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A GUTZWILLER TYPE TRACE FORMULA FOR THE
MAGNETIC DIRAC OPERATOR

NIKHIL SAVALE

ABSTRACT. For manifolds including metric-contact manifolds with non-resonant
Reeb flow, we prove a Gutzwiller type trace formula for the associated mag-
netic Dirac operator involving contributions from Reeb orbits on the base. As
an application, we prove a semiclassical limit formula for the eta invariant.

1. INTRODUCTION

The trace formulas of Gutzwiller [I9] and Duistermaat-Guillemin [I3] are a
clear statement of the semiclassical correspondence, expressing the spectrum of
(h-) pseudo-differential operators in terms of periodic orbits of the underlying
Hamiltonian dynamics as h — 0. We refer to [, [29] for a historical survey of
trace formulas and the associated calculus of Fourier integral operators. For non-
scalar pseudo-differential operators this calculus is often unavailable due to the
non-diagonalizability of the principal symbol o (4). Indeed when the eigenvalues of
o (A) are not smooth functions on the cotangent space, their corresponding Hamil-
tonian dynamics is not well-defined. The purpose of this article is to investigate
the trace formula in one such case.

More precisely, let (X,g”*) be an oriented Riemannian manifold of odd di-
mension n = 2m + 1 equipped with a spin structure. Let S be the corresponding
spin bundle and let L be an auxiliary Hermitian line bundle. Fix a unitary con-
nection Ag on L and let a € Q! (X;R) be a contact one form (i.e. one satisfying
aA(da)™ > 0). This gives a family of unitary connections on L via V" = 4y + £a
and a corresponding family of coupled magnetic Dirac operators

(1.1) Dy =hDy,+ic(a): C*(S®L) - C*(S®L)

for h € (0, 1].

Define the contact hyperplane H = ker (a) C TX as well as the Reeb vector
field R via irda = 0, ira = 1. We shall now further assume that the Reeb flow
of a is non-resonant. To state this assumption, let v denote a Reeb orbit. For a
fixed point p € v, the linearized Poincare return map P, : T, X — T, X has R, as
an eigenvector with eigenvalue 1 and restricts to a symplectic map on the contact
hyperplane Pj : H, — Hp,. We call the Reeb orbit v non-degenerate if P,;r has
n — 1 distinct eigenvalues not equal to 1. There now exists a symplectic basis for
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H, in which P} decomposes as

Ny Ny Ny
+e +,h +,h +,1
12 e | @ o @rik o | @it | o [Brih
=1 =1 =
for
(1.3)
te [cosB —sinf
Pyp = |sin  cosf3 ]’ B €(0,2m)
(1.4)
+.h —eo‘ 0
VEABMES 0 el a>0
(1.5)
e~ cos B0 0 —e—"sin B0 0
0 0
0 e® cos 3° 0 —e® sin 30
pHlo = . a’>0,8%€(0,7).
100,80 e’ sin 3° 0 e’ cos 3° 0 “ pe(0m)
i 0 e sin 30 0 e’ cos 30

We note that the summands in the decomposition (1.2)) each correspond to: a
pair of elliptic eigenvalues e** (of P;f;), a pair of positive/negative hyperbolic

eigenvalues +e** (of j:P,ﬁ;lh) and a quartet of loxodromic eigenvalues e£e"+i5" (of

P;rofo BO) We call the Reeb orbit v non-resonant if the two sets
+ _
{af 12U {af}]_vh U{ad}, and

f2mh U} u {80},

are rationally (Q—) independent. We call the Reeb flow of a non-resonant if all its
Reeb orbits are non-resonant.

Next, we shall assume that the metric g is strongly suitable to the contact form
a. To define this, consider the contracted endomorphism J : T, X — T, X defined
at each point x € X via

(1.6) da (v1,v9) = g™ (v1,Jv2), Vuy,vg € T X.

The contact assumption on the one form a implies that J has a one dimensional
kernel spanned by the Reeb vector field R. The endomorphism J is clearly anti-
symmetric with respect to the metric

9" (v1,Jv2) = —g" (Jur, v2)

and hence its non-zero eigenvalues come in purely imaginary pairs +ip ; g > 0. We
now say that the metric is strongly suitable to the contact form a if the spectrum

of J, is independent of z: there exist positive constants 0 < p; < po < ... < iy,
such that

(1.7) Spec (Jz) = {0, £ipy, £ips, ..., tipy,}, VeeX.

We note that this is a slight strengthening of the suitability assumption from [26]
wherein Spec (J,) was allowed to vary in x with one single function v (z) € C* (X).
Here are two examples of strongly suitable suitable metrics.
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(1) The dimension of the manifold dim X = 3. In this case a metric g7¥ is
strongly suitable if the magnetic field |da| = p; has constant strength.

(2) There is a smooth endomorphism J : TX — TX, such that
(XQm‘H, a, g’ x, J) is a metric contact manifold. That is, we have

J*v; = —vy+a(v)R,
(1.8) gTX(vl,ng) = da(vy,v), Voui,ve €T, X.

In this case the nonzero eigenvalues of J, = J, are +i (each with multi-
plicity m). For any given contact form a there exists an infinite dimen-
sional space of (gTX, J ) satisfying . This case in particular includes
all strictly pseudo-convex CR manifolds.

Our first result is now a Gutzwiller type trace formula for the magnetic Dirac

operator li To state it precisely choose f € C® (f\/2u1,\/2u1). Let 0 €
C° (R;[0,1]) be any compactly supported supported function, such that § = 1
near 0, and set

F0@) = 0= 5 [0

1 1
Flow = £0(3) =57 [0

to be its classical and semi-classical inverse Fourier transforms respectively. We
shall then prove.

Theorem 1.1. Let a be a non-resonant contact form and g*X a strongly suitable
metric. We then have a trace expansion

(1.9)

ir [f (\1/)5) (F;'0) ()\\/E_ D): _
(1.10)
" lf (55) %é (mh_D> =hmt jZN%f(A) g (V) 172
- +) et N_f_ghi/z Xj:AkAm,ke (L)
(1.12) +(; (2 i=0 =0

for each N € N\ € R. Here the second line on the right hand side above is a sum
over the Reeb orbits of a. Furthermore; the terms appearing on the right hand side
are as follows

(1) each u; is a polynomial function in A

(2) each A, ;i is a differential operator on R of order between k and j

(8) T, and L. denote the period and Riemannian length of the Reeb orbit re-
spectively

(4) my denotes the Maslov index of a metaplectic lift of Pj.
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Finally, the leading contribution of each Reeb orbit v is given by the multiplication
operator
L# 1
Ay 000 ==L 0
™ Jldet (1= P7)

with Lif denoting the primitive length of the orbit.

An immediate consequence of the above trace formula is a little o estimate on
the dimension of the kernel of Dy,

(1.13) kp, = dim ker (Dy) =0 (h™™).

As another application, we shall prove a semiclassical limit formula for the (rescaled)
eta invariant of the magnetic Dirac operator Dj,. To state this, first let R+ C TX
denote the 2m-dimensional orthogonal complement to the Reeb vector field. We

may now define the endomorphisms (VTXG)O ‘Rt — Rt 3] : Rt — RJ-, via,
(V7¥3) 0 = (VIX3) R, Wve RY,

(1.14) 3] =V —32.
We then have the following.

Theorem 1.2. Let a be a non-resonant contact form and gT* a strongly suitable
metric. The rescaled eta invariant of the Dirac operator (1.1)) satisfies

1 1 1 —1 0
1.15 im A"n(D})) = - = ——— — |:t ~ TX ~ :| A (da)™ .
(L15) i ™ (Dh) = ~5 - [ [ 97 (979 0 o
Before proceeding further we look at the limit formula formula above in the two
special cases mentioned earlier.

(1) The dimension of the manifold dim X = 3 and |da| = p; has constant
strength. In this case the limit (1.15)) is given by the volume integral
. M1 .k
1 "y (Dp) = —=—5 .
hli%h 1 (Dp) 572 /s [ird"da) dx
(2) There is a smooth endomorphism J : TX — TX, such that
X2m+l g gTX J) is a metric contact manifold (1.8)). In this case the limit
h

.15)) is simply the volume

. m 1
}ILE}}) h™n(Dy) = —5Wvol (X).

A small time trace formula was already proved in [26] assuming 6 to
be supported sufficiently close to the origin; much of this article attempts to ex-
tend the arguments therein to large supports. By the construction of appropri-
ate trapping functions it is shown that the formula of [26] extends to large time
when microlocalized away from the Reeb orbits. Near the Reeb orbits, the trace is
studied via understanding the Birkhoff normal form of Dj near each orbit, using
which it is reduced to the trace of a scalar effective Hamiltonian. The Birkhoff
normal form procedure here combines the one in [26] with ones for scalar Hamilto-
nians [16] 17, 21} B0} [31] near periodic Hamiltonian orbits and hence requires the
non-resonance assumption. The semiclassical asymptotics for the Dirac operator
considered here were originally motivated by Taubes’s proof of the three dimen-
sional Weinstein conjecture [28] on the existence of Reeb orbits. The existence of
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Reeb orbits, or the necessity of dynamical contributions (L.11)), is still unresolved
in higher dimensions.

The behavior of the eta invariant of Dirac operators has been studied under
various operations (cf. [I5] for a survey) and the formula adds to a long list.
A more precise relation between the eta invariant and the dynamics of geodesic
flow has been studied on compact hyperbolic manifolds [23] and locally symmetric
spaces of non-compact type [24]. The proof of such precise relations on general
negatively curved manifolds is the subject of the hypo-elliptic Laplacian program
of Bismut [4] 5].

Under the well known correspondence between semi-classical and microlocal
analysis, the operator corresponds to a hypo elliptic sub-Riemannian (sR)
Dirac operator on the product X x S!. The Reeb orbits on X correspond to singu-
lar geodesics on the quasi-contact product suggesting a more general trace formula
for sR Dirac operators. The eigenvalues of the symbol of the sR Dirac operator
being the square root of the symbol of the sR Laplacian up to sign, similar trace
formulas could be expected for the half-wave equation of the sR Laplacian. A sys-
tematic study of spectral asymptotics for sR Laplacians and related dynamics has
been recently undertaken [9] [§].

The paper is organized as follows. In Section [2] we begin with the preliminaries
of Dirac operators, Clifford representations and semi-classical analysis used in the
paper. In Section |3| we breakup the trace (1.9)) using a partition of unity adapted
to the Reeb dynamics. By the construction of appropriate trapping functions it is
shown here that the trace does not have non-local contributions when microlocalized
away from the Reeb orbits. In Section [4] we generalize the Birkhoff normal form of
[26] to one in a neighborhood of each Reeb orbit. This normal form is then used,
via the construction of a similar trapping functions to reduce the trace asymptotics
to S1 x R?™ in Section leading to a proof of Theorem in Section @ In Section
we compute the second term in the local trace expansion of . This leads to
the semi-classical limit formula for the eta invariant in the final Section

2. PRELIMINARIES

2.1. Spectral invariants of the Dirac operator. Here we review the basic facts
about Dirac operators used throughout the paper with [3] providing a standard
reference. Consider a compact, oriented, Riemannian manifold (X ,gTx ) of odd
dimension n = 2m + 1. Let X be equipped with spin structure, i.e. a principal
Spin (n) bundle Spin (T'X) — SO (TX) with an equivariant double covering of
the principal SO (n)-bundle of orthonormal frames SO (T'X). The corresponding
spin bundle S = Spin (T'X) Xgpin(n) S2m is associated to the unique irreducible
representation of Spin (n). Let VI¥ denote the Levi-Civita connection on TX. This
lifts to the spin connection V* on the spin bundle S. The Clifford multiplication
endomorphism ¢ : T*X — S ® S* may be defined (see satisfying

c(a)? = —|af?, Vae€T*X.
Let L be a Hermitian line bundle on X. Let Ag be a fixed unitary connection on
L and let a € Q'(X;R) be a 1-form on X. This gives a family V" = 4y + fa

of unitary connections on L. We denote by V%L = V° ® 1 + 1 ® V" the tensor
product connection on S® L. Each such connection defines a coupled Dirac operator

Dy, = hDy, +ic(a) = heo (VL) : C*(X;S® L) - C=(X;S® L)
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for h € (0,1]. The operator Dy, is elliptic and self-adjoint. It hence possesses a
discrete spectrum of eigenvalues.
We define the eta function of Dy by the formula

: s 1 >
21 nDn= Y SN = ey [
A#£0 2 0

A€Spec(Dy)

T tr (Dhe_tD’Q") dt,

Vs € C. Here, and in the remainder of the paper, we use the convention that
Spec(Dy,) denotes a multiset with each eigenvalue of D), being counted with its
multiplicity. The above series converges for Re(s) > n. It was shown in [I], 2] that
the eta function possesses a meromorphic continuation to the entire complex s-
plane and has no pole at zero. Its value at zero is defined to be the eta invariant of
the Dirac operator

nn =1 (D, 0).
By including the zero eigenvalue in (2.1]), with an appropriate convention, we may
define a variant known as the reduced eta invariant by

1
=5 {kn +nn}-
The eta invariant is unchanged under positive scaling
(2.2) 1 (Dp,0) =n(cDp,0); Ve>0.

Let L; j, denote the Schwartz kernel of the operator Dhe’tDi on the product X x X.
Throughout the paper all Schwartz kernels will be defined with respect to the
Riemannian volume density. Denote by tr (L, (z,z)) the point-wise trace of Ly,
along the diagonal. We may now analogously define the function

1 s
(2.3) 1N (Dp, s, x) :37/ t 2 tr (Lyp (z,2)) dt,
L'(=%) Jo

Vs € C, x € X. In [6] theorem 2.6, it was shown that for Re(s) > —2, the function
7 (D}, s, ) is holomorphic in s and smooth in . From (2.3) it is clear that this is
equivalent to

(2.4) tr (Lej) =O (t%) . ast— 0.

The eta invariant is then given by the convergent integral

_ [T L ~D}
(2.5) nn = /0 \/ﬁtr (Dhe h) dt.

2.2. Clifford algebra and and its representations. Here we review the con-
struction of the spin representation of the Clifford algebra. The following being
standard, is merely used to setup our conventions.

Consider a real vector space V of even dimension 2m with metric (,). Recall
that its Clifford algebra CI (V') is defined as the quotient of the tensor algebra
T (V) := @52,V by the ideal generated from the relations v ® v + lv]* = 0. Fix a
compatible almost complex structure J and split V ® C = V19 @ VO into the +i
eigenspaces of J. The complexification V' ® C carries an induced C-bilinear inner
product (,)c as well as an induced Hermitian inner product A® (,). Next, define
Som = A*VO. Clearly Sa,, is a complex vector space of dimension 2™ on which
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the unique irreducible (spin)-representation of the Clifford algebra C1(V) ® C is
defined by the rule

Com (V)w = V2 (vl’o Aw — L,UO,IW) , veV,we Son.

