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Abstract. We experiment a vision architecture for object matching
based on a hierarchy of independent agents running asynchronously in
parallel. Agents communicate through bidirectional signals, enabling the
mix of top-down and bottom-up influences. Following the so-called a
contrario principle, each signal is given a strength according to the sta-
tistical relevance of its associated visual data. By handling most impor-
tant signals first, the system focuses on most promising hypotheses and
provides relevant results as soon as possible. Compared to an equivalent
feed-forward and sequential algorithm, our architecture is shown capable
of handling more visual data and thus reach higher detection rates in less
time.
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1 Introduction

We consider the task of 2d object matching: given a database of pictures of
objects, we want to detect these objects in new images. Numerous methods
have been proposed to solve this task, and most of them are either purely top-
down or purely bottom-up. Top-down methods are generally based on template
matching and their main limitation is their computational cost when object poses
are not constrained in the image and when the database of objects is big. On
the other hand, purely bottom-up methods are generally feature-based. Local
invariant features are extracted from the image under analysis and matched
to the features of database objects. Then concordant features are grouped to
make object pose hypotheses. These approaches are much more efficient, but
often have less discriminative power. Moreover, to save computation time, weak
feature matches may need to be discarded at an early stage, and features actually
belonging to an object can be wrongly ignored, thereby reducing detection rates.
This motivates a joint use of top-down and bottom-up processing, as done in
some recent works [1–4].

In order to break sequentiality in detection algorithms, we use parallelism
between processing levels. Then, it becomes possible for strong hypotheses to
reach high level analysis and give the first detection results early, much before
the complete termination of low level processing. In addition to biological mo-
tivations [5], there are several practical interests. First, applications waiting for
detection results can be triggered earlier, and the detection process can be con-
strained to run in a predefined time, and still return useful information (e.g.
most contrasted and easy to discriminate objects). Second, since high level steps
can be reached before the complete termination of lower level steps, they can
influence low level processing at the light of current evidence and accelerate the
detection process. Finally, more visual data can be analyzed and thus higher de-
tection rates can be obtained without degrading too much the average detection
delays, since promising hypotheses can be handled first.

Enabling a mixed use of top-down and bottom-up processing within a parallel
architecture is a difficult algorithmic task. Some systems have already exploited
these principles, for example at a very low level in [6, 7] or using complex schedul-
ing strategies in [8, 9]. In this paper, we experiment an original object matching
architecture that keeps things simple by using high level independent agents
running in parallel without explicit synchronization nor scheduling.

2 Breaking the feed-forward and sequential model

Our starting point is the object matching approach presented in [10]. It will be
referred as LBU (Lowe Bottom-Up) in the rest of this paper. It is feed-forward
and bottom-up. First, and offline, all the SIFT points of the objects in the
database are extracted from their 2d picture and stored. Then, when an image
is given for analysis, the following algorithm is applied:

1. Extract the SIFT points of the image.



2. Match each SIFT point of the image to the closest point in the object
database. Discard matches whose distance is too high.

3. For the remaining matches, thanks to the location, rotation and scale infor-
mation embedded in SIFT points, each match results into a full object pose
hypothesis. Matches leading to compatible poses are clustered with a Hough
transform. Clusters with less than 3 matches are discarded.

4. For the remaining clusters, a probability of object presence is computed and
then thresholded to make decisions.

Each step takes decisions using only partial information, and thus can discard
relevant hypotheses. We observed that more than 30% of good matches may be
lost in step 2 if the object database is quite large and contains rather similar
objects. These early decisions also prevent the use of further top-down processing
to discriminate weak hypotheses.

We propose to break this sequentiality by using a hierarchy of simple and
independent agents. The proposed system is ruled by the following principles:

1. Parallelism. Agents run in parallel and asynchronously in that they run as
soon as and as long as they have data to proceed. This allows high level
processing to start without waiting for the complete termination of low level
processing. For example, it becomes possible to reach step 4 of LBU for
some salient hypotheses even if step 2 is not fully completed. To take an
even greater advantage of hardware with several processing units, we also
enable spatial parallelism by associating a receptive field to each agent.

2. Systematic evaluation of visual data relevance. To handle most promising hy-
potheses first, we evaluate visual data relevance not only at the final decision
level, but also at lower levels when only partial information is available.

