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CHARACTERISTIC FUNCTIONS AS BOUNDED MULTIPLIERS

ON ANISOTROPIC SPACES

VIVIANE BALADI

Abstract. We show that characteristic functions of domains with boundaries
transversal to stable cones are bounded multipliers on a recently introduced

scale Ut,s
p (s < 0 < t and 1 ≤ p ≤ ∞) of anisotropic Banach spaces, under the

conditions −1 + 1/p < s < −s < t, with p ∈ (1,∞).

1. Introduction

A function g : M → C is a called bounded multiplier on a Banach space B
of distributions on a d-dimensional Riemann manifold M if there exists a finite
constant Cg so that ‖g · ϕ‖ ≤ Cg‖ϕ‖ for all ϕ, where ‖ · ‖ is the norm of B. One
interesting special case is when g is the characteristic function 1Λ of an open domain
Λ ⊂ M : Half a century ago, Strichartz [16] proved that for any d ≥ 1, if M = Rd

and B is the Sobolev1 spaceHt
p(R

d) for p ∈ (1,∞) and t ∈ R, then the characteristic

function 1Λ of a half (hyper)plane, is a bounded multiplier on Ht
p(R

d) if and only
if −1 + 1/p < t < 1/p.

In the present work, we consider a newly introduced space of anisotropic dis-
tributions B on a manifold M , adapted to smooth hyperbolic dynamics, and we
prove the bounded multiplier property for characteristic functions of suitable sub-
sets Λ ⊂M .

Fix r > 1, and suppose from now on that M is connected and compact. The
simplest hyperbolic maps on M are transitive Cr Anosov diffeomorphisms T . The
Ruelle transfer operator associated to such a map T and to a Cr−1 function h on
M (for example, h = 1/| detDT |) is defined on Cr−1 functions ϕ by

(1) Lhϕ = (h · ϕ) ◦ T−1 .

Blank–Keller–Liverani [7] were the first to study the spectrum of such transfer op-
erators on a suitable Banach space B of anisotropic distributions and to exploit this
spectrum to get information on the Sinai–Ruelle–Bowen (physical) measure: The
spectral radius of L1/| detDT | is equal to 1, there is a simple positive maximal eigen-
value, whose eigenvector is in fact a Radon measure µ, which is just the physical
measure of T . Finally, the rest of the spectrum lies in a disc of radius strictly smaller
than 1, which implies exponential decay of correlations

∫

ϕ(ψ◦T n)dµ−
∫

ϕdµ
∫

ψdµ
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1Recall that ‖ϕ‖Ht

p
= ‖(id+∆)t/2ϕ‖Lp = ‖F−1(1+ |ξ|2)t/2Fϕ‖Lp , with ∆ the Laplacian and

F the Fourier transform.
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for Hölder observables ψ and ϕ as n → ∞. (The first step in this analysis is to
show the bound ρess < 1 for the essential spectral radius of L1/| detDT | on B.)

Some natural dynamical systems originating from physics (such as Sinai billiards)
enjoy uniform hyperbolicity, but are only piecewise smooth. Letting M = ∪iΛi be
a (finite or countable) partition of M into domains where the dynamics is smooth,
one can often reduce to the smooth hyperbolic case via the decomposition

(2) L1/| detDT |ϕ =
∑

i

(1Λi · ϕ)

| detDT |
◦ T−1 .

This motivates our study of bounded multiplier properties of characteristic func-
tions.

In the 15 years since the publication of [7], dynamicists and semi-classical ana-
lysts have created a rich jungle of spaces of anisotropic distributions for hyperbolic
dynamics (here, d = ds + du with ds ≥ 1 and du ≥ 1). These spaces are usually
scaled by two real numbers v < 0 and t > 0. Leaving aside the classical foliated
anisotropic spaces of Triebel [17] (which are limited to “bunched” cases [4], and
seem to fail for Sinai billiards), they come in two groups:

In the first, “geometric” group [7, 13], a class of ds-dimensional “admissible”
leaves Γ (having tangent vectors in stable cones for T ) is introduced, and the
norm of ϕ is obtained by fixing an integer t ≥ 1 and taking a supremum, over
all admissible leaves Γ, of the partial derivatives of ϕ of total order at most t,
integrated against C|v| test functions on Γ. Modifications of this space, for suitable
noninteger 0 < t < 1 and |v| < 1, were introduced to work with piecewise smooth
systems [8, 9] (only in dimension two). A version of these spaces for piecewise
smooth hyperbolic flows in dimension three recently allowed to prove exponential
mixing for Sinai billiard flows [3].

In the2 second, “microlocal,” group [5], a third parameter p ∈ [1,∞) is present,
and the norm (in charts) of ϕ is the Lp average of ∆t,v(ϕ), where the operator

∆t,v interpolates smoothly between (id + ∆)v/2 in stable cones in the cotangent
space, and (id +∆)t/2 in unstable cones in the cotangent space. Powerful tools are
available for this microlocal approach, allowing in particular to study the dynami-
cal determinants and zeta functions3 much more efficiently than for the geometric
spaces. Variants of these microlocal spaces (usually in the Hilbert setting p = 2)
have also been studied by the semi-classical community, starting from [10]. How-
ever, S. Gouëzel pointed out over ten years ago that characteristic functions cannot
be bounded multipliers on spaces defined by conical wave front sets as in [5] or [10]
(Gouëzel’s counterexamples are presented in [2, App. 1]). The microlocal spaces of
the type defined in [5, 6] or [10] thus appear unsuitable to study piecewise smooth
dynamics.