The contraction above is taken with respect to (,)c. It is clear that cap, (v) :
Aeven/odd _y podd/even gwitches the odd and even factors. For the Clifford algebra
Cl (W) ® C of an odd dimensional vector space W = V @ R [eg] there are exactly
two irreducible representations. The first (spin)-representation Sa,, 11 = A*V10 is
defined via

Comt1 (V) = com(v), VEV
1
(26) Com+1 (60) Weven/odd = iEweven/odd

while the other corresponds to the opposite sign convention in (2.6) above. We shall
often use the shorthand’s ¢ = ¢g,,, = Cop1 With the index 2m, 2m + 1 implicitly
understood.

Pick an orthonormal basis eq,es, ..., €2, for V in which the almost complex
structure is given by Je; = €j4m, 1 < j < m. An hC-orthonormal basis for V1.0
is now given by w; = % (ej4m +1iej), 1 < j < m. A basis for Sy, and SQimJr1 is
given by
(2.7) wp = wi AL AW with k= (k1 kg, .. k) € {0,137
Ordering the above chosen bases lexicographically in k£, we may define the Clifford
matrices, of rank 2™, via

,y]m = c(ej)u 0§]§2m7

for each m . We note that the above is a slightly different convention from [26]
adopted to simplify some formulas in Section|7| Again, we often write 7" = v; with
the index m implicitly understood. Giving representations of the Clifford algebra,
these matrices satisfy the relation

(2.8) Viv; + % = —204.
We also set o; = i;.

Next, one may further define the Clifford quantization map on the exterior al-
gebra

c:NW®C — End(Sam)
(2.9) c (elgo Ao A eéf,;”) = c(eo)™ ... c(eam)™m.

An easy computation yields

1
0 (’Yl’Ym-&-l) e ('Ym'YQm) = )

and hence )
tr [’}/0 .. ’YQm] = mz

Furthermore, if eg A ... A egy, is designated to give a positive orientation for W
then for w € A¥IW we have

m

o ( )
(2.10) c(rw) = (1) e (w)
k(k;n

(2.11) clw)" = (-1) c(w)
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under the Hodge star and h®-adjoint. The Clifford quantization map (2.9) is a linear

k(k+1)
2

surjection with kernel spanned by elements of the form xw — i™*!(—1) w.
Thus, in particular one has linear isomorphisms
(2.12) ¢ : A4 & € — End (Sam) -
Next, given (rq1,...,7y,) € R™\ 0, we define
(2.13) I, = {jlr; #0} Cc{1,2,...,m}
(2.14) Z, = |I]
(2.15) V. = @Chwcv?
jel,
(2.16) and w, = erwj eV,
j=1
Clearly, ||w,|| = |r|. Denoting by w;- the h®-orthogonal complement of w, C V.,
one clearly has V, = C [w,] ® w;-. We set
(2.17) i, :A*V, — A"V, via
i, (w) Y w
i, = —
7

i, %/\w = w
7|

for w € A*w. Clearly, i2 = 1 and i, is a linear isomorphism between
i, AevenVT N Aoddv'r
i, : Aoddw N AevenVr.

Next, the endomorphism

(2.18) c<w"\}2w">=(wr/\+%);1\*w — AV,

has the form

Wy — wr |’I“| ir
2.19 c|l—— 1| = .
219 (") =l "]
with respect to the decomposition A"V, = A°d4V,. @ A®Ve"V,.. This finally allows us
to write the eigenspaces of ([2.18)) as
(2.20) VE = (1+1,) (A"V,)
with eigenvalue =+ |r| respectively.

Finally we shall need an almost diagonalizability result for the restriction of
Clifford multiplication to the sphere. Define S (W) = {v € W||v| = 1} as well as
the restriction
(221) c: S (W) —u (SQerl)

c(v)? =—1d.
The restriction of the spin bundle Sa,,+1 to the sphere S (W) splits S2m+1|S(W) =
St (W)@ S_ (W) into the +i eigenspaces of the ¢ respectively. The summands
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S+ (W), S_ (W) maybe identified with the (non-trivial) bundle of positive and neg-
ative spinors on the sphere. The restriction ¢ (2.21)) is hence not globally diagonaliz-
able over the sphere. We now identify S (W) :%eo + ... Osmeny, € WO+ ...+ 63, =1}
with the standard sphere in S"~! C R™ using the chosen basis for W; with the in-
duced basis of Sopn+1 giving identifications u (So,41) = 1 ((sz), U (Soms1) =
U (C?"). Thus
2m
(2.22) c(0) = c(8oco + - .. Oameam) = > 0;7; € C (S"’l,u (cc?”’))
j=0
in this trivialization/coordinates. We now have.

Lemma 2.1. For each p € (O7 %), there exist smooth family of maps/functions

vy e C> (S"LU ((C2m)) ;ag g, af € C® (-1, 1]90) , t €10,1], such that
1/2
(1) ag, < (5)
2 4
(2) Hatvf” < (%) ’ HaQJVfH < <%) ’ te [07 1]: ] = 07"'72m'

2
Dpoal,| < (%) ,tef0,1], j=0,1.

(3)
fo; te 0.l
2.23 £ (6p) = ’ 2
( ) ao,t(o) {1; t=1,00<1-p,
15 te[o,1]
2.24 2. (0) = ’ T2
(224) 1 (60) {0; L,
(2.25) vl =o00; te€ [O, ;} ,
4) we have the almost diagonalizability equation
(4) h he al d lizabil
2m
(2.26) vy (0)" ¢ () v) (6) = af, (60) 0 + af , (60) | D 05
j=1
Proof. The matrix
(2.27) viSTI\ {0y =1} = U (<c2”)
(1—6o) 0,
2.28 v (0) = oo — o
( ) ( ) 2 0 \/m J
diagonalizes
(2.29) vie(0)v=—

away from the north-pole {6y = 1}. To get a map defined on the entire sphere, let
x; € C* ([-1, g, s [—1,1— £]) such that

bo; —1<6g<1-—p,
-1 1-5<6,<1,

(2.30) X (60) = {

with ‘(Xf)/‘ < %. Further let xo € C2° ([—1,1],;[0,1]) with xo =1on (-3, 3

9rxol < 4. Finally set x§ , = [1 = xo (1)]* x§~ [1 = (1= x0 (1))*] € > ([=1,1]g,; [-1,1 - §])
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. . / 1-— pf,(e )2 ['e)
satisfying ‘(Xll),t) ‘ < % ,|0ix? | < 8. Now xb, (6o) = 1/?_'7080 e C™ ([-1,1],,)

1/2 2 2
satisfies ’XS,t‘ < <%) / ’ (Xg,t)/ < (%) , 8th,t’ < (%) . The family
X7 St 8T {fy = 1}
(2.31) Xt (0) = (xT.; (60) s X5.4 (00) 01, - - -, X5 ; (60) O2m)

now defines a family of maps on the entire sphere
vl Sl LU (sz)
(2.32) vy (0) = v (x7 (9))-
The equation (2.26]) now follows from (2.28]), (2.29)), (2.31) and (2.32]) with

P P 2\ . p
Aot = — 90X1,t - (1 - 90) X2t
PP P
a1 =X1t — 90X2,t~

O

2.2.1. Magnetic Dirac operator on R™. Here we recall the spectrum of the magnetic
Dirac operator

1

(2.33) Dgn =3 (%) * [y2j (hds,) +inaj-12;] € U (R’”;C?’”) :

Jj=1

on R™ computed in [26]. Its square is computed in terms of the harmonic oscillator

(2.34) D%, = Hy—ihRyy 1, with
m
2
(2.35) Hy =3 > u [— (hda;) +xﬂ
j=1
Romi1 =73 D Hy[25-1725) -
j=1
Define the lowering and raising operators A; = h0,, + x;, A} = —hd,; + z; for

1 < j <m, and the Hermite functions

’l/)T,k (.Z’) = 1;[}7' (I) ® Wy

1 7
2.36 L (1) = = 72, (Af) 7] e =,
@36) U )= e T e (4]

for 7 = (11,72, ..., 7m) € N{".

&3

We also set

bj
c(w;)A;
E‘r = @ C H <E/27)_7> w‘r,O

be{0,1}17 JEL-
with I, V- as in (2.13)), (2.15). One clearly has an isomorphism
LNV, — E,

bj
. c(w;) A;
jr /\ ng = H <( ,72J7)']hj> 7/}7',0.

jel. jel,
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Ifi, = Si, o1 peven/odd _, podd/ Y the restriction of Dgm to E, is of the

form
(2.37) Den = LM N 7| iT} .
We may set
Eiven/odd = 7 ( Aeven/oddVT)
(2.38) Ef =7, (VF)
and observe the Landau decomposition
(2:39) 12 (R ") =Clunol® @ (B @ B2).

TENT'\0
The spectrum of (2.33)) is given by Prop. 2.1 of [26].

Proposition 2.2. An orthogonal decomposition of L? (Rm; (C2m) consisting of eigenspaces
of the magnetic Dirac operator Dgm (2.33) is given by

L2 (Rm;(CQW) =Clhool® P (BEfoE;).
TENZ\0
Here EX, as in , have dimension 2471 and correspond to the eigenvalues
++/p.Th respectively.

2.3. The Semi-classical calculus. Finally, here we review the semi-classical pseudo-
differential calculus used throughout the paper with [I8| [32] being the detailed ref-
erences. Much of this being reviewed in [26], we only highlight some new aspects.
Let gl () denote the space of all I x [ complex matrices. For A = (a;;) € gl(l)
we denote |A| = max;; |a;;j|. Denote by S (R™;C') the space of Schwartz maps
f: R — C!'. We define the symbol space S™ (RQ”;(CI) as the space of maps

a:(0,1], = C= (Rifz; gl (l)) such that each of the semi-norms

lalla s = sup, ¢ ()17 0207 ala, &5 1)

is finite Vo, € Nj. Such a symbol is said to lie in the more refined class
a € S (R?*™;C') if there exists an h-independent sequence ay, k = 0,1,... of

symbols such that a — (Zgzo hkak) € hN+igm (R2"; (Cl) , VN. The symbol classes

Sm (R*™;CY), S (R*™; C') as above can be Weyl quantized to define one-parameter
families of operators "V € ¥™ (RZ”; C! ) O (RZ”; Cl) with Schwartz kernels given

by
1 . T+y
w — i(x—y)./h “h)d
a (27Th)n/e CL( 9 aga ) 6

This class of operators is closed under the standard operations of composition
and formal-adjoint. Furthermore the class is invariant under changes of coordi-
nates and basis for C!. This allows one to define invariant classes of operators
U™ (X, E), 97 (X; E) on C*™ (X; E) associated to any complex, Hermitian vector
bundle (E, h¥ ) on a smooth compact manifold X.

For A € U} (X; E), its principal symbol is well-defined as an element in o (A4) €
S™(X;End (F)) € C*®(X;End(FE)). One has that 0 (A) = 0 if and only if
A € hU (X;E). We remark that o (A) is the restriction of standard symbol
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in [32] to the refined class ¥ (X; E) and is locally given by the first coefficient ag
in the expansion in h of its Weyl symbol. The principal symbol satisfies the basic
relations o (AB) = o (A)o (B), 0 (A*) = o (A)" with the formal adjoints being
defined with respect to the same Hermitian metric h¥. The principal symbol map
has an inverse given by the quantization map Op : S™ (X;End (E)) — U} (X; E)
satisfying o (Op (a)) = a € S™ (X;End (F)). We remark that this quantization
map is non-canonical and depends on the choice of an open cover, with local triv-
ializations for F, and a subordinate partition of unity. We often use the alternate
notation Op (a) = a"V. For a scalar function b € SV (X), it is clear from the mul-
tiplicative property of the symbol that [aW, bW] € h\Ilgl%1 (X; E) and we define
Hy (a) = %o ([a",0"]) € S™~1 (X;End (E)). We note that H, (a) depends on
the quantization scheme, in particular the local trivializations used in defining Op.
However one has Hy, (a) = {a,b} is given by the Poisson bracket when both sides
are computed in the same defining trivialization.

The wavefront set of an operator A € ¥} (X; E) can be defined invariantly as
a subset WF (A) C T*X of the fibrewise radial compactification of its cotangent
bundle. If the local Weyl symbol of A is given by a then (z9,&) ¢ WF (A) if
and only if there exists an open neighborhood (z¢,&;0) € U C T*X x (0,1],
such that a € h> ()" C* (U;C') for all k. The wavefront set satisfies the basic
properties WF (A+ B) C WF(A)NWF (B), WF(AB) C WF(A) N WF (B)
and WF (A*) = WF (A). The wavefront set WF (A) = () is empty if and only if
A € h®U~> (X; E). We say that two operators A = B microlocally on U C T*X
iftWF(A-—B)nU = 0.

An operator A € ¥} (X; E) is said to be elliptic if (&)™ o (A)™" exists and is
uniformly bounded on T*X. If A € U7 (X; E), m > 0, is formally self-adjoint such
that A + i is elliptic then it is essentially self-adjoint (with domain C2° (X; E))
as an unbounded operator on L2 (X; E). Its resolvent (A —z)"' v "X E),
z € C, Imz # 0, now exists and is pseudo-differential by an application of Beals’s
lemma. Given a Schwartz function f € S(R), the Helffer-Sjostrand formula now
expresses the function f(A) of such an operator in terms of its resolvent and an

almost analytic continuation f via
1 =7 _
f(A)Z*/af(z) (A— ) dzdz,
T Jc

We then also have WF (f (4)) C Zg}tm = Unespt(r) ¥4 where

(2.40) Y4 = {(x,€) € T*X|det (0 (A) (z,€) — M) = 0}.
is classical A-energy level of A.
2.3.1. The class ¥ (X; E). We shall need also more exotic class of scalar symbols

St (RQ”;(C) defined for each 0 < § < % A function a : (0,1], — C* (Rig;((:) is
said to be in this class if and only if

(2.41) lallq 5 3= sy ¢ (€)™ AR |22 (a, 5 m)|

is finite Va, 8 € N{. This class of operators is closed under the standard opera-
tions of composition, adjoint and changes of coordinates allowing the definition of
the exotic pseudo-differential algebra ¥3* (X) on a compact manifold. The class
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S3(X) is a family of functions a : (0,1], — C* (T*X;C) satisfying the esti-
mates (2.41]) in every coordinate chart and induced trivialization. Such a family
can be quantized to V' € ¥ (X) satisfying "V b" = (ab)"” —|—h1_25\11g1+m/_1 (X),
5o ([aV,0W]) = [{a, b}] for another b € S7*' (X). The operators in ¥ (X) are
uniformly bounded on L? (X). Finally, the wavefront an operator A € U7 (X; E)
is similarly defined and satisfies the same basic properties as before.

3. DYNAMICAL PARTITIONS

The trace formula of Theorem was proved in [26] assuming 6 to be supported
in a sufficiently small interval near 0. In this case only the local contribution to the
trace appears. It now thus suffices to consider 6§ supported away from 0 and
prove the following.

