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ON TIME-FRACTIONAL DIFFUSION EQUATIONS WITH
SPACE-DEPENDENT VARIABLE ORDER

YAVAR KIAN∗, ERIC SOCCORSI∗, AND MASAHIRO YAMAMOTO†

Abstract. We investigate diffusion equations with time-fractional derivatives of space-

dependent variable order. We establish the well-posedness issue and prove that the

space-dependent variable order coefficient is uniquely determined by the knowledge of

a suitable time-sequence of partial Dirichlet-to-Neumann maps.

1. Introduction

1.1. Statement of the problem. Let Ω be a bounded domain of Rd, d > 2, with

Lipschitz continuous boundary ∂Ω, and let (ai,j)16i,j6d ∈ L∞(Ω;Rd2) be symmetric, i.e.,

fulfill ai,j = aj,i a.e. in Ω, for i, j = 1, . . . , d, and satisfy the ellipticity condition

∃c > 0,
d∑

i,j=1

ai,j(x)ξiξj > c|ξ|2, x ∈ Ω, ξ = (ξ1, . . . , ξd) ∈ Rd. (1.1)

For κ ∈ (d,+∞] and q ∈ Lκ(Ω), such that

q(x) ≥ 0, x ∈ Ω, (1.2)

we introduce the formal differential operators

A0u(x) = −
d∑

i,j=1

∂xi
(
ai,j(x)∂xju(x)

)
and Aqu(x) := A0u(x) + q(x)u(x), x ∈ Ω,

where we set ∂xi = ∂
∂xi

, i = 1, . . . , d.

Given T ∈ (0,+∞] and two functions α ∈ L∞(Ω) and ρ ∈ L∞(Ω) satisyfing

0 < α0 6 α(x) 6 αM < 1 and 0 < ρ0 6 ρ(x) 6 ρM < +∞, x ∈ Ω, (1.3)
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we consider the initial-boundary value problem for a space-dependent variable order

(VO) fractional diffusion equation
(ρ(x)∂

α(x)
t +Aq)u(t, x) = f(t, x), (t, x) ∈ Q := (0, T )× Ω,

u(t, x) = 0, (t, x) ∈ Σ := (0, T )× ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

(1.4)

Here and below, ∂
α(x)
t denotes the Caputo fractional derivative of order α(x) with respect

to t, defined by

∂
α(x)
t u(t, x) :=

1

Γ(1− α(x))

∫ t

0

(t− s)−α(x)∂su(s, x)ds, (t, x) ∈ Q,

where Γ is the Gamma function.

In this paper, we pursue two goals. The first one is to establish the well-posedness

of the initial-boundary value problem (1.4) for a suitable source term f and initial value

u0. The second one is to analyse the uniqueness in an inverse problem of determin-

ing simultaneously the fractional order α and two coefficients ρ and q of the diffusion

equation in (1.4) by partial Cauchy data.

1.2. Physical motivations. Anomalous diffusion in complex media is a rapidly grow-

ing field of academic research with multiple engineering applications in geophysics, en-

vironmental science and biology. The diffusion properties of homogeneous porous media

are currently modeled, see e.g., [1, 5], by constant order (CO) time-fractional diffu-

sion processes where in (1.4) the mapping x 7→ α(x) is maintained constant over Ω.

However, in complex media, the presence of heterogeneous regions causes variations of

the permeability in different spatial positions, and in this case, the VO time-fractional

model is more relevant for describing the diffusion process, and see e.g., [33]. This is a

background for VO time-fractional diffusion equations.

1.3. A short review of the mathematical literature of time-fractional diffusion

equations. Ordinary and partial differential equations with fractional derivatives have

been intensively studied over the two last decades. We refer to [21, 27, 28, 32] for a

general introduction to fractional calculus, and for example to [2, 12, 26] for more specific

foci on partial differential equations with time fractional derivatives. The well-posedness
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problem for CO time-fractional diffusion equations was addressed in [4, 11, 31, 35] and

see also [8], where the local existence, the uniqueness and the continuity on initial data of

the solution to partial integrodifferential equations of parabolic type are discussed. The

time decay of their solutions was studied in [17]. Recently, a new definition of the weak

solution to these equations was introduced in [20], which allows for defining solutions

to semi-linear fractional wave equations. Moreover, initial-boundary value problems for

multi-terms time-fractional diffusion equations were studied by [4, 24]. Notice that a

De Giorgi-Nash Hölder regularity theorem was derived in [3] (see also [36]) for solutions

to CO time-fractional equations with fractional diffusion in space. As for distributed

order (DO) time-fractional diffusion equations, we refer to [23] for the analysis of the

well-posedness problem, and to [23, 25] for the study of the asymptotic behavior of the

solution. However, in contrast with CO or DO time-fractional equations, for VO time-

fractional diffusion equations. to our best knowledge, there are no results available in

the mathematical literature.

Quite similarly, there is only a small number of mathematical papers dealing with

inverse problems associated with time-fractional diffusion processes, which are listed be-

low. In the one-dimensional case, [6] proved simultaneous determination of the constant

fractional differential order and the time-independent diffusion coefficient by Dirichlet

boundary measurements for the solution. In dimensions 2 or larger, [13] determined a

constant fractional order from measurements at one point of the solution over the entire

time span. In [9, 31], the time-varying factor in the source term or in the zeroth order

coefficient of time-fractional equations was stably determined by pointwise observation

of the solution. For half-order fractional diffusion equations, [7, 34] proved stability

in determining a zeroth order coefficient by means of a Carleman estimate. An inverse

boundary value problem for diffusion equations with multiple fractional time derivatives

is examined in [22] and the authors prove the uniqueness in determining the number

of fractional time-derivative terms, the orders of the derivatives, and spatially varying

coefficients. Finally, in [19], the zeroth and first order space-dependent coefficients de-

fined on a Riemanian manifold, along with the Riemanian metric, are simultaneously

determined by a partial Dirichlet-to-Neumann map taken at one arbitrarily fixed time.
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1.4. Main results. The first result of this paper is given for a Lipschitz continuous

bounded domain Ω. It establishes the existence, the uniqueness and the regularity

properties of the weak solution to the initial-boundary value problem (1.4) in the sense

of Definition 2.2 below. For the statement of the mail result, we introduce the contour

in C:

γ(ε, θ) := γ−(ε, θ) ∪ γ0(ε, θ) ∪ γ+(ε, θ) (1.5)

with ε ∈ (0, 1) and θ ∈
(
π
2
, π
)
, where

γ0(ε, θ) := {εeiβ; β ∈ [−θ, θ]} and γ±(ε, θ) := {se±iθ; s ∈ [ε,+∞)} (1.6)

and the double sign corresponds each other.

Henceforth 〈t〉 stands for (1 + t2)
1
2 , and the interval (0, T ] (resp., [0, T ]) should be

understood as (0,+∞) (resp., [0,+∞)) for the case of T = +∞.

Furthermore by Aq we denote the self-adjoint realization in L2(Ω) of the operator

Aq with the homogeneous Dirichlet boundary condition and for p ∈ C \ R−, by (Aq +

ρ(x)pα(x))−1 the resolvent operator of Aq + ρ(x)pα(x).

Henceforth B(X, Y ) denotes the Banach space of all the bounded linear operators

from a Banach space X to another Banach space Y , and we set B(X) = B(X,X).

Then the existence and uniqueness result of a weak solution to (1.4) is as follows.