In order to overcome this limitation of the microlocal approach, we recently
introduced [2] a new scale U t,s

p of microlocal anisotropic spaces, obtained by mim-

icking the geometric construction of the geometric spaces Bt,|s+t| (for integer t)
of Gouëzel–Liverani [13]. We showed in [2] the expected bound on the essential
spectral radius of the transfer operator of a Cr Anosov diffeomorphism acting on
U t,s
p (if −(r − 1) < s < −t < 0), and we conjectured that characteristic functions

2This group could also be called pseudodifferential, or semi-classical, or Sobolev.
3The “kneading determinants” of by Milnor and Thurston from the 70’s are revisited as “nu-

clear decompositions” in [1].
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of domains with piecewise smooth boundaries everywhere transversal to the stable
cones should be bounded multipliers on U t,s

p , if s and t satisfy additional constraints
depending on p ∈ (0, 1). The main result of the present paper, Theorem 3.1, is a
proof of this bounded multiplier property if max{−(r− 1),−1+ 1/p} < s < −t < 0.

This result opens the door to the spectral study, not only of hyperbolic maps
with discontinuties in arbitrary dimensions, but also (using nuclear power decom-
positions [1, 2]) of the hitherto unexplored topic of the dynamical zeta functions
of piecewise expanding and piecewise hyperbolic maps in any dimensions. This
should include billiards maps [9] and their dynamical zeta functions in arbitrary
dimensions. We also hope that the spaces U t,s

p will allow to extend the scope of the
renewal methods introduced in [14] to dynamical systems with infinite invariant
measures. (The induction procedure used there introduces discontinuities in the
dynamics.) Finally, it goes without saying that suitable version of the spaces U t,s

p

will be useful to study flows.
F. Faure and M. Tsujii [11] announced (SNS, Pisa, June 2016) new microlo-

cal anisotropic spaces, for which the wave front set is more narrowly constrained
than in the cones used in previous microlocal spaces suitable for hyperbolic dynam-
ics. It would be interesting to check whether characteristic functions are bounded
multipliers on these new spaces. (Note however that, contrary to the spaces U t,s

p

or the spaces of [10, 5, 13, 9], the new spaces of [11] do not appear suitable for
perturbations of hyperbolic maps or flows.)

2. U t,s
p : A Fourier version of the Demers–Gouëzel–Liverani spaces

We recall the “microlocal” spaces U t,s
p , for real numbers s and t (in the applica-

tion, s < −t < 0) and 1 ≤ p ≤ ∞, introduced in [2] and inspired by the “geometric”
spaces Bt,|s+t| (for s < −t and integer t) from [13].

2.1. Basic notation. Suppose that d = ds+du with du ≥ 1 and ds ≥ 1. For ℓ ≥ 1
and x ∈ Rℓ, ξ ∈ Rℓ, we write xξ for the scalar product of x and ξ. The Fourier
transform F and its inverse F−1 are defined on rapidly decreasing functions ϕ, ψ by

F(ϕ)(ξ) =

∫

Rd

e−ixξϕ(x)dx , ξ ∈ R
d ,(3)

F
−1(ψ)(x) =

1

(2π)d

∫

Rd

eixξψ(ξ)dξ , x ∈ R
d ,(4)

and extended to the space of temperate distributions ϕ, ψ as usual [15]. For suitable
functions a : Rd → R (called “symbols”), we define an operator aOp acting on
suitable ϕ : Rd → C, by

(5) aOp(ϕ) = F
−1(a(·) · F(ϕ)) = (F−1a) ∗ ϕ .

Note that ‖aOpϕ‖Lp ≤ ‖F−1a‖1‖ϕ‖Lp for each 1 ≤ p ≤ ∞, by Young’s inequality
in Lp.

Fix a C∞ function χ : R+ → [0, 1] with χ(x) = 1for x ≤ 1, and χ(x) = 0 for

x ≥ 2. For ℓ ≥ 1, define ψ
(ℓ)
n : Rℓ → [0, 1] for n ∈ Z+, by ψ

(ℓ)
0 (ξ) = χ(‖ξ‖), and

(6) ψ(ℓ)
n (ξ) = χ(2−n‖ξ‖)− χ(2−n+1‖ξ‖) , n ≥ 1 .
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We set ψn = ψ
(d)
n . Note that

F
−1ψ(ℓ)

n = 2d(n−1)
F
−1ψ

(ℓ)
1 (2n−1x) and (

∑

k≤n

F
−1ψ

[ℓ)
k )(x) = 2dnF−1χ(2nx) ,

so that, for any ℓ,

(7) sup
n

‖F−1ψ(ℓ)
n ‖L1(Rℓ) <∞ , sup

n
‖
∑

k≤n

F
−1ψ

(ℓ)
k ‖L1(Rℓ) <∞ ,

and for every multi-index β, there exists a constant Cβ such that

(8) ‖∂βψ(ℓ)
n ‖L∞

≤ Cβ2
−n|β| , ∀n ≥ 0 .

We shall work with the following operators (ψ
(ℓ)
n )Op (putting ψOp

n = (ψ
(d)
n )Op):

(ψ(ℓ)
n )Op(ϕ)(x) =

1

(2π)d

∫

y∈Rd

∫

η∈Rd

ei(x−y)ηψ(ℓ)
n (η)ϕ(y)dηdy .

Note finally the following almost orthogonality property

(9) (ψ(ℓ)
n )Op ◦ (ψ(ℓ)

m )Op ≡ 0 if |n−m| ≥ 2 .

2.2. The local anisotropic spaces U
C±,t,s
p (K) for compact K ⊂ Rd. Recall

that a cone is a subset of Rd invariant under scalar multiplication. For two cones
C and C′ in R

d, we write C ⋐ C′ if C ⊂ interior (C′) ∪ {0}. We say that a cone
C is d′-dimensional if d′ ≥ 1 is the maximal dimension of a linear subset of C.

Definition 2.1. A cone pair is C± = (C+,C−), where C+ and C− are closed
cones in Rd, with nonempty interiors, of respective dimensions du and ds and so
that C+ ∩C− = {0}. We always assume that Rds × {0} is included in C−.