Lemma 3.1. For 6 € C° ((Ty,00);1[0,1]), To > 0, one has
(3.1)

tr [f (\%) (F;70) (A\/ED)} _
tr [f (\/E> -0 <Af D)] Zeh Tt E™ N_§_2hj/2iAkAv,j,k9(T7)

j=0 k=0
(3.2) +0 (hN/2—m—1)

for all X € R, with the right hand side above being the same as the dynamical
contribution (L.11) in (1.12).

To prove Lemma we shall split the trace via a microlocal partition of unity
adapted to the Reeb dynamics. To this end we first need a description of the contact
form in a neighborhood of each Reeb orbit.

3.1. Normal structure for the contact form. Let v C X be a primitive closed
Reeb orbit with period 7. For a point p € v, the linearized Poincare return map
Pt : H, — H, restricted to the contact hyperplane then has the decomposition
(1.2) as before. For each corresponding eigenvalue in this decomposition, define the
following model quadratic functions on R?™

e 1 .
Elliptic case:  Qf = 3 (x + xj+m) , 1<j< N,
Hyperbolic case: Q? = TN, 4+jTN.+j+m, 1< J< N,
. LR .
Loxodromic case: Q" = Zm_g2jt2am—2j41 — Tm-2j+1%2am—2j+2, 1<j <N
LI .
(3.3) Q; M= Tpojt1Tom—2j41 + Tm—2j+2Tom—2j4+2, 1<j< N
N . . .
Also let QM = 3 Zj:hl (x?veﬂ» + x?veJerrm) be the quadratic whose Hamiltonian

flow rotates negative hyperbolic blocks by .

In the theorem below we let 40 := S x {0} € S! x R?*™. We shall use 6 or zg
mterchangeably to denote the c1rcular S1 variable. We also let x~ € C®° ( )9,
Xt eCx (57 ) , be non-negative functions with total integral 1. We now have the
following normal structure for the contact form a near a nonresonant ~.
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Proposition 3.2. There exists a diffeomorphism k : _(22 — {2, between some
neighborhood of v C §29 and some neighborhood of the Reeb orbit v C 2, such
that

1 m
(3.4) Kra=(Ty+x" Q" +x ") di+ 5 Y (@dajim = wjimday)
=1

=ip

modulo O (Q*°). Here ot = ¢t (Q) in (3.4) is a function on R*™ of the quadratics
(3.3) with linear term

Ne Ny Ny
(3.5) ot = Z&-Q; + Zan;.‘ + Z (agQ?Re I B?Q?Im) +0(Q?).
j=1 j=1 j=1

Proof. Choose Darboux coordinates (x,y;z) centered at p in which a = dz +
%Z;n:l (xjdxjtm — Tjtmdx;). Then ¥ = {z =0} C X defines a local Poincare
section transverse to the Reeb vector field 0, in these coordinates. The Reeb flow
gives rise to a symplectic return map and a return time function

Ps:(X,da) — (%,da)
(3.6) Tp:X — R
which satisfy the relation
(3.7) Pia —a=dTly
(cf. [14] Prop. 2.1). The linearization of Ps at 0 being P\, has the same spec-

trum Spec (PW‘|r ) Under the nonresonance assumption, such a symplectic map is a
composition of the Hamiltonian diffeomorphisms

(3.8) Py = eflot o eflon—
modulo O (Q>), for a function ¢* of the form (3.5)) (cf. [20,27]). We now compute

"
H j_
(e QM ) a=a and

d (g * . .
%(e v*) a = szda—l—dsza

t=0
(3.9) = dpt —d %zm: (xj%fj + xj+m<P:Jcr_7»+m>
j=1
From , and we now have
(3.10) Ts =T, +¢" - %Zm: (WIJ- + wj+m<p;§.+m) :
=1
J ~—

=

Next, let us compute the return map and return time, associated to the Poincare
section %o = {# = 0}, for the model contact form (3.4) on S x R?™. Its Reeb vector
field Ry is easily computed

RO _ {,‘Z}’Y (89 + X_HQh,—) s

ﬁ(a@+X+Htp+), RS (

—~
=)
[ NI
~—

(3.11)

N
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To compute the return map and time, first note that each of the quadratics
Poisson commutes with ¢* of the form . Hence each of these quadratics is
constant along the Hamilton flow of H,+. An easy calculation upon differentiating
yields that the quantity 3 Y7, (Ij@;j + :cj+m<pjj+m) maybe expressed in
terms of the same quadratic functions and is thus also constant along the Hamilton
flow of H+. Thus Tg 1' is constant along the Hamilton flow of H,+. The
return map and time of l) are now easily computed to be efle+ o eflon— and
Ty, respectively.

Finally, with the return map and time of the Poincare section ¥ being the same as
in the model case, a Moser style argument maybe applied to complete the proof. O

In the proof above we have modified arguments from [I6] Thm. 2.7 from the
elliptic case. A general non-degenerate case appears for geodesic flows in [31]. We
shall call a chart & : (22 — {2, given by the Proposition above a Darboux-Reeb
chart near .

Next fix a constant § € (O7 %) Define a dilation on each Darboux-Reeb chart

05 : !23 — !29/
05 (To; @1, ..., Tam) = (z0; Rxq, ..., h‘;xgm)
and also denote by g5 : 2, — 2, the corresponding dilation of f2,. For each
subset S of £29 (or 2,) we denote by S% = 05 (S) its (h-dependent) image under
the dilation. We also denote by S C T*X the inverse image under the projection
m:T*X — X. Letting I' .= {%}3/[:1 be the set of all primitive Reeb orbits, we set
2 :=UM, 0, . Below let I' C Q C £ be any subcover of the system of Darboux-

Reeb charts and denote C; r == Bgzm (¢) x (=1,T), C R} the cylinder of radius
¢ and height T in Euclidean space. We now have the following elementary lemma.

Lemma 3.3. For each § € (07 %), T > 0 there exists an € > 0 of the following
significance: each point x € X \ Q% has a Darbouz chart @, : N, = Ceps p CR®,
N, C X\ T, centered at x satisfying

(3.12) (gpgl)* a = dzxg + Z (2jdxjim — Tjpmdr;).
j=1

Proof. The Reeb trajectory v, = etf (z), T <t < T, z € X \ Q, being non-self-
intersecting the existence of a chart of height T is similar to the Darboux theorem. It
only remains to show that one may choose a chart into a cylinder of radius eh? for e
uniform in k. By compactness, a radius of an h-independent size e = O (1) works for
points in the h-independent set 2 € X'\ Qq, for Qg C Q. For points x € Qp\ 2%, non-
resonance implies that the linearizations (P;r )k - (PAY+ )l, k,l € Z, of the Poincare
return maps P§ — Pé at 0 are invertible. Here the Poincare sections are
again given by {xg = 0} in terms of the Darboux-Reeb coordinates on €y. One
may hence shrink € to arrange ||P& (z) — PL (z)|| = C (21, ... 22m)|, V& € Qo,
|k| < Np,|l] < Np, where Np = maxyer T—:: From here one finds a uniform
e such that Vz € (Qo\ QESY) N {zo = 0} the first N iterates under Py of the ball
Bgam (g5h%) are disjoint. The Reeb flow-outs e'ft [Bﬂvﬁhé)] ,~T <t<T,of
the balls being non-self-intersecting, a chart satisfying (3.12)) comes from a Moser
style argument. [
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For each Darboux chart ¢, : N, —» C.psr C R™ as above we set NO =
ot (C’ hS T ) The chart is called trivialized if it comes equipped with an or-

thonormsal tsrivialization of the spin bundle. Below for each h-independent constant
¢ we denote by a shorthand the h-dependent constant cs := ch® .

We now come to the construction of dynamical partitions. Below, the energy
levels E? above are as in . Let T>0,7>0,0 € (0, %) and ' C Q C 2 be
a subcover of the system of Darboux-Reeb charts as before. A (€2, 7,)-microlocal
partition of unity is defined to be a collection of zeroth-order pseudo-differential
operators P = {4, € ¥ (X)[|0 < u < N, }U{B, € ¥J(X)|1 <v < M} satisfying

Np, M
ZAu+ZBU = 1
u=0 v=1
Ny = O(h)
WFE(A))C Upc T*X\%P . -
[-5%5%]
WF(Ay) e U,c 3P, NN), 1<u<N
(3.13) WF(B,)€e VoC P N 1<v<M

for some open cover {Uu}fj:OU{Vv}i\il of T* X and for some collection of trivialized
Darboux charts N := {N,,}_, ¢ X \I'. For such a partition P define the pairs

of indices vt
IP = {(U’u/) |u S u" WEFEF (Au) NWEF (Aul) 7& (Z)}
(3.14) Jp = {(u,v) [WF (A,) NWF (B,) # 0} .

An augmentation (P;V, W) of this partition consists of an additional collection of

open sets V = {Vulu/}(u,u’)elpU{V7‘21’}(u7v)€J77’ W= {WJU, }(u7u’)617>U{W3”}(u,U)EJp
satisfying

WF(A)NWF (Ay) C W,

N
WF(A)UWF (Ay) C V)0 €SPy o NN,
WF(A,)NWF (B,) c W2,
N
(3.15) WF(A)UWF(B,) C Vi, €Xly o NNy,

Next with d = o (D), for each pair of indices in (3.14) we set

1
(316) Tuu’ = s
lnf(g,v)egw/ XSg(X;U(S)) |Hg,vd‘
1
(3.17) S = - . with
lnf(g,v)GHquS'g(X;U(S)) |Hg,vd|
(3.18) Guw = {9 € G0, | gy, =1, gl ) =0}

(3.19) Mo = {g € 89 (X:[0,1) | glywe, =1, glya e = 0}
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and |H, yd| = sup |[{v*dv, g}|| with the bracket being computed in terms of the
chosen and induced trivialization/coordinates on N, , qu. A function in G, or
H. shall be referred to as a trapping/microlocal weight function.

Finally, the extension/trapping time of an augmented (Q, 7, §)-partition (P; V, W)
is set to be

(8:20)  Tipawwy = min {min {Tuw b uer, s Wi {Sun}uupesn | -

Proposition 3.4. LetT >0, § € (O, %) and I' C Q C §2 be a subcover. Then for
each T sufficiently small one has an augmented (2, 7, §)-partition of unity (P;V, W)
with

(321) T(p;v}w) >T.

Proof. By Lemma there exists ¢ > 0 such that each z € X \ Q° has a Darboux
chart ¢, : N, — Ceps 7 C R™ centered at x of radius 5 = eh? and height T'. Next
with (2”7,&") = (Tma1,- - Tam; Emtts - - -, Eam) being a subset of the coordinates
on Rfc"f set C/ = {x”2 +&"? <t —T <zp< T} C Rf&. Also for each 7 > 0,
set

Uesors. T = 5(2) + 2Zuj (x? —i-f]z) <73,
j=1

2 2 2

Then by the preliminary Birkhoff normal form procedure of [26] Sec. 5 (eqns
5.1, 5.5, 5.6, 5.7, 5.8) there exists 0 < 7 < 1 sufficiently small of the following
significance: there is a neighborhood M, C N, of ]\Nfgu N ¥ , a Hamiltonian
symplectomorphism

2 T T
(3.22) " 4 ¢ < (5—5> ,—= <wp < } cClr.

Ry = et o eflro Ues,rs, 7 = My

" 1 1 11
&2 f)
V2'V2 TV2TV2
(see [26] pgs. 1812-1813 for fo, f1) in terms of the chosen coordinates on each, a self-
adjoint endomorphism cy € C™ (Ugy ;.13 i1 (2™)) and functions {r; € C> (Ug, +5,7)}
vanishing to second order along ©f such that

ko (20,0,2"30,0,€") = <:co, -

2m
Jj=0

eicA |:(6Hf1 [e] erO)* di| eiiCA = H1 —+ UjTj7 Wlth

(3.23) Hy = %00+ ) (21)* (2021 + &02y)

j=1

Taylor expand rog = Y o0 (70, 2"; &0, &) €& + rjl:cj + 7']2»5]-, with rjl, 7’? vanishing to

_1 _1
bye[r’l’(guj) 20251477 (25) 2021}00

first order along ¥F. A further conjugation of the above (3.23

sets rjl- = rjz- = 0 while a symplectic change of variables in xg sets rog = 0. Now set

(3:24) (60,01, .00 ) = (0. (2p0)* 21, (200)* 1o 21tm)* @i, (240m)* i)
+ (0,71, ..., 72m)
0 = (... 02)




18

and note from

have

-1

Ky

(3.25)

and we may set

(3.26)

If we denote by

(3.27)

NIKHIL SAVALE

3.23

that the eigenvalues of the symbol d are + ‘é) We clearly

(M) NEF = Usy {8 =0}

:UEJ,T(;,Tm{g():Il:51:...:Im:§m:0}

0, _
0; = Fj‘ € C™ (Ueyyrsr \Z858™71) .

on the set of functions that vanish to order N along %5, we have

{éo,xo} —1=0

{éjva} =01, 21,

{05,2"} = o1 >0,

{éjf”} =01, >0,

{éo,éj} = 02,j >0,
éj,ék or 0~j,~k —1=o01,k>752>0,
{0} or {810}

By (3.22), (3.25) U., ;.7 denotes a collar neighborhood of radius 75 of X{’. Hence
by shrinking 7 if necessary, we may assume

{Bao}| <2 G20,
{Jo].zo}[ <2, |o] %o,
ﬁxo} g“;, 8] # 0,5 =0,

~{ien e} <7 iz,

~{jd 1= 5 ]| #o

- fgux”,s"n} <T19" #0520
Héo,éj} g‘j, j>0,
<t oo
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m 2m m
1 ~,
(828) ;& +2Y (@ +E)| <D0 <a|g+2d py(ef+ &)
j=1 7=0 j=1

on Uz -5, 7 and set

2m

Es 2 T T
Gearmir =) 201 < (3)amwe< () g <m< g [ U

Nh
It is clear from the above construction that a finite set {mpu (UZE(; 275 o1 )} ,
~ 3 3 03 u=1
Nj, = O (h™°), covers Z[D o 7] \ Q. Next define

T T16°16

U = T°X\2P o -
[-338]
U, = (UQES 275 E)
303 3
V, = ZD 5 7N
22"

Choose P = {A € vl }O<u<N U {B € \IIO }1<U<M to be any microlocal parti-

tion of unity subordinate to this cover. We then augment this partition by
Wiu’ = Kp, (UEJ,T&T) - Nmu
= Kp, (Uaa,T57T> - qu
Viw = Fip, (U4€5,47'5,4T> C Ng,
= Kp, (U455 47s, 4T) C Nx“

where (u,u) € Ip and (u,v) € Jp lie in the corresponding index sets. Clearly the

above satisfy (3.13)), (3.15).