3. Bidirectional and asynchronous communications between agents. When an
agent has processed its data, it creates a signal holding the result, and sends
it to its parent (bottom-up) or to its children (top-down). Each agent keeps a
buffer of signals to process so that agents never have to wait for each others.
The signal system allows top-down and bottom-up influences to navigate
freely through the hierarchy of agents. To ensure that signals containing
strong evidence are handled first, principle 2 is used to assign a strength to
every signal, and agents process their signal buffer by strength order.

Let us now apply these principles to create a functional object matching
system.

3 Object matching with a hierarchy of agents

3.1 Overview

The overall architecture is presented on Figure 1. It is composed of two parts.
The first one is based on SIFT matching, and is a pyramid of agents whose
levels roughly correspond to LBU’s steps. The second one analyzes gray level



histogram similarities and contains only one agent. Finally, the architecture has
six different kinds of agents.

The bottom-up workflow in the SIFT part is similar to LBU. The detection
system starts with the SiftPointComputer agents, which extract SIFT points in
the image under analysis and send one signal to their SiftMatcher parent for
each point. These SiftMatcher agents then look for the best SIFT match in the
object database and send one signal to their SiftMain parent for each match.
The SiftMain agent clusters SIFT matches that vote for similar object poses.
When a cluster is updated, the associated pose hypothesis is embedded into a
signal and sent to the Main agent.

Top-down signals are sent by the SiftMain and Main agents. According to
current hypotheses, the SiftMain agent makes SIFT point predictions in order
to accelerate the process. These predictions are then handled by the SiftPoint-
Computer agents. The Main agent also emits top-down signals for the Intensi-
tyHistogramComparator agent to request histogram difference analyzes.

3.2 Evaluating visual data relevance

To evaluate the relevance of visual data w.r.t. the object matching task and make
decisions, a unified scheme is highly desirable. We propose to rely on so-called a
contrario statistical methods [11]. They measure the significance of an event from
its probability of occurrence under a model of chance. In our application, chance
means that no object of the database is present. Thus, the lower the probability
of occurrence of an event under the chance model, the higher the confidence that
it is associated to an object of the database. The main interest of this approach
is that it is generally much easier to estimate accurate probabilities when no
object is present, than the contrary. Let w be the visual data associated to a
signal. We propose the following procedure to assign a strength to the signal
holding w:

1. Determine a discriminative random variable X, such that X(w1) < X(w2)
implies that the visual data w1 is less likely to be explained by chance than
w2.

2. Compute the cumulative distribution function Pc(X ≤ x) under the chance
model. Analytical computations are often intractable, but it is possible to
get empirical estimations by observing X values obtained on background
images without any object of the database, which are simple to collect.

3. The lower Pc(X ≤ X(w)), the higher the confidence that w is not due to
chance. To get a signal strength proportional to the importance of the data,
we take the inverse of this probability and set the strength of the signal
associated to w to:

S(w) =
1

Pc(X ≤ X(w))

This statistical procedure also enables adaptive behaviors. Estimations of Pc
are done on images which do not contain the objects to detect. These estimations
will depend on the choice of these images: outdoor, indoor, highly textured, etc.



Fig. 1. Our architecture for object matching. At the lowest level, 16 SiftPointComputer
agents extract SIFT points from the image and send them to their SiftMatcher parent.
SiftMatcher agents then look for the closest SIFT point in the object database. SIFT
matches are then handled by the SiftMain agent, which clusters them into compatible
object pose hypotheses and send top-down predictions for future SIFT matches. The
Main agent gathers SIFT evidence for an object presence, requests top-down histogram
analyses from the IntensityHistogramComparator agent, and finally takes decisions.

If there is an a priori on the environment, it can be included here. It is also
possible to incrementally update these estimations online in a video or robot
navigation context.

Thanks to its genericity, this procedure can be used everywhere in the system,
including the object presence decision step. Now, the discriminative random
variables remain to be defined for each kind of visual data. This is detailed in
the next Sections, where agent behaviors are described more precisely.

3.3 SiftPointComputer agents

These agents create one bottom-up signal for each SIFT point within their recep-
tive field on the image under analysis. At this step, only a priori information can
be used to evaluate the relevance of SIFT points. We exploit saliency estimates
from the saliency maps of [12]. This attentional bias is particularly interesting



for outdoor scenes, as will be shown in Section 4. For these signals, the discrim-
inative random variable Xp associated to a SIFT point p is the opposite value
of the normalized saliency map at the location of p. This way, the lower Xp(p),
the higher the saliency, and the higher the probability that there is an object of
interest.