Recall that r > 1. The next key ingredient is adapted from [6]:

Definition 2.2 (Admissible (or fake) stable leaves). Let C+ be a cone, and let
CF > 1. Then F(C+, CF ) (noted simply F when the meaning is clear) is the set
of all Cr (embedded) submanifolds Γ ⊂ Rd, of dimension ds, with Cr norms of
submanifold charts bounded by CF , and so that the straight line connecting any
two distinct points in Γ is normal to a du-dimensional subspace contained in C+.

Denote by π− the orthogonal projection from Rd to the quotient Rds and by
πΓ its restriction to Γ. Our assumption on F implies that πΓ : Γ → Rds is a Cr

diffeomorphism onto its image with a Cr inverse, whose Cr norm is bounded by a
universal scalar multiple of CF . We replace CF by this larger constant in the sequel.

Definition 2.3 (Isotropic norm on stable leaves). Fix a cone pair C±. Let Γ ∈
F(C+, CF ) and let ϕ ∈ C0(Γ). For w ∈ Γ ⊂ Rd, we set

ψ
Op(Γ)
ℓs

(ϕ)(w) =
1

(2π)ds

∫

z∈Rds

∫

ηs∈Rds

ei(πΓ(w)−z)ηsψ
(ds)
ℓs

(ηs)ϕ(π
−1
Γ (z))dηsdz ,

(10)

where ψ
(ds)
k : Rds → [0, 1] is defined in (6). For every real numbers 1 ≤ p ≤ ∞, and

−(r − 1) < s < r − 1, define an auxiliary isotropic norm on C0(Γ) as

(11) ‖ϕ‖sp,Γ = sup
ℓs∈Z+

2ℓss‖ψ
Op(Γ)
ℓs

(ϕ)‖Lp(µΓ) ,

where µΓ is the Riemann volume on Γ induced by the standard metric on R
d.
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Note that (11) is just ([15, §2.1, Def. 2]) the classical ds-dimensional Besov norm
Bs

p,∞ of ϕ| in the chart given by π−1
Γ :

‖ϕ‖sp,Γ = ‖ϕ ◦ π−1
Γ ‖Bs

p,∞(Rds) .

We next recall the definition of the local space given in [2]:

Definition 2.4 (The local space U
C±,t,s
p (K)). LetK ⊂ Rd be a non-empty compact

set. For a cone pair C± = (C+,C−), a constant CF ≥ 1, and real numbers,
1 ≤ p ≤ ∞, and −(r − 1) < s < −t < 0, define for a C∞ function ϕ supported in
K,

(12) ‖ϕ‖
U

C±,t,s
p

= sup
Γ∈F(C+,CF )

sup
ℓ∈Z+

2ℓt‖ψOp
ℓ (ϕ)‖sp,Γ .

Set U
C±,t,s
p (K) to be the completion of C∞(K) with respect to ‖ · ‖

U
C±,t,s
p

.

Remark 2.5. The definition in [2] was more general, allowing also Besov spaces Bs
p,q

for 1 ≤ q <∞, where ([15, §2.1, Def. 2])

(13) ‖ϕ‖Bs
p,q(R

ds ) =

(

∑

ℓs∈Z+

(

2ℓss‖(ψ
(ds)
ℓs

)Op(ϕ)‖Lp(Rds )

)q
)1/q

.

The following lemma was proved in [2]:

Lemma 2.6 (Comparing U
C±,t,s
p (K) with classical spaces). Assume −(r − 1) <

s < −t < 0. For any u > t, there exists a constant C = C(u,K) such that

‖ϕ‖
U

C±,t,s
p

≤ C‖ϕ‖Cu for all ϕ ∈ C∞(K). For any u > |t+s|, the space U
C±,t,s
p (K)

is contained in the space of distributions of order u supported on K.

2.3. The global spaces U t,s
p of anisotropic distributions. To introduce the

global spaces U t,s
p of distributions on a compact manifold M , we need one last

definition:

Definition 2.7. An admissible chart system and partition of unity is a finite system
of local charts {(Vω , κω)}ω∈Ω, with open subsets Vω ⊂M , and C∞ diffeomorphisms
κω : Uω → Vω such that M ⊂ ∪ωVω, and Uω is a bounded open subset of Rd,
together with a C∞ partition of unity {θω}ω∈Ω for M , subordinate to the cover
V = {Vω}.

Definition 2.8 (Anisotropic spaces U t,s
p on M). Fix an admissible chart system

and partition of unity, fix CF ≥ 1 and fix cone pairs {Cω,± = (Cω,+,Cω,−)}ω∈Ω.
Let 1 ≤ p ≤ ∞, and fix real numbers −(r − 1) < s < −t < 0. The Banach space
U t,s
p = U t,s,C

p is the completion of C∞(M) for the norm

‖ϕ‖Ut,s
p (T ) := max

ω∈Ω
‖(θω · ϕ) ◦ κω‖UCω,±,t,s

p
.

Remark 2.9 (Admissible cone pairs). To get a a spectral gap for the transfer oper-
ator L1/| detDT associated to a Cr Anosov diffeomorphism T for r > 1, one must
require s < −t < 0, and, in addition, one must restrict to families of admissible
cone pairs {Cω,±}, i.e. which satisfy the following conditions (see [2]). Let Es and
Eu be the stable, respectively unstable, bundles of T , then:

a) If x ∈ Vω , the cone (Dκ−1
ω )∗x(Cω,+) contains the (du-dimensional) nor-

mal subspace of Es(x), and the cone (Dκ−1
ω )∗x(Cω,−) contains the (ds-

dimensional) normal subspace of Eu(x).
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b) If Vω′ω = T (Vω) ∩ Vω′ 6= ∅, the Cr map corresponding to T−1 in charts,

F = Fω′ω = κ−1
ω ◦ T−1 ◦ κω′ : κ−1

ω′ (Vω′ω) → Uω ,

extends to a bilipschitz C1 diffeomorphism of Rd so that

DF tr
x (Rd \Cω,+) ⋐ Cω′,− , ∀x ∈ R

d .