It remains to verify (3.21). To this end, let x € C2° ([—4,4];[0,1]), be a cutoff
such that x =1 on [~2,2] and |x/| < 1. For p € (0, ) fixed, define a function ¢, €
1; for 0y € [1 — p,1]

C> ([-1,1]y, 5[0, 1]) such that ¢, (6o) =

~lif
=yl + - e

For 6y € [-1,1 — 2], p_Oandﬂ<>:‘§‘. Whilefor@oe[172p,1],wehave

9| = \/H_%GO :5(5) \/‘90‘ +(1=,)|0

and |¢’ | < 2.
0; for 6y € [-1,1 —2p] ‘90,)’7;,

Set

~ |2

2

0’

- o] = -
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% é’ for p € (O,%) as chosen. Thus ’é‘ > B (é) > %‘é
for each 1 < u < N, define the microlocal weight function

R (VA € W Ly P

Ts T Es

in both cases and we may

in terms of the relevant coordinates on Us, ;.7
Next, with vf € C (S"_l;U ((C2m)) as in Lemma we choose for each
1 <u < N asymbol v, € 5§ (X;U (9)) satisfying

P 0 Ts
_ slalyms ) 9<%
v (6); ’9‘ > %,

on Ky, (USS’TB,T), with 0,60 given by (3.24), (3.26). Since the conjugate of the

symbol d of the Dirac operator is e’“4de™4 = 0;0; = i 5‘6(9) by (3.23) on

Kpe, (U&T,T), we may compute from Lemma 2.1

; ; éogo—[ am é-a}; 0| < =
(3.29) (ﬁu)*echdefch{,u _ . *Zj—l 7 i 16
i@y c@vio);: 8>3
on Ky, (ﬁng). Furthermore; Lemma also gives
é [ 90 S 1 0,

0|vi ()" c(0)v] (8) =1 |- m
‘ ‘ 0 {afj’l (90) oo + a’f)l (90) 25:1 ojO'j 3 0o >1— p.

Choose v,, € S? (X;U (5)) to be a symbol satisfying

(3.30) v, = e g,

on Ky, (UEJ,T) .

We now compute for

§’>%790§1—2P§

[Hg, v, (d)] = {vydvu, gu}|

= [{lo]-0u} ]
|16 1 X (*F2)
7 oo} Sy
v ()
16 (| s
+ {01 N} e
€5 { } x (16\(165,5 )\)
64
(3.31) <=

using (B.25).
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While for é‘>%‘5,1—2p§90§1—p;
|ngavu (d)| = |{Vzdvu79u}|
= [{[6] 90}
16 _ Xl (16LEO)
= |7 0‘; L u
7 {[0]} ¥ (TBamy 9t
e
16 (| 2
2 [lg "oen 5
+ €5 {‘ JICEN )|} X(lﬁl(w”ﬁ”)l) g
€5
163(6
o (0
8¢ o2 s
B A NN e T
-
5 (=)
, (1650
el ()
s fig g\ o)
BTs 9’ N (16ﬁ(9))
Ts
84
3.32 < —
(3.32) <5
using (3.28).

Now for ‘é‘ > 2,00 > 1~ p; we compute

[Hg, v ()] = {vidvu, gu}|

2m
‘9‘ afly (60) o0+ af y (00) > 0505 | ,gu
j=1

]9

IN

2m
+ ‘9‘ af, (60) o0 + af 1 (60) > 60,05, 9u

j=1

21
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with
B 16 ~ X/(lﬁxo)
6|, =|= ‘0 , X L
{[e].o.} {[6]20} NEOK
16 (| °
+—{]o ,|(x”,£”)|}16—gu
"L'//,éll)
z (7]
X,(lw(é))
G R,
,375 (1613(9))
Ts
84
(3.33) <5
and

2m
‘9‘ {a§,1 (6o) o0 + a‘1’71 (60) Z‘gjajagu}
7j=1

16 ’é‘ /(161
= T a‘Ol { ’~‘ } ( )gu

0 P 1 éo "o X ( 0 )
+160] (ag,) 00— § =7, (=", €")] W

< Gu
i ()

- 0o &
+1616| ( > 005 | = =@ ——— g
(Jl )fa{\el x ()
) ) N (16|(T’5)|>
_ m 1 0 Es
+16(0)af | Y — < =2 @& poj | ———0u
= gs ‘9 X (%ﬁ’g)‘)
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os(8)\
X (==

N 16;;(5))
+‘ ’575 a6.1) (2903> {‘~’ 2} 1658(
, [ 168(0)

ol (£ )(<<>))
o

(3.34)

IN

using Lemma and m

Now for % < ‘é’ 8 X (166(9)

=1 and we may compute

[Hg, v (d)| = {vidvu, gu}|

_ P * 0.1 P
- {"smm 1] "s|é|/m’9“}

16 . ~ X/ (16;c0)
= |74 73 {000} W Sy o
128 * _ N Y (16;80)
T [06¥tlumsliles] [23%] ["§|§|/TJ {1] 0} x(lﬁgo) o
128 * _ X/ (L8z0)
T [%ém} (o305 [ 9098l s =) {]7] -0} < (E) O
16 * ~ ~k X/ (1610)
+ T {89’“v5|t28|5|/”} {oﬂ]} {vgévm] {‘éwo} X (16;0) Ju
16 * A Y (16x0)
+ ? |:Vg|é/7'5:| |:0.] :| |:8t9k,vt |t 8|9|/7'5:| {‘9,71‘0} Y (1?;;0) Ju

*i*fv‘s’\@m* 73 {0160 o,

X\
|
[

=

—

o o | B
R N

M

—

N———
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- Tlii {atvf‘tzs\él/far [Uﬂ’éﬂ} ["gw/TJ {r

16| .'L” 5// |
X'
I/’ 5//

’ y (1eker £”|) o (mslreny
* ()

+ % {v’s"é/m] [Ujég} |:8tV2)|t:8‘é|/‘r§:| {‘N ; "’5" | N (16|(m” e 9
e (255

+i—f [8@kvtp\t=s\é|/75}* [Ujéj} [vg|0~|/TJ fgﬁ (=", ") N (1 (gj,, — e e e
. . N (16 ) I)

“%5 { s|e|/n] [‘%‘éﬁ} {89kv?|t:8|5|/m} ‘99’ (", €")] ( —

16] (2", E”)I)

=

(3.35)
Ok

using Lemma and -

7'6

Finally for ‘ ’ & again x <

165(6)

) = 1 and we may use (3.29) to compute

[Hg, v ()| = {viudvu, gu}|

¥ (lﬁ(w"»e/n)
~ €5
o, (2",€")| } 70

s ey Ju
16](z",6")|
x ()

{
m (24
16 (2 {85,16",€} o X)((wus))g“

£s
(3.36) <=

using l-i Since p € (() 7) is fixed and T arbitrary, the proposition follows from

B-3D-B39 a
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Next, given an augmented (2, 7, §)-partition of unity (P;V, W) the trace (3.1)
from the Helffer-Sjostrand formula is clearly the sum of traces of the following four
kinds

_ . I
tr |A, [ —=D — = A, | dzdz
(72-)

(%)
T8 5, (D) ::W/(Caf(z)é(/\\/{>tr A, (\/IED—Z>_13@ dzdz
()

1 -1
tr |By, | —=D — =z A, | dzdz
2 (7p-)

(337) T 5 (D) ::% of (z)é( 7 )tr B, (\}ED—Z)_lAv dzdz.

Next we state a modification of [26] Lemma 3.3. Below V., Wl , T, are as in

7 '

Lemma 3.5. Let D' € V! (X;S) be essentially self-adjoint such that D = D’
microlocally on V1., . Then for 6 € C=° ((To, Tuu) ;[0,1]) one has

7;(3 A, (D) = 7;?1,,,,47, (D') mod h.

Proof. The lemma is essentially the same as [26] Lemma 3.3 with a couple of
changes. First our cutoffs lie in the more exotic class ¥ (X). However these
have the same basic composition and wavefront properties needed in the proof of
[26]. Next our definition of trapping time is more general than that in [26]
eq. 3.5 since an additional conjugation by a unitary symbol v € SY (X;U (E))
is allowed in the definition here. This is however easily overcome; let
0 € C ((T4,T2,/);[0,1]) be such that Ty < T, T2, < Tyuw. There hence ex-
ists (¢,v) € Guur x S®(X;U (S)) with |Hyvd| < g—. We choose V € U9 (X;5)
unitary with o (V) = [v] and note H, vd = H, (V*dV) in terms a quantization defined
using the chosen coordinates/trivialization on N, . Now, the proof of [26] Lemma

3.3 carries through with the conjugates V*DV, V*D'V, V* A,V and V*A,V. |

us

We also note that similar lemmas as above hold for the traces ’TXW B, (D) and

T8, A, (D) in (3.37). Next we show that the first three traces in (3.37) are O (h*°)

when spt () is contained within the extension time.

Lemma 3.6. Let (P;V, W) be an augmented (), 7,8)-partition of unity. Then for
each 0 € CF ((To,T) ; [—1,1]) with T < T(p,y ) one has

ﬁu,Av (D>7 719”,31, (D)u Tgv,Au (D) = O(hoo) .

Proof. The proof is the same as [26] Lemma 3.1 (cf. eq. 3.2). One only has to
quantify the smallness of spt (6) assumed therein. The proof in [26] carries through
in so far as spt (0) is contained in each of {(To, Tuu')} (4 uyerp + £ (0, Suwv)}(u0)eip
as required by Lemma This is guaranteed for T' < T(p,y ) by . O

Given 6, there exists by an (£, 7,0)-partition of unity with an extension
time large enough to guarantee the hypothesis of Lemma [3.6] Splitting the trace
in such fashion, it then suffices to consider the asymptotics of the fourth trace
Tgu’ B, (D) in . Since B, and B, have disjoint micro-supports for u # v; it
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suffices to consider ’Tgm B, (D). Since these are localized near the Reeb orbits, they
shall first require an understanding of the Birkhoff normal form for D near each
orbit done in the next section. We shall return to 7'397” B, (D) in Section

4. BIRKHOFF NORMAL FORM NEAR A REEB ORBIT

In this section we derive a Birkhoff normal form for the Dirac operator in a
neighborhood of each Reeb orbit. First, consider a Darboux-Reeb chart near -~y
and choose an orthonormal frame {ej = wfau} ,0 < 5 < 2m for the tangent
bundle on {2,. Here we use the convention that x¢ = 6 is the circular variable on
.Qg C S x R?™ and shall use these interchangeably. We hence have

(4.1) wfgklwi =djr,

where g is the metric in these coordinates and the Einstein summation convention
is being used. Let Fék be the Christoffel symbols for the Levi-Civita connection
in the orthonormal frame e; satisfying Ve e, = Fékel. This orthonormal frame
induces an orthonormal frame u;, 1 < j < 2™, for the spin bundle S. We further
choose a local orthonormal section 1 () for the Hermitian line bundle L and define
via V;“jol =T, (z)1, 0 < j < 2m the Christoffel symbols of the unitary connection
Ap on L. In terms of the induced frame u; ® 1, 1 < j < 2™, for S ® L the Dirac
operator has the form (cf. [3] Section 3.3)

, 1 . ,
(4.2) D ijka +h (4F§-k73’ykw + Tj’yj> ,  where

(43) P = h@szriak,

and the one form « is given by .

The expression in is formally self-adjoint with respect to the Riemannian
density e® A ... Ae*™ = \Jgdx = \/gda® A ... A da*™ with g = det (g;;). To get
an operator self-adjoint with respect to the Euclidean density dx one expresses
the Dirac operator in the framing giuj ®1,1 < j < 2™. In this new frame the

expression 1D for the Dirac operator needs to be conjugated by g% and hence the
term hij;?g_% (aug%) added. Hence, the Dirac operator in the new frame has

the form
D = [o7w] (& + ak)]w +hE € ¥ (QS;CQM) ,

with 07 = iy, for some self-adjoint endomorphism E (z) € C* (£29;iu (C*")).
The one form a is given in terms of these Darboux-Reeb coordinates by the same

formula (3.4])

1 & -
a = pdf + 5 Z (zjdzj1m — Tjrmdrs) + a3
j=1
with a5 denoting a form on {2, vanishing to infinite order along ~. Picking a cutoff
Xy € C2° (£2,) that equals 1 on €2, we may extend the one form to all of S* x R?>™
via
1 m
a = @df + 3 Z (2jdTjsm — Tjrmdr;) +XxHa5
j=1

=:a0
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k

The functions wj are extended such that

= Oy @ da® + > pi2 (9, @ da? + 0,

j=1

(wf@xk ® da’) ® da? ™)

| (keoye s4m

(and hence g|(K0)c = da} + Z;”:l 1 (dgc]2 + dm§+7n)) outside a compact neighbor-
hood £29 € K. The endomorphism E (z) € C° (R";iu(C?")) is extended to
an arbitrary self-adjoint endomorphism of compact support. This now gives the

operator
(44)  Do=[owh (& +aD)]" +x 09, + hE € WY (51 x R2™: CT")
as a well defined formally self adjoint operators on S' x R?™. Furthermore, the

symbols of Dy + i being elliptic in the class S° (¢g) for the order functions g =
\/1 + 300 (€ + ag)? it is essentially self adjoint (see [12] Ch. 8).

4.1. Birkhoff normal form for the Dirac operator. Next, we derive a Birkhoff
normal form for the Dirac operator (4.4) on S' x R?>™. First consider the function

fo = Z (xjxj-i-m + gjgj-i—m) €C™ (R2m> :
Jj=1

If Hy, and e*f70 denote the Hamilton vector field and time ¢ flow of fo respectively
then it is easy to compute

T H Tj+&4m —Titm + & Tipm + & —x + §j+m>
et o (x 7G5 Lj+mSji+m = 3 ) 5 .
( J €J I+ §J+ ) ( \/i \/i \/5 \/5
We abbreviate (z/,&') = (21, .., &m; &1, -+, &m),

(SCN, 5//) = (‘T”L-‘rl? sy T2m; §m+1a s 7527>“L) and (I, €) = (SC07 l’l, IH; §0a 6/7 5//)'
Using Egorov’s theorem, the operator (4.4) is conjugated to

4.5)
e%fgvDoe_%fgv :d}f’, with

(4.6) do = o7, (60 + 01) + V2 (07w € + kT ) + o Ir5 4 O (R)
(4.7)
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Using the formulas (3.3]), (3.5) we may also calculate

AS)

>
|
~

L x4yt (Q) with,

Se 1 2 2
Qf = 3 {(»’Cj = &itm)” + (Tjpm — &) }
~ 1
7= 3 (TN, +j = ENetjtm) (TN +j+m — ENetj)
<1 Re 1
Qj = 5 (xm—2j+2 - €2m—2j+2) ($2m—2j+1 - fm—2j+1)
1
—5 ($m72j+1 - §2m72j+1) (x2m72j+2 - £m72j+2)
AL, Im 1
Qj = 5 ($m72j+1 - £2m72j+1) (x2m72j+1 - £m72j+1)
1
+3 (Tm—2j42 — Cam—2j+2) (Tam—2j+2 — Em—2j42) and
™ iy
Ah,— 2 2
Q- = 1 |:(mNe+j —&Notitm)” + (TN 4j+m — EN+5) }
j=1
Next, set
(4.9)  @¢p=0 = T,+x Q" +xTe"(Q) with,
e 1 2 2
QG = G ]
~ 1
;'L == _51'N6+j+m£N€+j+m
. 1
Qé’R = 5 (5172m—2j+2€2m—2j+1 - Izm—2j+1§2m—2j+2)
2 m ]‘
Ql-’l = -z ($2m—2j+1§2m—2j+1 + Izm—2j+2§2m—2j+2) and
J 2
Ny,
Ah,— T 2 2
(4.10) Q = 1 D [Riem T TR gem]
j=1

Below denote by oly, 0 C S4 (T*S* x R*™;C') the subspace of self-adjoint sym-

bols a : (0,1], — C> (T*S* x R*™;iu(2™)) such that each of the coefficients ay,

k=0,1,2,... in its symbolic expansion vanishes to order N in ({y + @,2’,¢’) and

(x",&") respectively. We also denote by o'y, 0’ the space of Weyl quantizations of
AN/}

the respective symbols. One clearly has ¢, = ¢ + 0]07. A Taylor expansion of dy
(4.6) now gives r¥ € o, ri € ot o, r® € 0, 0 < j < 2m, such that
g j 2, T 191, 75 00 J

do = V207 (@) (¢4 @) + W&k + W) " ar) + 07 (1) + 1] +75°) + O (h)

and where QIJ;? (zg) = w}“ (70,0,0).
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On squaring using (4.1]) we obtain

(@) = QW + oholl + 0+ O (h), with

(4.11)
9% (o) g*° (o) g™ (zo) 1 [éo+¢
Qo=[¢+¢ & ]| 7%(x0) g*! (o) gFm) () ¢
gO(l-&-m) (xo) g(k+m)l (xO) g(k—&-m)(l—l—m) (xO) !

