),

(7.52) and (7.53) we have finally have

u1

(
se−ts

2
)

= −tr U11 (0, 0)

= −Ajklujkl11

= −A0kk

3

(
Πm
j=1µj

)
(2π)

m
1

µk

1√
4πt

[
µkt

(sinhµkt)
2 −

1

µkt

]

−Aj0j
3

(
Πm
j=1µj

)
(2π)

m
1

2µj

1√
4πt

[
1

µjt
− µjt

(sinhµjt)
2

]

= −Aj0j

(
Πm
j=1µj

)
(2π)

m
1

2µj

1√
4πt

[
1

µjt
− µjt

(sinhµjt)
2

]
.(7.54)

A simple computation using Laplace transforms now shows

−Aj0j

(
Πm
j=1µj

)
(2π)

m
1

2µ2
j t

1√
4πt

= −
(
Πm
j=1µj

)
(2π)

m+1 .
Aj0j

µ2
j︸︷︷︸

=tr J−2(∇TXJ)0

. v1

(
se−ts

2
)(7.55)

Aj0j

(
Πm
j=1µj

)
(2π)

m
1

2µj

1√
4πt

µjt

(sinhµjt)
2 =

(
Πm
j=1µj

)
(2π)

m Aj0j

√
t√
π

[ ∞∑
τ=1

τe−2τµjt

]

= −
(
Πm
j=1µj

)
(2π)

m+1 Aj0j︸︷︷︸
= 1
dj

tr (∇TXJ)j

[ ∞∑
τ=1

τ (v1,−2,0,Λ + v0,−3,0,Λ)
(
se−ts

2
)]

(7.56)

where 2Λ = 2τµj = 2τµj in the last equation (7.56) above.
Thus, (7.30), (7.54), (7.55) and (7.56) show that the two sides of (7.19) evaluate

equally on test functions e−ts
2

, se−ts
2

. Differentiating k times and setting t = 1;
they evaluate equally on test functions s2ke−s

2

, s2k+1e−s
2

for each k. The density
of this set of functions in Schwartz space S (R) now gives the result. �

We end with a corollary of the above computation useful in the next section.

Corollary 7.3. The improper integral converges
ˆ ∞

0

u1

(
se−ts

2
) dt√

πt
= −1

2

1

(2π)
m+1

1

m!

ˆ
X

[
tr

1

|J|
(
∇TXJ

)0]
a ∧ (da)

m
.
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Proof. This is a calculation from (7.54)
ˆ ∞

0

u1

(
se−ts

2
) dt√

πt
= −1

2

ˆ
X

dxAj0j

(
Πm
j=1µj

)
(2π)

m+1

ˆ ∞
0

1

µjt

[
1

µjt
− µjt

(sinhµjt)
2

]
dt

= −1

2

ˆ
X

dx

(
Πm
j=1µj

)
(2π)

m+1

Aj0j

µj

ˆ ∞
0

1

u

[
1

u
− u

(sinhu)
2

]
du

= −1

2

ˆ
X

dx

(
Πm
j=1µj

)
(2π)

m+1

Aj0j

µj

[
− 1

u
+

2

e2u − 1

]∞
0

=
1

2

ˆ
X

dx

(
Πm
j=1µj

)
(2π)

m+1

Aj0j

µj

[
lim
u→0

1 + 2u− e2u

u (e2u − 1)

]
= −1

2

1

(2π)
m+1

ˆ
X

Aj0j

µj︸︷︷︸
=tr 1

|R||J| (∇TXJ)0

(
Πm
j=1µj

)
dx︸ ︷︷ ︸

= 1
m! |R|a∧(da)m

.

�

8. Semiclassical limit of the eta invariant

In this section we prove the semiclassical limit formula for the eta invariant of
Theorem 1.2. First, from [26] Cor. 7.3, the distributions uj ∈ S ′ (R) of (7.1) are
smooth near 0. Hence

u±j (x) := 1[0,∞) (±x)uj (x) ∈ S ′ (R)

are well defined tempered distributions and we similarly define f± for any f ∈ S (R).
We now have two term asymptotics for irregular functional traces similar to 7.1.