(One then says that F is cone hyperbolic from Cω,± to Cω′,±.)
c) Furthermore, there exists, for each x, y, a linear transformation Lxy so that

(Lxy)
tr(Rd \Cω,+) ⋐ Cω′,− and Lxy(x− y) = F (x)− F (y) .

(One then says that F is regular cone hyperbolic from Cω,± to Cω′,±.)

Finally, note that if F is regular cone hyperbolic from Cω,± to Cω′,± and if one
assumes in addition (this is always possible, up to taking smaller charts) that the
extension of F to Rd is Cr, then there exists CF <∞ so that this extension maps
each element of F(Cω,+, CF) to an element of F(Cω′,+, CF ).

The anisotropic spaces U t,s
1 (with p = 1) are then analogues of the Blank–

Keller–Gouëzel–Liverani [7, 13] spaces Bt,|s+t| for integer t and s < −t. The spaces
U t,s
p are somewhat similar to the Demers–Liverani spaces [8] when p > 1 and

−1 + 1/p < s < −t < 0. See [2].

3. Characteristic functions as bounded multipliers

3.1. Statement of the main result. Let Λ ⊂ M be an open set so that ∂Λ is
a finite union of C2 curves, everywhere transversal to the stable cones of T . We
claim that if 1 < p <∞ and −1 + 1/p < s < −t < 0 there exists CΛ <∞ so that

‖1Λϕ‖Ut,s
p

≤ CΛ‖1Λϕ‖Ut,s
p
, ∀ϕ .

By using suitable C2 coordinates,4 we can reduce to the following bounded multi-
plier statement on U t,s

p (K) for the characteristic function of a strip Λ:

Theorem 3.1. Fix r > 1. Let K ⊂ Rd be compact, and let Λ be the strip

Λ = {x ∈ R
d | 0 < x1 < 1} ,

(in particular the characteristic function 1Λ(x) only depends on x1 ∈ R). For any

1 < p <∞ and max{−(r − 1),−1 +
1

p
} < s < −t < 0 ,

there exists C <∞ so that for any ϕ ∈ U t,s
p (K) we have,

(14) ‖1Λϕ‖UC±,t,s
p

≤ C‖ϕ‖
U

C±,t,s
p

.

The conditions in the theorem imply t < 1 − 1/p. This does not imply t < 1/p
if p > 2.

Remark 3.2 (Heuristic proof via interpolation: t < 1/p vs. t < |s|). A heuristic
argument for the bounded multiplier property (14) under the conditions −1+1/p <
s < 0 < t < 1/p was sketched in [2, Remark 3.9], exploiting via interpolation the
fact that ([15, Thm 4.6.3/1]) the characteristic function of a half-plane in Rn is a
bounded multiplier on the Besov space Bτ

p,∞(Rn) if 1
p − 1 < τ < 1

p . It does not

4In order to change charts, one must work with an additional set of cone pairs satisfying
Rd \ C′

ω,+ ⋐ Cω,−. This is not a problem since the dynamics is cone-hyperbolic, in view of the

Lasota–Yorke estimate proved in [2, Lemma 4.2].
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seem easy to fill in details of this argument, and we shall prove Theorem 3.1 using
paraproduct decompositions instead of interpolation. The restriction s < −t is in
any case necessary for applications to hyperbolic dynamics, and the bound for the
essential spectral radius in [2] improves as p → 1 (see the Lasota–Yorke estimate
in [2]). If one is only interested in the bounded multiplier property, it may be
worthwile to investigate the case −1 + 1/p < s < −s ≤ t < 1/p. The only part
of the proof of Theorem 3.1 which requires modification is the contribution of Π1.
For ds = 1, it seems that [15, Thm 4.4.3.2 (ii), p. 173] (for n = 1, q = q1 = ∞)
allows to implement this modification. If ds ≥ 2, the problem is more difficult.

3.2. Basic toolbox (Nikol’skij and Young bounds, paraproduct decompo-
sition, and a crucial trivial observation on functions of a single variable).
The proofs below use the Nikol’skij inequality (see e.g. [15, Remark 2.2.3.4, p. 32])
which says, in dimension D ≥ 1, that for any p > p1 > 0 there exists C so that for
any M > 1, and any f with suppF(f) ⊂ {|ξ| ≤M},

(15) ‖f‖Lp(RD) ≤ CMD(1/p1−1/p)‖f‖Lp1(R
D) .

We shall also use the following leafwise version of Young’s inequality (which can
be proved like [6, Lemma 4.2], see also [1, Chapter 5], by using that any translation
Γ + x of Γ ∈ F also belongs to F):

(16) ‖ψ̃ ∗ ϕ‖sp,Γ ≤ ‖ψ̃‖L1(Rd) sup
x∈Rd

‖ϕ‖sp,Γ+x ≤ ‖ψ̃‖L1
sup
Γ̃∈F

‖ϕ‖s
p,Γ̃

.

Write Skϕ = ψOp
k (ϕ) for k ≥ 0, set S−1ϕ ≡ 0, and put Sjϕ =

∑j
k=0 Skϕ for any

integer j ≥ 0. The paraproduct decomposition (see [15, §4.4]) is then given by

ϕ · υ = lim
j→∞

(Sjϕ) · (Sjυ)

=

∞
∑

k=2

k−2
∑

j=0

Sjϕ · Skυ +

∞
∑

k=0

k+1
∑

j=k−1

Sjϕ · Skυ +

∞
∑

j=2

j−2
∑

k=0

Sjϕ · Skυ

= Π1(ϕ, υ) + Π2(ϕ, υ) + Π3(ϕ, υ) ,(17)

where we put

Π1(ϕ, υ) =

∞
∑

k=2

Sk−2ϕ · Skυ , Π2(ϕ, υ) =

∞
∑

k=0

(Sk−1ϕ+ Skϕ+ Sk+1ϕ) · Skυ ,

and Π3(ϕ, υ) =

∞
∑

j=2

Sjϕ · Sj−2υ = Π1(υ, ϕ) .