Here g* (z¢) = 2¢" (9,0,0) and g*' the components of the inverse metric in Reeb
Darboux coordinates along the orbit and

1

—00
9" (x0) = ——5-

T2|R)

Next we consider another function f; of the form

1 / 11 | ®mxm ($0) Ymxm ($0):| |:g:l:|
=z

=gl S o) B (o) [€

where «, 8 and 7 are matrix valued functions of the given orders with «a, 5 sym-
metric. An easy computation now shows

LGt Sot+ o
(efr) z’ = M| 2 | 40, with
¢ ¢
0 0 0 0 0 0
A (370) = 0 0 —Ixm 0 amxm (1'0) Tmxm (zO)
0 Imxm 0 0 ’Yinxm (‘TO) Bmxm ($0)

From the suitability assumption (1.7]), we have that there exists a smooth matrix
valued functions «, § and ~ such that

* @) @) g @) ] et
() Qo=lbo+o & et | o (w) Hzo) g™ (zg) || €
+m) ( ) g k+7n)l ( ) g(k+m)(l+m) ( ) !

= Q1 =3 (w0) (S0 +9)° + ZM (23 + &)
j=1

(4.12)
Z (€0 + @) [ (20) & + hj (z0) ;] + of
and where
3% (o) t 7% (o)
hg (zo) = e 7031&?0)
h; (o) g (o).
Next, if
— 11, 0 _Imxm- h) (xO)
f2 (60—’_('0) [#f N‘r] Lxm 0 i |:hjl (mO)
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we may compute

(4.13) (e12)" Q1 = Q2 = 3% (w0) (&0 + @)’ meﬂ‘ + 0f.

Finally, letting L. denote the length of the Reeb orbit note

1 —1/2
d 00 1 00
Lo exp{lfo o > <ng >}

2 f d.T —-1/2
and set
1/2 o r(,00\—1/2 00\1/2
a(xg) = (900) / do’ (9°) In [TvLﬂ, (g ) }
0
to compute
* 1
(4.14) (eHaﬁ) Q2:L o+cp ZMJ x +§2 + 0.
¥
Letting

1 m
Hy = 5;/% (@5 +&)

using (4.11)), (4.12)), (4.13) and (4.14) Egorov’s theorem now gives
(4.15)

w

dgeW i W i W _i W i oW i e W .
dg‘é = en onf2 enlfi dgve I e wle g nal” — E a'jbj + hoy with

W
Zb2 ( 50-1—90) +2H2) + 050! + o,

Another Taylor expansion in the variables (fo + @2, & 2", ") gives A = (a;i, (z0)) €

Ok (51;50 (n)) and 70 € 010,751 € 04, Tjoo € 0, 7 =0,...,2m, such that
(- (&0 + )]
1
b 2M1)§1 . T T T
0 1 0,0 0,1 0,00
(2m)2 & ’ ’ ’
e_A = . + + +
b2m : 1 T2m,0 T2m,1 T2m,00
(2um)® Tm
1
| (21m)® &m |
We may now set cq4 = +a;,ofc® € C°° (S%;4u(2™)) and compute
(4.16) eicd dg‘ée*i&/ =d}’, where
(417) d1 :H1+O'j (Tj,0+7"j71+7‘j700)+0(h), and
1 N Ui 1
(418) H1 = f (50 + (,0) oo + Z (QILLJ)Q (.Tja'gj_l =+ ij'Qj) .
v

Jj=1
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Finally, if we further Taylor expand ro0+79.1 = loo (xo, % &+ @),2", 5") +x1lo1+

§1lo2 + - .. + &nloam), then a further conjugation of dV by eic;/v; Ccy = %l()kooak, it
is possible to make 7 o + 79,1 independent of (z/,&’) in (4.17).

4.1.1. Weyl product and Koszul complexes. We now derive a formal Birkhoff normal
form for the symbol dy in . Since much of what follows here proceeds in a
similar fashion to [26] Section 5, we refer there for necessary modifications to avoid
repetition of arguments. First denote by R = C*° (S;O) the ring of real valued
functions on the circle. Further define

S=R [[50 + @a x/a 5/7 x/l7 gll; hﬂ
the ring of formal power series in the further given 4m+2 variables with coefficients

in R. The ring S ® C is now equipped with the Weyl product
axb = [e%(arlasz—arzasl) (a (51, T1; h) b (52, T9; h)):|

r=81=52,{=r1="2 ’
(again using the convention § = x) corresponding to the composition formula for
pseudo-differential operators, with

[a,b] = axb—bxa

being the corresponding Weyl bracket. It is an easy exercise to show that for
a,b € S real valued, the commutator i [a,b] € S is real valued.

Next, we define a filtration on S. Each monomial h* (& + T%,)* () ()7 (@) (e)F”
in S is given the weight 2k + a + |&/| + |8'| + |&”| + |8”|. The ring S is equipped
with a decreasing filtration

S=0y D 0;D2...00N5D...,

where Oy consists of those power series with monomials of weight N or more.
Similar filtrations

S=0,>0D>...200yD...
S=0{2>0{>...00%D...
maybe defined with O, O} consisting of power series in those monomials with

2k +a—+ ||+ 8| = N and 2k + |&”| 4+ |8”| > N respectively. It is an exercise to
show that

Onv*Oy C Onim
[ON7 O]\/[] C 'L‘hON+M,2

and similar inclusions holding for its primed versions. The associated grading is
given by

S = ésN
N=0

where Sy consists of those power series with monomials of weight exactly N . We
also define the quotient ring Dy := S/Opn 41 whose elements may be identified with
the set of homogeneous polynomials with monomials of weight at most N. The
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ring Dy is also similarly graded and filtered. In similar vein, we may also define
the ring

S(m)=S5®gl:(2™)
of R® glc (2™) valued formal power series in (§p + @,2’,£’;h). The ring S (m) is
equipped with an induced product * and decreasing filtration

Oo(m) D O (m)D...D00n(m)D ...,

mON (m) = {0},

where Oy (m) = Oy ® gl (2™). Tt is again a straightforward exercise to show
that for a,b € S ® iuc (2™) self-adjoint, the commutator i[a,b] € S ® iuc (2™) is
self-adjoint.

4.1.2. Koszul compleres. Let us now again consider the 2m and 2m + 1 dimen-
sional real inner product spaces V. = Rley,...,e2,] and W = Rleg] @ V from
Considering the chain groups Dy ® AV, k= 0,1,...,n, one may define four
differentials

m
1

wg = Z'LL; (xjer—l A +£Je2]/\)
Jj=1
m 1

7,2 = Z,ujz ($jie2];1 +§ji€21)
Jj=1
m 1

wh = Y47 (Oseai-1 A+ e2i1)
Jj=1

m
1 . )
iy = ZNJZ (On, o,y + Ojicy,) -
j=1

Similarly, we may consider the chain groups Dy @ A*W, k = 0,1,...,n, one
may define four differentials

1

wy = — (§o+@)eo A +23u)
Ly

. 1 _\ - 1.

gy = 7(50"’()0)7'60_'_227’7;
Ly

wg = Ogeo N +2%wg

ig = Ocyieg + 2719,

Next, we define twisted Koszul differentials on Dy ® A*V via

. m m
~ 2 1 1
%= g (e A en) = 3o (O 1)
. m m
~ 1 1
o= 2D n) (adeien, +adeics,) = Y1} (Onyics, = Oejien, ) -
j=1 j=1

We note that the above are symplectic adjoints to their untwisted counterparts
with respect to the symplectic pairing 27:1 ezj—1Negjon V.
Similar twisted Koszul differentials on Dy ® A*W are defined via
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. 1 1

Wy = + (adgytp)eo A +27dh
L'Y

~ 1 . 1~p

ta = 7 (ad€0+@) leg +2215.
L’Y

We note that in what follows works with any leading terms replacing epA and 4,
above that would serve as differentials.
We now compute the twisted combinatorial Laplacian to be

A" = 0% +i%w)

= — (whip +igul)

m
= Z/‘j [Sjaﬂj — 2;0¢; + €gjley; , — 623'*1@'621] :
j=1

One may similarly define A. Next, we define the space of twisted A%-harmonic,
p-commuting, xo- independent elements

HE = {w € Dy @ A*W| A% =0, 9,,w = 0, adgw = 0}
He = {w e S® AW AVw =0, Opow = 0, adgw = O} .

The following version of the Hodge decomposition theorem follows in a similar
fashion to [26] Lemma 5.1. We only note that the y-independence in the definition
of Hk from [26] is here replaced by the condition adg,sw = 0, which on account
of non-resonance is equivalent to ad¢yw = Oz,w = 0, adgw = 0.

Lemma 4.1. The k-th chain group is spanned by the three subspaces
Dy @ AW =R [Im (iy100) , Im (@ois) , Hi] -

4.1.3. Formal Birkhoff normal form. As in [26] section 5.2 the Koszul complexes
now allow us to complete the Birkhoff normal form procedure for the symbol d; in
. Define the Clifford quantization of an element in a € S ® A*W, using
as an element in

(k+1)
o (a) = i

c(a) € S(m).
This gives an isomorphism
(4.19) o s S @ ANy 8 @ uc (2M)

of real elements of the even or odd exterior algebra with self-adjoint elements in
S (m). In a fashion similar to [26] we may now prove the following formal Birkhoff
normal form for the symbol d;. Below the symbol Hiis as in (4.18)).

Proposition 4.2. There exist f € O{NO03, a € O2@A"W and w € H°MNOINO;
such that

(4.20) ei0@eif e lemi0(0) = H) 4 ¢ (w).
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5. REDUCTION TO S! x R2™

We now return to the study of the traces TBeva (D) of the fourth kind in .
The asymptotics of these traces can be reduced to S' x R?™. This however first
requires a modification lemma as Lemma [3.5] and the definition and construction
of another trapping time/function.

Let I' C Q C 2 be any subcover § € iO, %) and 7 > 0 as before. We define an
trapping time in a similar fashion to (3.16]

1

infgy)eg, xsoxiu(s)) [Hgvdl

G, — {g e SY(X: 0. glsp na

v -

S 1, g|(ED N, )" 0}

[—87,87]

and set

T = min T,.
(2,9) 1<o<m ¥

We now have an analog of [3:4]

Proposition 5.1. Let 2 be a collection of Darbouz-Reeb charts and T > 0. Then
for each T sufficiently small there exists an open sub-cover I' C  C {2 such that

(5.1) Tio.0) > T.

Proof. The proof is similar to [3.4] with a some modifications that we precise. Let
0 < € < 1, be sufficiently small such that for each Reeb orbit v, the set A, =
S1, X Bgem (g) C ng is contained inside the Darboux-Reeb chart Next for

(xlvé-,) = (xla"'7xm;£1v"‘7£m)7 (xllvgl/) = ($m+17~~'ax2m;£m+17'”,§2m) set

Co={a"+¢&7 <&} CT*S} X Ry ¢ en- Also set

1 _ < ~
U.r = fg (&0 + @) + 2Z,uj (27 +&) <7, 2 +¢7 <) .
j=1

with ¢ = @ (2”,£") as in (L£9). Also denote by ofy, o} functions which vanish
to order N in (& + @,2’,&’) and (2”,&"”) respectively. Then as in (eqns (4.5)),
(@.15), (.16), (.17) and (4.18)) there exists 0 < 7 < 1 sufficiently small of the
following significance: for each 1 < v < M there exists a neighborhood M, C A, of
;1% N ZOD , a Hamiltonian symplectomorphism

Ky = e o eflio . Uer = M,

B 5// x// B x// é’// )
Ry (T ’O’z”;f 707 ") = (‘T Yy T Ty =y T T TS

a self-adjoint endomorphism c4 € C* (U r;9u (2™)), functions r; o € ojof,rj1 €
0, Tj oo € 0h, j =0,...,2m, such that

(5.2) elea ((erl oeHsn)” d) e = Hi+ 0’rj0 + 0711 + 077 00,

with H; as in (4.18).
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Also note that the terms rg o + ro,1 maybe assumed to be (z’;¢’) independent as
observed after (4.18). Now set

(5.3)
(00’91"' 92’” :<Ll (o +@),(2m1)7 $1,(2M1)é61,...,(2Mm)§xm7(zum)égm)
+ (70,05 71,0 -« -3 T2m.0) + (70,1, 1,15 -« s T2m.1) + (T0,00 71,005« + + s T2m,00)
- i)

and note from (3.23) that the eigenvalues of the symbol d are £ ‘é’ We clearly

have U, » N P = {é = O} N Eé)and we may set

(5.4) 0; = ‘%‘ € C® (U, \ 2P 571

We now compute
{éo,xo} — le =0} + o} + ol

f=ol 4ol +ol, =1,
f=oiol, iz,
{0} =olroll G201

} H40j0] + 07, >0,
(5.5) {éj,ék} or {éj,ék —1=o0 +0+0L, k>j>0,
similar to (3.27)). Note that the bracket {éo,éj} is still 05 + oo due to the

