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A parallel matheuristic for the technician routing problem with conventional and electric vehicles

The technician routing problem with conventional and electric vehicles (TRP-CEV) consists in designing service routes taking into account the customers' time windows and the technicians' skills, shifts, and lunch breaks. In the TRP-CEV routes are covered using a fixed and heterogeneous fleet of conventional and electric vehicles (EVs). Due to their relatively limited driving ranges, EVs may need to include in their routes one or more recharging stops. In this talk we present a parallel matheuristic for the TRP-CEV. The approach works in two phases. In the first phase it decomposes the problem into a number of "easier to solve" vehicle routing problems with time windows and solves these problems in parallel using a GRASP. During the execution of this phase, the routes making up the local optima are stored in a long-term memory. In the second phase, the approach uses the routes stored in the long-term memory to assemble a solution to the TRP-CEV. We discuss computational experiments carried on real-world TRP-CEV instances provided by a French public utility and instances for the closely-related electric fleet size and mix vehicle routing problem with time windows and recharging stations taken from the literature.

Introduction

The technician routing problem with conventional and electric vehicles (TRP-CEV) can be defined on a directed and complete graph G = (N , E) where N is the set of nodes and E is the set of edges. The set of nodes is defined as N = {0} ∪ C ∪ S, where node 0 represents the depot, C is a set of nodes representing the customers, and S is a set of nodes representing the charging stations (CSs) where the electric vehicles can recharge their batteries. Each customer i ∈ C has a request demanding a skill k i from a set K and having a service time p i and a time window [ec i , lc i ], where ec i and lc i are the earliest and latest possible service start times. For the sake of simplicity, in the remainder of this extended abstract we use the terms customer and request interchangeably. The set of technicians is denoted as T . Each technician t ∈ T has: a fixed "utilization" cost c t ; a subset of skills K t ⊆ K; a shift [es t , ls t ], where es t is the technician's earliest possible departure time from the depot and ls t is the technician's latest return time to the depot; a lunch break that must start at el t and end at ll t ; and an energy consumption factor cf t associated to the technician's driving profile (e.g., sportive, normal, eco). To cover their routes, the technicians drive vehicles from a fixed fleet composed by different types of conventional and electric vehicles (hereafter CVs and EVs). The set of vehicle types is defined as V = V c ∪ V e , where V c is the set of CV types and V e is the set of EV types. For each vehicle type v ∈ V there is a unitary travel cost tc v (expressed in e/km) and a fixed and limited number of vehicles m v . Vehicles of type v ∈ V e additionally have: a fixed cost gc v for recharging the battery (expressed in e)1 , a battery capacity Q v (expressed in kWh), a set S v ⊆ S of compatible CSs, and a discrete and non-linear charging function f vs describing the relation between the vehicle's charging time and state of charge (SoC) at station s ∈ S v . Depending on the context we refer to the SoC as the amount of remaining energy (in kWh) or as the percentage of remaining battery capacity. The charging function is defined as f vs = {a b |b ∈ {0, 1, . . . , 100}} were a b is the time needed to take the SoC from 0 to b percent of Q. Finally, set E = {(i, j) : i, j ∈ N , i = j} denotes the set of arcs connecting nodes in N . Each arc (i, j) ∈ E has three associated nonnegative values: a travel time tt ij , a distance d ij , and a nominal energy consumption e ijv for each type of EV v ∈ V e .

In the TRP-CEV the objective is to find a set of routes of minimum total cost. The latter is defined as the sum of i) travel costs, ii) fixed charging costs, iii) parking costs, and iv) technician utilization costs. The planned set of routes must satisfy the following constraints: each request is served exactly once within its time window by a technician with the required skill; the level of the battery when the EVs arrive at any vertex is nonnegative; the EVs only charge at compatible CSs; each technician works only during his or her shift; each technician takes the lunch break at the pre-defined times; the number of CVs and EVs used are less or equal than |V c | and |V e |; and each route starts and ends at the depot.