Theorem 1.1. Suppose that (1.1) and (1.2) are fulfilled. Let u0 ∈ L2(Ω). We as-

sume that f ∈ L∞(0, T ;L2(Ω)) ∩ C((0, T ];L2(Ω)) in the case of T < +∞, and f ∈

C((0,+∞);L2(Ω)) satisfies 〈t〉−ζf ∈ L∞(R+;L2(Ω)) with some ζ ∈ R+ in the case of

T = +∞. Then there exists a unique weak solution u ∈ C((0, T ];L2(Ω)) to (1.4), which

is expressed by

u(t) = u(t, ·) = S0(t)u0 +

∫ t

0

S1(t− τ)f(τ)dτ + S2f(t), t ∈ (0, T ], (1.7)

where we set

S0(t)ψ :=
1

2iπ

∫
γ(ε,θ)

etp(Aq + ρ(x)pα(x))−1ρ(x)pα(x)−1ψdp,
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S1(t)ψ :=
1

2iπ

∫
γ(ε,θ)

etp(Aq + ρ(x)pα(x))−1ψdp

and

S2ψ :=
1

2iπ

∫
γ(ε,θ)

p−1(Aq + ρ(x)pα(x))−1ψdp

for all ψ ∈ L2(Ω), the three above integrals being independent of the choice of ε ∈ (0, 1)

and θ ∈
(
π
2
, π
)
.

Moreover, if f = 0, then the mapping u : (0, T ) −→ L2(Ω) is analytic in (0, T ).

Remark 1. We point out that for all α0 ∈
(
0, 1

2

)
, the operator S2 is identically zero,

provided we have αM ∈ (α0, 2α0). Therefore (1.7) is reduced to the classical Duhamel

formula:

u(t) = S0(t)u0 +

∫ t

0

S1(t− τ)f(τ)dτ, t ∈ (0, T ]. (1.8)

The second result deals with the inverse problem of determining the unknown co-

efficients α, ρ, q of the time fractional diffusion equation in (1.4) by partial boundary

data of the solution. More precisely, we assume that ∂Ω is C1,1 and

ai,j(x) = δi,j, x ∈ Ω, i, j = 1, . . . , d, (1.9)

where δi,j is equal to 1 whenever i = j, and to 0 otherwise. Then we fix k ∈ N \ {0, 1}

and consider the following system
(ρ(x)∂

α(x)
t +Aq)u(t, x) = 0, (t, x) ∈ (0,+∞)× Ω,

u(t, x) = tkg(x), (t, x) ∈ (0,+∞)× ∂Ω,

u(0, x) = 0, x ∈ Ω,

(1.10)

with suitable g. Given two non empty subsets Sin and Sout of ∂Ω, we introduce the

following boundary operator

Nα,ρ,q(t) : Hin 3 g 7→ ∂νug(t, ·)|Sout , t ∈ (0,+∞), (1.11)

where Hin := {g ∈ H3/2(∂Ω); supp g ⊂ Sin}. Here by ug we denote a unique solution

in C([0,+∞);H2(Ω)) to (1.10), whose existence is guaranteed by Proposition 3.1 stated

below, ν is the outward normal unit vector to ∂Ω, and ∂νug(t, x) := ∇ug(t, x) · ν(x) for

(t, x) ∈ (0,+∞)× ∂Ω.
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We discuss the uniqueness in the inverse problem of determining the coefficients

(α, ρ, q) from the knowledge of the boundary operators {Nα,ρ,q(tn); n ∈ N} associated

with a time sequence tn, n ∈ N fulfilling

the set {tn; n ∈ N} has an accumulation point in (0,+∞). (1.12)

Moreover we assume that Ω, Sin and Sout satisfy the following conditions.

(i) Case: d = 2.

It is required that ∂Ω is composed of a finite number of smooth closed contours. In

this case, we choose Sin = Sout := γ, where γ is any arbitrary non-empty relatively

open subset of ∂Ω, and the set of admissible unknown coefficients reads

E2 :=
{

(α, ρ, q); α ∈ W 1,r(Ω) and ρ ∈ W 1,r(Ω) fulfill (1.3) and

q ∈ W 1,r(Ω;R+) with r ∈ (2,+∞)
}
.

(ii) Case: d > 3.

We choose x0 ∈ Rd outside the convex hull of Ω. Then we assume that

{x ∈ ∂Ω; (x− x0) · ν > 0} ⊂ Sin and {x ∈ ∂Ω; (x− x0) · ν 6 0} ⊂ Sout.

Furthermore we define the set of admissible unknown coefficients by

Ed := {(α, ρ, q); α ∈ L∞(Ω) and ρ ∈ L∞(Ω) fulfill (1.3) and q ∈ L∞(Ω;R+)} .

The uniqueness result for our inverse coefficients problem is as follows.

Theorem 1.2. Let tn, n ∈ N fulfill (1.12) and assume that either (i) or (ii) is satisfied.

If

Nα1,ρ1,q1(tn) = Nα2,ρ2,q2(tn), n ∈ N, (αj, ρj, qj) ∈ Ed, j = 1, 2, (1.13)

then we have (α1, ρ1, q1) = (α2, ρ2, q2).

1.5. Comments and outline. As the Laplace transform of a solution to CO time-

fractional diffusion equations is expressed in terms of Mittag-Leffler functions, most of

its features are inherited from the well known properties of these special functions. As

will appear below, this is no longer the case when the fractional order of the time-

fractional diffusion equation depends on the space variable, which makes for a more
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challenging analysis of the well-posedness of these systems. This new technical difficulty

translates in particular into the definition of a weak solution to VO time-fractional

diffusion equations, which extends the one of a weak solution to CO time-fractional

diffusion equations. Moreover, it can be verified from [23, Definition 1.1] that such a

definition is suitable for DO time-fractional diffusion equations as well.

The paper is organized as follows. In Section 2, we discuss the well-posedness of the

initial-boundary value problem (1.4). More precisely, the weak solution to the VO time-

fractional diffusion equation appearing in (1.4), is defined in Section 2.2, and Section 2.3

proves Theorem 1.1, which is by means of a technical resolvent estimate of the elliptic

part of the diffusion equation given in Section 2.1. The proof of the statement of Remark

1 can be found in Section 2.4.

The analysis of the uniqueness result in our inverse problem is carried out in Section

3. That is, the partial boundary operators (1.11) are rigorously defined in Section 3.1,

and Section 3.2 provides the proof of Theorem 1.2.

2. Analysis of the forward problem

2.1. Elliptic operator: self-adjointness and resolvent estimate. Let A0 be the

operator generated by the quadratic form

a0(u) :=
d∑

i,j=1

∫
Ω

ai,j(x)∂xiu(x)∂xju(x)dx, u ∈ H1
0 (Ω).

Since there exists a constant c̃0 > 0 such that

a0(u) > c0‖∇u‖2
L2(Ω)d > c̃0‖u‖2

H1(Ω), u ∈ H1
0 (Ω), (2.1)

by (1.1) and the Poincaré inequality, the operator A0 is self-adjoint in L2(Ω) and acts

as A0 on its dense domain D(A0) in L2(Ω), that is, A0u = A0u for all u ∈ D(A0).

Put r := 2κ/(κ− 2) and notice from the Hölder inequality that

‖qu‖L2(Ω) 6 ‖q‖Lκ(Ω)‖u‖Lr(Ω), u ∈ Lr(Ω). (2.2)

Furthermore we have H1(Ω) = W 1,2(Ω) ⊂ W r0,r(Ω) with r0 := 1 − d/κ ∈ (0, 1) by

the Sobolev embedding theorem (e.g., [10, Theorem 1.4.4.1]), and the embedding is
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continuous:

∃c > 0, ‖u‖W r0,r(Ω) 6 c‖u‖H1(Ω), u ∈ H1(Ω). (2.3)

Therefore, by (2.2)-(2.3), we have ‖qu‖L2(Ω) 6 c‖q‖Lκ(Ω)‖u‖H1(Ω) for every u ∈ H1(Ω),

and so it follows from (2.1) that

‖qu‖2
L2(Ω) 6

c2‖q‖2
Lκ(Ω)

c̃2
0

〈A0u, u〉L2(Ω)

6
c2‖q‖2

Lκ(Ω)

2c̃2
0

(
ε‖A0u‖2

L2(Ω) + ε−1‖u‖2
L2(Ω)

)
, u ∈ D(A0), ε ∈ (0,+∞).