(2'; & )-independence of ry in 0o. In this case however, unlike (3.27) the brack-
ets {éo,x”} ) {éo,g”} may not be o} + o2 due to the presence of the @ (z”,¢")

term in 6y . However the quadratics

Q; = ( J2'+m + x?er) H
Q;l = (IN tj+m T 5N +J+m)T
Al Re T
Qj = (x2m 2j+1 +x2m 23+2)
/\l’I i
(5.6) Q" = (fzm 241 + & 2g+2)

are seen to satisfy
(5.7) {00, 0} - % {p.0} =0

= 0} <5




36 NIKHIL SAVALE

where @ is considered as a function of the quadratics @ as in (4.9). Hence for e, 7
sufficiently small, the bracket relations (5.5, (5.7) and (5.8) again imply

He},xo} <2, >0,

<2, || #o,

= | #0iz0,

< T J =0,

IN

o

i
|
j
j
ih@} o #0i>0
j
j
|

= < =
‘9 LT‘G’
.
< — ] >
‘{ 0,Yj =T ) J = 07
S
{6} <= 9] #o.
fo, 2 V| < 1 ‘é‘ £0,j>0
b }é‘ — T’ ) iy )
(5.9)
1 m 2m ~ m
1@+ +2d (25 +&) | <D0 <4 |G+ +2D py(2F+&)
j=1 =0 j=1
on U, ;. Again define
U.r = ZG? <7h 2+ <) U,
7=0

We now set

510 0, {0« (1)}

To verify (5.1) again let x € C([—4,4];[0,1]), be a cutoff such that x =
1 on [-2,2] and |x/| < 1. Also for p € (0,4) fixed, define a function ¢, €
1; for 6y € [1 — p,1]

and |/ | < 2.
0; for 6y € [-1,1—2p] ‘Sﬁ’p’_p

Cc> ([-1, 1y, ; 0, 1]) such that ¢, (6o) = {



TRACE FORMULA 37

The trapping function in this case is now modified to

o =X @ Hx ( 6/16m ) e Cr (Zﬁsn&] N Q%> where

5(0) =y - 000
il +a-en o
S <A (9) < ]9‘

as before in terms of the relevant coordinates on UE,T. With v, now defined in

a similar fashion to (3.30), one may again estimate |Hgy, ., (d)| = O (%) as in
(3.31)-(3.36) using (5.7)) and (5.9) to complete the proof. O

Next; we have a lemma reducing the trace asymptotics to S' x R?™. First choose
T sufficiently large such that spt (§) C [-T,T]. Then choose 7 sufficiently small
and an open sub-cover I' C 2 C {2 with T(TQ o) > T. Finally and as observed before,

2

2

satisfying

by choosing 7 even smaller if necessary, one may also find an (2, 7, ) partition to
arrange T(p,y,) > T’ reducing us to study of the asymptotics of TgUB“ (D). We
now show that (5.1 allows a further reduction to S' x R?™. Below, the operator

Dy is as in (4.4).

Proposition 5.2. For each 1 <v < M, one has

Do\ - [ MWh—D .
TBU,BU (D) =tr Bf,)f (\/%) 0 (h0> BS mod h
_Tgo BO(DO)
for cutoffs BY € \Ilg (Sl X Rzm), with WF (BB) E[Dom Ny Qis/v

Proof. The proof is again similar to [26] Prop. 4.1, provided the smallness of
spt (0) is quantified. First one has an analog of Lemma (3.5 n for D' € Ul (X;5)
essentially self-adjoint, with D = D’ microlocally on Z[ N Q’m ,and 0 €

C ((T'he,T,);10,1]) one has
T8 5, (D)=TE4 p (D) mod h™

87,87

since B, has microsupport in X7 N 95 and hence on ¥7* N Q . Now as
Yo [—7.7]

N2,
87,87] Yo
the proof in [26] is seen to carry through provided spt () is contained in each of

{(T'he,T,)} , 1 < v < M. But this is guaranteed by our choice of an appropriate
subcover I' C Q2 C 2 satisfying (5.1)and spt () C [-T,T]. O

- 7'5 7'6]

D = Dy on {2, by construction and hence microlocally on Z[

Next, we show how the Birkhoff normal form maybe used to perform a further
reduction on the trace. First note that we may similarly use (2.9) to define a
self-adjoint Clifford-Weyl quantization map

w — Op ® co S((:)] (T*Sl % Rélm; (C) ® Aodd/evenW N \I/?:l (Sl % RQm;Cgm)
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which maps real valued symbols SY (7*S* x R4™; R) @ A°dd/even|y to self-adjoint
operators in ¥ (S L x R2m; (CQm). Similarly we define a space of real-valued, twisted
A%-harmonic, @g-commuting, zo- independent symbols

HFSY = {w €S9 (T”‘S1 X R4m;R) @ AW| A% =0, Hyw =0, Oyyw = O} .

Next, an application of Borel’s lemma by virtue of (4.5, (4.16) and (4.20)) gives

the existence of

a~>» hajeSH(T"S" x R R) @ A°MW

Jj=0

F ey W€ Sq (TS x RY™;R) @ AW
j=0

F~Y hife 8% (TS x R™;R)
j=0
o~y Way e HS
j=0
such that
(5.11) el @i I gl o= I emied @ — gW 4 W (@) 4V (7)

=D

on St x R?™. Here {fj}jeNo .fo, @o vanish to infinite, second and second order
respectively along

r={g+=o=¢=a"=¢=0}.
Moreover fo, @y vanish to first order along
I'={6+¢=a"=¢}.
We may hence choose @y having an expansion
m
(5.12) wo = (o + ¢) woo + Z (woj2; + @ojZ5)
j=1
in terms of the complex coordinates z; = @’ + 4y, with
[@ojllco <€

arbitrarily small.

Next we show that one may pass from the trace asymptotics of Dy to D.
Below we set B, = e (@i Bge’%fwe’icgv(&). Note that B, =1 on an h size
neighborhood of I" by construction.

Proposition 5.3. For each 1 < v < M, we have

Tg?;’BB (Do) = Tgviév (D) mod hoo
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Proof. By choosing an appropriately small €2 in terms of Reeb Darboux coordinates

D21 (/21 ¢! w
as in (|5.10)), we may find a cutoff of the form A = x (W), x € C (R),

that is microlocally 1 on W F (Bv). We then have by the Helffer-Sjostrand formula
(5.13)

Tho g (Do)=TE, 5 (D)=~ [ 6f (z)é(A\/Ez)tr (B,A.AB,] dzdz mod h*,

with

-1 -1
1 = 1 -
A, =—=(D+ (7 —z) CW’I“(D—Z) .
(F@+drm-2) &5 0
Since 7 vanishes to infinite order along I', symbolic calculus gives
& ()= Rn [DV + (¢™)"] W,

for some Ry € U9 (S* x R?™;C?"). From which the commutation [D,9"] = 0
gives

1 _ -1 1 _ 1 w1V
a=(Z@rdr ) -2) sw(z@-5) [PPrErren”]

for some Sy € ¥Y (S x R?™;C?"). Now
1 ) -1 1 -1 D%+ (a2 + 6//2)W
A A= (\/g (D+cy (7)) — z> Sn (\/E (D) - z> N yn ( T VN,

for xn (z) = 2V x (z) € C (R). Plugging this last equation into (5.13)) gives the
result. g

6. TRACE ASYMPTOTICS

In this section we finish the proof of Lemma and hence Theorem By the
reductions andw of the last section it suffices to consider the trace ’Tg/ B, (D)

Proof of Lemma[3.1] We begin with the orthogonal Landau decomposition (2.39)
(6.1)

L? (51 X RQm;CQ’”) =L* (S}, xRy @ [Clpool® @ [EY™ @ E3] | where
Aep.(Ng\0)

=L2(R7;C2™)

even .__ even
EY™" = P ES

TENG'\0
A=p.T

E?ldd — @ Egdd

TENG'\0
A=p.1

according to the eigenspaces of the squared magnetic Dirac operator D32,, (2.33)
on R™. Tt is clear from (4.18)) that

1 _
HY" = I (§0+%0)W00+D1Rm
Y
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in terms of the above decomposition. Furthermore one has the commutation rela-
tions

I:O-O,D]l%m] =0
[C‘O/V (@),Dgm] = ihey (AO@) =0

since @ in (5.11) is A%-harmonic. Hence D preserves the decomposition (6.1)) and
we may consider the restriction of its traces to the eigenspaces of D32,.. Namely, let

FEy = C [w()$0]7 FEy = Eiven ©® E?lddv E>0 = ®AE;L(NSL\0) E4 and Po, P4, P5o =
&b Acu.(Ng\0) P, denote the summands and the corresponding projections of 1)
It is then clear that Tlgu,év (D) = Tg'zugu (PODPO) + TBGW,BU (P>0DP>0).

Set

Do :=PoDPy : L*(Si xRJ) — L*(S;, xR)
Dy :=P,DP, : L*(Si xRI;EY™ @ EYY) — L? (S;, x R EY™ @ EYY), A > 0.

The restrictions of the ¢}V (@) term in D are

20 :=Poct/ (@)Po : L*(S;, xRL) — L*(SL xRL)

x!! x!!

Q4 =Pycg (@)Pa : L*(S;, x RY; EY" @ EYYY) — L7 (S, x RE; B & ER'Y), 4> 0.

!l X!

The operator 25 = oY € W9 (5’;0 X R;’f,) is pseudo-differential operator with sym-
bol vanishing to second order along I = {y + ¢ = 2’/ = ¢ = 0}. Also, quantizing

the expansion (5.12) gives

o @) =E+@)" o (wo) +> | e (wo;) Aj+A% o (@o;) | +0O(h)
N—— =1 N—_—— N——

=0p2_,12(e) =0r2_,2(e) =0r2_,12(e)

Knowing the action of the lowering and raising operators A;, A} on each eigenstate
(2.36) of D2,. then gives the estimate

62)  24=(&+3)" Ora_z(e) + Opaypo (5\//Th) 4 Opespe (h)

with all constants above being uniform in A > 0.
Next, we consider Tg B (P>0DP>0) by computing the restriction of (ﬁl_) — z),
z € C, to each E4, A > 0, eigenspace in (6.1). Using (2.37)) this has the form

Dy(z) = Py (\}ED,Z)PA

o |~@re =i (vam)© L,
vh (M)W tota—avh| VB

with respect to the Zo- grading Ey = ES°" @ E9%4. Here we leave the identification
i, in (2.37) between the odd and even parts as being understood. Let g9 > 0 be
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such that f € C2° (/21 + €0, V211 — €0). Set Ra (2) = [ra (2)]"
~(Go+9)-2vh  (V2aR)
(M) to+@—2vVh
22h — (&0 + @)% — 24k

which is well defined for |Rez| < v/2u1 — €9 < infrn V24, and h sufficiently small.
We now compute

Vh

ra(z) =

|Ra(2)Da(2) —I|| < Ce+0(h)

|Da(2)Ra(2) —I|| < Ce+0(h)

using (6.2) with the constants above being uniform in A. Choosing e sufficiently
)

small in l shows that the inverse D4 (z)” " exists and is O (R4 (z)) = O (h_%)
uniformly. Thus the resolvent (P>0DP>0 — z)fl extends holomorphically to the
strip [Rez| < v/2u1 — o and picking an almost analytic continuation for f in the
Helffer-Sjéstrand formula 1} supported in this strip gives 7§ - (P>0DPsq) =
0.

We now consider 72 5 (PoDPg). The cutoffs maybe taken to be of the form

_ "2 112 \W \W\2
B, = x (= Zfé ) ) X <H2+((€Z;¢) ) ), with Hy being the harmonic oscillator
(2.35)), to compute

_ 1 [z, ~(A—2z _ 1 - -1
6.3) T2 . (PoDP :7/6 z9<)tr BS(D —z) BY| dzdz
(6.3) Bv_,Bv(o 0) ch() 7h \/EO
_ "2 112\W W\ 2

where BS=X<(x ;:fa) X<<(£O—,:;Pa) )>and

~ 1 W w

DOZ*L*(SOJF(P) +ag

Y

being the effective Hamiltonian. The above being a scalar operator, (6.3 now
reduces to the usual trace formula microlocalized near the Hamiltonian trajectory

I'" ={&+p=a"=¢" =0} of L% (éo + @). The formula 1) now follows on
identifying the period, symplectic action and return map of this trajectory to be

L., T, and Pj‘ respectively (cf. [0, [I1] Ch 7. for an identification of the Maslov
index in terms of the metaplectic group). O

7. LOCAL TRACE EXPANSION: COMPUTATION OF THE SECOND COEFFICIENT

In this section we study the trace expansion of a function of the operator %.
We first recall the following which appears as Proposition 7.1 of [26].

Proposition 7.1. There exist tempered distributions u; € S'(Rs), 7 =0,1,2,...,
such that one has a trace expansion

N n+1
(7.1) tr¢ (D) =h7"2 S wp (¢) W2 | 4N TE20 (Z H<5>N‘5(k)‘
\/E 7=0 k=0

for each N € N, ¢ € S (Ry).
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The coefficient ug in was computed in Proposition 7.4 of [26]. Our main
task here is the computation of the next coefficient u;. The calculation here is
similar to that of the second coefficient of the symplectic Bergman kernel (cf. [22]
Ch. 8) using the local index theory method.

To this end we first briefly recall the construction of the distributions u;. Fixing
the point p € X there is an orthonormal basis ep, = %',{ejm7 €jtmp)iey € R+,
of the tangent space at p consisting of eigenvectors of J, with eigenvalues 0, £ip;,
j=1,...,m, such that

m
(7.2) da(p) = 1€, N €y
j=1
Using the parallel transport from this basis fix a geodesic coordinate system (zo, . . . , T2, )

on an open neighborhood of p € €. Let e¢; = wf@zk, 0 < j < 2m, be the local or-
thonormal frame of T'X obtained by parallel transport of e; , = 0, ’p,O <j<2m,
along geodesics. Hence we again have wfgklwi = Ojr; wﬂp = 5;-“ with gx; being
the components of the metric in these coordinates. Choose an orthonormal basis
{sj’p]?:lfor S, in which Clifford multiplication

(7.3) c(e)l, =

is standard. Choose an orthonormal basis 1, for L,. Parallel transport the bases
{sjm}?:l, 1, along geodesics using the spin connection V° and unitary family of
connections V" = Ag + +a to obtain trivializations {s; }?:1, 1 of S, L on Q. Since
Clifford multiplication is parallel, the relation (|7.3)) now holds on . The connection
VoL = V5 ® 1+ 1® V" can be expressed in this frame and these coordinates as

(7.4) VoLl = d + Alda? +Tjda?,

where each A;-’ is a Christoffel symbol of V” and each I'; is a Christoffel symbol of
the spin connection V*. Since the section 1 is obtained via parallel transport along
geodesics, the connection coefficient A;L maybe written in terms of the curvature
thkdxj A da® of VP via

1
(7.5) @) = [ dp (ol (o).
The dependence of the curvature coefficients thk on the parameter h is seen to be
linear in % via

(76) thk = Fjok + % (da’) ik

despite the fact that they are expressed in the h dependent frame 1. This is because
a gauge transformation from an h independent frame into 1 changes the curvature
coeflicient by conjugation. Since L is a line bundle this is conjugation by a function
and hence does not change the coefficient. Furthermore, the coefficients in the
Taylor expansion of at 0 maybe expressed in terms of the covariant derivatives

(VAO)l FJQk, (VAU)l (da) ji evaluated at p. Next, using the Taylor expansion

(77) (da) jk = (da) jk (O) + xlajkl,
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we see that the connection VS®L has the form

i [k .
(78) v =d+ [h (2 (da) ;1 (0) + kalAjkz) + 2t AG + n} e
where
1
A} = /0 dp (pF (pz))
1
Ajp = /dp(ﬂajkl(fm))
0

and T'; are all independent of h. Finally from (7.3) and (7.8) may write down the
expression for the Dirac operator 1' also given as D = hco (Vs ®L) in terms of
the chosen frame and coordinates to be

(7.9)
. .xk .
D =~"w! [h@xj + i (da) jx (0) +iz"z' Ajpy + R (ZEkA_(j)k + Fj)}
(7.10)
. »(Ek 1 1 1 .
= [uthn, + 1% (@0) 0+ a0, (atui) |+

. . 1 . m
AT [iwg,xkxlAjkl + hwi (2% A% +T;) — §hg*%8mj (géwﬁ)} € v (QS;C2 )

In the second expression above both square brackets are self-adjoint with respect to
the Riemannian density e' A...Ae™ = \/gdx := \/gdz' A.. .Adz™ with g = det (g;;).
Again one may obtain an expression self-adjoint with respect to the Euclidean
density dz in the framing giuj ®1,1 <5 <2™, with the result being an addition
of the term h’ijfg_% (&Ckg%).