SiftPointComputer agents are also influenced by top-down predictions emit-
ted by the SiftMain agent. A prediction specifies an object pose hypothesis and
a SIFT point of the object for which a corresponding point should be found in
the image. One can deduce from the candidate object pose the theoretical loca-
tion, scale and orientation of the object SIFT point in the image, if the object
is present. Thus, SiftPointComputer agents will look for the closest image SIFT
point which is compatible with the object pose. Details on the notion of com-
patibility between poses is given in Section 3.5. A bottom-up signal is created if
a compatible point is found. Let P∆(p, δ) be the probability that a SIFT point p
in the image is compatible with pose δ by chance. Definition of P∆ can be found
in [13]. For predictions, we define the discriminative random variable Xpp for a
point p as the joint probability of having p compatible with the candidate pose
and such a high saliency, if there were no object:

Xpp(p) = P∆(p, δ)× Pc(Xp ≤ Xp(p))

3.4 SiftPointMatcher agents

Given a signal containing an image SIFT point, these agents find its closest
match in the object database. They generate one bottom-up signal for each
match. In [10], it was shown that the ratio between the distance to the closest
point and to the second closest point in the database is very good at discarding
false matches. The smaller the ratio, the stronger the match. We also take into
account that an object with many SIFT points is more likely to accidentally hold
the closest SIFT point than an object with a few SIFT points. Let D(m) be the
distance ratio for a SIFT match m and O the object to which the matched point
belongs, we define the following discriminative variable for match signals:

Xm(m) = Pc(D ≤ D(m))× number of SIFT points in O

number of SIFT points in the database

3.5 The SiftMain agent

It receives bottom-up signals emitted by SiftPointMatcher agents containing
SIFT point matches. It identifies groups of matches leading to compatible poses
using the same Hough-based procedure as in [10].

When it receives a new match, the SiftMain agent either adds it to an al-
ready existing hypothesis with the same pose, or creates a new hypothesis. Then
it builds a bottom-up signal containing the updated hypothesis. The discrim-
inative random variable for these signals is defined as follows. Let us suppose
that we get k matches voting for a pose hypothesis h. Let n be the number



of potential matches one can get for h, i.e. the number of SIFT points lying
in the expected bounds of the candidate object in the image under analysis.
Let {m1,m2, . . . ,mk} denote the set of k SIFT matches, ordered such that:
Xm(m1) ≤ Xm(m2) ≤ . . . ≤ Xm(mk). To measure how unlikely a set of matches
is to be accidental, we could evaluate the probability of observing a group of k
matches among n voting for the same hypothesis with so low discriminative vari-
ables Xm. However this probability is difficult to compute, and following [11],
we rely here on an estimation of the expectation of the number of groups of k
matches having as low Xm values as h. This expectation acts as a bound on the
previous probability, thanks to Markov inequality, and provides our discrimina-
tive variable Xs for an hypothesis h:

Xs(h) =
(
n
k

)
×

k∏
i=1

Pc(Xm ≤ Xm(mk))

The SiftMain agent also emits top-down predictions for futures SIFT matches.
These predictions contain the current object pose hypothesis and a SIFT point
which has not yet been matched. To look for most reliable SIFT points first, a
score is given to each SIFT point during an offline learning phase. Each object is
artificially added to background images, with various affine transformations and
degrees of noise. We then apply our object matching algorithm on theses images,
and whenever a SIFT point is correctly matched the distance ratio is added to
its score. It is easy to know when a SIFT match is correct since we generated
the training images. Then, to make predictions, the SiftMain agent starts with
points having the highest scores and thus the highest probability to be present
and discriminative.

3.6 The IntensityHistogramComparator agent

The Main agent can send top-down requests for histogram analysis for a given
object pose hypothesis. The IntensityHistogramComparator agent computes the
difference between the normalized histogram of the candidate object with the
normalized histogram of the projected candidate zone in the image and creates a
bottom-up signal holding the result . The difference between the two histograms
is measured using the χ2 distance, and this directly gives the discriminative
variable for histogram signals Xh.

