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Abstract. The last few years, we have studied different set pattern min-
ing techniques from binary data. It includes the computation of formal
concepts to support various knowledge discovery processes. For instance,
when considering post-genomics, we can exploit Boolean data sets that
encode a relation between some genes and the proteins that may regu-
late them. In such a context, it appears interesting to exploit the analogy
between a putative transcriptional module (i.e., a typically important hy-
pothesis for gene regulation understanding) and a formal concept that
holds within such data. In this paper, we assume that knowledge nuggets
can be captured by collections of formal concepts and we discuss the
challenging issue of mining/selecting actionable patterns from these col-
lections, i.e., looking for relevant patterns that really support knowledge
discovery. Therefore, a major issue concerns the computation of complete
collections of formal concepts that satisfy user-defined constraints. This
is useful not only to avoid the computation of too small patterns that
might be due to noise (e.g., using size constraints on both their intents
and extents) but also to introduce some fault-tolerance. We discuss the
pros and the cons of some recent proposals in that direction.

1 Introduction

Many application domains can provide possibly huge boolean matrices whose 

rows denote objects and columns denote attributes (see Table 1 for toy exam-
ples). Mining such binary data, or formal contexts in the terminology of Formal 
Concept Analysis (FCA) [1], has been studied extensively. Indeed, popular data 

mining techniques have been designed for set pattern extraction (e.g., mining 

frequent itemsets or association rules, mining frequent closed itemsets or other 

condensed representations of frequent patterns [2,3]). We are interested in bi-set 

mining, i.e., the computation of local patterns that are sets of objects and sets 

of attributes being somehow “associated”. Clearly, a formal concept is an inter-
esting type of bi-set that satisfy a local constraint: its attribute set (or intent) 

is the maximal set of attributes that are true for each object of its associated 

supporting set of objects (or extent). Here, locality refers to the fact that check-
ing whether a bi-set is a formal concept or not can be performed independently 

of the other patterns holding in the data. An example of a formal concept in
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r1 from Table 1 is ({o1, o2, o3, o4}, {p1, p2}). Notice that this paper does not
consider FCA as such and that, for instance, we are not really interested in
the underlying concept lattice itself. Instead, we consider collections of formal
concepts as collections of patterns. Also, we do not use formal concepts as con-
densed representations for collections of association rules (see [4] for a recent
survey covering such issues).

Table 1. r1 (left) - r2 (right)

p1 p2 p3 p4

o1 1 1 0 0
o2 1 1 0 0
o3 1 1 0 0
o4 1 1 1 1
o5 0 0 1 1
o6 0 0 1 1

p1 p2 p3 p4

o1 1 1 0 0
o2 1 0 1 0
o3 1 1 0 1
o4 1 1 1 1
o5 0 0 1 0
o6 0 0 1 1

Let us introduce a couple of motivating applications for our perspective on
formal concept mining (see, e.g., [5]). The objects can denote biological samples
and the attribute can denote boolean gene expression properties, e.g., the fact
that a given gene is over-expressed in a given sample. In such a case, the boolean
properties have to be derived from the continuous values measured by, e.g., the
microarray technology, and a formal concept provides an hypothesis on a maxi-
mal group of genes that have the same expression property in a given group of
biological samples. A second example would be to consider that some transcrip-
tion factors (i.e., the proteins which regulate gene expression) are the studied
objects for which we record whether they can bind or not on the promoter se-
quence of some studied genes. Here again, a formal concept can be interpreted as
an hypothesis on a maximal set of genes whose co-expression might be explained
by its associated set of transcription factors. Clearly, one of the motivations for
collecting gene expression data is indeed to be able to discover such hypothesis
that correspond, from a biological perspective, to putative synexpression groups,
transcription modules, regulation pathways, etc.

In this paper, we are interested in the various application domains for which,
given a binary data set, one can consider that its formal concepts are a priori
interesting statements about the data. In theory, computing formal concepts
is exponential in the smallest dimension of the data matrix (i.e., the number
of objects or the number of attributes). An important question concerns the
tractability of their computation for practical applications. Given the major ef-
fort of the last decade, it turns out that computing collections of formal concepts
that hold in large binary matrices can be feasible. Researchers have designed al-
gorithms that compute complete collections of formal concepts [6]. Since these
patterns are built on closed sets, the extensive research on (frequent) closed set
extraction has inspired constraint-based mining of formal concepts (see, e.g.,
[7]): every formal concept which furthermore satisfies a size constraint on one of
its components (e.g., a minimal size for its intent or its extent) can be extracted
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efficiently. This is however not really satisfactory when considering that our ulti-
mate goal is to mine actionable patterns, i.e., relevant formal concepts that can
indeed be interpreted by human experts to catalyze knowledge discovery. Real
data sets can hold hundreds of thousands of formal concepts: it is clear that look-
ing for actionable ones among the many spurious or irrelevant ones is extremely
hard or even impossible. In fact, it is interesting to look at one fundamental
limitation of Knowledge Discovery processes based on formal concepts. Within
such local patterns, the strength of the association of the two set components
is often too strong in real-life data. Indeed, errors of measurement and boolean
encoding techniques can lead to “erroneous” zero or one values. Unexpected zero
values give rise to a combinatorial explosion of the number of formal concepts
because interesting patterns are split into less relevant ones. For example, let us
consider the data from Table 1. Assume that r1 is a reliable representation of a
phenomenon but that data collection and preprocessing lead to r2 instead (i.e.,
some noise has been introduced), the number of formal concepts in r2 is approx-
imately twice larger than in r1. While this concerns zero values that may be one
values, we can also consider what happens in the reverse situation: the intuition
is that when some zero values have been encoded as one values by error, many
“small” formal concepts may hold. Therefore, we need to avoid computing too
small patterns but also we have to somehow relax that no exception (zero value)
can be accepted, i.e., what we call fault-tolerance. For instance, a bi-set like
({o1, o2, o3, o4}, {p1, p2}) is not a formal concept in r2 but it may be considered
as a relevant pattern: its objects and attributes are strongly associated (only one
zero value) and, furthermore, its “outside” objects and attributes contain more
than one zero value.

