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Constrained Co-clustering of Gene Expression Data

Ruggero G. Pensa∗ Jean-François Boulicaut†

Abstract

In many applications, the expert interpretation of co-

clustering is easier than for mono-dimensional clustering.

Co-clustering aims at computing a bi-partition that is a col-

lection of co-clusters: each co-cluster is a group of objects

associated to a group of attributes and these associations can

support interpretations. Many constrained clustering algo-

rithms have been proposed to exploit the domain knowledge

and to improve partition relevancy in the mono-dimensional

case (e.g., using the so-called must-link and cannot-link con-

straints). Here, we consider constrained co-clustering not

only for extended must-link and cannot-link constraints (i.e.,

both objects and attributes can be involved), but also for in-

terval constraints that enforce properties of co-clusters when

considering ordered domains. We propose an iterative co-

clustering algorithm which exploits user-defined constraints

while minimizing the sum-squared residues, i.e., an objec-

tive function introduced for gene expression data clustering

by Cho et al. (2004). We illustrate the added value of our

approach in two applications on gene expression data.

1 Introduction

In many application domains, the data analyst has to
consider possibly large data sets that record numer-
ical values of given properties for given objects (say
objects × features matrices). From that perspective,
the popular context of basket data analysis is the spe-
cial case where boolean values record whether a product
belongs to a transaction or not. In this paper, we will
consider gene expression data sets that record gene ex-
pression values for given genes in given biological sam-
ples (see, e.g., microarray data analysis in [1]). A toy
example data set is given in Fig. 1. In such a data set
Xr, properties may denote biological samples and each
object may be associated to one particular gene. For
example, in Xr, one would say that the gene expression
value for Gene 2 in Experiment 3 is 5.

Exploratory data analysis processes often make use
of clustering techniques to get insights about global pat-
terns within the data, i.e., to propose partitions of ob-
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Figure 1: A toy example Xr

jects and/or of properties such that a grouping quality
measure is optimized. Many clustering methods can
compute partitions but suffer from the lack of explicit
cluster characterization. This has motivated the re-
search on conceptual clustering, e.g., the co-clustering
approaches described in [24, 14, 2]. The objective of co-
clustering is to compute co-clusters that are associations
of (possibly overlapping) sets of objects with sets of
properties. A co-clustering algorithm computes simul-
taneously linked partitions on both row and column di-
mensions. An example of a bi-partition in Xr would be
{{1, 2, 3, 4, 5}, {6, 7}} for objects, {{1, 4, 5}, {2, 3}} for
properties. This co-clustering indicates that the char-
acterization of objects from {1, 2, 3, 4, 5} is that they
tend to share similar values from {1, 4, 5}. Also, prop-
erties in {2, 3} can be used to characterize objects in
{6, 7}. Co-clustering has been well studied in the con-
text of gene expression data analysis because it provides
valuable information about putative regulation mecha-
nisms and biological functions [10, 21]. Intuitively, a
co-cluster extracted from a gene expression matrix de-
notes a set of genes with similar expression profiles along
its associated set of biological samples.

We are interested in new co-clustering methods
for enforcing the relevancy of computed bi-partitions
in general and their application to gene expression
data analysis in particular. Given a (co-)clustering
algorithm, the analyst has generally a weak control
on the clusters he/she obtains. Typically, he/she can
decide for ad-hoc parameter settings which are quite
operational and conceptually far from the declarative
specification of desired properties. A co-clustering
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algorithm tries to optimize an objective function (e.g.,
Goodman-Kruskal’s τ coefficient in [24] or the loss of
mutual information in [14]) but it may also ensure that
some user-defined constraints are satisfied (e.g., the fact
that some objects and/or properties have to be together
or not). Enforcing constraints can lead to lower values
for the objective functions, and it is clear that combining
objective function optimization and the satisfaction of
other user-defined constraints is challenging.