The two key facts motivating the decomposition (17) are

(18) suppF(Sk−2ϕ · Skυ) ⊂ {2k−3 ≤ ‖ξ‖ ≤ 2k+1} , ∀k ≥ 2 ,

and

(19) suppF (

k+1
∑

j=k−1

Sjϕ · Skυ) ⊂ {‖ξ‖ ≤ 5 · 2k} , ∀k ≥ 0 .

Finally, the proof of Theorem 3.1 hinges on the fact that the singular set of
a characteristic function is co-dimension one: The characteristic function 1Λ only
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depends on the first coordinate x1 of x ∈ Rd. We shall use below the fact that (see
[15, Lemma 4.6.3.2 (ii), p. 209, Lemma 2.3.1/3, p. 48]) for all p ∈ (1,∞)

(20) ‖1Λ‖Bs
p,q(R

d) <∞ , if 0 < t < 1/p and 0 < q <∞ or t = 1/p and q = ∞ .

We also note for further use the trivial but absolutely essential fact that if a function
υ(x) only depends on x1 then Skυ = (F−1ψk) ∗ υ also only depends on x1 for all k,
and, more precisely,

(21) Skυ(x) := (F−1ψk) ∗ υ(x) = (F−1ψ
(1)
k ) ∗ υ(x1) .

Indeed

(F−1ψk) ∗ υ(x) =

∫

(F−1ψk)(y)dy2 . . .dyd υ(x1 − y1)dy1 ,

and, since (2π)−(d−1)
∫

Rd−1 e
i(y2,...,yd)(ξ2,...,ξd)dy2 . . . dyd (the inverse Fourier trans-

form of the constant function) is the Dirac mass at (ξ2, . . . , ξd) = 0, we get,
∫

Rd−1

(F−1ψk)(y1, y2, . . . , yd)dy2 . . . dyd

=
1

(2π)d

∫

Rd−1

∫

R

∫

Rd−1

eiy1ξ1ψk(ξ)dξ1dξ2 . . . dξde
i(y2,...,yd)(ξ2,...,ξd)dy2 . . .dyd

=
1

2π

∫

R

eiy1ξ1ψk(ξ1, 0)dξ1 = (F−1ψ
(1)
k )(y1) ,

where we used that ψ
(d)
k (ξ1, 0) = ψ

(1)
k (ξ1).

3.3. Multipliers depending on a single coordinate. This subsection is devoted
to a classical property of multipliers depending only on a single coordinate, which
is instrumental in the proof of Theorem 3.1. If 1 ≤ p ≤ ∞ we let 1 ≤ p′ ≤ ∞ be so
that 1/p+ 1/p′ = 1, i.e.,

(22) p′ =
p

p− 1
.

Lemma 3.3. Let ds ≥ 1. Let 1 < p < ∞ and let −1 + 1
p < s < 0. Then there

exists C <∞ so that for all f, g : Rds → C with g(x) = g(x1),

(23) ‖fg‖Bs
p,∞(Rds ) ≤ C‖f‖Bs

p,∞(Rds)(‖g‖B1/p′

p′,∞
(R)

+ ‖g‖L∞(R)) .

Remark 3.4. The bound (23) is a special case of a much more general result (see
e.g. [15, Cor 4.6.2.1 (40)]) which also implies that if g(x) = g(x1) then

(24) ‖fg‖Bt
p,∞(Rds ) ≤ C‖f‖Bt

p,∞(Rds )(lim sup
q→p

‖g‖
B

1/q
q,∞(R)

+‖g‖L∞(R)) if 0 < t <
1

p
,

for a constant C, which may depend on p and t, but not on f or g.

For the convenience of the reader, and as a warmup in the use of paraproducts,
we include a proof of Lemma 3.3.

Proof of Lemma 3.3. The proof uses the decomposition Π̃1(f, g)+Π̃2(f, g)+Π̃3(f, g)
obtained from (17) by replacing Sk and Sk by the ds-dimensional operators

(25) S̃k := (ψ
(ds)
k )Opf , S̃k :=

k
∑

j=0

(ψ
(ds)
j )Opf =

k
∑

j=0

S̃jf .
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The bound for the contribution of Π̃3(f, g) is easy and does not require any condition
on s or g: Indeed, by (18), we have

‖
∞
∑

j=2

S̃jfS̃
j−2g‖Bs

p,∞(Rds ) ≤ C sup
k≥2

2ks
+1
∑

ℓ=−1

‖S̃k+ℓfS̃
k+ℓ−2g‖Lp(Rds ) .

We focus on the term for ℓ = 0 (the others are similar) and get

sup
k≥2

2ks‖S̃kfS̃
k−2g‖Lp(Rds) ≤ C sup

k
2ks‖S̃kf‖Lp(Rds) sup

k
‖S̃kg‖L∞

(26)

≤ C‖f‖Bs
p,∞(Rds)‖g‖L∞

,

where we used the Hölder inequality and then the Young inequality, together with
the second claim of (7).

For Π̃1(f, g), we do not require any condition on g, and the condition on s is
limited to s < 0: Indeed, exploiting again (18), we get

‖
∞
∑

j=2

S̃j−2fS̃jg‖Bs
p,∞(Rds ) ≤ C sup

k≥2
2ks

+1
∑

ℓ=−1

‖S̃k+ℓ−2fS̃k+ℓg‖Lp(Rds ) .

Focusing again on the terms for ℓ = 0, we find

sup
k≥2

2ks‖S̃k−2fS̃kg‖Lp(Rds ) ≤ C sup
k

2ks‖
k−2
∑

j=0

S̃jf‖Lp(Rds ) sup
k

‖S̃kg‖L∞

≤ C sup
k

(

k−2
∑

j=0

2(k−j)s
)

sup
j

2js‖S̃jf‖Lp(Rds)‖g‖L∞

≤ 2C‖f‖Bs
p,∞(Rds )‖g‖L∞

,(27)

where we used the Hölder inequality and then the Young inequality, together with
the first claim of (7).