Our contribution here is to consider how some data mining researchers have
designed more or less pragmatic methods to address these problems. We avoid to
produce the technical details that are available from the referenced papers. We
will discuss the DMiner proposal for constraint-based mining of formal concepts
in the challenging case where, for instance, we want to “push” size constraints
on both dimensions [8,5]. We will also consider different approaches for designing
fault-tolerant patterns based on formal concepts [9,10,11]. The survey paper [12]
is a discussion on the needed trade-off between extraction feasibility, complete-
ness, relevancy, and ease of interpretation of such fault-tolerant pattern types.
Notice also that [12] contains empirical results on both synthetic and real data.

Section 2 discusses the DMiner solution for constraint-based mining of formal
concepts. In Section 3, we consider the obstacles and present some available
solutions for actionable pattern discovery based on formal concepts. Section 4
briefly concludes on some current open issues in that area.

2 Formal Concept Mining

Let O denotes a set of objects and P denotes a set attributes (or properties). In
Table 1, O = {o1, · · · , o6} and P = {p1, · · · , p4}. A data set is the materialization
of a binary relation r ⊆ O × P . We write (oi, pj) ∈ r to denote that property
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j holds for object i. Boolean matrices like r1 and r2 in Table 1 are classical
representations for such relations.

Formal concepts can be considered as bi-sets, i.e., couples of sets (X, Y ) from
2O × 2P that satisfy a constraint denoted CFC(X, Y ). The definition of such a
constraint might be expressed in terms of Galois operators and closures. In this
paper, let us specify it in terms of the conjunction of a density constraint (first
conjunct) and a relevancy constraint (second and third conjuncts), following the
presentation from [11].

Definition 1 (Formal Concept). A bi-set (X, Y ) ∈ 2O × 2P is a formal con-
cept in r if it satisfies the constraint CFC(X, Y ) ≡ (∀x ∈ X, ∀y ∈ Y (x, y) ∈
r) ∧ (∀x ∈ O \ X, ∃y ∈ Y s.t. (x, y) �∈ r) ∧ (∀y ∈ P \ Y,∃x ∈ X s.t. (x, y) �∈ r).

Informally, it means that for a formal concept (X, Y ), if we perform permu-
tations of rows and columns such that all the elements from X (resp. Y ) are
contiguous, we observe a maximal rectangle of true values (no zero value in-
side, at least one zero value outside). Another useful analogy to understand the
semantics of formal concepts is to consider them as bi-cliques in the bi-partite
graphs represented by the boolean matrix. Computing every formal concept that
holds within a boolean matrix is NP-hard. As soon as none of the dimensions is
small, this extraction task is not feasible. Furthermore, when the computation is
tractable, we often get a huge amount of formal concepts (e.g., millions) even in
rather small data sets. As we mentioned in our introduction, this is definitively
not acceptable for actionable pattern discovery. Constraint-based mining is a
partial but impressive solution to both problems, i.e., computational complexity
and relevancy. The idea is that the analyst can often exploit some background
knowledge to specify declarative constraints that may hold for the extracted for-
mal concepts of interest. It happens that some of these user-defined constraints
can be exploited (say “pushed deeply”) by the mining algorithm to prune ef-
ficiently the search space. For example, we may need patterns with a minimal
number of elements on both dimensions (a counterpart of the popular minimal
frequency constraint for itemset mining [13]) and/or patterns covering at least
a given number of elements of r (intuitively, a minimum area constraint for the
associated “rectangle”). As a result, when considering knowledge discovery pro-
cesses based on formal concepts, we are generally computing collections of bi-sets
that satisfy not only CFC but also a user-defined constraint CUD:

{(X, Y ) ∈ 2O × 2P | CFC(X, Y ) ∧ CUD(X, Y )}

Figure 1 provides examples of well-known user-defined constraints where α

and β denote some thresholds, a ∈ O, b ∈ P , E ⊆ O, and E′ ⊆ P are constraint
parameters. For instance, C1

size ∧ C2

size or Carea are two different constraints to
specify that patterns have to be “large enough”. Also, Cmean is just one example
of a constraint which enforces that the average of an external positive value
associated to each element of the extent is greater than a given threshold.

Not every constraint can be processed efficiently. We have a special interest
for monotonic and anti-monotonic constraints (see Definition 2) that have nice
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CUD(X, Y )

C1
size ≡ |X| > α

C2
size ≡ |Y | > α

Carea ≡ |X| × |Y | > α
Cmean ≡

∑
i∈X

V al+(i)/|X| > α
Cmember ≡ a ∈ X ∧ b ∈ Y
Cinter ≡ |X ∩ E| > α ∧ |Y ∩ E′| < β

Fig. 1. Examples of interesting constraints on bi-sets

properties when the search space is organized as a lattice structure thanks to a
specialization relation.

