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Based on the recently developed implementation of the full semi-classical field–matter interac-
tion operator [List et al. in J. Chem. Phys. 142, 244111 (2015)], we present a numerically ac-
curate yet efficient scheme to perform rotational averaging of linear absorption spectra beyond
the electric-dipole approximation. This allows for a gauge-origin independent determination
of UV/vis and X-ray absorption spectra for randomly oriented systems such as multilayers,
liquids, and gas phase samples. The approach is illustrated by the determination of spectral
intensities of electric-dipole allowed π → π∗ transitions and electric-dipole forbidden n→ π∗

transitions in the UV-vis region of the spectrum as well as electric-dipole forbidden 1s→ 3d
transitions in the X-ray region of the spectrum. The employed Lebedev quadrature scheme
shows very fast convergence with respect to the number of symmetry-independent quadrature
points—in all considered cases, the oscillator strengths for the randomly oriented systems are
fully converged with use of only seven quadrature points.

Keywords: response theory, multipole-expansion free, rotational averaging, Lebedev
quadrature, X-ray absorption

1. Introduction

Light absorption and emission as due to the interaction between electromagnetic
field radiation and molecular compounds are fundamental and essential ingredi-
ents in Nature as well as every-day life. Notable examples are given in terms of
the conversion of solar energy by means of photosynthesis in green plants or, more
broadly, the entire scientific field of photochemistry;[1] chromphores and dyes that
give rise to a spectrum of colors in liquids, pigments, and molecular materials; the
production of light in chemiluminescence and bioluminescence;[2] artificial light
harvesting and organic solar cells or, more broadly, large parts of the scientific
field of photonics;[3] and, not least, the plethora of spectroscopies that we have de-
signed to probe and investigate the physical and chemical properties of molecules
and molecular materials in various environments and phases.[4] We also design pho-
toactive probes to selectively target host systems as to get indirect information of
the host rather than the probe itself, as exemplified by the development of palettes
of luminescent conjugated oligothiophenes for the detection and identification of
protein aggregates.[5]

∗Corresponding author. Email: nanna.h.list@gmail.com
†Email: panor@ifm.liu.se
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In all of the phenomena, applications, and scientific fields mentioned above,
the scientific community leverages the fundamental microscopic understanding ob-
tained by means of computational chemistry to achieve rational molecular design
and material performance enhancements. It comes therefore as no surprise that
theoretical chemists, and in particular quantum chemists, have dedicated large ef-
forts to develop methods and algorithms to accurately yet efficiently include the
effects of external time-dependent electromagnetic fields on the molecular charge
density. Most notably, there exist today several basic formulations of response
theory with algorithmic and program implementations for virtually all standard
electronic structure theory methods on the market.[6] In all of these instances, a
semi-classical description is employed for the external field and it is common to as-
sume that the field is sufficiently weak for perturbation theory to be applicable.[7–
9] Thereafter differences start to appear, however, as one introduces the coupling
terms between the semi-classical fields and the quantum mechanical system into
the Hamiltonian. Choices are made based on the level of accuracy needed, algo-
rithmic ease, and computational speeds. In absorption and emission studies, the
component of the magnetic field can often be ignored as its effect on the molecular
charges is weaker than electric fields by a factor of 1/c. If, on the other hand,
a natural dichroism in isotropic samples is studied, then it is the mere presence
of the magnetic component of the radiation field that gives rise to a differential
absorption by the sample.

In this context, we have recently investigated the use of an exact and complete
inclusion of electromagnetic fields in the interaction Hamiltonian by means of the
principle of minimal coupling.[10] The assumptions made in the implementation
of this strategy involved the specification of a state of linear polarization and a
direction of propagation of a harmonic plane wave. Since any form of multipole ex-
pansion was avoided, response functions involving this full field–matter interaction
operator are intrinsically gauge-origin invariant, and our formulation thus leads to
physical observables that are independent of the gauge origin. The contributions
to both absorptive and dispersive parts of response functions from all higher-order
combinations of multipole moment operators are included in this treatment, and
for instance natural dichroism is directly accounted for in the absorptive part of
the linear response function.

For studies of oriented samples, such as the calculation of a near-edge X-ray
absorption fine structure (NEXAFS) spectrum of a self-assembled monolayer at
normal or grazing incidence,[11] the scheme presented by List et al.[10] is well
suited. However, for multilayer samples, liquids, or otherwise randomly oriented
systems, there is a need to perform spectrum averaging over molecular orienta-
tions in the laboratory frame of reference, or, equivalently, averaging over light
propagation and polarization directions in the molecular frame. The advantage of
performing a multipole moment expansion of the interaction operator becomes ob-
vious at this point in the calculation, since, for every given order in the expansion,
the orientational average of the corresponding property tensor can be performed
analytically[8, 12–17]—e.g. the orientational average of the electric-dipole polariz-
ability is referred to as the isotropic polarizability and is equal to a simple tensor
trace. The same approach cannot be taken in our case, but, as will be demonstrated
in the present work, it is possible to introduce the numerical quadrature integra-
tion schemes by Lebedev and co-workers[18–23] to achieve efficient and numerically
accurate spectrum calculations for randomly oriented samples.

