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Introduction

It is well known that 3SAT is NP-complete.

Proposition 1. (see [Papadimitriou,94] and [START_REF] Hopcroft | [END_REF]). 3SAT is NPcomplete.

Proof. For the proof, see (see [Papadimitriou,94] and [START_REF] Hopcroft | [END_REF]).

The presentation of the original algorithm

We will first present a well known randomized algorithm for 3SAT. This is Schoning's algorithm from 1991 (see [Schoning, 1991]). We also note that Papadimitriou also discussed a similar algorithm for 2SAT in 1991 (see [Papadimitriou, 1991]).

It is known that Papadimitriou's algorithm finds a solution in quadratic time with high probability for 2SAT. Only exponential bounds are known for Schoning's algorithm for 3SAT.

Schoning's algorithm for 3SAT

Input: a 3SAT expression in 𝑛 variables.

Guess an initial truth assignment, uniformly at random.

Repeat 3 • 𝑛 times:

If the expression is satisfied by the actual assignment, stop and accept.

Let C be some clause not being satisfied by the actual assignment. Pick one of the three literals in the clause at random, and flip its truth value.

Update.

Stop and reject, the expression is not satisfiable.

The extension of Schoning's algorithm

We assume that the reader is familiar with the random walk model (based on the Hamming distance to a solution) associated with the algorithm. This is discussed in detail in [Schoning, 1991], and [Papadimitriou, 1991]. Definition 1. A truth valuation v(x) of a variable x is a real number in the interval [0,1]. We note the difference between a truth valuation and a truth assignment, where the truth assignment for a variable can be only 0 or 1. Definition 2. Given two truth valuations for n variables (𝑣 1 (x 1 ), 𝑣 1 (x 2 ), 𝑣 1 (x 3 ), … … 𝑣 1 (x 𝑛 ) ) , and (𝑣 2 (x 1 ), 𝑣 2 (x 2 ), 𝑣 2 (x 3 ), … … 𝑣 𝑛 (x 𝑛 ) ) , the Hamming distance between these truth valuations is by definition 𝑑(𝑣 1 , 𝑣 2 ) = |𝑣 1 (x 1 ) -𝑣 2 (x 1 )| + |𝑣 1 (x 2 ) -𝑣 2 (x 2 )| + ⋯ … . . + |𝑣 1 (x 𝑛 ) -𝑣 2 (𝑥 𝑛 )|. Note that this definition can be also applied for a 3SAT clause, but involving only the variables that appear in the clause. Thus, if we consider a clause (x, y, z) , with the valuation (v(x), v(y), v(z)), then the distance between this clause and (0, 0, 0) is simply d = v(x) + v(y) + v(z).

Definition 3. The truth valuation of 𝑥 ˅ 𝑦 is v(x ˅ y) = v(x) + v(y) -v(x) • v(y).
The valuation of the negation of a variable ¬x is v(¬x) = 1 -v(x). It is clear that if we are given a truth valuation for the n variables that appear in a 3SAT expression, then for any 3SAT clause we can calculate the truth valuation of that clause

v(x ˅ y ˅ z) = v(x) + v(y) + v(z) -v(x) • v(y) -v(x) • v(z) -v(y) • v(z) + v(x) • v(y) • v(z)
. The truth valuation of the whole 3SAT expression is the product of the truth valuations of all the clauses. Definition 4. We will call a variable x locked, if its truth valuation at a given moment is 0 or 1.

We are ready to present the extension of Schoning's algorithm, the preliminary version.

Extension of Schoning's algorithm for 3SAT (preliminary version)

Input: a 3SAT expression in 𝑛 variables. Let C be some clause that has a minimal truth valuation. If there are more than one, then pick one at random. . Choose one of the literals in the clause at random (only choose between literals that are connected to variables that are not locked), and with equal probability Stop and reject, the expression is not satisfiable.

Initialize all variables with a truth valuation such that each variable has a truth valuation of

Proposition 2. We consider the case of one dimensional symmetric random walks (like the coin tossing game). For fixed t, the probability that the first passage through r occurs before epoch t

• r 2 tends to √ 2 π • ∫ e -1 2 •s 2 ds ∞ 1 √t = 2 (1 -R( 1 √t
)) , as r → ∞ , where R is the normal distribution.

Proof. For the proof, see [Feller, 1968], chapter 3. This means that the waiting time for the first passage through r increases with the square of r. The expected traveled distance in r 2 steps is r.