Thus, taking ε > 0 so small that εc2‖q‖2
Lκ(Ω) < 2c̃2

0, we see that the multiplier by q in

L2(Ω) is A0-bounded with relative bound zero. As a consequence, Aq := A0 + q is self-

adjoint in L2(Ω) with domain D(Aq) = D(A0) by the Kato-Rellich theorem (see e.g.,

[16, Theorem V.4.3], [29, Theorem X.12]). Moreover Aq acts as Aq on D(Aq) = D(A0).

In this article, we suppose (1.2) in such a way that Aq > c̃0 in the operator sense,

where c̃0 is the constant appearing in (2.1). This hypothesis is quite convenient for

proving Proposition 2.1 below stated, which is essential for the proof of Theorem 1.1

and Proposition 3.1, but it could be removed at the price of greater unessential technical

difficulties. Nevertheless, for simplicity, we shall not go further into this direction.

Proposition 2.1. For all p ∈ C\R−, the operator Aq+ρ(x)pα(x) is boundedly invertible

in L2(Ω) and (Aq + ρ(x)pα(x))−1 maps L2(Ω) into D(A0). Moreover∥∥(Aq + ρ(x)rα(x)eiβα(x))−1
∥∥
B(L2(Ω))

6 C(r, β) max
j=0,M

r−αj , r ∈ (0,+∞), β ∈ (−π, π)

(2.4)

with

C(r, β) :=

 2ρ−1
0 , if |β| 6 θ∗(r),

ρ−1
0 c∗(β), otherwise,

(2.5)

and

θ∗(r) := α−1
M min

σ=±1
arctan

(
ρ0

3ρM
rσ(αM−α0)

)
, c∗(β) := max

j=0,M
| sin(αjβ)|−1. (2.6)

Furthermore the mapping p 7→ (Aq + ρ(x)pα(x))−1 is bounded holomorphic in C \ R− as

operator with values in B(L2(Ω)).
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Proof. We shall prove (2.4) only for r ∈ [1,+∞), because the corresponding estimate

for r ∈ (0, 1) can be derived in the same way.

a) Firstly we assume that β ∈ (0, π). The case of β ∈ (−π, 0) is similarly treated.

We define a multiplication operator Uβ in L2(Ω) by Uβf(x) = uβ(x)f(x) for f ∈ L2(Ω),

where

uβ(x) :=
(
ρ(x)rα(x) sin(βα(x)

)1/2
, x ∈ Ω.

Then iU2
β is the skew-adjoint part of the operator Aq + ρ(x)rα(x)eiβα(x). Putting mβ :=

minj=0,M sin(αjβ), we have

0 < ρ
1/2
0 m

1/2
β rα0/2 6 uβ(x) 6 ρ

1/2
M rαM/2, x ∈ Ω.

Hence the self-adjoint operator Uβ is bounded and boundedly invertible in L2(Ω) and

‖U−1
β ‖B(L2(Ω)) 6 ρ

−1/2
0 m

−1/2
β r−α0/2. (2.7)

Moreover, for each p = reiβ, it holds true that

Aq + ρ(x)pα(x) = Uβ
(
U−1
β Bq,pU

−1
β + i

)
Uβ, (2.8)

where Bq,p := Aq + ρ(x)rα(x) cos(βα(x)) denotes the self-adjoint part of the operator

Aq + ρ(x)pα(x), i.e.,

Aq + ρ(x)pα(x) = Bq,p + iU2
β .

Indeed, the multiplication operator by ρ(x)rα(x) cos(βα(x)) is bounded by ρMr
αM in

L2(Ω), and the operator Bq,p is self-adjoint in L2(Ω) with domain D(Aq) = D(A0), by

the Kato-Rellich theorem. Thus U−1
β Bq,pU

−1
β is self-adjoint in L2(Ω) as well with domain

UβD(A0). Therefore, the operator U−1
β Bq,pU

−1
β + i is invertible in L2(Ω) and satisfies

the estimate

‖(U−1
β Bq,pU

−1
β + i)−1‖B(L2(Ω)) 6 1.

It follows from this and (2.8) that Aq + ρ(x)pα(x) is invertible in L2(Ω) with

(Aq + ρ(x)pα(x))−1 = U−1
β (U−1

β Bq,pU
−1
β + i)−1U−1

β ,

showing that (Aq + ρ(x)pα(x))−1 maps L2(Ω) into U−1
β D(U−1

β Bq,pU
−1
β ) = D(A0). As a

consequence, we infer from (2.7) that

‖(Aq+ρ(x)pα(x))−1‖B(L2(Ω)) 6 ‖(U−1
β Bq,pU

−1
β +i)−1‖B(L2(Ω))‖U−1

β ‖
2
B(L2(Ω)) 6 ρ−1

0 m−1
β r−α0 .

9



b) It follows from r ∈ [1,+∞) that αMθ∗(r) = arctan(ρ0ρ
−1
M r−(αM−α0)/3) ∈ (0, π/6).

Thus we have cos(αMθ∗(r))/3 = ρ−1
0 ρMr

αM−α0 sin(αMθ∗(r)) and

2 cos(αMθ∗(r))/3 > 1/
√

3 > 1/2, which entails

cos(αMθ∗(r)) >
1

2
+ ρ−1

0 ρMr
αM−α0 sin(αMθ∗(r)). (2.9)

Next, for each β ∈ [−θ∗(r), θ∗(r)], we have α(x)|β| 6 αMθ∗(r) < π/2, and hence

cos(α(x)β) > cos(αMθ∗(r)) > 0. From this, (1.1) and (1.2) it follows that

Bq,p > ρ0r
α0 cos(αMθ∗(r))

in the operator sense. Therefore Bq,p is boundedly invertible in L2(Ω) and

‖B−1
q,p‖B(L2(Ω)) 6

ρ−1
0 r−α0

cos(αMθ∗(r))
. (2.10)

Similarly, by | sin(α(x)β)| 6 sin(αMθ∗(r)), we obtain that

‖Uβ‖B(L2(Ω)) 6 ρ
1/2
M rαM/2 sin(αMθ∗(r))

1/2.

This and (2.10) yield

‖B−1
q,pU

2
β‖B(L2(Ω)) 6 ‖B−1

q,p‖B(L2(Ω))‖Uβ‖2
B(L2(Ω)) 6 ρ−1

0 ρMr
αM−α0 tan(αMθ∗(r)) < 1.

Furthermore, using that Aq+ρ(x)pα(x) = Bq,p(I+iB−1
q,pU

2
β), where I denotes the identity

operator in L2(Ω), we see that Aq + ρ(x)pα(x) is invertible in L2(Ω) with

‖(Aq + ρ(x)pα(x))−1‖B(L2(Ω)) 6
‖B−1

q,p‖B(L2(Ω))

1− ‖B−1
q,pU

2
β‖B(L2(Ω))

6
ρ−1

0 r−α0

cos(αMθ∗(r))− ρ−1
0 ρMrαM−α0 sin(αMθ∗(r))

.

This and (2.9) entail that ‖(Aq + ρ(x)pα(x))−1‖B(L2(Ω)) 6 2ρ−1
0 r−α0 .

c) We turn now to proving that p 7→ (Aq + ρ(x)pα(x))−1 is bounded holomorphic in

C \ R−. To this purpose, we introduce the closed sequilinear form

aq,p(u) := a0(u) +

∫
Ω

(q(x) + ρ(x)pα(x))|u(x)|2dx, u ∈ H1
0 (Ω),

10



which is associated with the operator Aq+ρ(x)pα(x) in L2(Ω). In light of (2.1) and (1.2),

we have

Raq,p(u) >

(
c̃0 − ρM max

j=0,M
|p|αj

)
‖u‖2

L2(Ω) and Iaq,p(u) 6

(
ρM max

j=0,M
|p|αj

)
‖u‖2

L2(Ω)

for all u ∈ H1
0 (Ω), entailing that aq,p is sectorial for every p ∈ C \ R−. Here and

henceforth R and I mean the real part and the imaginary part of a complex number

under consideration, respectively.

