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ABSTRACT
In this paper, we focus on the classification of lidar point
cloud data acquired via mobile laser scanning, whereby the
classification relies on a context model based on a Conditional
Random Field (CRF). We present two approximate inference
algorithms based on belief propagation, as well as a graph-
cut-based approach not yet applied in this context. To demon-
strate the performance of our approach, we present the clas-
sification results derived for a standard benchmark dataset.
These results clearly indicate that the graph-cut-based method
is able to retrieve a labeling of higher likelihood in only a frac-
tion of the time needed for the other approaches. The higher
likelihood, in turn, translates into a significant gain in the ac-
curacy of the obtained classification.

Index Terms— Point cloud, classification, spatial regu-
larization, belief propagation, graph-cut

1. INTRODUCTION

The automated analysis of acquired lidar point cloud data is
a crucial task in photogrammetry, remote sensing, computer
vision and robotics. In particular, the semantic classification
of lidar point clouds acquired with terrestrial or mobile laser
scanning systems in urban areas has received significant at-
tention in recent years [1, 2, 3]. The main objective of this
task is to associate a semantic label (e.g. Building, Ground,
Tree Trunk or Foliage) to each 3D point of the considered
point cloud and the main challenges are typically represented
by the irregular distribution of 3D points, a high complexity
of the observed scene and very different objects of interest
(Fig. 1).

As the number of 3D points far exceeds the number of
semantic objects in the scene, the semantic point cloud clas-
sification can be expected to display a high spatial regular-
ity. Furthermore, transitions between different classes are not
equally likely, e.g. Tree Trunk to Ground is more probable
than Foliage to Building. Graphical probabilistic models are
widely used in the literature to model the influence of these
observations [4, 5]. In [4], for instance, a context model based
on a Conditional Random Field (CRF) [6] is used, which is

Fig. 1. Labeled point cloud (Wire: blue; Pole/Trunk: red;
Façade: gray; Ground: brown; Vegetation: green).

then solved with a belief propagation algorithm. In this paper,
we argue that graph-cut-based approaches allow us to achieve
a better approximation of the most likely configuration in a
much shorter time.

2. RELATED WORK

The task of semantic point cloud classification typically re-
lies on the use of geometric features like the ones presented
in [2, 3], but some investigations additionally involve comple-
mentary types of features such as echo-based features or full-
waveform features [7]. These features, in turn, are provided
as input to a classification pipeline. For the latter, standard ap-
proaches for supervised classification such as a Support Vec-
tor Machine (SVM) classifier or a Random Forest (RF) clas-
sifier are typically applied. A comprehensive study focusing
on the classification of mobile laser scanning data with a vari-
ety of such standard approaches relying on different learning
principles can be found in [2] and concludes that a RF classi-
fier provides a good trade-off between classification accuracy
and computational effort. However, such standard classifi-
cation approaches are limited by the fact that the derived la-
beling is typically not spatially regular, although it should be
taken into account that class labels of neighboring 3D points
tend to be correlated.

To derive a labeling with a higher spatial regularity, a con-
textual classification is typically considered for which many
approaches rely on the use of a Conditional Random Field



(CRF) [4]. However, retrieving the classification of highest
likelihood with such a model is a complicated combinatorial
task, which can only be approximately solved. The authors
of [4] use loopy belief propagation (LBP), a message-passing
algorithm [8] to perform marginal inference, and then apply
the maximum-a-posteriori (MAP) principle point by point to
compute a smooth labeling.

As suggested in [9] for stereo shape estimation, graph-
cut-based approaches such as α-expansion [10] can retrieve
a labeling of higher likelihood and in shorter time. In this
paper, we propose comparing these in terms of the likelihood
of the produced labeling, computation time and quality of the
derived labeling.

3. METHODOLOGY

We consider a point cloud V , whose local neighborhood
structure is encoded in the graph G = (V,E), where the
edge set E encodes the adjacency between nodes. For each
point, we observe a feature vector. Our objective is to find a
labeling x ∈ KV , where K is the finite set of semantic labels.
We denote the set of features for all points in V by f , and the
feature vector associated with the point i by fi.

3.1. Feature extraction

To adequately describe each considered 3D point i with geo-
metric features, the local 3D structure at i is considered which
is given in the spatial arrangement of 3D points within the lo-
cal neighborhood of i. Accordingly, the local neighborhood
of i has to be recovered first and, subsequently, all 3D points
within that local neighborhood can be used to derive respec-
tive geometric features describing the local 3D structure at i.