The computation for Π̃2(f, g) is trickier and will use the assumption s > −1+1/p
together with the Nikol’skij inequality (15). For ℓ ∈ {0,±1}, by (19), we get

‖
∞
∑

j=0

S̃j+ℓfS̃jg‖Bs
p,∞(Rds) ≤ C

∞
∑

j=0

sup
k≥0

2ks‖S̃k(S̃k+j+ℓfS̃k+jg)‖Lp(Rds ) .(28)

In the sequel, we consider the terms with ℓ = 0 (the other terms are almost identi-
cal). Setting y = (x2, . . . , xds) and applying the one-dimensional Nikol’skij inequal-
ity (15) for 1 < p1 < p, we have,

2ks‖S̃kυ‖Lp(Rds) =

(
∫
[

(

∫

2ksp|S̃kυ(x1, y)|
pdx1

)1/p
]p

dy

)1/p

(29)

≤

(
∫
[

(

∫

2
k(s+ 1

p1
− 1

p )p1 |S̃kυ(x1, y)|
p1dx1

)1/p1

]p

dy

)1/p

= 2k(s+
1
p1

− 1
p )A(p, p1, S̃kυ) ,

where

(30) A(p, p1, S̃kυ) =

(
∫
[

(

∫

|S̃kυ(x1, y)|
p1dx1

)1/p1

]p

dy

)1/p

.
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Since s > −1 + 1/p, we may choose p1 ∈ (1, p) close enough to 1 so that

(31) s1 = s+
1

p1
−

1

p
> 0 .

Then, the right-hand side of (28) can be bounded as follows, using (29),

∞
∑

j=0

sup
k≥0

2ks‖S̃k(S̃k+jfS̃k+jg)‖Lp ≤
∞
∑

j=0

sup
k

2ks1A(p, p1, S̃k(S̃k+jfS̃k+jg))(32)

≤
(

∞
∑

j=0

2−js1
)

sup
k,j

2(k+j)s1A(p, p1, S̃k(S̃k+jfS̃k+jg))

≤ C sup
m≥0

2ms1A(p, p1, S̃mfS̃mg) .

In the last line we used (19) to exploit the that there exists C <∞, depending on
p > 1 and p1 > 1, so that, for any {υk}k≥0 so that supp (F(υk)) ⊂ {|ξ| ≤ 5 · 2k},

A(p, p1, S̃k(υk+j)) ≤ CA(p, p1, υk+j) , ∀k ≥ 0 , j ≥ 0 .

(The above basically follows from Young’s inequality, see [15, Thm 2.6.3, (5), p.
96], noting that p > 1 and p1 > 1, so that max{0, 1/p−1, 1/p1−1} = 0, and noting
that fj in the right-hand side of [15, (5), p. 96] should be replaced by fj+ℓ, see [12,
Thm 2.4.1.(II) and (III)].)

Next, recalling that g only depends on x1, using (21), and applying the Hölder
inequality in dx1 for 1/p1 = 1/p+ 1/q, we find C so that for all k

A(p, p1, S̃kfS̃kg) =

(
∫
[

(

∫

|S̃kg(x1)S̃kf(x1, y)|
p1dx1

)1/p1

]p

dy

)1/p

≤ C

(
∫
[

(

∫

|Skg(x1)|
qdx1

)1/q(
∫

|S̃kf(x1, y)|
pdx1

)1/p
]p

dy

)1/p

≤ C
(

∫

|S̃kg(x1)|
qdx1

)1/q
(
∫
[

(

∫

|S̃kf(x1, y)|
pdx1

)1/p
]p

dy

)1/p

= C‖S̃kg‖Lq(R)‖S̃kf‖Lp(Rds ) .

Note that (21) implies S̃kg = (ψ
(1)
k )Opg. Finally, putting together (28) and (32),

we find, recalling (31) and (22),

‖
∞
∑

j=0

S̃jfS̃jg‖Bs
p,∞(Rds ) ≤ C sup

k≥0

(

2ks1‖S̃kg‖Lq(R)‖S̃kf‖Lp(Rds)

)

= C sup
k≥0

(

2k
1
q ‖S̃kg‖Lq(R)

)

sup
j≥0

(

2ks‖S̃kf‖Lp(Rds )

)

≤ C sup
k≥0

(

2k
1
q 2

k( 1

p′
− 1

q )‖S̃kg‖Lp′(R)

)

‖f‖Bs
p,∞(Rds )(33)

≤ C‖g‖
B

1/p′

p′
(R)

‖f‖Bs
p,∞(Rds) ,(34)

where we used the one-dimensional Nikol’skij inequality for q > p′ > 1 in (33)
(recalling (19)). Together, (26), (27), and (34) give (23), concluding the proof of
Lemma 3.3. �
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3.4. Proof of Theorem 3.1. To prove the theorem, we need one last lemma. The
point is that if Γ is horizontal, i.e. Γ = Rds × {0}, then (9) implies

(35) S̃ks((S
kϕ) ◦Π−1

Γ |Rds ) ≡ 0 , ∀ks > k + 2 ≥ 2 .

If Γ is an arbitrary admissible stable leaf, then we must work harder. To state the
bound replacing the trivial decoupling property (35), we need notation: Defining
b : Rd → R+ by b(x) = 1 if ‖x‖ ≤ 1 and b(x) = ‖x‖−d−1 if ‖x‖ > 1, we set
bk(x) = 2dk · b(2kx) for k ≥ 0. (Note that ‖bk‖L1(Rd) = ‖b‖L1(Rd) <∞.)

Lemma 3.5 (Decoupled wave packets in Rd and the cotangent space of Γ). There
exists C0 ∈ [2,∞) (depending on CF) so that for any ks > k + C0 ≥ C0 and any

Γ ∈ F , the kernel V (x, y) defined by S̃ks((S
kϕ) ◦ Π−1

Γ )(x) =
∫

y∈Rd V (x, y)ϕ(y)dy

for x ∈ Rds and ϕ supported in K satisfies

(36) |V (x, y)| ≤ C02
−ksrbk(π

−1
Γ (x) − y) , ∀x ∈ R

ds , ∀y ∈ R
d .