We note that in terms of the random walk model ( [Schoning, 1991], and [Papadimitriou, 1991]), we have here a one dimensional symmetric random walk. At any moment, the Hamming distance from the current truth valuation (for all the n variables) to the truth assignment solution (if it exists) can increase or decrease by . The expected traveled distance in 2 • n 4 steps is √2 • n 2 , and that is more than sufficient, because we have n variables, and each variable must perform n steps towards 0 or 1 from the initial truth valuation of 1 2 (for a total of n 2 steps towards a solution). We also distinguish between this random walk in terms of the Hamming distance towards a solution, and the random walks that are performed by each variable , starting at

1 2 .
Observation 1. The problem is that, because we are dealing with perfectly symmetric random walks for every variable, it is equally likely that a variable will be locked in the wrong truth assignment, as it is to be locked in the correct truth assignment. The locking mechanism has to be avoided.

We focus instead in the direction of travel in the multiple random walks associated to each variable. Proposition 3. If 0 < x < 1 , then in N steps performed by a symmetric random walk (as described above, for each variable), the probability that less (less or equal) than x • N time units are spent on the right side of Proof. For the proof, see [Feller, 1968], chapter 3.

That means that a reasonable amount of time units , each variable has the correct direction of travel, in terms of the current truth valuation. If the variables with the wrong direction of travel can be detected and their direction of travel corrected, then with high probability there is a moment when all the variables are on the correct side of , then give this variable the truth assignment 0 or 1 with equal probability 1 2 . This last case will not happen very often.

The idea is to temporarily convert a truth valuation to a truth assignment , but only for the purpose of testing the truth assignment at each step of the algorithm. The algorithm will still work only with truth valuations.

In the following version of the algorithm, the locking mechanism will not come into play. The important thing is the direction of travel , in terms of the random walk associated to each variable.

Extension of Schoning's algorithm for 3SAT

Input: a 3SAT expression in 𝑛 variables.

Initialize all variables with a truth valuation such that each variable has a truth valuation of

1 2 . Repeat 2 • 𝑛 2 times:
Temporarily convert the current truth valuation to a truth assignment, and check whether this truth assignment is a solution for the given 3SAT expression. If it is a solution, stop and return the solution.

Let C be some clause that has a minimal truth valuation. If there are more than one, then pick one at random. . Choose one of the literals in the clause at random, and with equal probability Stop and reject, the expression is not satisfiable.

Observation 2. The purpose of the algorithm is to make the truth valuations for each clause equal to 1. When it finds a clause with a truth valuation with a minimal value, it knows that some of the variables involved in the clause do not have the correct direction of travel (in terms of the corresponding random walk). As a consequence, it puts more pressure on those variables to get to the right direction of travel (or to get on the correct side of ). We know that in a random walk associated to a variable, the changes in the direction of travel (or visits through 1 2 ) in N trials increases only as √N . With high probability, at some point in time, all the variables will be on the correct side of 1 2 , in terms of the corresponding random walks.

Discussion and conclusions

For general implications, related to efficiently solving NPcomplete problems, see [Fortnow, 2013]. An interesting application is related to the problem of automated theorem proving using an efficient algorithm for NPcomplete problems (see [A1]). The impact of this type of algorithm in mathematics, cryptography, science in general is hard to estimate.
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Appendices

A1. Godel's letter to John von Neumann. In his letter, Godel writes: "One can obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length n (length = number of symbols). Let 𝜓(𝐹, 𝑛) be the number of steps the machine requires for this and let 𝜑(𝑛) = 𝑚𝑎𝑥 𝐹 𝜓(𝐹, 𝑛). The question is how fast 𝜑(𝑛) grows for any optimal machine" (see [Godel, 1956]. Now we consider this. In [START_REF] Hopcroft | [END_REF], we have theorem 13.1, at page 325, where it is proved that for each Turing machine (deterministic or nondeterministic) M that is time bounded by a polynomial 𝑝(𝑛), a log-space algorithm exists, that takes as input a string x and produces a Boolean expression 𝐸 𝑥 that is satisfiable if and only if M accepts x.

This means that the process of seeking a proof (of reasonable length) of a mathematical statement can be completely automatized. With the algorithm presented in this paper, Godel's vision can be made reality.

  𝑛 4 times: If all variables are locked, then return the corresponding truth assignment.

  more of equal) than (1 -x) • N time units are spent on the left side of as N → ∞ .

2 ,

 2 A conversion from a truth valuation to a truth assignment is done as follows. If the variable x has the truth valuation v(x) > 1 then give this variable the truth assignment 1. If the variable x has the truth valuation v(x) < 1 2 , then give this variable the truth assignment 0. If the variable x has the truth valuation v(x) = 1 2