Lemma 8.1. For any f ∈ S (R),

(8.1) tr f±
(
D√
h

)
= h−m−

1
2u±0 (f) + h−mu±1 (f) + o

(
h−m

)
.

Proof. We begin by proving an improved local Weyl law. To this end, choose
θ ∈ C∞c (R; [0, 1]) such that θ (x) = 1 near 0 and θ̌ (ξ) ≥ 1

4 for |ξ| ≤ 1 in (1.9). For
each ε > 0, set θε (x) = θ (εx) and let N (a, b) denote the number of eigenvalues of
Dh in the interval (a, b). Choosing f (x) ≥ 0 with f (0) = 1, the trace expansion
(1.9) with λ = 0 now gives

1

εh
N (−εh, εh)

(
1

4
+O

(√
εh
))
≤ tr

[
f

(
D√
h

)
1

εh
θ̌

(
−D
εh

)]
= h−m−1 [u0 (0) +Oε (h)] .

Hence for ε > 0 fixed and h � 1 depending on ε, we have an improved local Weyl
law

(8.2) N (−εh, εh) = O
(
εh−m

)
.

From here (1.13) follows.
Now, to prove (8.1) first observe that by virtue of 7.1 we may assume f ∈

C∞c
(
−
√

2µ1,
√

2µ1

)
. Next define the spectral measureMf (λ′) :=

∑
λ∈Spec

(
D√
h

) f (λ) δ (λ− λ′).

It is clear that the expansion (1.9) to its first two terms may be written as

Mf ∗
(
F−1
h θ 1

2

)
(λ) = h−m−

1
2

(
f (λ)u0 (λ) + h1/2f (λ)u1 (λ) +O (h)

)
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where θ 1
2

(x) = θ
(
x√
h

)
. Both sides above involving Schwartz functions in λ, the

remainder maybe replaced by O
(

h
〈λ〉2

)
. We may then integrate to obtain

(8.3)ˆ 0

−∞
dλ

ˆ
dλ′
(
F−1
h θ 1

2

)
(λ− λ′)Mf (λ′) = h−m−

1
2

(ˆ 0

−∞
dλf (λ)u0 (λ) + h1/2

ˆ 0

−∞
dλf (λ)u1 (λ) +O (h)

)
.

Now note

(8.4)
ˆ 0

−∞
dλ
(
F−1
h θ 1

2

)
(λ− λ′) = 1(−∞,0] (λ′) + φ

(
λ′√
h

)
where φ (x) :=

´ 0

−∞ dtθ̌ (t− x) − 1(−∞,0] (x) is a function that is rapidly decaying
with all derivatives, odd and smooth on Rx \ 0. Next let χ ∈ C∞c (R; [0, 1]) be an
even function equal to 1 near 0 and set φR (x) = χ

(
x
R

)
φ (x) for each R > 0. We

now compute ˆ
dλ′
[
φ

(
λ′√
h

)
− φR

(
λ′√
h

)]
Mf (λ′)

=

ˆ
dλ′
[
1− χ

(
λ′

R
√
h

)]
φ

(
λ′√
h

)
Mf (λ′)

=O

h−m ∑
k≥R

〈k〉−∞


=O

(
h−m

R

)
(8.5)

from the local Weyl law (8.2).
Next for ε > 0, we observe∣∣φR (x)− φR ∗ θ̌ε (x)

∣∣
=

∣∣∣∣ˆ dy [φR (x)− φR (x− εy)] θ̌ (y)

∣∣∣∣
≤ON (1)

[〈x
ε

〉−N
+ ε 〈x〉−N

]
∀N ∈ N.(8.6)

Now consider a pairing corresponding to the first term above with Mf (λ′)

ˆ
dλ′
〈

λ′

ε
√
h

〉−N
Mf (λ′)

=

ˆ
dλ′1[−R′,R′]

(
λ′

ε
√
h

)〈
λ′

ε
√
h

〉−N
Mf (λ′)

+

ˆ
dλ′
(
1− 1[−R′,R′]

)( λ′

ε
√
h

)〈
λ′

ε
√
h

〉−N
Mf (λ′) .(8.7)

The support of 1[−R′,R′]

(
λ′

ε
√
h

)
can be covered by O (R′) intervals of size ε

√
h, which

combined with the local Weyl law gives that the first term above is O (R′εh−m).