The last 5 years, several researchers have stud-
ied mono-dimensional constrained clustering for simple
types of user-defined constraints, mainly the so-called
must-link and cannot-link constraints [25, 5, 18, 6, 13,
12, 7]. To the best of our knowledge, constrained co-
clustering has been rarely studied. In [22, 23], we have
studied co-cluster discovery when at least one of the di-
mensions is ordered and when interval constraints are
defined w.r.t. orders. A typical application concerns ki-
netic gene expression data analysis. In this case, objects
denote gene expression level measurements performed
for successive time points. For an organism like Plas-
modium Falciparum [9], we see that during its life cycle,
groups of genes are activated and then inhibited, being
somehow characteristic of development stages. Using
interval constraint can support the discovery of such
groups from experimental data.

In this paper, we introduce our constraint-based co-
clustering approach which is quite different from the one
in [22] extended in [23]. First, these papers concern only
0/1 data mining. More importantly, we propose here to
work directly on the data, i.e., without any postprocess-
ing of collections of local patterns that have to be com-
puted beforehand (See Section 2). Our method builds
a bi-partition that satisfies the user-defined constraints
while optimizing the objective function introduced in
[11], namely the sum-squared residues.

The rest of the paper is organized as follows.
Section 2 discusses the related work. Section 3 is
dedicated to the problem setting for constrained co-
clustering. Section 4 provides details about our co-
clustering algorithms. Section 5 is an empirical study
about the added-value of our framework on two gene
expression data set analysis. Section 6 briefly concludes.

2 Related work

Constrained co-clustering is a new approach to gene
expression data analysis. To the best of our knowledge,
only our previous work [22] has addressed the problem
of co-clustering under user-defined constraints. We
consider that optimizing the objective function and
enforcing the number of co-clusters are more or less
implicit constraints. In other terms, we would say that
an algorithm like CoCluster [14] just performs co-

clustering and not constrained co-clustering.
In [22, 23], we have proposed a local-to-global ap-

proach to build bi-partitions under interval constraints.
This is performed by postprocessing collections of local
patterns (e.g., closed sets) extracted from 0/1 data sets.
The basic idea is to translate the interval constraint into
a relaxation which can be enforced in the collection of
local pattern. Then, it uses a k-means-based approach
to obtain a partition of local patterns. Finally, such
a partition can be post-processed to determine the co-
clustering structure over the data. We also suggested
possibilities to process co-clustering counterparts of the
popular must-link and cannot-link constraints for stan-
dard clustering. The main difference of our contribution
w.r.t. this previous work, is that here we compute co-
clustering directly by alternatively computing clusters
on columns and rows w.r.t. a common objective func-
tion. A second difference is that our current proposal
ensures, when needed, the satisfaction of the interval
constraint on the computed bi-partition. This was not
the case in the method in [22, 23]. Third, our new ap-
proach works on numerical matrices: it is not limited to
0/1 data anymore. Last, but not least, we significantly
improve must-link and cannot-link constraint process-
ing over both sets of objects and attributes. Other re-
lated works can be identified in the areas of constrained
clustering, and available co-clustering techniques.

Constrained clustering Constrained clustering
is a relatively new field of research. It has been mainly
studied as one approach to semi-supervised learning1.
Semi-supervised clustering can support classification
tasks when labeled data are limited and/or expensive
to collect. A solution is to use the knowledge given
by available labeled instances within a clustering algo-
rithm. In [25], the authors have proposed a simple adap-
tation of k-means which enforces must-link and cannot-
link constraints during the clustering process. [5] pro-
poses a constraint-based clustering approach which uses
labeled data during the initialization and clustering
steps. An example of metric-based approach is pre-
sented in [18], while [8] integrates both constraint-based
and metric-based approaches in a k-means-like algo-
rithm. In [6], the authors propose a probabilistic model
for semi-supervised clustering, which also combines the
two approaches. Other related work focuses on con-
straint feasibility on a k-means-like approach [13], and
on an agglomerative hierarchical clustering approach
[12]. In such a related work, the goal is to improve
accuracy in classification when only few instances are
labeled, whereas our goal is not to support prediction:

1Another approach is called the metric-based approach for

which a metric is trained considering labeled data and then

standard clustering is applied.
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we are working within an unsupervised framework. For
us, constraints are used to specify user expectation (say
subjective interestingness) and thus to improve the rel-
evancy of extracted results. In the case of interval
constraints, there are no pair-wise constraints (such as
must-link and cannot-link), but the user has only to
specify if he/she wants intervals or not, without know-
ing if a particular object x is in the same cluster than
another object y. Moreover, notice that, for us, con-
straints can be applied both on objects and attributes.