3.7 The Main agent

It receives bottom-up object pose hypothesis signals from the SiftMain and the
IntensityHistogramComparator agents. When histogram information is not avail-
able for an hypothesis, it sends a top-down request, which will be handled by
the IntensityHistogramComparator agent. Once all the information is collected
for an hypothesis h, it decides whether h is due to chance or not, according to
the accumulated evidence. The latter is given by the joint probability of having



so many SIFT matches voting for h and having such a low histogram difference
when there is no object:

Xa(h) = Pc(Xs ≤ Xs(h))× Pc(Xh ≤ Xh(h))

Xa then has to be thresholded to take decisions. To get robust and adapted
decision thresholds, we follow [11] and compute the expectation of the number
of hypothesis with such evidence in the image under analysis, if there were no
object. Since only a few matches get clustered when the database is quite big,
the number of analyzed hypothesis in an image can be approximated by the
number of SIFT points Ns in the image. Thus, we get:

NFA(h) = Ns × P (Xa ≤ Xa(h))

If NFA(h) is very low, then the candidate object is certainly present. A
threshold on this value has a physical interpretation: if only hypotheses h such
that NFA(h) < ε are accepted, then it is guaranteed that in average, less than ε
false detections will be made in an image.

4 Results

We evaluated our approach using the COIL-100 database [14] with a procedure
similar to [15] to generate two difficult test sets of cluttered images. Test images
were obtained by embedding each of the 100 objects on 640x480 background
images. One test set contained only indoor background images, and the other
one only outdoor background images. A contrario probability distributions were
learned separately for each test set using 10 additional indoor and outdoor back-
ground images. Each object was inserted with a planar rotation of 30 degrees, a
shear of 0.1, and a scale factor of 0.7. Finally, 5% of noise was added to the final
images. Since many objects of COIL-100 are not very textured, this detection
task is rather difficult. Processing times were measured on a 2.4 Ghz dual-core
processor. It should be noted that since our focus is not on absolute time, no
particular optimizations were implemented. In particular, no kd-tree is used for
SIFT point matching.

The performance gain of our approach is summarized in Figure 2. These
performance profiles show the obtained detection rates as a function of running
time. The decision thresholds were chosen so that there were no false alarms on
the test set. This figure clearly shows that parallelism, prioritization and top-
down processing significantly increase detection rates while drastically reducing
execution times. LBU detection times only depend upon the number of SIFT
points in the analyzed image, whereas execution times also depend on objects
saliency for our system. On indoor images, some of the most salient and textured
objects can be detected in less than 20ms, and the maximal detection rate of
LBU can be obtained in less than 90ms instead of 500ms.

On outdoor images, saliency maps are very good at predicting object loca-
tions, and thus detection times are even more reduced when saliency values are
used to set signal strengths in SiftComputer agents. In this case, LBU’s maximal
detection rate can be achieved in about 40ms.
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Fig. 2. For each time limit, the detection rate of different algorithms are shown. De-
cision thresholds were chosen to get no false alarms. The left figure is obtained on a
test set with complex indoor images. In this case, the saliency maps in SiftComputer
agents were not used. Our approach clearly outperforms LBU both in terms of detec-
tion rates and processing time. Since we have much more data to process, prioritization
is essential: execution times obtained with random signal strengths are very poor (the
curve continues and will reach the optimal detection rate in about 2 seconds). Top-
down SIFT point predictions also brings a significant gain on execution time. The right
figure is obtained on an outdoor test set and shows the possible speed improvements
when using saliency maps in SiftComputer agents.

5 Conclusion

We have experimented an architecture for object matching based on a hierarchy
of agents running in parallel. This architecture allows a mixed use of top-down
and bottom-up processing. Bottom-up analysis efficiently proposes object pose
hypotheses using local feature matching, while top-down influences accelerate the
process by predicting future matches and increase detection rates with histogram
analysis. To further improve detection rates, early bottom-up thresholds were
replaced by a systematic evaluation of the statistical relevance of visual data.
Then at any time, the system focuses on most promising hypotheses, and thanks
to asynchronism, detection times can be greatly reduced. The system can also
be constrained to run in a pre-defined time, in which case only the most salient
and textured objects will be detected.

These results are encouraging and motivate further work. The concepts be-
hind our architecture are not limited to object matching, and we are currently
investigating the application of the same approach to object class detection. Very
good top-down generative models have been proposed for this vision task, and
we expect their combination with bottom-up analysis to be fruitful. Moreover,
object matching and object class recognition are not incompatible applications,
and since our architecture is modular and uses a unified statistical scheme, they
could be used jointly and compete to provide the best image interpretation.
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