The recovery of local neighborhoods can generally rely on
different neighborhood definitions such as spherical or cylin-
drical neighborhoods which, in turn, can be parameterized
with a specific scale parameter (e.g. a radius or the number
of considered nearest neighbors). In this regard, the selec-
tion of the scale parameter often remains a crucial step since
(1) the selection typically involves prior knowledge about the
scene and/or the data and (2) typically an identical value of
the scale parameter is used for all 3D points of the consid-
ered point cloud. For the consideration of general scenes with
very different types of objects and classes of interest, how-
ever, a data-driven selection of the scale parameter seems to
be desirable. Furthermore, it should be taken into account that
3D points belonging to different classes might favor a differ-
ent neighborhood size [2], and therefore an approach is to be
preferred that allows for locally adapting the size of the lo-
cal neighborhood for each individual 3D point. In the scope
of our work, we apply the definition of a local neighborhood
that is formed by the k nearest neighbors of i. To select the
optimal scale parameter kopt for each 3D point i, we focus
on eigenentropy-based scale selection [2] which has proven

to be favorable compared to other alternatives. Accordingly,
we first calculate the eigenentropy for different scale param-
eters k and then select the optimal scale parameter kopt that
corresponds to the minimal eigenentropy (i.e. to the minimal
disorder of 3D points).

Based on the recovered local neighborhoods, a variety of
geometric features can be extracted. In particular, the local
3D shape features are widely used as they provide a rather in-
tuitive description of the local 3D structure with a single value
per feature. These local 3D shape features are derived from
the eigenvalues of the 3D structure tensor and represented
by linearity, planarity, sphericity, omnivariance, anisotropy,
eigenentropy, sum of eigenvalues and change of curvature [2].
Furthermore, we extract geometric 3D properties of the local
neighborhood that are given by the height of the 3D point
i, the radius of the local neighborhood, the local point den-
sity, the verticality, and the maximum difference as well as the
standard deviation of the height values of those points within
the local neighborhood [2]. As urban environments are typi-
cally composed of a variety of man-made objects with almost
perfectly vertical structures, we also consider a 2D projection
of the point i and its kopt nearest neighbors onto a horizontally
oriented plane. Based on this 2D projection, local 2D shape
features are defined by the sum and the ratio of the eigen-
values of the 2D structure tensor [2]. Finally, we also define
geometric 2D properties which are represented by the radius
of the local 2D neighborhood in the projection plane and the
point density in 2D.

3.2. Classification

To derive the initial labeling, we use a standard Random For-
est (RF) classifier [11] that also allows for a soft labeling in
terms of class probabilities. Subsequently, we use a CRF-
based context model to impose spatial regularity on the ini-
tial labeling. More specifically, a CRF-based model like the
one presented in [4] leverages contextual information to im-
prove the semantic classification of 3D point clouds. In this
model, the logarithm of the conditional likelihood of a label-
ing x given the observed features f is expressed as follows:

`(x | f) ∝
∑
i∈V

ψ(xi, f) +
∑

(i,j)∈E

φ(xi, xj , f). (1)

This posterior probability is split into two parts: a data term
and an interaction potential. The function ψ(xi, f) encodes
the influence of the observed feature on the label, without
contextual information. We take ψ(xi, f) as the logarithm
of the probability given by the RF classifier.

The interaction potential φ(xi, xj , f) encodes the adequa-
tion between the labels of two adjacent nodes i and j. In [4],
a classifier is trained to predict the probability of each tran-
sition given the difference of feature vectors. We argue here
that the training of such a classifier poses certain difficulties
as the number of transition classes is quadratic in the number



of semantic classes, and hence would require a much larger
training set to obtain a prediction of reasonable quality, as
well as more intensive computations. Furthermore, this would
require a point-perfect precise annotation of the training set,
which is difficult as irregularities in the density of the acqui-
sition make the precise localization of the interface between
classes a complicated task. In this paper, we chose to forego
the influence of features when it comes to transitions, and take
φ(xi = k, xj = l, f) = log(Mk,l), where M is the matrix
of empirical transition probabilities in our training set. This
model allows us to assess the adequation of a given labeling
with the observed features while taking contextual informa-
tion into account. MAP inference, i.e. retrieving the labeling
of highest likelihood, is a complicated task and in fact NP-
hard. However, approximate solutions can be provided using
message-passing algorithms or graph-cut-based methods.

Loopy belief propagation (LBP), which is an extension of
the exact Viterbi algorithm [12] from trees to general graphs,
is highly popular for its robustness and the simplicity of its
implementation. However, it does not provide any proof of
convergence or guarantees with respect to the global opti-
mum. In [4], marginal inference is performed first using the
sum-product LBP algorithm, and then each point is assigned
the label of highest probability. In this paper, we also present
the max-product version of the LBP algorithm, which allows
us to directly compute the MAP inference.