Definition 2 (Monotonic constraints). A constraint C is anti-monotonic
w.r.t. the specialization order 	 on E iff ∀a, b ∈ E s.t. a 	 b then ¬ C(a) ⇒
¬ C(b). C is monotonic w.r.t. 	 iff ∀a, b ∈ E s.t. a 	 b then ¬ C(b) ⇒ ¬ C(a).

Following a path in an enumeration tree for candidate patterns, an anti-
monotonic constraint is satisfied for all the patterns before a specific pattern
and not satisfied afterwards. A popular example is the anti-monotonicity of a
minimal frequency constraint which specifies that the size of the extent has to
be greater than a given threshold (i.e., C1

size). This constraint can efficiently re-
duce the search-space and remove spurious patterns whose extent is too small.
However, in the many applications where the data set is large on both dimen-
sions and when the density in terms of true values is high, the only way to
achieve tractability seems to be an increase of the minimal size threshold for
the extent. Doing so, we clearly loose a priori interesting formal concepts (the
larger the extent, the smaller the intent, and vice versa). Therefore, we may
want to use other constraints like, for example, minimal size constraint on both
the intents and the extents, i.e., conjunctions C1

size ∧ C2

size. Unfortunately, using
the standard enumeration on formal concepts (enumeration of the intent and
computation of the extend), most algorithms can only exploit anti-monotonic
constraints on the intent and monotonic constraints on the extent, i.e., a con-
junction like |X | > α ∧ |Y | < β (say C1

size ∧ ¬ C2

size). Furthermore, it is not
that simple to exploit constraints like Carea, Cmean, Cmember, and Cinter . Even
though they can be used to capture important expectation from the analysts,
these constraints are neither anti-monotonic nor monotonic.

The DMiner algorithm is a depth-first search algorithm inspired by both
Ganter’s algorithm [14] and DualMiner [15]. The principle of Ganter’s algo-
rithm enables to identify from an extracted formal concept the smallest formal
concept that may follow it. Doing so, we can avoid the generation of many
sets that are not closed, i.e., which can not correspond to formal concepts.
On the other hand, for efficiency purposes, we have to follow the order re-
lated to the standard set inclusion. Given the data from Table 2, it is far
more efficient to generate the formal concept ({o1, o2, o3}, {p1, p2, p3, p4})
from ({o1, o2, o3, o5}, {p1, p3}) than from ({o2, o3, o4}, {p9, p10}). The pattern
({o1, o2, o3, o5}, {p1, p3}) already contains a lot of information that can be used to
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Table 2. A boolean context r3

Attributes

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

o1 1 1 1 1 0 1 1 0 0 0
o2 1 1 1 1 0 0 0 0 1 1
o3 1 1 1 1 0 0 0 0 1 1
o4 0 0 0 0 1 1 1 1 1 1
o5 1 0 1 0 1 1 1 1 0 0

generate ({o1, o2, o3}, {p1, p2, p3, p4}), e.g., we know that ({o1, o2, o3}, {p1, p3})
holds in r3 because it is “included” in ({o1, o2, o3, o5}, {p1, p3}) which is a formal
concept.

It means that we do not have to scan all the data corresponding to the new
patterns to be extracted. In our running example, we only need to scan the data
corresponding to ({o1, o2, o3}, {p2, p4}). It is even more crucial when large data
sets are considered. Thus, we adopt a binary enumeration of the smallest set (O
or P) and the other set is computed by means of the Galois connection. This
enumeration combines both Ganter’s principle and a prefix-based enumeration.

It is important to exploit constraints not only to increase the relevancy of
the computed patterns but also to increase computational efficiency. Most of
the available algorithms can push monotonic and/or anti-monotonic constraints
according to set inclusion on one dimension. We however argued in the previ-
ous section that this is not enough. Unlike most of the formal concept mining
algorithms, DMiner does not consider that each candidate is only represented
by means of two sets, i.e., the intent and the extent. The enumerated set, let
us say the intent, is split into two sets, the first one representing the set of ele-
ments that belong to any formal concept extracted from the current candidate
and the second one containing the elements that still have to be enumerated
(see the inspiring principle in [15]). The two sets are the bottom and the top of
a lattice which represents the current search space. For example, we may have
a candidate (o1o2o3o5, (p1, p1p2p3)) where the intent is represented by two sets
{p1} and {p1p2p3} instead of only one set {p1p2p3}. By this way during the enu-
meration we always know precisely which search-space is related to the current
candidate and thus increase the number of constraints the algorithm can handle.
In our example the candidate is supported by the extent {o1, o2, o3, o5} and it
represents all the attribute sets Y (intents) such that {p1} ⊆L Y ⊆L {p1, p2, p3}
where (X, Y ) ⊆L (X ′, Y ′) ⇒ X ⊂ X ′ ∧ Y ⊂ Y ′, i.e., the attribut sets {p1},
{p1, p2}, {p1, p3} and {p1, p2, p3} in our example. Notice that a candidate of the
form (O, (X, X)) denotes the bi-set (O, X).