In the following, we will present a scheme for rotational averaging of linear
absorption cross sections beyond the electric-dipole (ED) approximation associated
with the interaction of a molecule with a linearly polarized electromagnetic field.
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We will refer to results obtained at this level of theory by the label BED and
contrast these with the corresponding results obtained in the ED approximation.
The remainder of this work is organized as follows: In Section 2, we give a brief
recapitulation of the theoretical background relevant for the description of linear
absorption in the BED framework as well as present a numerical scheme for the
determination of spectra for randomly oriented samples. Computational details
are given in Section 3. Representative numerical illustrations of the convergence
behavior of the proposed scheme are presented in Section 4 by example calculations
of UV/vis and X-ray absorption spectra of formaldehyde and acrolein and X-ray
absorption spectra of ferrocene and vinylferrocene.

2. Theory

We will consider a collection of randomly oriented, identical, non-interacting
closed-shell molecules subjected to a weak, monochromatic, linearly polarized elec-
tromagnetic field oscillating at an angular frequency ω. The interaction between
the molecular sample and the external field will be treated in the commonly used
semi-classical framework, where the incident radiation is described as a classical
field in terms of auxiliary scalar and vector potentials, φ(r, t) and A(r, t). Using
the minimal coupling formulation of the interaction, the field–matter interaction
operator can in the Coulomb gauge (∇ ·A = 0, choosing φ = 0)[24] be written as

V̂ (t) =
e

me

N∑
i=1

A(ri, t) · p̂i =
∑
±ω

V̂ ωe−iωt, (1)

with Fourier components given by

V̂ ±ω =±
N∑
i=1

eE0

2iωme
e±ik·ri(ε · p̂i). (2)

In writing Eq. (1), we have neglected the term quadratic in A, which does not
contribute to linear absorption.[10] The linear momentum operator is given by
p̂i = −i~∇i, ~ is the reduced Planck constant, −e and me are the charge and mass
of an electron, respectively, and N is the total number electrons in the molecule. E0

is the real-valued external field amplitude, and k is the wave vector that describes
the propagation direction of the light beam with norm k = |k| = ω/c0, where c0 is
the speed of light in vacuo. Finally, ε is a unit vector perpendicular to k, specifying
the polarization direction of the light.

2.1. Linear absorption of linearly polarized light

In this section, we will review the theory necessary for describing linear absorption
using the field–matter interaction operator in Eq. (1). Following the energy-loss
approach, molecular absorption cross sections, describing the rate of energy flow
from an external electromagnetic field to a molecule, can be related to resonance-
convergent complex molecular response functions.[8, 25] In particular, the linear
absorption cross section,[10]

σ(ω) =
4ω

ε0c0E2
0

Im[Gk̂ε̂ (−ω;ω)], (3)
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is proportional to the imaginary part of the general molecular polarizability

Gk̂ε̂ (−ω;ω) that represents the linear response of the molecule to a linearly polarized

field characterized by polarization and propagation directions (ε̂, k̂). In exact-state
theory, the complex polarizability can be expressed as a sum over excited states
according to

Gk̂ε̂ (−ω;ω) =
1

~
∑
n>0

[
〈0|V̂ −ω|n〉〈n|V̂ ω|0〉
ωn0 − ω − iγn0

+
〈0|V̂ ω|n〉〈n|V̂ −ω|0〉
ωn0 + ω + iγn0

]
, (4)

where ~ωn0 is the transition energy from the electronic ground state |0〉 to the
electronic excited state |n〉. The phenomenological damping parameters γn0 =
(2τn)−1 are related to the lifetimes τn of the exited states, assuming exponential
decay. In approximate-state theory, the resonance-convergent polarizability can
be addressed in the framework of the complex polarization propagator (CPP)
approach.[26–28] Eq. (4) is then replaced by a matrix equation in which the explicit
reference to the excited states is avoided.[10] In other words, the linear absorption
cross section can be evaluated without having to resolve the individual eigenvectors
of the electronic Hessian. This is particularly important because it makes it possible
to treat core excitations without imposing restrictions on the excitation manifold.

In the alternative and traditional approach, one considers the infinite-lifetime
limit (γn0 = 0) of the linear absorption cross section in Eq. (4). Focusing on the
absorptive part of the response function, we obtain[29, 30]

lim
γ→0

σ(ω) =
4π2α

e2ω

∑
n>0

[
δ(ω − ωn0)|TMn0

BED|2
]
, (5)

where α = e2/(4πε0~c0) is the dimensionless fine structure constant and TMn0
BED

the transition moment associated with the 0→ n excitation

TMn0
BED =

e

me
〈0|

N∑
i=1

e−ik·ri(ε · p̂i)|n〉. (6)

Integration over frequencies of the right hand side of Eq. (5) leads to a sum of
terms

σn0 =
π2~e2

(4πε0)mec0
fn0, (7)

where appears the dimensionless oscillator strength,[24, 30]

fn0 =
2me

e2~ωn0
|TMn0

BED|2, (8)

which represents the relative intensity of absorption with respect to a harmonic
oscillator model.