Moreover, since p 7→ aq,p(u) is holomorphic in C\R−, we see that {aq,p; p ∈ C\R−}

is an analytic family of sesquilinear forms of type (a) in the sense of Kato (see [16, Section

VII.4.2]). From [16, Theorem VII.4.2] it follows that {Aq + ρ(x)pα(x); p ∈ C \R−} is an

analytic family of operators. Therefore p 7→ (Aq +ρ(x)pα(x))−1 is holomorphic in C\R−
by [16, Theorem VII.1.3]. Thus the proof of Proposition 2.1 is complete. �

We point out that θ∗(r) behaves likes minσ=±1 r
σ(αM−α0) as r becomes either suffi-

ciently small or sufficiently large (that is, like r−(αM−α0) as r → 0, and like r(αM−α0) as

r → +∞). Indeed, bearing in mind that arctanu =
∫ u

0
dv

1+v2
for all u ∈ [0,+∞), we see

that arctanu ∈
[

u
1+u2

, u
]
, and so we infer from (2.6) that

ρ0
3ρM

minσ=±1 r
σ(αM−α0)

1 +
ρ20

9ρ2M
minσ=±1 r2σ(αM−α0)

6 αMθ∗(r) 6
ρ0

3ρM
min
σ=±1

rσ(αM−α0), r ∈ (0,+∞).

Since minσ=±1 r
σ(αM−α0) ∈ (0, 1], the denominator of the left-hand side of the above

inequality is majorized by 1 +
ρ20

9ρ2M
6 10

9
, so that we have

3ρ0

10ρM
min
σ=±1

rσ(αM−α0) 6 αMθ∗(r) 6
ρ0

3ρM
min
σ=±1

rσ(αM−α0), r ∈ (0,+∞).

Therefore it follows readily from (2.5)-(2.6) and the inequality sinu > u
2

for all u ∈ [0, 1]

that

C(r, β) 6 ρ−1
0

(
sin

(
3α0ρ0

10αMρM
min
σ=±1

rσ(αM−α0)

))−1

6
20αMρM

3α0ρ2
0

max
σ=±1

rσ(αM−α0),

when r is sufficiently close to either 0 or +∞. As a consequence, there exists a constant

C > 0, which is independent of r and β such that we have

C(r, β) 6 C max
σ=±1

rσ(αM−α0), r ∈ (0,+∞), β ∈ (−π, π). (2.11)

11



2.2. Weak solution. Let S ′(R;L2(Ω)) be the space dual to S(R;L2(Ω)). We denote

by S ′(R+;L2(Ω)) := {v ∈ S ′(R;L2(Ω)); supp v ⊂ [0,+∞)×Ω} the set of distributions

in S ′(R;L2(Ω)) supported in [0,+∞) × Ω. Otherwise stated, v ∈ S ′(R;L2(Ω)) lies in

S ′(R+;L2(Ω)) if and only if 〈v, ϕ〉S′(R;L2(Ω)),S(R;L2(Ω)) = 0 whenever ϕ ∈ S(R;L2(Ω))

vanishes in R+ × Ω. As a consequence, for a.e. x ∈ Ω, we have

〈v(·, x), ϕ〉S′(R),S(R) = 〈v(·, x), ψ〉S′(R),S(R), ϕ, ψ ∈ S(R), (2.12)

provided ϕ = ψ in R+. Furthermore we say that ϕ ∈ S(R+) if ϕ is the restriction to

R+ of a function ϕ̃ ∈ S(R). Then we set

x 7→ 〈v(·, x), ϕ〉S′(R+),S(R+) := x 7→ 〈v(·, x), ϕ̃〉S′(R),S(R), v ∈ S ′(R+;L2(Ω)). (2.13)

Notice from (2.12) that ϕ̃ may be any function in S(R) such that ϕ̃(t) = ϕ(t) for all

t ∈ R+.

For p ∈ C+ := {z ∈ C; Rz > 0}, we put

ep(t) := exp(−pt), t ∈ R+.

Evidently, ep ∈ S(R+). For v ∈ S ′(R+;L2(Ω)), we define the Laplace transform L[v] in

t of v by

L[v](p) := x 7→ 〈v(·, x), ep〉S′(R+),S(R+), p ∈ C+,

and notice that p 7→ L[v](p) ∈ C∞(C+;L2(Ω)). Having seen this, we define the weak

solution to (1.4) as follows.

Definition 2.2. Let u0 ∈ L2(Ω). For T < +∞, we assume that f ∈ L1(0, T ;L2(Ω)) and,

for T = +∞, we assume that there exists m ∈ N such that (1 + t)−mf ∈ L1(R+;L2(Ω)).

We say that u is a weak solution to (1.4) if u is the restriction to Q of a distribution

v ∈ S ′(R+;L2(Ω)) and the Laplace transform V := L[v] verifies

V (p) :=
(
Aq + ρ(x)pα(x)

)−1 (
F (p) + ρ(x)pα(x)−1u0

)
, p ∈ (0,+∞). (2.14)

Here F (p) := L[f(t, ·)1(0,T )(t)](p) =
∫ T

0
e−ptf(t, ·)dt, where 1I denotes the charac-

teristic function of a set I ⊂ R.
12



Remark 2. Notice from (2.14) and Lemma 2.1 that V (p) ∈ D(Aq) = D(A0) ⊂ H1
0 (Ω)

for all p ∈ (0,+∞), which entails that V (p) = 0 on ∂Ω. Actually it is clear that (2.14)

can be equivalently replaced by the condition (Aq + ρ(x)pα(x))V (p) = F (p) + ρ(x)pα(x)−1u0, in Ω,

V (p) = 0, on ∂Ω

for all p ∈ (0,+∞).

Remark 3. For all h ∈ C1(R+) such that

ε0 := inf

{
ε ∈ (0,+∞); e−εt

dkh(t)

dtk
∈ L1(R+), k = 0, 1

}
∈ R+,

we know from [28, Eq. (2.140)] that

L[∂α(x)h](p) = pα(x)H(p)− pα(x)−1h(0), p ∈ (ε0,+∞),

where H(p) := L[h](p) =
∫ +∞

0
e−pth(t)dt. Therefore, in the particular case where the

mapping x 7→ α(x) is constant, we infer from [31, Theorems 2.1 and 2.2] that the

initial-boundary value problem (1.4) admits a unique weak solution to (1.4) in the sense

of Definition 2.2, provided u0 and f are sufficiently smooth.

2.3. Proof of Theorem 1.1. The proof is divided into two parts: the first one is

concerned with S0, while the second deals with the operators S1 and S2.

1) Let us start with S0(t). To this purpose, we set

W (p) := p−2(Aq + ρ(x)pα(x))−1ρ(x)pα(x)−1u0, p ∈ C \ R−,

fix µ ∈ [1,+∞), and infer from (2.4) that

‖W (µ+ iη)‖L2(Ω) 6 C(r, β)ρM |µ+ iη|−3+αM−α0 , η ∈ R, (2.15)

where C(r, β) is given by (2.5)-(2.6) with r = |µ+ iη| ∈ [1,+∞) and β = arg(µ+ iη) ∈(
−π

2
, π

2

)
. According to (2.11), there exists a constant C = C(α0, αM , ρ0, ρM) such that

C(r, β) 6 C|µ+ iη|αM−α0 , µ ∈ [1,+∞), η ∈ R.