This pattern representation enables to push a larger class of constraints than
only the anti-monotonic constraints. Indeed, each candidate denotes a search
space in the form of an attribute lattice with its associated object set. For exam-
ple, let us consider candidate C = (o1o2o3o5, (p1, p1p2p3p4)) in r3, each formal
concept derived from C which contains p1 contains at most the attributes from
{p1, p2, p3, p4} and its associated object set is included in {o1, o2, o3, o5}. It
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enables to push difficult constraints like Carea and Cmean which are neither mono-
tonic nor anti-monotonic. Indeed, since we have an attribute lattice, we can com-
pute bounds for some constraints. For instance, we can see that the area of C is
between |{o1, o2, o3, o5}|×|{p1}| = 4 and |{o1, o2, o3, o5}|×|{p1, p2, p3, p4}| = 16.
If we are looking for formal concepts with an area of size at least 17 or of size at
most 3, then pattern C can be pruned safely, i.e., it can not lead to acceptable
formal concepts.

We adopted simple arrays as data structure to store the sets of objects and
attributes. A time complexity analysis shows that it is as efficient as the other
more complex data structures used in depth-first search algorithms. Finally,
to check whether a set X is closed, DMiner does not have to scan all the
sets from P \ X . Indeed, only attributes which have been removed from the
search space by enumeration have to be checked. Instead of going into much
details, let us provide two DMiner executions (see Figure 2 and Figure 3) on
the data sets given in Table 3. In Figure 2, the algorithm starts with the candi-
date (o1o2o3, (∅, p1p2)) representing the set of all possible patterns of r4. Then
the attribute p1 is selected to proceed the enumeration. Two new candidates
(o1o2o3, (∅, p2)) and (o1o2o3, (p1, p1p2)) are generated. After enumerating the
attribute p2, four formal concepts are extracted (o1o2o3, ∅), (o1o2, p2), (o2o3, p1)
and (o2, p1p2). Figure 3 provides an other example of DMiner execution.

To investigate the efficiency of DMiner, we studied its complexity using the
time delay, i.e., the complexity to go from one solution to the next one [16].
DMiner time delay is in the worst case equal to O(n2m) where n is the size of the
enumerated set and m is the size of the other one. This complexity is the same as

Table 3. Extraction contexts r4 (left) and r5 (right)

p1 p2

o1 0 1

o2 1 1

o3 1 0

p1 p2 p3

o1 0 0 1

o2 0 1 0

o3 1 0 1

(o1o2o3, (∅, p1p2))

p1

(o1o2o3, (∅, p2))

p2

(o1o2o3, (∅, ∅)) (o1o2, (p2, p2))

(o2o3, (p1, p1p2))

p2

(o2o3, (p1, p1)) (o2, (p1p2, p1p2))

Fig. 2. Formal concept extraction on r4
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((∅, o1o2o3), p1p2p3)

o1

((∅, o2o3), p1p2p3)

o2

((∅, o3), p1p2p3)

o3

((∅, ∅), p1p2p3) ((o3, o3), p1p3)

((o2, o2o3), p2)

((o2, o2), p2)

((o1, o1o2o3), p3)

o2

((o1, o1o3), p3)

((o1o3, o1o3), p3)

((o1o2, o1o2o3, o1o2o3), ∅)

Fig. 3. Formal concept extraction on r5

for Ganter’s algorithm [14]. The time delay in average is O(n−log
2
(K)+1)O(mn)

where K is the number of formal concepts in the data set. It is between O(nm)
and O(n2m) according to K. This is an interesting result when considering the
use of DMiner on data sets in which many formal concepts hold.

To refer to one concrete example, let us recall the application described in [5].
It concerns the analysis of a data set that records (a) the existence of putative
binding sites of 94 transcription factors on the promoter sequences of 304 genes
(selection of human genes), and (b) the over-expression property of these same
genes in 10 biological simples (individuals). In other terms, the boolean context
implies 104 objects (94 transcription factors and 10 biological situations, more
precisely 5 for healthy individuals and 5 for diabetic patients) and 304 genes.
Formal concept discovery from such a boolean context is already hard. Notice
also that the obtained boolean context was rather dense in terms of true values
(17% of the cells containing a true value). In such a situation, even efficient
algorithms for mining frequent closed sets can turn to be intractable. This data
set is particular: there are very few frequent formal concepts with a relative
frequency threshold above 0.1 on genes (5 534 patterns) and then the number of
formal concepts increases very fast. Without any constraint, we get more than
five million formal concepts within a few minutes. In this context, extracting
actionable formal concepts needs for a very low frequency threshold, otherwise
almost no formal concept can be computed. Notice that actionable patterns
corresponding to interesting biological hypothesis have been found by means of
formal concepts holding in this data set [16,5].

Figure 4 shows the running time of formal concepts extractions in the biolog-
ical data set with varying the minimal frequency threshold. The competitors in
the experiment are three different algorithms used for computing frequent closed
sets, namely ac-miner [17], closet [18] and Charm [19].
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Fig. 4. An application [5]

3 Looking for Actionable Patterns

Let us now come back on our main goal that is actionable pattern discovery
based on collections of formal concepts. The challenge is to mine relevant formal
concepts that can indeed be interpreted by human experts to catalyze knowl-
edge discovery. In case this is not possible, we may also look for application-
independent and/or application-dependent post-processing techniques that can
be applied on formal concepts to support the discovery of actionable patterns.

– When, among other things, a data set captures correctly a phenomenon of
interest, collections of formal concepts can be huge and they may contain
large collections of spurious patterns (false positives) and/or irrelevant pat-
terns w.r.t. domain knowledge. This is somehow inherent to (unsupervized)
local pattern discovery techniques. The two main directions of research to
improve this situation concern (a) the use of randomization techniques for
statistical validity assessment for the extracted patterns (see, e.g., [20]) and
(b) the use of user-defined constraints to specify subjective interestingness
issues based on domain knowledge (e.g., using Cmember or Cinter primitive
constraints).