Eqs. (4) and (8) are typically simplified by invoking a Taylor expansion of the
exponential operator in orders of the wave vector k, i.e., eik·r = 1+ik·r− 1

2(k·r)2+
· · · . Retaining only the zeroth-order term defines the ED approximation, which
relies on the assumption that the wavelength of the electromagnetic radiation field
is much larger than the molecular dimension (kr � 1). In most cases, this is a good
approximation for transitions in the UV/vis region, where the field indeed appears
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uniform across the molecule. In X-ray spectroscopies, the short wavelength of the
radiation becomes comparable to the spatial extension of the probed molecular
systems, and intuitively, this would put the use of the ED approximation in doubt.
Recently, we have demonstrated the validity of the ED approximation for ED
allowed transitions in K-edge X-ray absorption spectroscopy. It was shown that
the otherwise short wavelengths are compensated by the spatial compactness of
the initial 1s-orbitals, and that the kr value remains below unity for all elements in
the periodic table.[10] However, when probing excitations that are ED forbidden
by symmetry reasons, or when considering more complex physical phenomena, the
higher-order contributions accounting for the spatial variations of the field need to
be taken into account. A prominent example is pre-edge features in metal K-edge
X-ray absorption spectra of transition metal complexes, which are often governed
by ED forbidden transitions from metal 1s- to d-orbitals.[31–33]

An important aspect of going beyond the ED approximation by including
additional terms in the multipole expansion of the physical observable is that
the individual terms, beyond the lowest non-zero multipole order, are origin-
dependent.[8, 34] Accordingly, special attention has to be paid to ensure origin-
invariance of the physical observables when using a truncated multipole expansion
formulation.[35–37] In particular, Bernadotte et al. showed that origin-independent
oscillator strengths can be obtained by including all terms in the oscillator strength
consistently through a given order in the wave vector.[37] However, the cross sec-
tions introduced in this origin-independent but truncated multipole expansion for-
mulation (see Eq. 62, Ref. [37]) can in certain cases result in unphysical, negative
oscillator strengths, as recently reported in Ref. [38].

In this work, we take as starting point for the rotational averaging of the linear
absorption cross section the untruncated expressions in Eqs. (4) and (8) involving
the complete field–matter interaction operator. Using the exact semi-classical rep-
resentation will, by necessity, lead to rotationally averaged cross sections that are
origin-independent and always positive, as they should be.

2.2. Rotational Averaging

In Eqs. (4) and (8), we assumed that the components of (k, ε) and (ri, p̂i) refer to a
common coordinate system, say a space-fixed frame with unit vectors {eX , eY , eZ}.
For convenience, the space-fixed coordinate system is defined such that the Z-axis
is parallel to the propagation direction and the X-axis to the polarization vector,
i.e., k = keZ and ε = eX . This corresponds to an experimental setup, where the
absorbing molecules are oriented in a specific way with respect to the incoming
electromagnetic radiation. In the majority of experiments, the molecules in the
sample are free to rotate, and the theory as described above stands in need of
further refinement before its results can be related to experimentally measured
absorption cross sections. Under these circumstances, it is necessary to perform
rotational averages of Eqs. (4) and (8) to account for the distribution of molecular
orientations in the sample. For simplicity, we shall assume an isotropic distribu-
tion of molecules in which case the problem reduces to averaging over all possible
orientations of the molecule relative to the propagation and polarization directions.

We therefore consider a molecule-fixed coordinate frame with unit vectors
{ex, ey, ez}. In this frame, the coordinates r′′ are related to those of the space-
fixed frame, r, by

r′′ = R (φ, eZ)R (θ, eY )R (χ, eZ) r, (9)
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where the total rotation is expressed in terms of the three Euler angles (φ, θ, χ)[39]

R (φ, eZ)R (θ, eY )R (χ, eZ) =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

cosχ − sinχ 0
sinχ cosχ 0

0 0 1

 .

(10)

In the molecule-fixed frame, the wave and polarization vectors are given by

k = ker; ε = cosχeθ + sinχeφ (11)

in terms of unit vectors

eθ = ex cos θ cosφ+ ey cos θ sinφ− ez sin θ

eφ = −ex sinφ+ ey cosφ

er = ex sin θ cosφ+ ey sin θ sinφ+ ez cos θ.