Thus (2.15) yields

‖W (µ+ iη)‖L2(Ω) 6 C〈η〉−3+2(αM−α0), µ ∈ [1,+∞), η ∈ R, (2.16)
13



upon substituting C for ρMC. As a consequence, we have for each k = 1, 2,

Ck := sup
µ∈[1,+∞)

‖W (µ+ i·)‖Lk(R;L2(Ω)) = sup
µ∈[1,+∞)

(∫
R
‖W (µ+ iη)‖kL2(Ω) dη

) 1
k

<∞,

(2.17)

and hence

ω(t) :=
1

2iπ

∫ i∞

i∞
etpW (p+ 1)dp =

1

2π

∫ +∞

−∞
eitηW (1 + iη)dη (2.18)

is well defined for all t ∈ R. Moreover the mapping p 7→ etpW (p+ 1) is holomorphic in

C \ (−∞,−1] by Proposition 2.1, and so we infer from the Cauchy formula that

ω(t) =
1

2iπ

∫ s+i∞

s−i∞
etpW (p+ 1)dp, s ∈ (0,+∞). (2.19)

Indeed, for all R ∈ (1,+∞) and s ∈ (0,+∞), we have∫ s+iR

s−iR
etpW (p+1)dp−

∫ iR

−iR
etpW (p+1)dp =

∑
σ=±1

σ

∫ s

0

et(µ+iσR)W (µ+1+iσR)dµ (2.20)

from the Cauchy formula, and∥∥∥∥∫ s

0

et(µ+iσR)W (µ+ 1 + iσR)dµ

∥∥∥∥
L2(Ω)

6 Csmax(1, est)〈R〉−3+2(αM−α0), σ = ±1,

by (2.16). Hence (2.19) follows by letting R to +∞ in (2.20). Next, in view of (2.19),

we obtain that

‖ω(t)‖L2(Ω) =
1

2π

∥∥∥∥∫
R
et(s+iη)W (s+ 1 + iη)dη

∥∥∥∥
L2(Ω)

6
est

2π
sup

µ∈[1,+∞)

‖W (µ+ i·)‖L1(R;L2(Ω))

for all t ∈ R and s ∈ (0,+∞), and consequently that

‖ω(t)‖L2(Ω) 6
C1

2π
ets (2.21)

according to (2.17). Now, letting s to +∞ on the right-hand side of (2.21), we have

ω(t) = 0, t ∈ (−∞, 0). (2.22)

Similarly, by letting s to 0 in (2.21), we find that ‖ω(t)‖L2(Ω) 6
C1

2π
for all t ∈ [0,+∞).

Therefore, we have ω ∈ L∞(R;L2(Ω)) ∩ S ′(R+;L2(Ω)), and since p 7→ W (p + 1) is

holomorphic in C+, we infer from (2.17) with k = 2, (2.18), Theorem 19.2 and the
14



following remark in [30] that L[ω](p) = W (p+ 1) for all p ∈ C+. As a consequence, the

function

w(t) := etω(t) =
1

2iπ

∫ i∞

−i∞
et(p+1)W (p+ 1)dp =

1

2iπ

∫ 1+i∞

1−i∞
etpW (p)dp, t ∈ R (2.23)

verifies

L[w](p) = L[ω](p− 1) = W (p), p ∈ {z ∈ C; Rz ∈ (1,+∞)}. (2.24)

Next (2.4)–(2.6) imply

‖W (1 + iη)‖L2(Ω) 6 ρ−1
0 max

(
2, c∗

(π
4

))
〈η〉−3+αM−α0 , η ∈ R \ (−1, 1),

and we infer from (2.17) with k = 1 that the mapping η 7→ (1 + iη)W (1 + iη) ∈

L1(R;L2(Ω)). Therefore we have

y(t) := ∂tw(t) =
1

2iπ

∫ 1+i∞

1−i∞
etppW (p)dp, t ∈ R (2.25)

by (2.23), and

L[y](p) = pL[w](p) = pW (p), p ∈ {z ∈ C; Rz ∈ (1,+∞)} (2.26)

from (2.24). Furthermore, due to (2.25) and the analyticity of the mapping p 7→

etppW (p) in C \ R−, arising from Proposition 2.1, the following identity

y(t) =
1

2iπ

∫
γ(ε,θ)

etppW (p)dp, t ∈ R+, (2.27)

holds for any ε ∈ (0, 1) and θ ∈
(
π
2
, π
)
, where γ(ε, θ) is defined by (1.5)-(1.6). Here we

used the Cauchy formula and took advantage of the fact that

lim
η→+∞

∫ 1±iη

η((tan θ)−1±i)
etppW (p)dp = 0, t ∈ R+

in L2(Ω). Indeed, for any sufficiently large η ∈ (1,+∞) and all t ∈ R+, (2.4)–(2.6) yield∥∥∥∥∫ 1±iη

η((tan θ)−1±i)
etppW (p)dp

∥∥∥∥
L2(Ω)

=

∥∥∥∥∫ 1

η(tan θ)−1

et(µ±iη)(µ± iη)W (µ± iη)dµ

∥∥∥∥
L2(Ω)

6 Cet(1− η(tan θ)−1)η−2+αM−α0‖u0‖L2(Ω)

for some positive constant C depending only on θ, α0, αM , ρ0 and ρM .
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We turn now to estimating the right-hand side of (2.27). First, by performing the

change of variable p = εeiβ with β ∈ (−θ, θ) in the integral
∫
γ0(ε,θ)

etppW (p)dp, we derive

from (2.4) and (2.11) that∥∥∥∥∫
γ0(ε,θ)

etppW (p)dp

∥∥∥∥
L2(Ω)

6 ρM

(∫ θ

−θ
C(ε, β)etε cosβdβ

)
ε−(1+αM−α0)‖u0‖L2(Ω)

6 Cetεε−(1+2(αM−α0))‖u0‖L2(Ω), t ∈ R+. (2.28)

Next, since (2.5)-(2.6) yield the existence of a positive constant Cθ depending only on α0,

αM , ρ0, ρM , and θ, such that the estimate C(r, θ) 6 Cθ holds uniformly in r ∈ (0,+∞).

Then it follows from (2.4) that∥∥∥∥∫
γ±(ε,θ)

etppW (p)dp

∥∥∥∥
L2(Ω)

6 ρMCθ

(∫ 1

ε

r−(2+αM−α0)dr +

∫ +∞

1

r−(2−(αM−α0))dr

)
‖u0‖L2(Ω)

6
ρMCθ

1 + αM − α0

(
ε−(1+αM−α0) +

2

1− (αM − α0)

)
‖u0‖L2(Ω). (2.29)

Now, taking ε = t−1 ∈ (0, 1) in (2.28)-(2.29), we deduce from (1.5) and (2.27) that

‖y(t)‖L2(Ω) 6 Ct1+2(αM−α0)‖u0‖L2(Ω), t ∈ (1,+∞) (2.30)

for some positive constant C depending only on θ, αj and ρj for j = 0,M . Similarly,

by choosing ε = 1/2 in (2.28)-(2.29), we find that ‖y(t)‖L2(Ω) 6 C‖u0‖L2(Ω) for all

t ∈ [0, 1], where C ∈ (0,+∞) is independent of t. Therefore we have t 7→ 〈t〉−3y(t) ∈

L∞(R;L2(Ω)), and consequently y ∈ S ′(R+;L2(Ω)) by (2.22). Moreover both functions

p 7→ L[y](p) and p 7→ pW (p) are holomorphic in C+, and (2.24) entails that L[y](p) =

pW (p) for all p ∈ C+, by the unique continuation. As a consequence, v := ∂ty ∈

S ′(R+;L2(Ω)) satisfies L[v](p) = p2W (p) = (Aq + ρ(x)pα(x))−1ρ(x)pα(x)−1u0 for every

p ∈ C+, which shows that u := v|Q is a weak solution to (1.4) associated with f = 0.