– When considering the problem of erroneous true values (the property should
not be satisfied but we record that it is satisfied), assuming that this is
fundamentally rare, many “small” formal concepts may hold. Therefore, we
need to avoid computing these too small patterns by using minimal size or
minimal area constraints (See Section 2). In practice, using these constraints
C1

size, C2

size and/or Carea can be extremely efficient.
– When considering the problem of erroneous false values (the property is

satisfied but we record that it is not satisfied), assuming again that this can
not be too frequent, the number of extracted formal concepts will increase
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fast w.r.t. what it should be if the data were correct. This is a clear need for
fault-tolerance and we discuss several proposals hereafter (see Section 3.1).

– The number of patterns, even if only relevant ones have been collected, is
indeed a problem. Knowledge discovery needs for human expert assessment
of patterns and browsing or inspecting thousands of patterns is definitively
not possible. The solution can come from (a) the design of pattern databases
and advanced querying tools, and (b) summarization techniques based on, for
instance, clustering methods. Considering problems and solutions for pattern
database management is related to the emergent topic of inductive databases
and will not be discussed further in this paper. Considering summarization
techniques has been successfully applied (see Section 3.2).

3.1 Introducing Fault-Tolerance

We first revisit the definition of formal concepts for a fairly natural introduction
of fault-tolerance. In the following, we say that a bi-set (X, Y ) is included in a
bi-set (X ′, Y ′) denoted (X, Y ) ⊆ (X ′, Y ′) iff (X ⊆ X ′) ∧ (Y ⊆ Y ′).

Definition 3. Assume Zl(x, Y ) denotes the number of false values of an object
x on the attributes in Y , i.e., |{y ∈ Y |(x, y) �∈ r}|. Similarly, let Zc(y, X) =
|{x ∈ X |(x, y) �∈ r}| be the number of false values of an attribute y on the objects
in X.

Definition 4 (FC). A bi-set (X, Y ) ∈ 2O × 2P is a formal concept in r iff
(2.1) ∀x ∈ X, Zl(x, Y ) = 0 ∧ ∀y ∈ Y, Zc(y, X) = 0
(2.2) ∀x ∈ O \ X, Zl(x, Y ) ≥ 1 ∧ ∀y ∈ P \ Y, Zc(y, X) ≥ 1

Sub-constraint 2.1 expresses that a formal concept contains only true values. Sub-
constraint 2.2 denotes that formal concept relevancy is enhanced by a maximality
property. It is now straightforward to introduce a declarative specification of
fault-tolerance.

Definition 5 (DRBS [11]). Given integer parameters δ and ǫ, a bi-set
(X, Y ) ∈ 2O × 2P is called a DRBS pattern (Dense and Relevant Bi-Set) in
r iff
(3.1) ∀x ∈ X, Zl(x, Y ) ≤ δ ∧ ∀y ∈ Y, Zc(y, X) ≤ δ

(3.2) ∀e ∈ O \ X, ∀x ∈ X, Zl(e, Y ) ≥ Zl(x, Y ) + ǫ

∧ ∀e′ ∈ P \ Y, ∀y ∈ Y, Zc(e
′, X) ≥ Zc(y, X) + ǫ

(3.3) It is maximal, i.e., � ∃(X ′, Y ′) ∈ 2O × 2P s.t. (X ′, Y ′) is a DRBS pattern
and (X, Y ) ⊆ (X ′, Y ′).

DRBS patterns have at most δ false values per object and per attribute (Sub-
constraint 3.1) and are such that each outside object (resp. attribute) has at
least ǫ false values plus the maximal number of false values on the inside objects
(resp. attributes) according to Sub-constraint 3.2. The size of a DRBS pattern
increases with δ such that, when δ > 0, it happens that several bi-sets are in-
cluded in each other. Only maximal bi-sets are kept (Sub-constraint 3.3). Notice
that δ and ǫ can be chosen differently on objects and on attributes. It is clear
that when δ = 0 and ǫ = 1, DRBS ≡ FC.
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Table 4. A boolean context r6

p1 p2 p3 p4 p5 p6 p7

o1 1 0 1 0 1 0 0

o2 1 1 1 1 0 1 0

o3 0 1 1 1 1 1 1

o4 0 0 0 1 1 1 0

o5 1 0 0 0 0 1 0

o6 1 1 1 1 1 0 0

o7 1 1 1 1 1 0 0

Table 5. Permutations on r6 to illustrate Example 1

p1 p2 p3 p4 p5 p6 p7

o1 1 0 1 0 1 0 0

o2 1 1 1 1 0 1 0

o3 0 1 1 1 1 1 1

o4 0 0 0 1 1 1 0

o6 1 1 1 1 1 0 0

o7 1 1 1 1 1 0 0

o5 1 0 0 0 0 1 0

Example 1. If δ = ǫ = 1, (X, Y ) = ({o1, o2, o3, o4, o6, o7}, {p3, p4, p5}) is a
DRBS pattern in r6 (see Table 4). Columns p1, p2, p6 and p7 contain at least
two false values on X, and o5 contains three false values on Y (see Table 5).

Collections of DRBS patterns can be computed in rather small data sets by using
the correct and complete algorithm DR-Miner [11]. It is again based on the
Dual-Miner principle [15]. Notice that a preliminary approach for specifying
“symmetrical” fault-tolerant formal concepts had been introduced in [9] (i.e., the
so-called αβ-concepts) and that it has been compared with the DRBS pattern
domain in [12].