The isotropic average of the oscillator strength, or cross section, over the three
Euler angles is defined as

〈fn0〉φ,θ,χ =
1

8π2

∫ 2π

0
dφ

∫ π

0
sin θdθ

∫ 2π

0
fn0dχ. (12)

We note that in the space-fixed frame the dependence on the Euler angles enters
parametrically in the electronic wave functions describing the ground state |0〉 and
the excited state |n〉, whereas in the molecule-fixed frame all dependence is in the
wave and polarization vectors in the field–matter interaction operator.

We now introduce an intermediate frame whose coordinates are given by

r′ = R (χ, eZ) r = R (−θ, eY )R (−φ, eZ) r′′. (13)

In this frame, the representation of the wave and polarization vectors are given by

k′ = (0, 0, k) ; ε′ = (cosχ, sinχ, 0) . (14)

In the intermediate frame, the dependence on the two Euler angles (θ, φ) is in the
electronic wave functions, whereas the dependence on the Euler angle χ only enters
the polarization vector. The averaging over the latter angle can now be performed
straightforwardly in an analytical manner. It reduces to

〈fn0〉χ =
2me

e2~ωn0

(
e

me

)2

〈ε′αε′β〉χ〈0|
N∑
i=1

e−ikz
′
i p̂′iα|n〉〈n|

N∑
j=1

e+ikz′j p̂′jβ|0〉, (15)

where repeated Greek indices indicate summation over Cartesian coordinates. The
only non-zero elements are

〈ε′xε′x〉χ = 〈ε′yε′y〉χ =
1

2
, (16)
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such that the final expression for the χ-averaged oscillator strength reads

〈fn0〉χ =
me

e2~ωn0

(
e

me

)2 ∑
α=x,y

|〈0|
N∑
i=1

e−ikz
′
i p̂′iα|n〉|2. (17)

In a similar manner, the χ-averaged linear absorption cross section becomes

〈σ(ω)〉χ =
2ω

ε0c0E2
0

(
Im[Gz

′

x′(−ω;ω) + Im[Gz
′

y′(−ω;ω)]
)
. (18)

The χ-averaged quantities Eqs. (17) and (18) depend on the solid angle (θ, φ),
which specifies the orientation of the molecule with respect to the propagation
direction. The isotropic averaging of the linear absorption has therefore been re-
duced to a two-angle integration of Eqs. (17) and (18) over the solid angle. To
get a flavor of how the averaging work, we consider the average of the oscillator
strength within the ED approximation

〈fED
n0 〉φ,θ,χ =

me

e2~ωn0

(
e

me

)2
〈 ∑
α=x,y

|〈0|
N∑
i=1

p̂′iα|n〉|2
〉
φ,θ,χ

. (19)

The average over the final two angles (θ, φ) is best done in the molecule-fixed
frame. Inserting the relations

p̂′ix = cos θ cosφ p̂′′ix + cos θ sinφ p̂′′iy − sin θ p̂′′iz (20)

p̂′iy = − sinφ p̂′′ix + cosφ p̂′′iy, (21)

and performing the average gives the well-known expression for the isotropically
averaged oscillator strength in the velocity representation

〈fED
n0 〉φ,θ,χ =

2

3me~ωn0

∑
α=x,y,z

|〈0|
N∑
i=1

p̂′′iα|n〉|2. (22)

Since it effectively amounts to a matrix trace, it is valid in all frames considered.
In the general case, the (θ, φ)-integration will be performed numerically using the
schemes of Lebedev and co-workers.[18–23] The distribution of quadrature points
over a unit sphere for a given Lebedev grid defines the propagation directions
included in the numerical integration, and the χ-average is performed in accordance
with Eqs. (17) and (18) by considering two orthogonal polarization directions for
each wave vector, forming a right-handed coordinate system. The Lebedev grids
have been constructed under octahedral symmetry, which makes them suited for
the present context. In particular, the χ-averaged transition strength is identical
for quadrature points corresponding to k and −k. This can be exploited to limit
the (θ, φ)-integration to a hemisphere, thereby reducing the number of quadrature
points needed for a given Lebedev grid by a factor of two in the general case.
Additional savings can be achieved for symmetric molecules where the calculations
may be restricted to those quadrature points that are not related by symmetry
operations in the given point group.
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3. Computational Details

The lowest energy valence and carbon K-edge excitations in formaldehyde and
trans-acrolein have been used to study the convergence behavior of the proposed
Lebedev-based scheme for obtaining rotationally averaged linear absorption cross
sections involving the full field–matter interaction operator. The molecular geome-
tries were optimized under the constraint of Cs and C2v symmetry, respectively,
at the DFT level of theory using the B3LYP[40–43] exchange-correlation func-
tional and the cc-pVTZ[44] basis set. The property calculations for formaldehyde
and acrolein were performed using the CAM-B3LYP100% functional, designed for
the purpose of describing core electron excitations.[28] This is a modified version
of the Coulomb-attenuated method CAM-B3LYP[45] functional taking into ac-
count 100% Hartree–Fock Coulombic interactions in the long-range limit (α=0.19,
β=0.81, and µ=0.33a−1