Moreover, since u is unique, as can be seen from Definition 2.2, we are left with the task

of establishing (1.7) in the case where f = 0, that is,

u(t) =
1

2iπ

∫
γ(ε,θ)

etp(Aq + ρ(x)pα(x))−1ρ(x)pα(x)−1u0dp, t ∈ (0, T ]. (2.31)

This equality follows from Proposition 2.1 and the identity u = ∂ty in (C∞0 )′(0, T ;L2(Ω)).

Indeed, for all p ∈ γ(ε, θ), the mapping t 7→ etppW (p) is continuously differentiable in
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(0, T ), and (2.4)–(2.6) yield the existence of a constant C = C(α0, αM , ρ0, ρM , θ) ∈

(0,+∞) such that we have

‖etpp2W (p)‖L2(Ω) 6 Cetr cos θ max
σ=±1

r−1+σ(αM−α0)‖u0‖L2(Ω), p = re±iθ, r ∈ (ε,+∞).

Moreover, by cos θ ∈ (−1, 0), we see that r 7→ etr cos θ maxσ=±1 r
−1+σ(αM−α0) ∈ L1(ε,+∞)

for each t ∈ (0, T ], and so the integral
∫
γ(ε,θ)

etpp2W (p)dp is well-defined. Therefore we

obtain (2.31) by this and u ∈ C((0, T ];L2(Ω)).

2) We turn now to establishing (1.7) in the case where u0 = 0. To this purpose, we

introduce the following family of operators acting in L2(Ω),

W̃ (p) := p−2(Aq + ρ(x)pα(x))−1, p ∈ C \ R−.

For any µ ∈ [1,+∞) and η ∈ R, it follows from (2.4) and (2.11) that
∥∥∥W̃ (µ+ iη)

∥∥∥
B(L2(Ω))

is majorized by 〈η〉−2+αM−2α0 up to some multiplicative constant that is independent of

η and µ. Therefore we have

sup
µ∈[1,+∞)

∫
R

∥∥∥W̃ (µ+ iη)
∥∥∥k
B(L2(Ω))

dη <∞, k = 1, 2.

Thus, by arguing exactly in the same way as in the first part of the proof, we see that

S1(t) :=
1

2iπ

∫ 1+i∞

1−i∞
etppW̃ (p)dp, t ∈ R (2.32)

lies in S ′(R+;B(L2(Ω))),

t 7→ 〈t〉−αMS1(t) ∈ L∞(R;B(L2(Ω))) (2.33)

and

L[S1ψ](p) = pW̃ (p)ψ, p ∈ C+, ψ ∈ L2(Ω). (2.34)

By f̃ we denote the extension of a function f by 0 on (R×Ω) \ ((0, T )×Ω). We recall

that there exists ζ ∈ R+ such that

〈t〉−ζ f̃ ∈ L∞(R;L2(Ω)), (2.35)

and consider the convolution of S1 with f̃ , that is,

(S1 ∗ f̃)(t, x) =

∫ t

0

S1(t− s)f(s, x)1(0,T )(s)ds, (t, x) ∈ R× Ω.

17



Evidently, (S1 ∗ f̃)(t) = 0 for all t ∈ R−, and we infer from (2.33) and (2.35) that∥∥∥(S1 ∗ f̃)(t)
∥∥∥
L2(Ω)

6
∥∥〈t〉−αMS1

∥∥
L∞(R+;B(L2(Ω)))

∥∥〈t〉−ζf∥∥
L∞(R+;L2(Ω))

〈t〉1+αM+ζ , t ∈ R+.

(2.36)

Therefore t 7→ 〈t〉−1+αM+ζ(S1 ∗ f̃)(t) ∈ L∞(R;L2(Ω)), and consequently S1 ∗ f̃ ∈

S ′(R+;L2(Ω)). Moreover, again by (2.33) and (2.35), we see that

inf{ε ∈ R+; e−εtS1 ∈ L1(R;B(L2(Ω)))} = inf{ε ∈ R+; e−εtf̃ ∈ L1(R;L2(Ω))} = 0,

which entails

L[S1 ∗ f̃ ](p) = L[S1](p)L[f̃ ](p) = L[S1](p)F (p), p ∈ C+,

with L[S1](p) =
∫ +∞

0
S1(t)e−ptdt and L[f̃ ](p) =

∫ +∞
0

f̃(t)e−ptdt. Thus, setting ṽ :=

∂t(S1 ∗ f̃) ∈ S ′(R+;L2(Ω)), we derive from (2.34) that

L[ṽ](p) = pL[S1 ∗ f̃ ](p) = pL[S1](p)F (p) = (Aq + ρ(x)pα(x))−1F (p), p ∈ C+.

It remains to show that

ṽ(t) =

∫ t

0

S1(t− τ)f̃(τ)dτ + S2f̃(t), t ∈ [0, T ]. (2.37)

This can be done with the aid of (2.32), yielding

(S1 ∗ f̃)(t) =
1

2iπ

∫ t

0

∫ 1+i∞

1−i∞
e(t−s)pp−1(Aq + ρ(x)pα(x))−1f̃(s)dpds, t ∈ R+.

Indeed, we notice with a slight adaptation of the reasoning used in the derivation of

(2.27) that the integral
∫ 1+i∞

1−i∞ e(t−s)pp−1(Aq + ρ(x)pα(x))−1f(s)dp can be replaced on

the right-hand side of the above identity by
∫
γ(ε,θ)

e(t−s)pp−1(Aq + ρ(x)pα(x))−1f̃(s)dp

associated with any ε ∈ (0, 1) and θ ∈
(
π
2
, π
)
. Therefore we have

(S1 ∗ f̃)(t) =
1

2iπ

∫ t

0

∫
γ(ε,θ)

e(t−s)pp−1(Aq + ρ(x)pα(x))−1f̃(s)dp ds.

Hence, by (2.4), (2.11) and (2.35), we infer from the Fubini theorem that

(S1 ∗ f̃)(t) =
1

2iπ

∫
γ(ε,θ)

gq(t, p)dp, t ∈ R+

with

gq(t, p) :=

∫ t

0

e(t−s)pp−1(Aq + ρ(x)pα(x))−1f̃(s)ds, p ∈ γ(ε, θ). (2.38)
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Therefore, for all t ∈ R+ and all p ∈ γ(ε, θ), we have

∂tgq(t, p) =

∫ t

0

e(t−s)p(Aq + ρ(x)pα(x))−1f̃(s)ds+ p−1(Aq + ρ(x)pα(x))−1f̃(t),

and consequently

‖∂tgq(t, p)‖L2(Ω) 6
∥∥(Aq + ρ(x)pα(x))−1

∥∥
B(L2(Ω))

(∫ t

0

esRpds+ |p|−1

)∥∥∥f̃∥∥∥
L∞(0,t+1;L2(Ω))

.

From this and (2.4)–(2.6), it follows that

‖∂tgq(t, p)‖L2(Ω) 6 ρ−1
0 max (2, c∗(θ)) (1 + | cos θ|−1)|p|−(1+α0)

∥∥∥f̃∥∥∥
L∞(0,t+1;L2(Ω))

.

As a consequence, the mapping p 7→ ∂tgq(t, p) ∈ L1(γ(ε, θ);L2(Ω)) for any fixed t ∈ R+

and ṽ(t) = ∂t[S1 ∗ f̃ ](t) = 1
2iπ

∫
γ(ε,θ)

∂tgq(t, p)dp, or equivalently

ṽ(t) =
1

2iπ

∫
γ(ε,θ)

(∫ t

0

e(t−s)p(Aq + ρ(x)pα(x))−1f̃(s)ds+ p−1(Aq + ρ(x)pα(x))−1f̃(t)

)
dp

in virtue of (2.38). Now, applying the Fubini theorem to the right-hand side of the above

identity, we obtain (2.37). This establishes that the restriction to Q of the function

expressed by the right-hand side of (2.37), is a weak solution to (1.4) associated with

u0 = 0. Evidently such a function lies in C([0, T ];L2(Ω)). Moreover it is unique from

Definition 2.2.