Let us now consider a rather different (and say pragmatic) extension of formal
concepts which is not symmetrical. It has been designed thanks to the previous
work on one of the few approximate condensed representations of frequent sets,
the so-called δ-free sets [17]. δ-free sets are some kind of generators whose counted
frequencies enable to infer the frequency of many sets (sets included in their
so-called δ-closures) without further counting but with a bounded error. The
δ-freeness constraint on attributes sets has been formalized in terms of the size
of the supported sets of objects (this so-called frequency has to be different from
the frequency of all its subsets by at least δ). Notice also that the so-called
generators in [21] or key patterns in [22] are special cases of δ-free sets (δ = 0).
The 0-closure is the classical closure operator and applying it on each 0-free set
is one way to produce every closed set and thus every formal concept.

The idea for the so-called FBS patterns (Free set Based Bi-Set) is to consider
bi-sets built on the δ-closure of δ-free attribute sets associated to their supporting

11



Actionability and Formal Concepts: A Data Mining Perspective

sets of objects [23,10]. The intuition is that it will provide strong associations
between sets of objects and sets of attributes. To avoid technical details, let us
just comment an example.

Example 2. If δ = 1, {p2} is a 1-free set and ({o2, o3, o6, o7}, {p1, p2, p3, p4, p5})
is a FBS pattern in r6 (see Table 6). The 1-closure of {p2} is {p1, p2, p3, p4, p5}
because p1, p3, p4, and p5 are the attributes which are almost always true (1
exception is accepted) for the objects that have the property denoted by p2, i.e.,
objects o2, o3, o6, and o7.

When δ=0, attribute 0-free sets are the minimal elements of the equivalence
classes of the relation ”has the same supporting set of objects”. Then, the 0-
closure provides a closed set of attributes that associated to its supporting set
of object gives a formal concept. In other terms, when δ = 0, FBS ≡ FC.

Table 6. A permutation on r6 to illustrate Example 2

p1 p2 p3 p4 p5 p6 p7

o2 1 1 1 1 0 1 0

o3 0 1 1 1 1 1 1

o6 1 1 1 1 1 0 0

o7 1 1 1 1 1 0 0

o1 1 0 1 0 1 0 0

o4 0 0 0 1 1 1 0

o5 1 0 0 0 0 1 0

The extraction of FBS patterns can be extremely efficient thanks to δ-freeness
anti-monotonicity. Notice that FBS patterns are bi-sets with a bounded number
of exception per column but every bi-set with a bounded number of exception
per column is not necessarily a FBS pattern.

One crucial issue that can explain the added-value of formal concepts is the
ease of interpretation thanks to the Galois connection. What happens with these
DRBS and FBS extensions? For each bi-set (X, Y ), do we have a function which
associates X and Y ? If a function exists which associates to each set X (resp. Y )
at most a unique set Y (resp. X), the interpretation of each bi-set is much easier.
Furthermore, if the two functions are monotonically decreasing, i.e. when the size
of X (resp. Y ) increases, the size of its associated set Y (resp. X) decreases. This
property is meaningful since the more we have objects inside a bi-set, the less
there are attributes that can be associated to describe them (or vice versa).

In a FBS pattern, we have no function from 2P to 2O but we have a function
from 2O to 2P . The definition of this pattern is indeed not symmetrical. In many
data sets, including huge and dense ones, complete collections of FBS can be
extracted efficiently but we need for a better characterization of more relevant
FBS patterns which might remain easy to extract from huge databases, e.g.,
what is the impact of different δ values for the δ-free-set part and the δ-closure
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computation? How can we avoid an unfortunate distribution of the false values
among the same objects?

By construction, a DRBS has been defined such that we have a bounded
number of exceptions per object and per attribute. Two interesting properties
have been proven [11,16]. First, when ǫ > 0, DRBS patterns are embedded by
two functions φ (resp. ψ) which associate to X (resp. Y ) a unique set Y (resp. X).
Then, for a fixed δ, we have monotonicity properties of φ and ψ. Unfortunately,
the functions loose this property on the whole DRBS collection. Furthermore,
we have not identified yet an intentional definition of these functions.

Notice that [12] contains an empirical evaluation of these different pattern
domains on both artificially noised data sets and a real-life medical data set.
These extensions of formal concepts have been specified in a constraint-based
mining framework, i.e., we have a declarative specification of the constraints on
the patterns such that we can work on correct and complete implementations for
computing them. Notice however that it is computationally challenging to work
with the most elegant extension, i.e., DRBS. Other researchers have considered
fault-tolerant pattern mining. To the best of our knowledge, most of the related
work has concerned mono-dimensional patterns and/or the use of heuristic tech-
niques [24,25]. [26] is one of the interesting proposal for geometrical tile mining
(i.e., dense bi-sets which involve contiguous elements given orders on both di-
mensions). More recently, other attempts to relax closeness have been considered
[27,28]. Fault-tolerance in general and its application to closed sets and formal
concepts in particular definitively appears as an important topic for real-life data
mining. Let us now consider another pragmatic approach for finding actionable
patterns based on collections of formal concepts.