0 ). For the calculation of oscillator strengths, we have em-
ployed the restricted-channel approximation.[28, 46] Specifically, the excitation
manifold in the linear response calculation of formaldehyde and acrolein was re-
stricted to excitations originating from the carbon 1s-orbitals to any of the virtual
orbitals to selectively target the C K-edge. Furthermore, we have considered the
Fe K-edge NEXAFS spectrum of ferrocene (iron bis-cyclopentadienyl) and vinyl-
ferrocene (ferrocene with a vinyl substituent at one of the cyclopentadienyl rings)
to illustrate the applicability of the presented procedure for probing quadrupole
intensities of isotropic samples. The structures of ferrocene and vinylferrocene in
eclipsed conformation have been taken from Ref. [47], where they were optimized
using the BP86 functional and the TZP basis set. The frequency-dependent ab-
sorption cross sections, or, in other words, the linear absorption spectra, of the
ferrocene derivatives were determined at the B3LYP level within the CPP for-
malism using the most recent CPP algorithm[48, 49] and a lifetime broadening
γ=1000 cm−1 (or 0.1240 eV). It is well-known that the energy separation between
the pre-edge peaks in substituted ferrocenes is highly sensitive to the choice of
functional, and that it is exaggerated by B3LYP.[47, 50] We primarily adopt the
use of this functional for the ferrocene derivatives to be able to compare our results
with those of previous work. The (θ, φ)-angular integration of the linear absorp-
tion cross section was handled by a set of highly accurate Lebedev grids.[18, 51]
All property calculations employed the aug-cc-pVDZ[44, 52, 53] basis set and were
performed with a locally modified version of the Dalton program.[54, 55]

4. Results and Discussion

To investigate the convergence of the numerical scheme presented above for the
calculation of rotationally averaged linear absorption cross sections using the full
field–matter interaction operator, we consider a set of prototypical transitions in
the UV/vis and X-ray spectral regions. Specifically, we consider the lowest n→ π∗

excitations in formaldehyde and acrolein, the π → π∗ transition in acrolein, C 1s→
π∗ transitions in formaldehyde and acrolein, and mixes of Fe 1s→ 3d and 1s→ 4p
transitions in ferrocene and vinylferrocene (see Fig. 1 for chemical structures and
atom labeling used for the 1s → π∗ transitions in acrolein). These include ED
allowed and forbidden transitions in both spectral regions, and this allows us to
study how the nature of the electronic transitions, and thus the importance of BED
effects, influences the numerical convergence of the adopted quadrature scheme
used to determine rotationally averaged oscillator strengths. It is instructive to
start by considering the behavior of the χ-averaged linear absorption cross section,
or oscillator strength, to be numerically integrated with respect to the direction of

8
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(a)

(c)

(b)

(d)

y′′

x′′

z′′

z′′

Figure 1. Chemical structures of the molecules considered: (a) formaldehyde; (b) acrolein; eclipsed confor-
mation of (c) ferrocene and (d) vinylferrocene. The orientation of the molecules within the molecule-fixed
coordinate system is also shown.

the wave vector k over a unit sphere. Note that the averaging over χ means that
the information about polarization dependence is lost.

4.1. Formaldehyde and acrolein

First, we consider the lowest valence and C K-edge transitions in the two alde-
hydes, formaldehyde and acrolein. The excitation energies as calculated at the
CAM-B3LYP100%/aug-cc-pVDZ of theory are given in the upper part of Table 1,
and the (θ, φ)-dependency of the associated χ-averaged oscillator strength 〈f〉χ for
a representative set of the considered transitions is illustrated in Figs. 2 and 3 for
acrolein and formaldehyde, respectively. To dissect the impact of going beyond the
ED approximation, we include in Fig. 2 (bottom row) also the difference ∆〈f〉χ
between the oscillator strengths obtained beyond and within the ED approxima-
tion. As a general comment, we note that the χ-averaged oscillator strength is
seen to be identical for wave vectors k and −k, which we exploit in the Lebedev
quadrature.

As demonstrated in Ref. [10], the ED approximation is useful for describing
linear absorption of ED allowed excitations across the entire frequency range, and
BED corrections are expected to be significant only for ED forbidden transitions.
In formaldehyde, the n → π∗ transition is strictly ED forbidden by symmetry —
the excited state spans the A2 irreducible representation of the C2v point group—
whereas in acrolein, the corresponding transition is ED allowed, and the extent to
which it may be observable in the ED approximation depends sensitively on the
local symmetry of the carbonyl group.