Finally, by superposition, the desired result follows readily from 1) and 2).

2.4. Proof of Remark 1. We use the notations of Section 2.3. For ε ∈ (0, 1), θ ∈(
π
2
, π
)

and R ∈ [1,+∞), we introduce γR(ε, θ) := {z ∈ γ(ε, θ); |z| ∈ [0, R]} and put

CR(θ) := {z ∈ C; z = Reiβ, β ∈ [−θ, θ]}. In light of Proposition 2.1, the Cauchy

formula yields ∫
γR(ε,θ)∪CR(θ)−

p−1(Aq + ρ(x)pα(x))−1ψ dp = 0, ψ ∈ L2(Ω),

where the notation CR(θ)− stands for the counterclockwise oriented CR(θ). Thus, by

letting R to +∞ in the above identity, we obtain

S2ψ = lim
R→+∞

∫
CR(θ)

p−1(Aq + ρ(x)pα(x))−1ψ dp, ψ ∈ L2(Ω) (2.39)
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from the definition of S2. Furthermore, for any R ∈ [1,+∞), from (2.4) and (2.11), we

have ∥∥∥∥∫
CR(θ)

p−1(Aq + ρ(x)pα(x))−1 dp

∥∥∥∥
B(L2(Ω))

6 CRαM−2α0 , (2.40)

where C is a positive constant which is independent of R. Since αM −2α0 is negative by

the assumption, we have S2ψ = 0 for any ψ ∈ L2(Ω) directly from (2.39)-(2.40). Finally

(1.8) follows readily from this and (1.7).

3. Analysis of the inverse problem

In this section, we suppose that ∂Ω is C1,1 and (1.9) holds, that is, A0 = −∆ and

D(A0) = H1
0 (Ω) ∩H2(Ω).

We recall for further use that the norm in H2(Ω) is equivalent to the norm in D(A0) or

in D(Aq).

First we prove that the boundary operator Nα,ρ,q(t) expressed by (1.11), is well-

defined for all t ∈ (0, T ].

3.1. Definition of the boundary operator. By (1.11) and the continuity of the

trace operator ϕ 7→ ∂νϕ from H2(Ω) into L2(∂Ω), it suffices to prove the following

well-posedness for the initial-boundary value problem (1.10).

Proposition 3.1. Let α, ρ and q be the same as in Theorem 1.1. Then, for all g ∈

H3/2(∂Ω), there exists a unique weak solution in C([0,+∞);H2(Ω)) to (1.10).

Proof. Let G ∈ H2(Ω) satisfy G = g on ∂Ω. Then we notice that u = ug is a solution to

(1.10) if and only if the function v(t, x) := u(t, x)− tkG(x) is a solution to the system
(ρ(x)∂

α(x)
t +Aq)v(t, x) = f(t, x), (t, x) ∈ (0,+∞)× Ω,

v(t, x) = 0, (t, x) ∈ (0,+∞)× ∂Ω,

v(0, x) = 0, x ∈ Ω,

(3.1)

where f(t, x) := −
(
ρ(x)∂

α(x)
t tk + tkAq

)
G(x).

Furthermore, since f ∈ C((0,+∞);L2(Ω)) and (1 + t)−k−1f ∈ L∞(0,+∞;L2(Ω)),

the initial-boundary value problem (3.1) admits a unique weak solution v ∈ C((0,+∞);L2(Ω))
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according to Theorem 1.1. Let us now prove that v ∈ C([0,+∞);H2(Ω)). For this pur-

pose, we infer from the basic identity L[tk](p) :=
∫ +∞

0
tke−ptdt = k!

pk+1 that

F (p, x) := L[f(·, x)](p) = − k!

pk+1

(
Aq + ρ(x)pα(x)

)
G(x), (p, x) ∈ C+ × Ω.

Next, upon extending the expression of the right-hand side of the above equality to all

p ∈ C \ R−, we obtain from the first equation of (3.1) that V := L[v] reads

V (p, x) = − k!

pk+1
(Aq + ρ(x)pα(x))−1

(
Aq + ρ(x)pα(x)

)
G(x), (p, x) ∈ (C \R−)×Ω. (3.2)

Therefore, arguing in the same way as in the proof of Theorem 1.1, we obtain for any

fixed ε ∈ (0, 1) and θ ∈ (π/2, π) that

v(t, x) =
1

2iπ

∫
γ(ε,θ)

etpV (p, x)dp, (t, x) ∈ [0,+∞)× Ω. (3.3)

On the other hand, (3.2) and Lemma 2.1 yield that V (p, ·) ∈ D(Aq) for all p ∈ C \ R−
with

AqV (p, x) =
k!

pk+1

(
ρ(x)pα(x)(Aq + ρ(x)pα(x))−1 − I

) (
ρ(x)pα(x) +Aq

)
G(x), x ∈ Ω.

(3.4)

Here the symbol I stands for the identity operator in L2(Ω). Applying (2.4)-(2.5), we

deduce from (3.4) that∥∥AqV (re±iθ)
∥∥
L2(Ω)

6 Cr−(k+1) max(r2αM−α0 , r2α0−αM )

6 Cε−3(αM−α0)r2αM−α0−k−1

6 Cε−3(αM−α0)r1−k−α0 , r ∈ [ε,+∞) (3.5)

with some positive constant C = C(θ,M, ‖g‖H3/2(∂Ω) , ‖q‖L∞(Ω) , α0, αM , ρ0, ρM) which is

independent of ε. Therefore we have r 7→ AqV (re±iθ, ·) ∈ L1(ε,+∞;L2(Ω)) and hence

r 7→ V (re±iθ, ·) ∈ L1(ε,+∞;D(Aq)). From this and (3.3), it follows that v(t, ·) ∈ D(Aq)

for all t ∈ [0,+∞) with

Aqv(t, ·) =
1

2iπ

∫
γ(ε,θ)

etpAqV (p)dp, (3.6)

proving thatAqv ∈ C([0,+∞);L2(Ω)). As a consequence, we have v ∈ C([0,+∞);D(Aq))

and the desired result follows immediately from this and the identity D(Aq) = H1
0 (Ω)∩

H2(Ω). �
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3.2. Proof of Theorem 1.2. The proof of Theorem 1.2 is by means of the analytic

properties of the mapping t 7→ Nα,ρ,q(t), defined by (1.11), that are preliminarily estab-

lished in the coming subsection.

3.2.1. On the analyticity of the boundary operator. We first introduce the following

notations. Let X be a Hilbert space, and let O be either a subinterval of R or an open

subset of C. We denote by A(O;X) the space of X-valued functions that are analytic

in O.

Lemma 3.2. Let g ∈ H3/2(∂Ω) and let u be the solution in C([0,+∞);H2(Ω)) to (1.10)

associated with g, whose existence is guaranteed by Proposition 3.1. Then the mapping

t 7→ ∂νu(t, ·)|∂Ω lies in A((0,+∞);L2(∂Ω)).

Proof. By the definitions and the notations used in the proof of Proposition 3.1, the

solution u to (1.10) reads u(t, x) = tkG(x) + v(t, x) for a.e. (t, x) ∈ (0,+∞)×Ω, where

v ∈ C([0,+∞);H2(Ω)) is a solution to (3.1). Since G ∈ H2(Ω), it is apparent that

t 7→ tk∂νG|∂Ω ∈ A((0,+∞);L2(∂Ω)). Therefore we are left with the task of showing

that t 7→ ∂νv(t, ·)|∂Ω ∈ A((0,+∞);L2(∂Ω)). Since D(Aq) = H1
0 (Ω) ∩ H2(Ω) and the

trace map w 7→ ∂νw|∂Ω is continuous from H2(Ω) into L2(∂Ω), it is sufficient to prove

that t 7→ v(t, ·) ∈ A((0,+∞);D(Aq)).