Graph-cut-based algorithms, such as α-expansion, offer
guarantees that the results will be close to the global optimum.
Furthermore, α-expansion is also known for its impressive
speed, in part due to the max-flow implementation [13].

4. EXPERIMENTAL RESULTS

We evaluate the performance of different approaches on the
Oakland 3D Point Cloud Dataset [1], a labeled benchmark
dataset which has been acquired with a mobile laser scanning
system in Oakland, USA. The ground truth (GT) labeling is
provided with respect to five semantic classes given by Wire,
Pole/Trunk, Façade, Ground and Vegetation. Furthermore, a
split into training data (about 36.9k labeled 3D points), val-
idation data (about 91.5k labeled 3D points) and test data
(about 1.3M labeled 3D points) is already provided.

First, we derive an initial labeling by using low-level ge-
ometric 3D and 2D features (cf. Section 3.1) as input for a
standard Random Forest classifier. For training, we take into
account that an unbalanced distribution of training samples
per class might have a detrimental effect on the classification
results and hence use a reduced training set comprising 1,000
randomly selected training examples per class [2]. For test-
ing, we evaluate the classification result achieved for the test
set with respect to the GT labeling, where we obtain an overall
accuracy of OA = 92.3%, a kappa value of κ = 83.0% and
an unweighted average of the F1-score of F̄1 = 63.5%. The
class-wise evaluation metrics of recall, precision andF1-score

Class Recall [%] Precision [%] F1-score [%]
Wire 84.6 10.2 18.2
Pole/Trunk 77.4 25.2 38.0
Façade 68.2 86.5 76.3
Ground 98.7 96.6 97.6
Vegetation 80.6 94.9 87.2

Table 1. Classification results derived with the initial labeling
(OA = 92.3%, κ = 83.0%, F̄1 = 63.5%).

Class Recall [%] Precision [%] F1-score [%]
Wire 75.6 15.4 25.5
Pole/Trunk 63.6 61.2 62.4
Façade 79.1 92.9 85.5
Ground 99.3 97.3 98.2
Vegetation 90.0 96.5 93.1

Table 2. Classification results derived with the sum-product
version of the LBP algorithm (OA = 95.4%, κ = 89.8%,
F̄1 = 71.1%, ` = −2.08 · 106, t = 85s for 30 iterations).

Class Recall [%] Precision [%] F1-score [%]
Wire 62.7 16.0 25.5
Pole/Trunk 49.9 65.6 56.7
Façade 72.3 92.8 81.2
Ground 99.4 96.0 97.7
Vegetation 88.1 94.0 90.9

Table 3. Classification results derived with the max-product
version of the LBP algorithm (OA = 94.4%, κ = 87.3%,
F̄1 = 70.4%, ` = −2.09 · 106, t = 95s for 30 iterations).

Class Recall [%] Precision [%] F1-score [%]
Wire 64.7 37.8 47.7
Pole/Trunk 38.2 84.8 52.6
Façade 74.5 92.1 82.3
Ground 99.6 96.7 98.1
Vegetation 95.8 97.4 96.6

Table 4. Classification results derived with α-expansion
MAP inference (OA = 96.2%, κ = 91.4%, F̄1 = 75.5%,
` = −1.39 · 106, t = 9s).

are provided in Table 1 and a visualization of the classified
point cloud is given in Fig. 1. For the three MAP inference
algorithms presented in Section 3.2, we use MEX implemen-
tations provided by [14]. The respective results as well as the
required processing times are provided in Fig. 2 and Tables 2-
4, respectively. It can be observed that the use of contextual
classification generally improves the classification results in
terms of OA, κ and F̄1. As expected, the α-expansion algo-
rithm reaches a higher likelihood in a much shorter time. We
remark that this improvement translates into a classification
of higher quality, validating the relevance of the model.



Fig. 2. Classification results derived with the sum-product
version of LBP (top), the max-product version of LBP (cen-
ter) and the α-expansion MAP inference (bottom).

5. CONCLUSIONS

In this paper, we have focused on the CRF-based classifica-
tion of lidar point cloud data. We have presented two ap-
proximate inference algorithms based on belief propagation
and a graph-cut-based approach represented by α-expansion.
The derived results reveal that the graph-cut-based approach
is able to retrieve a labeling of higher likelihood and thus a
higher classification accuracy, while it is also significantly
faster than the other approaches. In future work, we intend
to investigate further approaches for spatial regularization.
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