There is a high degree of directional dependence in the linear absorption cross
section for these planar systems. The π → π∗ transitions are most effectively

9
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Figure 2. (θ, φ)-dependency of the χ-averaged oscillator strength 〈fBED〉χ (top row) and the corresponding
differences ∆〈f〉χ between BED and ED (bottom row) for selected transitions in acrolein: (a,b) the lowest
π → π∗ transition (c,d) the lowest n→ π∗ transition and (e,f) the C1 1s→ π∗ transition. The orientation
of acrolein in the molecule-fixed frame as well as the atom labeling is given in Fig. 1.

induced by an electric field directed along the conjugation axis (the z-direction in
Fig. 1), and thus propagating in a direction orthogonal to the conjugation axis,
whereas zero absorption is associated with fields propagating along the conjugation
axis. This is illustrated in Fig. 2a in terms of the χ-averaged oscillator strength for
the π → π∗ transition in acrolein. The nearly perfect cylindrical symmetry about
the z-axis reflects the fact that the main component of the leading ED contribution
is invariant to the direction of propagation orthogonal to the conjugation axis
(within the xy-plane). The effects of going beyond the ED approximation are
shown in Fig. 2b. Note that ∆〈f〉χ is negative and negligible in all directions of
light propagation, as expected for BED corrections to ED allowed transitions.[10]
Similar observations can be made for the ED allowed C K-edge transitions in both
aldehydes. This is exemplified in Figs. 2e and 2f for the C1 1s → π∗ transition in
acrolein. In this case, the directional dependence reflects the π∗-orbital entirely,
and thus the cylindrical symmetry is about the x-axis. The BED effects for the
core transitions are two orders of magnitude larger than for the valence π → π∗

excitation in acrolein, but they are still negligible (0.006–0.07%) for all practical
purposes.

For the strictly ED forbidden n→ π∗ transition in formaldehyde, the χ-averaged
oscillator strength displays a more complex dependence on the direction of light
propagation, see Fig. 3. In this case, the leading contributions stem from the terms
involving the magnetic-dipole and electric-quadrupole operators. As a consequence,
with formaldehyde placed in the yz-plane and the C=O bond along the z-axis in
the molecular frame, the strongest absorption intensity will be due to light propa-
gating in the x-direction with an electric-field polarization along y, and vice versa.
Inspection of the individual lowest-order contributions (data not shown) reveals
that the magnetic-dipole term is two orders of magnitude larger than the electric-
quadrupole contribution (see further discussion in Section 4.3). Note that this
division into magnetic-dipole and electric-quadrupole contributions is here unam-
biguous since, in the present case, the vanishing ED oscillator strength implies
gauge-origin invariance for these terms. In analogy to the ED term for the π → π∗

transition in acrolein (Fig. 2a), the main component of the magnetic-dipole contri-
bution (magnetic field along z) is invariant to the propagation direction within the
xy-plane. The observed deviation from cylindrical symmetry can be attributed to
the electric-quadrupole–magnetic-dipole cross term that, however, vanishes upon

10
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Figure 3. (θ, φ)-dependency of the χ-averaged oscillator strength 〈fBED〉χ for the lowest n→ π∗ transition
in formaldehyde. The orientation of formaldehyde in the molecule-fixed coordinate system is given in Fig. 1.

rotational averaging over the solid angle.[37] Turning to the n → π∗ transition in
acrolein, the orientational dependence and magnitude of 〈f〉χ reflects the gain in
ED intensity due to the broken symmetry of the carbonyl group. The main contri-
bution to the ED component comes from light polarization along the out-of-plane
direction, and a close to cylindrical symmetry about the x-axis is seen in Fig. 2c.
But in the view of Fig. 2d, it is clear that the BED corrections display the features
of the corresponding ED forbidden transition in formaldehyde (see Fig. 3).

4.2. Ferrocene and vinylferrocene

To demonstrate the behavior of the proposed scheme for X-ray induced transitions
that are ED forbidden, we consider the iron near K-edge absorption spectra of
eclipsed ferrocene (D5h symmetry) and vinylferrocene. These examples have al-
ready been studied in detail in Refs. [47] and [50], both experimentally and also
theoretically using truncated multipole-expanded expressions for the calculations
of oscillator strengths. In Fig. 4, we show the isotropically averaged spectra as
determined with use of the CPP formalism both within and beyond the ED ap-
proximation. First, we note that our theoretical spectra for the ferrocene derivatives
are in good agreement with those reported by Bernadotte et al. based on a full
second-order expression for the oscillator strength,[50] and this confirms the va-
lidity of the proposed procedure to obtain isotropically averaged linear absorption
cross sections beyond the ED approximation.

In ferrocene, the pre-edge peak at 6961.9 eV can be assigned to the ED forbid-
den transitions from the Fe 1s orbital to the degenerate pair of lowest unoccupied
orbitals. These virtual orbitals are composed of the antibonding linear combina-
tion of Fe 3d-orbitals and the cyclopentadienyl π-orbitals of e′′1 symmetry. Such
transitions are ED forbidden due to symmetry, and the leading term in the lin-
ear absorption cross section will therefore come from the electric-quadrupole and
magnetic-dipole contributions, as immediately seen from the absence of this peak
in the ED spectrum (Fig. 4b).