3.2 Post-processing Collections of Formal Concepts

The number of formal concepts which hold in a data set and which can be
computed thanks to, for instance, user-defined constraints, can be huge. We
already pointed out that many factors can have a dramatic impact on the number
of formal concepts. For instance, when an error of measurement or an intrinsic
variability of the observed phenomenon lead to a zero value whereas the value
true should be obtained, we have to face with an explosion of the number of
formal concepts. The fault-tolerant extensions discussed above are definitively
not the ultimate solution: indeed, when tractable, the extractions still provide
too many patterns. One simple idea is to post-process the formal concepts and
more generally the extracted bi-sets to group the ones which are similar enough.
It is rather straightforward to design similarity measures between bi-sets and
one can perform, for instance, a hierarchical clustering method to group formal
concepts. These groups can be interpreted by computing some kind of “quasi-
formal concepts” that are in fact the bi-sets made of the union of the intents
and the union of the extents of all the formal concepts that belong to a cluster
[29]. This has been applied successfully to a real application in the domain of
human gene expression data analysis [30]. In this application, mining a 90×5327
boolean gene expression matrix has given rise to 64 836 formal concepts. When

13



Actionability and Formal Concepts: A Data Mining Perspective

considering size constraints that have enforced the formal concepts to imply
at least five biological samples and five genes, only 1 669 patterns have been
selected: this is however too much for a human interpretation for each of them.
We applied the hierarchical clustering and then we have built about 50 quasi-
synexpression groups, i.e., sets of genes strongly associated to sets of biological
samples. One of them has been carefully interpreted and this has given rise to
interesting biological new hypothesis [30].

Following the same ideas, we can also consider the possibility to build clus-
ters or co-clusters by exploiting the formal concepts. A co-clustering (see, e.g.,
[31]) provides linked partitions on both dimensions (objects and attributes) and,
in Boolean data, it tends to compute rectangles with mainly true (resp. false)
values. Heuristic techniques (i.e., local optimization) enable to compute one bi-
partition. In fact, a bi-clustering provides a global structure over the data while
fault-tolerant extensions of formal concepts are typical local patterns which can
lead to the discovery of unexpected but yet relevant local associations. In [32],
co-clusters are computed from collections of bi-sets like formal concepts: it is a
KMeans like clustering that does not work on objects or attributes but on bi-
sets. Notice also that once a bi-partition has been computed, by such a technique
or with another co-clustering approach, we can again use the bi-sets for charac-
terization purposes [10]. Notice that computing clusters or co-clusters based on
formal concepts is different from selecting formal concepts that may constitute
a collection of clusters or co-clusters (see, e.g., [33]).

In a conceptual clustering framework, Mineau et al. [34] present simple pre-
pruning and post-pruning techniques that can be applied in reasonable time on
large classification structures. The paper presents three such techniques: one is
based on the definition of constraints over the generalization language, the other
two are based on discrimination metrics applied on links between classes or on
the classes themselves.

Another interesting relationship that may be studied further is the formal
analogies between tiling as considered in [35] and co-clustering. Also, the quite
active area of subspace clustering is clearly related to local pattern detection
and constraint-based mining of bi-sets (see [36,37] for surveys).

4 Conclusion

We have discussed several aspects of actionable pattern discovery from collec-
tions of formal concepts. Thanks to constraint-based mining algorithms, comput-
ing complete collections of formal concepts that satisfy user-defined constraints
is feasible for some useful constraints. This framework has been used to specify
fault-tolerant extensions of formal concepts. This is definitively needed for min-
ing large and noisy Boolean data sets. The DRBS pattern domain appears as a
well-designed class but the price to pay is its computational complexity. The good
news are that (a) DRBS pattern extractions may involve further user-defined
constraints which can be used for efficient pruning, and (b) one can look for more
efficient data structures and thus a more efficient DR-Miner implementation.
A pragmatic usage could be to extract some bi-sets, e.g., formal concepts, and

14



J.-F. Boulicaut and J. Besson

then select some of them (say B = (X, Y )) for further extensions towards fault-
tolerant patterns: the computation of a DRBS patterns (say B′ = (X ′, Y ′))
such that the constraint B ⊆ B′ is enforced. We also mentioned post-processing
techniques that, for instance, cluster patterns like formal concepts not only to
decrease the number of hypothesis that have to be interpreted by human experts
but also to enhance their relevancy, e.g., achieving some kind of fault-tolerance.

Let us now conclude this paper by introducing a few open questions related
to both Formal Concept Analysis and constraint-based mining of patterns.

Constraints and formal concept mining. One important direction of research
remains constraint-based mining of formal concepts for hard constraints, that is
constraints that are neither monotonic nor anti-monotonic and for which new
enumeration strategies have to be designed. Constraints that refer to statistical
measures (e.g., based on standard deviation), are typical examples of such hard
constraints. Even though some types of hard constraints have been studied on
simple pattern domains like itemsets (e.g., optimization constraints that look for
the best k patterns w.r.t. an objective measure), so far, few researchers have tried
to upgrade these algorithms to the 2-dimensional case (i.e., for bi-set mining).
New constraint types must be designed as well. For instance, [38] has proposed
to increase the relevancy of set patterns by means of constraints that exploit
textual resources in the context of biological data analysis. This is a promising
direction of research.