Let i, be the injectivity radius of g7 . Define the cutoff x € C°(—1,1) such
that y =1 on (—%, %) We now modify the functions wf, outside the ball B;_/» (p),
such that wf = 6;“ (and hence g = ;%) are standard outside the ball B;, (p) of
radius i, centered at p. This again gives

k

. , 1 1 ;
(7.11) D=4" [wﬂhazj + zwﬁ% (da) ji (0) + §hg_§3zj (géwﬂ)] +
, A 1 A
X (2] /ig)v" [iw,{xkxlAjkl + hw] (2" A, +T;) — ghgf%axj (géwﬂ,ﬂ
e vl (R”;C2m)

as a well defined operator on R™ formally self adjoint with respect to \/gdz. Again
D + i being elliptic in the class S° (m) for the order function

, xk "
m = \/1 + git (gj + -5 (da);y, (0)) (fl + 5 (da),, (0)),
the operator I is essentially self adjoint. Also as observed in [26] Section 7
D D
7.12 tré( — ) (p,)=tro(—)(0,-
(7.12) o () wo=wa ()0

mod h°.
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We now introduce the rescaling operator # : C* (R";C?") — C> (R";C?");

(%s) () = s (ﬁ) Conjugation by # amounts to the rescaling of coordinates

z — xzvh. A Taylor expansion in now gives the existence of classical (h-

independent) self-adjoint, first-order differential operators D; = a;? (x) O, + b (),

j = 0,1..., with polynomial coefficients (of degree at most j + 1) as well as h-

dependent self-adjoint, first-order differential operators Ex+1 = |, _n4q ¢ [k (3 h) Ony, + do (w3 )],
N € N, with uniformly C*° bounded coefficients cé?’a, d; . such that

(7.13) #ZDZ~' = VhD with

N
(7.14) D = (> nPp; | + VTV PEN ., VN.
j=0

The coeflicients of the polynomials a;? (x), bj (x) again involve the covariant deriva-

tives of the curvatures F7%, F40 and da evaluated at p. It is now clear from (7.13])
that

(7.15) ¢ (\%) (z,2') = h~"/2¢ (D) (\fﬁ j%) .

Next, let I; = {k = (ko,k1,...)|ka €N, > ko = j} denote the set of partitions of
the integer j and set

(7.16) C; = Z (z — Do)il [HaDka (2 — Do)il} .
kel;

The coefficient u; in the expansion (|7.1]) is now the total integral over X of a smooth
family of distributions u;, € C* (X;S’ (R;)) parametrized by X

u; = /XUM,, where
ujp = trU;, and
1 _~
Uip () = =3 [99(:)C; (0.0) dzdz € Bnas]™

It was further shown in [26] that each w;, is point-wise given by a linear combi-
nation of the following elementary distributions

(7.17) Vg (8) == 8% a €Ny
(7.18) Vg pc,a(s) =02 [|s| s? (8% — 2/1)67% H(s* - 2/1)} ,
(a,b,c; A) € Ng x Z x Ng x p. (Ng*\ 0) .

To now state the computation of u;; first define ﬁf (T X — ker (fip; —J),1<
j < m, the projections onto the eigenspaces of J with eigenvalue iy, respectively

in li Also set % = d;r = d; = dim ker (£ip; —J) and &) = ,@f + 2.
Next, define the endomorphism

(VX" T, X o T,X
(VIX0)°0 = (VIX3)R, veT,X,

agreeing with 1' on R+, and set (VTX3)j = (VTX‘T)O P, 1<j<m.
We then have the following.
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Proposition 7.2. The second coefficient uy of (7.1) is given by

uy,p (8) = c1101 + Z c1;1,-2,0,4 (P) v1,-2,0,4 (8)

Aep.(NG"\0)
(719) + Z C1,0,—3,0,4 (p) V0,-3,0,A (5) , where
Aep.(NJ"\0)
(17 p15) ~—2 (oTX~\0
(720) C1;1 = (27(-)77,”“ |:t7" (V 3) :| and
(7.21)

_%T [ 1,-tr (VTXC()J} i if A= pyT for some j,

C1;1,-2,0,A (p) = €1;0,—3,0,4 (p) =
0; otherwise.

Proof. We begin by noting the first two terms in (|7.14))

(7.22)  Dy=+ [8%4—22 (da) jx (o)}

1 : T
(7.23) =704, + [8% + Mj J’+m} +o0 [aﬂfﬁm - ujz(p) xﬂ]
=Doo
i

(7.24) D; = g'ijkxl (Ve,da) ;. (0)

~———

=tAj k1
(7.25) 37 Tgkal gTX (ej,(Ve,J) ex)
=:Aj k1
using (7.2)), (7.7). For future reference we also note that
= 1

D% = —820 + Z |: 82 — 85J+ + Z,U/] (J}J_»'_man — Jﬁjaijrm) + - 4 (.’L‘ + $J+m) — 'LFm

—.n2
7‘D00

m
F,, Z ’Vj’)/‘j+m
j=1
gives the complex harmonic oscillator.
As in the computation for ug in [26], we compute u; by computing the expansions

of the heat traces tr e, tr De=®". First note that following (7.13), we
may compute

D2 = D2+ Vh{Dy,D1} + O (h).
An application of Duhamel’s principle then yields

- - t -
(7.26) e = e~ — /i / e (b= {Do,D1} e~ ds | +0 (h).
0

=:Uj0
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We compute

(7.27) {Dg,D1} = %Ajkl {—22%2'0,, + vFy7at + 419 " — 2 (ia;) P2} .

Next set pj4m = pj, 1 < j < m, and note Mehler’s formula
(7.28)

2 2
o2 —tD2,

x,y) =e e

e—th (

e_ (z! Zty( )2 m ILL
] /o, 1\ itF
= N myg (l‘ Y ) € ma
VAt E 4msinh p,t
Hj 2 2
61 =0 { i (-0 o)
J

(7.29)

1 st
#2420 05+ o) |

_ S o R (W BT 2 4 g2 M
N exp{ 4tanh p;t (2 tTjm T Y yH'T”) + 2sinh p;t

where (z';9') = (x1, .-, Tam; Y1, - - - » Y2m ). We may now substitute (7.27)) and(7.28))
into (|7.26)). This gives a formula for Uy, (0, 0) as an integral over s and z. Further-

more one observes that the x -integral is an odd integral which must evaluate to 0.
Hence we have

(7.30) Uy (e*ts2) = —tr Uy (0,0) = 0.

We now compute the second term in tr De~*®*. First differentiate (7.26) using

(7.14)) to obtain

2 2
De ™ = Dye ™0

¢
—Vh (DO/ e~ (t=9)0 {Do,D1} e Do ds — DletD‘Q’) +O(h).
0

The O (\/E) term above maybe rewritten symmetrically
Uy

t
(7.31) — DO/ e—(t—s)Dg {D07 Dl} 6_5ng8 _ Dle—th
0

t
/ (Doei(tis)Dg> Dy (Doeing) ds
0

=K1

1 t
+ 5/ e~ (t=5)0 {D%,Dl} e ds
0

=Ko

1
(7.32) -3 (Dle*wg + e*“%Dl)

(zjy; + mj-l-myj-i-m)} )
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using an integration by parts argument. It is clear from that
D1e % (0,0) = 0

with the same being true of its adjoint
e~5D; (0,0) = 0.

Similarly the adjointness property for

¢
/ e~ (t=9)0 (D§D1) e~P3ds and
0

t
/ e~ (t=5)Dg (Dng) e s
0
gives
t
K2 (0,0) = {/ e~ (=% (D1DF) €Sngs] (0,0).
0

‘We now compute

Ky

t )
= / ds (Doei(tis)Dg> D (DoeisD(z))
0
t 2 Uik 2
= / dse” %[44 (0, +iay)] (37]37 T Ajlcl> (Doe_SDO)
0
t .
= / dse_(t_“’)Dg (Z'ykvjxlAjkl> (Doe_SDS)
0 3
+ .
+/ dse*(t*S)Dg <;7l'ijkAjkl> (Doe*SDg)
0

t .
—/ ds 2e~(t=5)0% <;:L’k$lAjkl) (0s, +iay) (Doe’SDg)
0

t .
—/ ds e~ (1=9)% <;'ijkxlAjkl> (7" (0x,, +iau)] (Doestg) :
0

=Ko
Hence we now simplify (7.32) to
U1y
! 2 (% kg 2
= / ds e~ (=% <37 vz Ajk:l> (Doe_SDO)
0
=:L
t 2 [ 1 ; 2
+/ dse™(t==)% (3’ylvjxkAjkl> (Doe_SDO)
0
=:Ly
! t—sp2 (L ko1 D2
(7.33) —2/0 ds e (t=5)% (39& T Ajkl) (@Cj —|—iaj) (Doe_S 0)
=:L3

We now evaluate traces of each of the kernels L1, Ly and Ls.

47
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First compute

2
0 m _=8 ‘
Dae— 5 0) = — Y %o B ptm . € ' 0) eitFm
0€ (x ) 2t + ; Qtanh //[/Mt (7 xl‘ + ’Y xﬂ+ ) /47rtmt (':C ) €
Hu +m e n / itF
7.34 " +m 7O m
( ) + l; 2 (7 Tp+m Y IH)] \/rmt (fL‘ )6
and set
_ (10130)2
my (v,y) = ———— /mmt (xla Z/)
E(2';8,t) = my_s(0,2")ms (2,0)
E(z;5,t) = my_s(0,2) 1, (x,0)
1 - 2%; =0,
Pu (t) ﬁﬁ#“t; 1< p<2m.

Plugging (7.28) and (7.34) into (7.33) gives

t .
tr Ly (0,0) = Aju —/ dS/de (z;s,1) ;H(xsl)tr {;vk’yjfy“eit%]
0 Iz
=1ig’
t ; -
(7.35) +/ ds/de (z;8,t) (ia,m) tr [37’“#7%“%}
0
=ajy’
‘ T,T 1 . )
tr Ly (0,0) = Aj —/ ds/dacE (3 8,t) p”(sk)tr [37%17%%%}
0 Iz
=145
¢ i .
(7.36) +/ ds/de (z;s,t) (ia,zp) tr {371737"6”“}
0
::lglfl

Since the function E (x;s,t) is an even function in x, we must have p = [ for the x

integral in L{gl to be non-zero. Similarly, we must have p,l > 0 with |u — | = m
for the z integral in 1]1]1“ to be non-zero. We now note that for indices p < ¢ < r;

{2m (H}"zl Sinhujt) ; p=20

itF o ]
0 otherwise.

tr [i’yp e

tr [vaqv e tanh(pqt)

. II7", sinh p;
- itFm] _ _ZQMM, p:Oandr—q:m
0 otherwise.
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This now implies that the coefficient of A;; in Ly is zero unless exactly one of the
indices(i, 7, k) is zero; and the other two are either equal or differ by m. A similar
analysis also give that the coefficient of A;; in La, Ls is zero unless exactly one of
(4,7, k) is zero. Furthermore

507 . ; )
tr L3 (0,0) = 2Ajg / ds/de x; 8, 1) Ty (23 ng)x(Js)) tr |:;fyoeltFm:|
j

::légl
¢ 14, 0T L T] ) .
(7.37) +/ ds/da:E (z58,1) [ =250 ) tr | o0t Fm
0 2s 3
::lglfl
For future reference we define 177 = 1751 1740 17k — 7h0 | qJ8E 97k 70 470

gkl _ gkl | 4 ikl | 7kl
and uy;, =177 + 15" + 13",

We may now make the three cases.