By introducing the vinyl substituent, the symmetry, and therefore the degener-
acy, is lifted, and the 3d-orbitals are mixed with the π∗-orbital of the vinyl group.
This leads to two distinct pre-edge peaks found at about 6961.9 and 6965.5 eV,
respectively (see Fig. 4a), at the B3LYP/aug-cc-pVDZ level of theory. The final
states contributing to these peaks in vinylferrocene are illustrated by means of
isodensity surface plots in Fig. 5. At the B3LYP level, they contain contributions
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Figure 4. The low-energy part of the isotropically averaged Fe K-edge spectra of (a) vinylferrocene and
(b) ferrocene from CPP calculations at the B3LYP/aug-cc-pVDZ level of theory as obtained within and
beyond the ED approximation, using the LD14 scheme to compute the isotropic average in the latter case.
Inset figure shows the convergence of the pre-edge peak of ferrocene with respect to the size of the Lebedev
grid (see discussion in Section 4.3). A common lifetime broadening γ = 1000 cm−1 has been used.

(a) (b) (c)
Figure 5. The final states contributing to the two pre-edge peaks in the Fe K-edge spectrum of vinyl-
ferrocene: (a) and (b) Fe dxz- and dyz-orbitals, respectively, underlying the lowest pre-edge peak, and
(c) the vinyl π∗-orbital involving significant Fe 4p–3d mixing giving rise to the second pre-edge peak. An
isodensity surface value of 0.025 a.u. has been used.

from several single-excited determinants in which the Fe 1s-orbital has been re-
placed by a virtual orbital, and the figure shows the linear combinations of these
virtual orbitals. The lowest-energy peak, corresponding to the 1s→ 3d transitions
discussed above in unsubstituted ferrocene, becomes slightly ED allowed following
the vinyl substitution. This can be seen in terms of a very weak feature in the ED
spectrum in Fig. 4a (blue dashed curve profile). The second peak originates from
a transition from the Fe 1s-orbital to a final state dominated by the π∗-orbital of
the vinyl substituent, shown in Fig. 5c. However, due to the locality of the Fe 1s-
orbital, the intensity will be governed by the Fe atomic orbital components of the
final state that mainly stem from the 4pz- and 3dxz-orbitals. This 4p–3d mixing in
the final state explains the relative ED and BED intensity behavior of the second

12
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(c)(b)(a)

Figure 6. (θ, φ)-dependency of the χ-averaged oscillator strength 〈fBED〉χ for the two transitions under-
lying the lowest-energy pre-edge peak in the Fe K-edge spectrum of vinylferrocene: (a) the 1s → 3dxz
transition, (b) 1s → 3dyz transition and (c) the summed contribution from (a) and (b). The orientation
of vinylferrocene in the molecular coordinate system is given in Fig. 1.

pre-edge peak, where the ED intensity increases due to the 1s → 4p component
of the transition and now exceeds the higher-order contributions arising from the
ED forbidden 1s → 3d component, the latter given by the difference between the
BED and ED spectra.

The χ-averaged oscillator strength for 1s → 3d transitions shows a stronger
dependency on the propagation direction compared to those for the π → π∗ and
n → π∗ transitions discussed above. This is illustrated in Figs. 6a and 6b for the
two transitions giving rise to the lowest-energy pre-peak in the K-edge spectrum
of vinylferrocene. In these cases, the transition densities are governed primarily by
a combination of the very compact Fe 1s-orbital and the valence 3dxz- and 3dyz-
orbitals (Figs. 5a and 5b, respectively). A large transition moment and thereby
oscillator strength is thus obtained for a situation with an electric-field polarization
along the z-direction and propagation along either the x- or y-directions in the
molecular frame, or vice versa. The effect of the vinyl substituent is small for
the first pre-edge peak and x- and y-directions are therefore close to identical in
this respect. This explains the near-cylindrical symmetry of the summed oscillator
strength for the two transitions shown in Fig. 6c. In view of the more complex nodal
structure of 〈f〉χ for the 1s → 3d transitions as compared to the corresponding
behaviors of the valence and core excitations in formaldehyde and acrolein (Figs. 2
and 3), one can anticipate that the numerical integration over angles (θ,φ) will be
more difficult to converge. This aspect will be discussed in the subsequent section.

4.3. Convergence rate and computational cost

Having considered the behavior of the χ-averaged linear absorption cross section,
we proceed to investigate the rate of convergence in the numerical integration
scheme and compare the computational cost with the corresponding conventional
calculations based on truncated multipole expansions.

The isotropically averaged oscillator strengths involving the full field–matter
interaction operator for the valence and core transitions in the two aldehy-
des are listed in Table 1 for progressively larger Lebedev grids LDn, where
n = {6, 14, 26, 38, 50} denotes the number of quadrature points. For comparison,
we also include the corresponding oscillator strengths calculated within the ED
approximation, and these results have been obtained by means of analytical inte-
gration, or, equivalently, tensor averaging.