The lemma implies that
∫

y∈Rd V (x, y)ϕ(y)dy is bounded by a convolution with

a function in L1(R
d), so that (16) holds.

Proof. The kernel V (x, y) is given by the formula

1

(2π)ds+d

∫

z∈Rds

∫

η∈Rd

∫

ηs∈Rds

ei(π
−1

Γ
(z)−y)ηei(x−z)ηs

k
∑

j=0

ψj(η)ψ
(ds)
ks

(ηs)dηsdηdz .

As a warmup, let us prove (35) if Γ is horizontal or, more generally, affine:
Letting η = (η−, η+) with η− = π−(η) ∈ Rds , we have π−1

Γ (z) = (z, A(z)+A0) with

A0 ∈ R
du and A : Rds → R

du linear (A ≡ 0 if Γ is horizontal), so that (using like
in (21) that F−1(1) is the Dirac at 0), V (x, y) can be rewritten as

1

(2π)d+ds

∫

R2ds+d

e−iyηeixη−eiA0η+eiz(−ηs+η−+Atrη+)
k
∑

j=0

ψj(η)ψ
(ds)
ks

(ηs)dηsdηdz

=
1

(2π)d

∫

Rd

e−iyηeixη−eiA0η+

k
∑

j=0

ψj(η)ψ
(ds)
ks

(η− +Atrη+)dη ≡ 0 ,

by (9), if ks > k + C0, where C0 ≥ 2 depends on ‖A‖ ≤ CF .
More generally, Γ ∈ F is the graph of a Cr map γ (with ‖γ‖Cr ≤ CF ), i.e.,

(37) π−1
Γ (z) = (z, γ(z)) , z ∈ R

ds ∩ π−(Γ) .

The lemma is thus obtained integrating by parts r times (in the sense of [2, App.
C] if r is not an integer) with respect to z in the kernel V (x, y), using (8), and
proceeding as in the end of the proof of [1, Lemma 2.34], mutatis mutandis (using
that ‖y − Π−1

Γ (x)‖ > 2−k implies that either ‖y −Π−1
Γ (z)‖ > 2−k+1 or ‖Π−1

Γ (z)−
Π−1

Γ (x)‖ > 2−k+1, choosing C0 depending on CF , so that ‖Π−1
Γ (z) − Π−1

Γ (x)‖ >
2−k+1 implies ‖z − x‖ ≥ 2−k+1/C0). �

Proof of Theorem 3.1. Our starting point is the decomposition (17) applied to υ =
1Λ. We consider first the term Π3(ϕ, 1Λ). We will bootstrap from Lemma 3.3: By
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(18) and (23), there exists a constant C so that any ℓ ≥ 0, since −1+ 1/p < s < 0,

2ℓt‖Sℓ(Π3(ϕ, 1Λ))‖
s
p,Γ ≤ 2ℓt

ℓ+1
∑

k=ℓ−3

‖Skϕ · Sk−21Λ‖
s
p,Γ

≤ 2ℓt
ℓ+1
∑

k=ℓ−3

‖Skϕ‖
s
p,Γ(‖1

k−2,Γ
Λ ‖

B
1/p′

p′,∞
(R)

+ ‖1k−2,Γ
Λ ‖L∞(R))

≤ C sup
n

2nt‖Snϕ‖
s
p,Γ ≤ C‖ϕ‖Ut,s

p
,

where we used (23) from Lemma 3.3 for f(x−) = Skϕ(x−, γ(x−)) with γ = γ(Γ)

from (37), and g(x−) = 1k−2,Γ
Λ (x−) with

(38) 1k−2,Γ
Λ (x−) = (Sk−21Λ)(x−, γ(x−)) =

k−2
∑

j=0

(F−1ψj ∗ 1Λ)(x−, γ(x−)) .

Indeed, this implies that 1k−2,Γ
Λ (x−) is a function of x1 alone (recalling (21)), and

the leafwise Young inequality (16), together with the second claim of (7) and the
fact that ‖1Λ‖B1/t

t,∞(R)
< ∞ (for any 1 < t < ∞, see e.g. [15, Lemma 2.3.1/3(ii),

Lemma 2.3.5]), give that both ‖1k−2,Γ
Λ ‖

B
1/p′

p′,∞
(R)

and ‖1k−2,Γ
Λ ‖L∞(R) are finite, uni-

formly in Γ and k. This concludes the bound for Π3(ϕ, 1Λ).
We move to Π2(ϕ, 1Λ). Using (19), and applying (23) from Lemma 3.3 again,

we find for any ℓ ≥ 0, since t > 0,

2ℓt‖Sℓ(Π2(ϕ, 1Λ))‖
s
p,Γ ≤ 2ℓt3

∑

k≥ℓ−1

‖Skϕ · Sk1Λ‖
s
p,Γ

≤ 3 sup
k

2kt‖Skϕ‖
s
p,Γ(‖1

Γ
Λ,k‖B1/p′

p′,∞
(R)

+ ‖1ΓΛ,k‖L∞(R))
∑

k≥ℓ−1

2(ℓ−k)t

≤ C sup
k

2kt‖Skϕ‖
s
p,Γ ≤ C‖ϕ‖Ut,s

p
,

where

(39) 1ΓΛ,k(x−) = (Sk1Λ)(x−, γ(x−)) = (F−1ψk ∗ 1Λ)(x−, γ(x−)) ,

so that 1ΓΛ,k(x−) = 1ΓΛ,k(x1). Indeed, the leafwise Young inequality (16), together

with the first claim of (7), give that

(40) sup
k,Γ

‖1ΓΛ,k‖B1/p′

p′,∞
(R)

<∞ , sup
k,Γ

‖1ΓΛ,k‖L∞(R) .