Extensions of formal concepts. The constraint-based mining framework supports
the exploitation of domain knowledge to increase a priori relevancy of patterns.
We notice however that in more and more applications, the data can hardly
be presented as a single binary relation. Let us take an example: assume that
we have genes with a lot of information about them (e.g., functions, associated
transcription factors), biological experiments enabling to measure the expression
of these genes and finally details about the experiments. Consider now that we
want to extract the sets of house-keeping genes that are over-expressed in the
same biological experiments that are related to muscle tissues. The extraction
task sounds like a formal concept extraction, same words same ideas, but here
the data are structured into multiple n-ary relations (n > 2). One hot topic is to
revisit the principles of pattern mining in binary relation when considering n-ary
relations. For instance, the counterpart of formal concepts in cubes (3-ary rela-
tions) has been recently investigated [39,40]. Also, extending the ideas of closed
set and condensed representation mining in a multi-relational setting is a timely
challenge. [41] presents a formal concept analysis-based class hierarchy design
that can be viewed as normal forms for class hierarchies where each normal form
addresses particular design goals. An overview of work in the area is presented
by highlighting the formal concept analysis notions that are involved. [42] intro-
duces a first formalization of a network of contexts, i.e., the data is represented
by the means of several contexts. Descriptions of conceptual coherences within
the formalized network of contexts are introduced.
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Storing and querying collections of patterns. Following the inductive database per-
spective [43,2], patterns may be considered as first-class citizens and we have to de-
sign databases that not only contain data but also patterns like formal concepts or
clustering results. Technically, many challenges concern the efficient management
of large collections of set patterns because relational databases are not targeted
towards this type of data. Also, the design of general-purpose query languages to
support knowledge discovery by means of queries remains an open problem.

Local-to-Global. Many global patterns (e.g., classifiers, clusterings) can be con-
sidered as collections of local patterns that satisfy some kind of global con-
straints. These local patterns are themselves satisfying local constraints. The
popular association-based classification approach [44] is an obvious example of a
Local to Global (L2G) scheme: standard association rules are the local patterns
(i.e., local constraints are the minimal frequency and minimal confidence con-
straints). The various proposals for building classifiers from them are then based
on different global constraints on these collections of association rules. Cluster-
ing can be considered within a L2G framework as well (see, e.g;, [32]). A better
understanding of cross-fertilization between local pattern detection and global
pattern discovery is an extremely active research direction that may deliver in-
teresting insights in the next few years. Among others, the exciting challenge of
constrained clustering may benefit from such a Local to Global approach (see,
e.g., [45] for a constrained co-clustering based on formal concepts).
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Pensa for their participation to most of the research results discussed in this pa-
per. This research is partially funded by EU contract IST-FET IQ FP6-516169.

References

1. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI),
vol. 3626. Springer, Heidelberg (2005)

2. Boulicaut, J.F.: Inductive databases and multiple uses of frequent itemsets: the
cInQ approach. In: Meo, R., Lanzi, P.L., Klemettinen, M. (eds.) Database Sup-
port for Data Mining Applications. LNCS (LNAI), vol. 2682, pp. 1–23. Springer,
Heidelberg (2004)

3. Calders, T., Rigotti, C., Boulicaut, J.F.: A survey on condensed representations
for frequent sets. In: Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.) Constraint-
Based Mining and Inductive Databases. LNCS (LNAI), vol. 3848, pp. 64–80.
Springer, Heidelberg (2006)

4. Valtchev, P., Missaoui, R., Godin, R.: Formal concept analysis for knowledge dis-
covery and data mining: The new challenges. In: Eklund, P.W. (ed.) ICFCA 2004.
LNCS (LNAI), vol. 2961, pp. 352–371. Springer, Heidelberg (2004)

5. Besson, J., et al.: Constraint-based formal concept mining and its application to
microarray data analysis. Intelligent Data Analysis 9(1), 59–82 (2005)

6. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for gener-
ating concept lattices. Experimental and Theoretical Artificial Intelligence 14(2-3),
189–216 (2002)

16



J.-F. Boulicaut and J. Besson

7. Stumme, G., et al.: Computing iceberg concept lattices with titanic. Data & Knowl-
edge Engineering 42, 189–222 (2002)

8. Besson, J., Robardet, C., Boulicaut, J.F.: Constraint-based mining of formal con-
cepts in transactional data. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004.
LNCS (LNAI), vol. 3056, pp. 615–624. Springer, Heidelberg (2004)

9. Besson, J., Robardet, C., Boulicaut, J.F.: Mining formal concepts with a bounded
number of exceptions from transactional data. In: Goethals, B., Siebes, A. (eds.)
KDID 2004. LNCS, vol. 3377, pp. 33–45. Springer, Heidelberg (2005)

10. Pensa, R., Boulicaut, J.F.: From local pattern mining to relevant bi-cluster charac-
terization. In: Famili, A.F., et al. (eds.) IDA 2005. LNCS, vol. 3646, pp. 293–304.
Springer, Heidelberg (2005)

11. Besson, J., Robardet, C., Boulicaut, J.F.: Mining a new fault-tolerant pattern type
as an alternative to formal concept discovery. In: Schärfe, H., Hitzler, P., Øhrstrøm,
P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 144–157. Springer, Heidelberg
(2006)

12. Besson, J., et al.: Constraint-based mining of fault-tolerant patterns from boolean
data. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp.
55–71. Springer, Heidelberg (2006)

13. Goethals, B., Zaki, M.: Proceedings of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations FIMI 2003, Melbourne, USA (2003)

14. Ganter, B.: Two basic algorithms in concept analysis. Technical report, Technische
Hochschule Darmstadt, Germany, Preprint 831 (1984)

15. Bucila, C., et al.: DualMiner: A dual-pruning algorithm for itemsets with con-
straints. Data Mining and Knowledge Discovery 7(4), 241–272 (2003)
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