Parallel matheuristic

Algorithm 1 describes the general structure of our parallel matheuristic (here after referred to as PMa). The algorithm starts by calling procedure groupTechnicians(T ) -line 2. This procedure groups the technicians sharing the same characteristics (i.e., skills, fixed utilization cost, energy consumption factor, shift, and lunch break) and generates the set T P of technician profiles. Then, the algorithm invokes procedure buildAssignments(T P, V) -line 3. The latter builds the set A containing all possible technician profile-vehicle type assignments. Note that

|A| = |T P| × |V c | + |T P| × |V e |.
Then, the algorithm starts the parallel phase -lines 5 to 8. For each assignment a ∈ A the algorithm solves, on a dedicated thread, a vehicle routing problem with time windows and lunch breaks (VRP-TWLB). Let p(a) ∈ T P and v(a) ∈ V be the technician profile and the type of vehicle involved in assignment a. In the VRP-TWLB for assigment a we assume that i) the fleet is unlimited and composed only of vehicles of type v(a) and that we have an unlimited number of technicians with profile p(a). If v(a) is an EV, then the resulting problem is an electric VRP-TWLB. To solve the |T P| × |V c | VRPs-TWLB and the |T P| × |V e | eVRPs-TWLB our approach relies on a GRASP (line 6). The GRASP slightly varies depending on the type of problem being solved (VRP-TWLB or eVRP-TWLB). Figure 1 depicts the components embedded in the two versions. The GRASP returns a set Ω a containing all the routes found in the local optima reached during the algorithm's execution. The routes in Ω a join the long term memory structure Ω (line 7). After completing the parallel phase, the algorithm calls procedure setCovering(G,Ω,V,A) -line 9 -, which solves an extended set covering formulation over Ω to find a feasible TRP-CEV solution. It is worth noting that it is only at this point that we take into account the constraints on the number of technicians and vehicles. Full details on the GRASP components, specially those used to solve the eVRPs-TWLB, and the parallel implementation will be discussed in the talk.

Computational experiments

We implemented our PMa in Java (jre V.1.8.0) and used Gurobi Optimizer (version 6.0) to solve the set covering formulation (Algorithm 1, line 9) and to explore the Global Charging Improvement neighborhood (bottom-right of Figure 3). We ran experiments on two sets of instances. The first set is made up of 24 "real-world" TRP-CEV instances (10 small with proven optima + 14 large) built using data provided by French electricity giant ENEDIS. The reader can find a full description of these instances in [2, chap. 5]. For the 10 small instances our PMa was able to find the optimal solutions. For the remaining 14 MIC/MAEB 2017 id-3 Algorithm 1 Parallel matheuristic: general structure 1: function PARALLELMATHEURISTIC(G,T ,V)
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Figure 1: Algorithmic components embedded in the two GRASP versions instances our method reported average improvements of 6.5% with respect to the solutions delivered by the commercial software currently used at ENEDIS. The second set consists of the 276 instances (108 small with proven optima + 168 large) proposed in [START_REF] Hiermann | The electric fleet size and mix vehicle routing problem with time windows and recharging stations[END_REF] for the closely-related electric fleet size and mix vehicle routing problem with time windows and recharging stations. Although our method was not tailored for this problem, it was able to deliver competitive perfomances with respect to the state-of-the-art Adaptive Large Neighborhood Search (ALNS) proposed in [START_REF] Hiermann | The electric fleet size and mix vehicle routing problem with time windows and recharging stations[END_REF]. On the small instances our PMa found 81/108 optimal solutions and reported better avg. gaps (0.32% vs 0.55%) and execution times (0.06min vs. 0.32min) than ALNS. On the large instances, our method unveiled 61 new best known solutions but reported larger avg. gaps than ALNS (2.20% vs. 1.18%) with comparable execution times.
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