It remains to bound the contribution of Π1(ϕ, 1Λ). This is the trickiest estimate.
It will use Lemma 3.5 and our assumption that s+ t < 0. For any ℓ ≥ 0, we have

2ℓt‖ψOp
ℓ (Π1(ϕ, 1Λ))‖

s
p,Γ ≤

ℓ+1
∑

k=ℓ−3

2ℓt‖Sk−2ϕ · Sk1Λ‖
s
p,Γ .(41)

We may focus on the term k = ℓ, as the others are almost identical. We will use the
paraproduct decomposition Π̃1 + Π̃2 + Π̃3 and the operators S̃j and S̃j (see (25)).
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Put (Sk−2ϕ)Γ = (Sk−2ϕ) ◦ π−1
Γ . By (21) and (18), we have

‖Sk−2ϕ · Sk1Λ‖
s
p,Γ ≤

2
∑

i=1

‖Π̃i((S
k−2ϕ)Γ, 1ΓΛ,k)‖Bs

p,∞
+RΓ

k,s,p,Λ(ϕ)(42)

+

k−2+C0
∑

j=k+2

‖S̃j((S
k−2(ϕ))Γ)(S̃k1

Γ
Λ,k)‖Bs

p,∞
,(43)

where C0 ≥ 2 is given by Lemma 3.5. Then, Lemma 3.5, Lemma 3.3, together with
(40) and the leafwise Young inequality (16) imply (since 0 < t < r − 1 < r)

(44) sup
k≥k0,Γ

2ktRΓ
k,s,p,Λ(ϕ) ≤ C0 sup

k,Γ
2k(t−r))‖Skϕ‖sp,Γ ≤ C‖ϕ‖Ut,s

p
.

The finite sum in (43) is easy to bound and left to the reader. For the contribution

of Π̃1 in (42), using again (21) and (18), we find

2kt‖Π̃1((S
k−2ϕ)Γ, 1ΓΛ,k)‖Bs

p,∞(Rds ) ≤ 2kt‖(S̃k−2(Sk−2ϕ)Γ) · 1ΓΛ,k)‖Bs
p,∞

Set (Sjϕ)
Γ = (Sjϕ)◦π

−1
Γ . By Lemma 3.5, up to a remainder which can be handled

similarly as in (44), the right-hand side above is bounded by

2kt2ks‖[
k−2
∑

j=0

j
∑

m=0

S̃m(Sjϕ)
Γ)] · (1ΓΛ,k)‖Lp(Rds )

≤ ( sup
0≤j≤k−2

j
∑

m=0

2(j−m)s)2kt
k−2
∑

j=0

sup
0≤m≤j

2(k−j+m)s‖[S̃m(Sjϕ)
Γ] · (1ΓΛ,k)‖Lp

≤ C

k−2
∑

j=0

sup
0≤m≤j

2(k−j)(t+s)2ms2jt‖S̃k([S̃m(Sjϕ)
Γ] · (1ΓΛ,k))‖Lp(Rds ) ,

using that s < 0. Now, since s+ t < 0, we get

k−2
∑

j=0

sup
0≤m≤j

2(k−j)(t+s)2ms2jt‖S̃k([S̃m(Sjϕ)
Γ] · (1ΓΛ,k))‖Lp(Rds )

≤ C sup
m

sup
j

2ms2jt‖S̃m(Sjϕ)
Γ‖Lp(Rds )‖1

Γ
Λ,k‖L∞(R)

≤ C sup
j

2jt‖Sjϕ‖
s
p,Γ ≤ C‖ϕ‖Ut,s

p
.

Finally, using (21) once more, we bound the contribution of Π̃2 in (42):

2kt‖Π̃2((S
k−2ϕ)Γ, 1ΓΛ,k‖Bs

p,∞
≤ 2kt

1
∑

ℓ=−1

‖(S̃k+ℓ(S
k−2ϕ)Γ) · 1ΓΛ,k‖Bs

p,∞

≤ 2ktR̃Γ
k,p,s,Λ(ϕ) + 2kt

1
∑

ℓ=−1

7
∑

ℓ̃=2

‖(S̃k+ℓ(Sk−ℓ̃ϕ)
Γ) · 1ΓΛ,k‖Bs

p,∞(Rds ) ,

where 2ktR̃Γ
k,p,s,Λ(ϕ) can be bounded similarly as (44), using Lemma 3.5. For the

double sum, we focus on the contributions with ℓ = 0 and ℓ̃ = 2, the others being
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similar. Then, applying Lemma 3.3, we find

sup
k,Γ

2kt‖(S̃k(Sk−2ϕ)
Γ) · 1ΓΛ,k‖Bs

p,∞(Rds ) ≤ sup
k,Γ

2kt‖(S̃k(Sk−2ϕ)
Γ) · 1ΓΛ,k‖Bs

p,∞

≤ sup
k,Γ

2kt‖(S̃k(Sk−2ϕ)
Γ)‖Bs

p,∞(Rds)(‖1
Γ
Λ,k‖B1/p′

p′,∞
(R)

+ ‖1ΓΛ,k‖L∞(R)) ≤ C‖ϕ‖Ut,s
p
,

using (40) once more. This ends the proof of Theorem 3.1. �
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[5] V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeo-

morphisms, Ann. Inst. Fourier 57 (2007) 127–154.
[6] V. Baladi and M. Tsujii, Dynamical determinants and spectrum for hyperbolic diffeo-

morphisms, In Probabilistic and Geometric Structures in Dynamics, pp. 29–68, Con-
temp. Math., 469, Amer. Math. Soc., Providence, RI (2008).

[7] M. Blank, G. Keller, and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov
maps, Nonlinearity 15 (2002) 1905–1973.

[8] M.F. Demers and C. Liverani, Stability of statistical properties in two-dimensional piece-
wise hyperbolic maps, Trans. Amer. Math. Soc. 360 (2008) 4777–4814.

[9] M.F. Demers and H.-K. Zhang, Spectral analysis for the transfer operator for the Lorentz
gas, J. Modern Dynam. 5 (2011) 665–709.
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