The number of quadrature points needed when going beyond the ED approxi-
mation to integrate the absorption cross section to a certain degree of accuracy is
closely associated with the importance of higher-order terms in the wave vector for
a given excitation. In general, the higher the order in the expansion that is relevant
for the spectrum, the larger the number of sampled orientations required to ob-
tain sufficiently accurate absorption cross sections. This is readily understood from
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the fact that the Lebedev grids are constructed to exactly integrate real spherical
harmonics up to a given maximum angular momentum Lmax as given in Table
1.[18] For the rotational averaging of the linear absorption cross section, we have
to treat a product of two complex conjugate transition moments involving the full
field–matter interaction operator. In general, an m’th rank transition multipole

moment T
[m]
λ1...λm

in the multipole expansion of the transition moment is express-
ible as a sum of irreducible tensors of integer orders l = 0, 1, . . .m which transform
under rotations as spherical harmonics with angular momenta l. The product of
two transition multipole moments of rank m1 and m2, as relevant for the linear
absorption cross section, will produce a set of irreducible tensors with orders L that
lie between |m1−m2| and m1 +m2. Accordingly, the smallest LD6 grid (Lmax = 3)
is sufficient to fully integrate the pure dipole contributions (L = 2), and the LD14
scheme (Lmax = 5) treats fully the linear absorption through second order in the
wave vector.

In comparing results obtained with different number of quadrature points, we
can thus identify the character of the contributions to transition intensities in
the language of multipole expansions. At the level of LD6, we retrieve in ad-
dition to the electric-dipole–electric-dipole (µ2) term also the magnetic-dipole–
magnetic-dipole (m2) term, which transforms under rotation in the same way.
The electric-dipole–magnetic-dipole (µm) and electric-dipole–electric-quadrupole
(µQ) cross terms vanish for absorption of linearly polarized light.[37] At the level
of LD14, we retrieve, in addition to the contributions mentioned above, also the
electric-quadrupole–electric-quadrupole (Q2) term as well as the electric-dipole–
electric-octupole (µO) and electric-dipole–magnetic-quadrupole cross terms (µM),
which, just like the m2 term, is of quadratic order in the wave vector expansion
and therefore expected to provide a contribution to the linear absorption cross
section that is of similar size.

As seen in Table 1 for formaldehyde and acrolein, the Lebedev quadrature used
to rotationally average the oscillator strength converges in general very rapidly, and
already at the LD14 level errors are, in all considered cases, within the adopted
convergence threshold of 10−9 for the excitation vectors. The LD6−ED difference
in averaged oscillator strengths amounts to 1.2× 10−6 and 2.0× 10−6 for the n→
π∗ transitions in acrolein and formaldehyde, respectively. These estimates of m2

contributions are some three orders of magnitude larger than the Q2 contributions
(including also µO and µM for acrolein) as estimated from the corresponding
LD14−LD6 differences. This is in stark contrast to the 1s→ 3d transitions in the
ferrocene derivatives, where the m2 and Q2 contributions are of similar size, as
illustrated in the inset of Fig. 4b.

Since the inclusion of terms through second order in the wave vector has proven
here and elsewhere[10, 37] to provide accurate results for the calculation of linear
absorption spectra in both the UV/vis and X-ray regions of the spectrum, it may
be natural to question the sense in turning to a treatment of the full field–matter
interaction operator from a computational cost point of view. In the CPP frame-
work, the inclusion of the terms through second order in the wave vector to the
complex polarizability in a multipole formulation means that one needs to solve
3 + 3 + 6 = 12 linear response equations for a given optical frequency, correspond-
ing to the independent components of the multipole moment operators (µ, m and
Q). In the BED framework, on the other hand, the adoption of the LD14 quadra-
ture scheme means that one needs to solve 2 × 7 = 14 linear response equations
for a given optical frequency, corresponding to the seven independent wave vector
points and the two components of the linear momentum operator (p̂′x and p̂′y). So
the conclusion is that, not only does the LD14 scheme provide a highly accurate
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level of numerical integration of the BED absorption cross section (with, amongst
others, its virtue of gauge-origin independence) but it is on par with a conventional
multipole expansion scheme in terms of computational efficiency.

5. Conclusion

We have presented a scheme to perform rotational averaging of linear absorption
cross sections involving the full field–matter interaction operator. Our approach
is based on a combination of numerical and analytical integration over the three
Euler angles. The former is performed with use of Lebedev quadratures over the
solid angle and corresponds to integration over all possible directions of the wave
vector of the electromagnetic field, and the latter to averaging over the associated
polarization vector. The computational cost to accomplish this achievement is not
significantly higher than what is found in response theory calculations based on
conventional multipole expansions.

This work ensures the calculation of gauge-origin independent and positive linear
absorption cross sections in isotropic samples, also beyond the ED approximation.
This is particularly important in cases where the magnetic-dipole and electric-
quadrupole contributions to the cross section are larger than or comparable to the
ED contribution, such as in n→ π∗ transitions in organic compounds and K-edge
spectra of transition metal complexes.
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