For this purpose, we fix θ1 ∈ (0, θ − π/2) ∩ (0, π − θ), put O := {τeiψ; τ ∈

(0,+∞), ψ ∈ (−θ1, θ1)}, and we extend v into a function of A(O;D(Aq)). This can be

done with the help of (3.5)-(3.6) by noticing

|ezp| = |eτrei(±θ+ψ) | = eτr cos(±θ+ψ) for all z = τeiψ ∈ O and p = re±iθ with r ∈ [ε,+∞).

Indeed, since we have θ + ψ ∈ (θ − θ1, θ + θ1) ⊂ (π/2, π) and

−θ+ψ ∈ (−θ− θ1,−θ+ θ1) ⊂ (−π,−π/2), it holds true that cos(±θ+ψ) 6 cos(θ− θ1)

and

|ezp| 6 e|z|r cos(θ−θ1), z ∈ O, p = re±iθ, r ∈ [ε,+∞). (3.7)

Furthermore, since cos(θ − θ1) ∈ (−1, 0), it follows from (3.5) and (3.7) that

W : z 7→ 1

2iπ

∫
γ(ε,θ)

ezpAqV (p)dp
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is well defined in O. Moreover, for any compact subset K ⊂ O in C, we infer from (3.5)

that

∥∥ezpAqV (re±iθ)
∥∥
L2(Ω)

6 Cε−3(αM−α0)eδr cos(θ−θ1)r1−k−α0 , z ∈ K, r ∈ [ε,+∞),

where δ := inf{|z|; z ∈ K} > 0 and C is the constant in (3.5). Next, as z 7→ ezpAqV (p) ∈

A(O;L2(Ω)) for all p ∈ {re±iθ; r ∈ [ε,+∞)}, this entails that W ∈ A(O;L2(Ω)).

Furthermore, since W(t) = Aqv(t, ·) for all t ∈ (0,+∞), we obtain by (3.5) that

t 7→ Aqv(t, ·) ∈ A((0,+∞);L2(Ω)). (3.8)

Finally, arguing in the same way as above, we deduce from (3.3) that t 7→ v(t, ·) ∈

A((0,+∞);L2(Ω)). This and (3.8) yield that t 7→ v(t, ·) ∈ A((0,+∞);D(Aq)), which

proves the result. �

In terms of Lemma 3.2, we can complete the proof of Theorem 1.2.

3.2.2. Completion of the proof. For j = 1, 2, we denote by uj the weak solution to the

initial-boundary value problem (1.10) associated with g ∈ Hin, (α, ρ, q) = (αj, ρj, qj),

and T = +∞. The proof is divided into three steps. The first one is to establish that

∂νu1(t, ·)|Sout = ∂νu2(t, ·)|Sout , t ∈ (0,+∞), (3.9)

and the second one is to derive from (3.9) that the functions Uj := L[uj], j = 1, 2, verify

∂νU1(p, ·)|Sout = ∂νU2(p, ·)|Sout , p ∈ (0,+∞). (3.10)

The third step corresponds to the end of the proof, which is by means of the existing

results for the Calderón problem with partial Cauchy data.

Step 1. Put h(t, x) := ∂νu1(t, x)−∂νu2(t, x) for (t, x) ∈ (0,+∞)×Sout. We recall from

Lemma 3.2 that h ∈ A((0,+∞);L2(Sout)), and from (1.13) that

h(tn) = 0, n ∈ N.

Therefore, by (1.12), the set of the zeros of the analytic function h has accumulation

point in (0,+∞), so that identically vanishes, and (3.9) follows.
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Step 2. For j = 1, 2, let vj denote the solution to (3.1) where (αj, ρj, qj) is substituted

into (α, ρ, q) such that

uj(t, x) = tkG(x) + vj(t, x), (t, x) ∈ Q. (3.11)

Furthermore, putting Vj := Lvj, we deduce from (3.2) and (3.5) that∥∥∥∥∫
γ±(ε,θ)

etpAqjVj(p)dp

∥∥∥∥
L2(Ω)

6 Cε−3(αM−α0)

∫ +∞

ε

r1−k−α0dr

6
C

k + α0 − 2
ε2−k−α0−3(αM−α0), (3.12)

where the constant C is the same as in (3.5). Similarly, by Lemma 2.1, we infer from

(2.11) and (3.4) that∥∥∥∥∫
γ0(ε,θ)

etpAqjVj(p)dp

∥∥∥∥
L2(Ω)

6 Cε−(k+αM )

(∫ θ

−θ
etε cosβCβdβ

)
6 Cetεε−(k+2αM−α0), (3.13)

where another constant C > 0 is independent of ε. Thus, for all t ∈ (1,+∞), by taking

ε = t−1 in (3.12)-(3.13) we see that
∥∥∥∫γ(ε,θ)

etpAqjVj(p)dp
∥∥∥
L2(Ω)

is upper bounded by

tk+2α0−αM up to some positive constant Cj, which is independent of t. In light of (3.6),

this entails that ‖vj(t, ·)‖H2(Ω) 6 Cjt
k+2α0−αM for every t ∈ (1,+∞). Therefore, by

(3.11) we have

‖uj(t, ·)‖H2(Ω) 6 Cjt
k+2α0 , t ∈ (1,+∞).

Moreover, since vj ∈ L∞(0, 1;H2(Ω)) in virtue of Lemma 3.2, and hence uj ∈ L∞(0, 1;H2(Ω))

by (3.11), we obtain that t 7→ e−ptuj(t, ·) ∈ L1(0,+∞;H2(Ω)) for all p ∈ C+. This and

the continuity of the trace map v 7→ ∂νv|∂Ω from H2(Ω) into L2(∂Ω), yield that

L[∂νuj](p) = ∂νUj(p), j = 1, 2, p ∈ C+.

Now (3.10) follows from this and (3.9).

Step 3. We can complete the proof by [15, Theorem 7] (see also [14]) when d = 2 and

[18, Theorem 1.2] when d > 3.

Theorem 3.3. Assume that ∂Ω is smooth and that Ω is connected. For

V ∈ V := {q ∈ L∞(Ω); 0 lies in the resolvent set of Aq},
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let ΛV be the partial Dirichlet-to-Neumann map Hin 3 ϕ 7→ ∂νw|Sout, where w is the

solution to  −∆w + V (x)w = 0, x ∈ Ω,

w(x) = ϕ(x), x ∈ ∂Ω.
(3.14)

For j = 1, 2, pick Vj in V ∩W 1,r(Ω) with r ∈ (2,+∞), if d = 2, and in V if d > 3.

Then

ΛV1 = ΛV2 yields V1 = V2. (3.15)

It is clear for all p ∈ (0,+∞) that Ũj(p) := pk+1

k!
Uj(p), j = 1, 2, is a solution to

(3.14) associated with V = qj + ρjp
αj and ϕ = g. As a consequence, we have

Λq1+ρ1pα1g = Λq2+ρ2pα2g, p ∈ (0,+∞)

by (3.10), and since g is arbitrary in Hin, this immediately entails that

Λq1+ρ1pα1 = Λq2+ρ2pα2 , p ∈ (0,+∞). (3.16)

Moreover, from the definition of Ed, for every p ∈ (0,+∞), we have qj +ρjp
αj ∈ W 1,r(Ω)

with r ∈ (2,+∞) if d = 2, and qj + ρjp
αj ∈ L∞(Ω) if d > 3. Therefore, applying (3.15)

with Vj = qj + ρjp
αj , we infer from (3.16) that

q1 + ρ1p
α1 = q2 + ρ2p

α2 , p ∈ (0,+∞). (3.17)

Letting p to zero in (3.17), we see that q1 = q2. Thus, taking p = 1 in (3.17), we obtain

that ρ1 = ρ2. Finally, applying (3.17) with p = e, we find that eα1 = eα2 , which yields

that α1 = α2.
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