The second term on the other hand, observing
(
1− 1[−R′,R′]

) (
λ′

ε
√
h

)〈
λ′

ε
√
h

〉−N
=
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O

(
1
R′

〈
λ′√
h

〉−N+1
)
, is O

(
1
R′h
−m). On choosing R′ = 1√

ε
, this gives (8.7) is

O (
√
εh−m). A similar estimate

(8.8)
ˆ
dλ′ε

〈
λ′√
h

〉−N
Mf (λ′) = O

(
εh−m

)
combined with (8.6) gives

(8.9)
ˆ
dλ′
[
φR

(
λ′√
h

)
− φR ∗ θ̌ε

(
λ′√
h

)]
Mf (λ′) = OR

(√
εh−m

)
.

The second term above has an expansion on integrating (1.9) against φRˆ
dλ′φR ∗ θ̌ε

(
λ′√
h

)
Mf (λ′) = h−m

[ˆ
dλφR (λ) f (0)u0 (0) +OR,ε (h)

]
= OR,ε

(
h−m+1

)
.(8.10)

Finally putting together (8.3), (8.4), (8.5), (8.9) and (8.10) gives

tr f−
(
D√
h

)
=

ˆ
dλ′1(−∞,0] (λ′)Mf (λ′)

= h−m−
1
2

(ˆ 0

−∞
dλf (λ)u0 (λ) + h1/2

ˆ 0

−∞
dλf (λ)u1 (λ)

)
+O

(
h−m

R

)
+OR

(√
εh−m

)
+OR,ε

(
h−m+1

)
from which (8.1) follows on choosing each of 1

R , ε, h sufficiently small depending
on the preceding parameters. �

We now come to the proof of Theorem 1.2.

Proof of Theorem 1.2. We begin by using the invariance of η under positive scaling
to write

ηh = η

(
D√
h

)
=

ˆ ∞
0

dt
1√
πt

tr
[
D√
h
e−

t
hD

2

]
=

ˆ ε

0

dt
1√
πt

tr
[
D√
h
e−

t
hD

2

]
+

ˆ ∞
ε

dt
1√
πt

tr
[
D√
h
e−

t
hD

2

]
.(8.11)

The equation 4.5 pg. 859 of [25] with r = 1
h translates to the estimate

(8.12) tr
[
D√
h
e−

t
hD

2

]
= O

(
h−mect

)
giving that the first integral of (8.11) is O (

√
εh−m). The second integral is evalu-

ated to be tr Eε
(
D√
h

)
= tr 1

εE
(
εD√
h

)
where

E(x) = sign(x)erfc(|x|) = sign(x) · 2√
π

ˆ ∞
|x|

e−s
2

ds

with the convention sign(0) = 0. The functions E, Eε are rapidly decaying with all
derivatives, odd and smooth on Rx \ 0. Hence (8.1) gives

tr Eε
(
D√
h

)
= h−m−

1
2 [u0 (Eε)] + h−m [u1 (Eε)] + o

(
h−m

)
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where the evaluations above again make sense on account of the smoothness of u0,
u1 near 0. As observed from [26] Prop. 7.4, the coefficient u0 is an even function
of λ. Since Eε is odd, the first evaluation above is 0. The second is evaluated from
definition to

u1 (Eε) =

ˆ ∞
ε

u1

(
se−ts

2
) dt√

πt

= −1

2

1

(2π)
m+1

1

m!

ˆ
X

[
tr

1

|J|
(
∇TXJ

)0]
a ∧ (da)

m
+O (ε)

following the Corollary 7.3. Choosing ε sufficiently small and putting everything
together

ηh = h−m

(
−1

2

1

(2π)
m+1

1

m!

ˆ
X

[
tr

1

|J|
(
∇TXJ

)0]
a ∧ (da)

m

)
+ o

(
h−m

)
as required. �
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