Case (i) j=0
Again as observed before we must have either k =lor [k — | =m. 1 <k=1<m
we compute

)

Okk 0kk
17"+ 1,5

— IOkk + 1(1)]{?]6 + 1g§k + lgllck:

d d E t k_0_k _itF,,
/ 8/ 2B (s, tanh(,uks) {37776

/ ds/de x; 8, t) wkx tr[ A Oy ktme %tFm}

v)
ng (T2, sinh pu;¢) [t Hk } (/dmiﬁj (x;s,t))

anh ( ukt * tanh (pgs)
(7.38)

1 1

™m Kk ’,2 /
== e h d d E(x';s,t
3 VAt ( =1 sinh it /0 ’ {tanh (ukt)  tanh (uks)} (/ v B (s, ))
(7.39)

_ 12 (H;-”:Lu] / Lk sinh pgs sinh g (t — s)
3 2m)™ Vart tanh ,ukt) tanh (ugs) g sinh gt

(7.40)
1(My) 101 1 (put) cosh (pgt) — sinh (pugt)

== — t) sinh t
3 (2m)™  p Axt sinh pt [ tanh (pt) (kit) sinb (i )]
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and
10kk
t\/ﬁ/ (z';s,t) x2tr |:3’)/O€ZtF’"]
11 1
(7.41) =_- (Hmlslnh,uJ /ds/de x'ss,t) ok
3t /4mt

(a2) =12 (21 15) t F/ [Smhuks sinh pux (t — 8)}

3 (2™ g sinh gt

1T(Mpy) 11 1 .
7.43 =_ I - t) cosh (uxt) — sinh (uxt)] .
( ) 3 (27‘[‘) m [Ant (,ufkt) sinh Lt [(Mk ) (Mk ) (:u’k )]

Here we have used one of the integrals

/dm’E (a'ss,8) = H 47Tsinjh it
=1 Hj
m . . h . h t _
/dx’ 1B (2)ys,t) = 2 H 1 ujh {Sm Fk2 S%nh'uk ( S)]
i1 msinh p;t i sinh pgt
/dx/ 2B (i, t) = 4 ﬁ L {Sinh RS si.nh,uk (t — s)] [sinh s s%nh w (t—s)
g 4w sinh p;t o sinh gyt wy sinh
m . . 2
h h t—
/dx’a: E(zs,t) = 12 H Hy {sm HES s%n g ( s)}
e 4 sinh p;t i sinh pgt
in (7.38)), (7.41) and one of
¢
1
/ ds sinh pgs sinh ug, (t—s) = o [(urt) cosh (pgt) — sinh (ugt)]
0
t
1
/ ds cosh s sinh py (t —s) = o (pxt) sinh (pgt)
0 k
K 1
/ ds s sinh pgs sinh pg (t —s) = 5 (uxt) [(uxt) cosh (uxt) — sinh (ppt)]
0 (20%)
! 1
/ ds s sinh pugs cosh py (t —s) = W [(,ukt) cosh (ugt) — sinh (ugt) + (ut)? sinh (uxt)
0 273
in (7.39), (7.42). The sum of (7.40) and (7.43)) now gives
0.0 = 1A g
3 (2m)™  pu Art (sinh ,ukt)2 Mt

A similar computation yields the same answer for ud%* (0,0) if k& > m.
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We now consider the possibilityl = k& + m and compute

1(1)k(k+m) + 1Ok(k+m)

— 205t 20 g agp

/ ds/dacE x; 8, 1) k"‘m [ NN e th,,L}
pk+m( ) 3

/ ds/de x; 8,t) Zukxk+m)tr {37 ke m }

Ty, . .
E k+m k _itF,,
/ds/dm xst)p (S)tr[g’y ~yte ]

—I—/ ds/da:E (5 5,t) (—ipgy) tr |:;),yk+m7j,yk+meitFm:|
0

=0
and
Ok(ker)
i .

= \/R/E 2’5 8,t) TR mtr {3706”1:”]

= 0.
Hence
(7.45) w5 ™) (0 0) = 0.

A similar computation in the case k = [ + m shows uo(ker)’c (0,0)=0.
Case (ii) k=0
Again as observed before we must have either j =lor|j —I|=m. If1 <j=1<m,
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we compute

131'03' +1;’0j
— 1j0J + 1J0J + 1J0J + 1J0J

Hj 2 i o itF,
d d E t) tr | =
= [ f B <2tanh(ug )i [
/ ds/dwE x; 8, t) z—x ) r {3’707j7j+mem’"b}
ds [ dzE t OgitFm
/0 5/ xE (x; s, )2 {37 e ]

1 (szlll/j) / s < Wi > {Sinhujs sinh p; (t — s)]
ant  2m)™  Jo tanh (p1;s) pj sinh gt

1 (Hm 1) / gs— M {sinh ;s sinh p; (¢ — s)]

art (2m)™  Jy  tanh (ujt) oy sinh p;t

1 (HT:%J‘) /tds (t—S)
At (2m) 0 t
(Hm 11) v
2m)™ 2
(I 1) 1 1
(27)™  2u; tanh (u;t) sinh p;t
(I 5) ¢

(2m)™ 2

~

~

_|_

Wl Wl W= Wik Wl -
—
~

—o
3
~

[(15t) cosh pjt — sinh p;t]

—
3
~

+

(7.46)

A~
)
—-

and

305
13

1 Hj 2 0 itFp,
/ ds/da:E x; 8, t) 95 tanh 1,5 agastr [37 e

1 2 (Hm 115) /tds t—s\ [coshp;s sinhp; (t—s)
C3VaAm 20"/, t sinh it

(7.47)
11 () 1 1

=_= — [(w:t) cosh it — sinh it + p?t? sinh it
3Vamt (2m)™  (pyt) sinh gt 24, [yt) cosh gt = sinh it 1587 sinh |

The sum of (7.46) and (|7.47) now gives

I u:) 1 1 1 ;
(as) w00 = L) [ _W]

1
3 (2m)™ 2uy Axt | pst (sinh gu;t)>
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If I = 5 + m, we compute
j0(j+m) j0(j+m)
170UFm) | 50G+m

— 1j0(j+m) + 1j0(1+m) + 110(j+m) + 1jO(j+m)

M 2 +m itF
d dE t) 2 J m
= [l f bt (g ) e [t

_/ ds/da:E (x;8,t) Z%x?er) |:3,yoethm
/ ds/dacE (z;s,1) [;Wj+m7j'yoeitF”‘]
1 (Hj 115) /t i 1 [sinh pjs sinh p; (t — s)
3 At (2m)™  Jo  tanh (p;s) tanh (u;t) | i sinh gt
1 QY / ds [Sinh,ujs sinh i (t — s)]
3Vart @2m)™  Jo pj sinh it
C i (W) /tdS t—s 1
3Vart 2m)™  J t ) tanh (u;t)

1 () 1 pyt
3VAart (2m)™  2pu; tanh (p;t)
1 4 (Hm 1,uj) 1
) + bt — sinh it
3VanT ()" 2dslpgt (90 oSt sl
1 4 (H;’nzlp’j) t
3VArt (2m)™  2tanh (u;t)

7.49 — - =) - sh 1, — sinh it
( ) 3\/@ (27T)m 2/1, [(/J’] )COb MJ Sm /’[’]]
and

j0(7+m

1:J31(J+ )

202
LG0T +m 0 ,itF
=2/ d deE (z;s,t) | —————— | tr m
/0 s/x (m,s,)( 1 ) |:3’76 ]
126 (H;” V145 /tds (t—s> |:Sinh/1,j8 sinh p; (t—s)]
T 3Vant en™  Jo t p; sinh gt
b (ML) 1
3Vant  (2m)™  2pF sinh it
The sum of (7.49) and (|7.50) gives

(7.51) wl2UF™) (0, 0) = 0.

(7.50) [(15t) cosh it — sinh p;t]

A similar computation also yields u(Jer)OJ (0,0) =0.
Case (iii) 1 =0
Again as observed before we must have either j = k or |j — k| = m. The tensor
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Ajr in (7.24) being anti-symmetric in j, k; we have u}2” (0,0) = 0. On the other
hand, the expressions for 17" 4+ 17*" and 1J* are symmetric in k,I. Hence we find

7.52) w2 (0,0) = u{9T™ (0,0) =0

(7.53) w0 0,0) = w™Y (0,00=0

as in the previous case.

To sum up, from ([7.32]), (7.33)), (7.35)), (7.36)), (7.37)), (7.44])), (7.45), (7.48]), (7.51)),
(7.52) and ([7.53)) we have finally have

Uy (867“2) = —tr Uy (0,0)
= —Aju])’

Ao (ML) 11 pet 1

3 (2m)" kAt | (sinhpgt)® pwt

_Ajoj (H}”:luj) 1t 1 ot

3 2m)™ 2u; Vant |t (sinh,ujt)2

(M) 101 |1 it

7.54 = —Aj; J—lmj S - A—
(7.54) 99 (2m) fj VArt | it (sinhpgt)?

A simple computation using Laplace transforms now shows

(7.55)
A, (M) 11 - (1) , Ajoj U1 (se*tsg)
797 (27T)m 2/.l/?t /747Tt (271_)m+1 /’1/?
~—~—

—tr 3—2(VTX3)0

() 101 u (I3 1)
A J—lmﬂ - J — Jj=1rJ 7'6727—“]
704 (27T) 2Mj /7471'15 (sinh,ujt)2 (271') jOJ\F Z

(Hm 1M ) - —ts?
(756) = (277)7m+]1 &gj/ ZT (1)1,_2707/1 +U0,—3,0,A) (se t )

= 4-tr (V7X9),

T=1

where 24 = 27u; = 27y; in the last equation (7 above.

Thus, (7.30)), (7.54), (7.55]) and (7. 56) show that the two sides of ([7.19)) evaluate

equally on test functions e —ts* , se=ts leferentlatlng k tlmes and Settlng t=1;
2

they evaluate equally on test functions s?*e=%", s?k+1e * for each k. The density

of this set of functions in Schwartz space S (R) now gives the result. O

We end with a corollary of the above computation useful in the next section.

Corollary 7.3. The improper integral converges

/OOO o o) \;l% B _;(27T)1m+1 : / [tr ﬁ (VTX‘?)O} a A (da)™
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Proof. This is a calculation from (|7.54))
> dt 1 O, u) 1 | 1 4

/ Uy (se*t52> — = —7/ d:CAjoj( j_:nlﬁ) / — | = - 5| dt
0 Vvt 2 Jx (2m) o Mt | pit  (sinhp;t)

I
(sinhu)?

I
\
| -
Daa
=8
wlg
[N}
A
S»—l
HE
=
t‘b‘b
< o
<
S—
8
S|
—
IS
\

pAJ=19)
(27r)m+1 My

1 1 / Ajo;
T T gyl - I pj) d
2(27T)m+1 X Wy ( j=1 J)
=tr ﬁ(vsz)O =7 |Rlan(da)™

8. SEMICLASSICAL LIMIT OF THE ETA INVARIANT

In this section we prove the semiclassical limit formula for the eta invariant of
Theorem 1.2} First, from [26] Cor. 7.3, the distributions u; € S’ (R) of (7.1)) are
smooth near 0. Hence

u;t () = 1[0,00) (£2) u; (z) € S’ (R)

are well defined tempered distributions and we similarly define f* for any f € S (R).
We now have two term asymptotics for irregular functional traces similar to

Lemma 8.1. For any f € S (R),
D

(8.1) tr f* (ﬂ> — W3 (f) + b (f) o ().

Proof. We begin by proving an improved local Weyl law. To this end, choose
0 € C° (R;[0,1]) such that 6 (z) = 1 near 0 and 6 (¢) > 1 for |¢[ < 1 in . For
each € > 0, set 0, () = 0 (ez) and let N (a,b) denote the number of eigenvalues of
Dy, in the interval (a,b). Choosing f (x) > 0 with f(0) = 1, the trace expansion
with A = 0 now gives

1 1 D 1./-D

—N(- = < —)=0(==)|=nm""! .
NV (—eh, eh) (4 +0(\/£)) <tr {f <\/E> 6h9< - )] h [ug (0) + O ()]
Hence for € > 0 fixed and h < 1 depending on €, we have an improved local Weyl

law

(8.2) N (—€h,eh) = O (eh™™).

From here (1.13)) follows.
Now, to prove (8.1) first observe that by virtue of we may assume [ €

C2° (—v/2p1, v/211) . Next define the spectral measure My (X') = Z)\ESpeC(A) FYSA=X).
v
It is clear that the expansion (1.9)) to its first two terms may be written as

My (F103) () = h =5 (F (V) uo (0) +h172F () () + 0 (1))
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where 9; () =6 (i> Both sides above involving Schwartz functions in A, the

remalnder maybe replaced by O ( e ) We may then integrate to obtain

/ d/\/dX I % A=), (V) = hm%(/o d)\f(/\)uo()\)+h1/2/000d)\f()\)u1(A)JrO(h)).

— 00

Now note

(8.4) /Ooo X (]—"{19%) A=X)=1(og (\)+ ¢ (%)

where ¢ (z) = ffoo dtf (t — ) — 1(~s0,0] (z) is a function that is rapidly decaying
with all derivatives, odd and smooth on R, \ 0. Next let x € C° (R;[0,1]) be an
even function equal to 1 near 0 and set ¢ (z) = x (%) ¢ (x) for each R > 0. We

S b))
S ER N

=0 | ™) (k)™

k>R

(8.5) —0 (h;% )

from the local Weyl law (8.2]).
Next for € > 0, we observe

|¢r (z) —¢R*9e($)|
‘/dy e @(xey)]é(y)’

(8.6) <Oy (1 ){<x> N+e<x>‘N] VN € N.

€

Now consider a pairing corresponding to the first term above with 9t; (\)

Jas () "o
Jaten(25) (25

)
(8.7) +/d/\’ (1-1_pr.r) <://E> <E\A//E>_N My (N).

The support of 1[_g/ g ( i\/ﬁ) can be covered by O (R') intervals of size ev'h, which
combined with the local Weyl law gives that the first term above is O (R'eh™™).

’ / -N
The second term on the other hand, observing (1 — 1[,R/_’R,]) (:\W) <€f\/ﬁ> =
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L\ =N+1
0] <11}1, <\/>ﬁ> >, is O(ﬁh*m). On choosing R’ = ﬁ, this gives li is
O (y/eh™™). A similar estimate
XAV
8.8 d)\’e<> M (N)=0 (eh™™
(55) Jave( =) o) =0 ()
combined with gives

89 faxfon () < onnd ()| s () = O (van ).

The second term above has an expansion on integrating (1.9) against ¢

. bV
[ axonsa (Ym0 =10 | [ @36 ()£ 0)ua 0)-+ O 1)
(8.10) = Op, (™).

Finally putting together (8.3)), (8.4), (8.5), and (8.10) gives

tr f- (\%) — /d/\’1(_w,0] (Y0 (\)
_pomed (/0 d)\f()\)uo()\)+hl/2/0

— 00 — 00

INF (V) <A>)

‘o <hRm)  On (Veh™™) + O (h-"*1)

from which 1| follows on choosing each of %, €, h sufficiently small depending

on the preceding parameters. ([
We now come to the proof of Theorem [T.2}

Proof of Theorem[I.4 We begin by using the invariance of n under positive scaling
to write

m=n(2) = [ am | ]

S

(8.11) = dt
0

1 tr {De_ﬁDQ} + Oodt—1 tr [De_ftzDz]
vat  [Vh eVt Vh '
The equation 4.5 pg. 859 of [25] with 7 = f translates to the estimate

(312) e[ D] < 0 (umey

giving that the first integral of (8.11) is O (y/eh™™). The second integral is evalu-
Vh

ated to be tr E. (%) =tr éE £D ) where

2 o0
VT )
with the convention sign(0) = 0. The functions F, E. are rapidly decaying with all
derivatives, odd and smooth on R, \ 0. Hence (8.1)) gives

E(z) = sign(z)erfe(|z]) = sign(z) e~ ds

D 7m,%u 7mu 0 —m
trEE(\/E>h [uo (E2)] + B~ [uy (E.)] + o0 (h~™)
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where the evaluations above again make sense on account of the smoothness of uy,
uy near 0. As observed from [26] Prop. 7.4, the coefficient ug is an even function
of A. Since F. is odd, the first evaluation above is 0. The second is evaluated from
definition to

e dt
uy (Ee) = u (567“2) —
V()= [ =
1 1 1 1 0
=————— tr — (VIX3 }a/\ da)™ + O (e
s f, [0 (77 an 000
following the Corollary [7.3] Choosing ¢ sufficiently small and putting everything
together

1 1 1 1 0
=h "l -z-—— tr — (VIXg ]a/\ da)™ | +o0(h™™
m e i 7 g (7 an @) o)
as required. O
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