Other applications of constrained clustering are the
so-called sensor network and k-anonymity problems. In
both applications, a possible solution is to find com-
pact clusters containing a balanced number of objects.
In [3, 4], the authors propose algorithms to discover
balanced clusters. Recently, [15] has proposed an al-
gorithm which finds an a priori unspecified number of
compact clusters under combinations of minimum sig-
nificance constraints and minimum variance constraints.
Similarly to these two approaches, our algorithms en-
able to define constraints which are more related to the
shape of the clusters rather than to pairs of objects.

Co-clustering Many co-clustering methods have
been developed, possibly dedicated to gene expression
data analysis. Kluger et al. [19] propose a spectral
co-clustering method. First, they perform an adequate
normalization of the data set to accentuate co-clusters
if they exist. Then, they consider that the correlation
between two columns is better estimated by the expres-
sion level mean of each column w.r.t. a partition of
the rows. The bi-partition is computed by the alge-
braic eigenvalue decomposition of the normalized ma-
trix. Their algorithm critically depends on the normal-
ization procedure. Dhillon et al. [14] and Robardet
et al. [24] have considered the two searched partitions
as discrete random variables whose association must be
maximized. Different measures can be used. Whereas
Cocluster [14] uses the loss in mutual information,
Bi-Clust [24] uses Goodman-Kruskal’s τ coefficient to
evaluate the link strength between the two variables. In
both algorithms, a local optimization method is used to
optimized the measure by alternatively changing a par-
tition when the other one is fixed. The main difference
between these two approaches is that the τ measure
is independent of the number of co-clusters and thus
Bi-Clust can automatically determine the number of
co-clusters.

Lazzeroni et al. [20] propose to consider each matrix
value as a sum of variables. Each variable represents a
particular phenomenon in the data and corresponds to
a co-cluster. In each co-cluster, column or row values
are linearly correlated. Then, the method consists
in determining the model minimizing the Euclidean

distance between the matrix and the modeled values.
This method is similar to the eigenvalue decomposition
used in [19] without the orthogonal constraint on the
computed variables.

In the context of gene expression data analysis,
several authors have considered the computation of
potentially overlapping local patterns that they call bi-
clusters (see [21] for a survey). Ihmels et al. [17]
propose a simple algorithm which builds in two steps
a single association called a bi-cluster starting from
a column set. First, they consider that the rows
having a high score (greater than a threshold on the
normalized matrix) on these columns belong to the bi-
cluster. Then, they use the same principle to increase
the original column set. In [10], Cheng et al. propose a
co-clustering algorithm for numerical data. They define
a bi-cluster as a subset of rows and subset of columns
with a low mean squared residue. When the measure is
equal to 0, the bi-cluster contains rows having the same
value on the bi-cluster columns. When the measure
is greater than 0, one can remove rows or columns
to decrease the value. Thus the method consists in
finding maximal size bi-clusters such that the measure
is inferior to a threshold. Various heuristics can be
used for this purpose. The same definition of residue
is used in [11] to define the objective function which
is also used in our current proposal. Authors propose
two different residue measure, and show that the one
proposed by Cheng et al. fits better to gene expression
data analysis. Then, they introduce their co-clustering
algorithm which optimizes the sum-squared residues
function. This approach has been the starting point
for our contribution.

Recently, Banerjee et al. [2], proposed a co-
clustering formulation that is based on matrix approx-
imation. The approximation error is measured using a
large class of loss functions called Bregman divergences.
The authors introduce a meta-algorithm whose special
cases include the algorithms from [14] and [11].

3 A constrained co-clustering setting

Let X ∈ Rm×n denote a data matrix. In the rest of the
paper, the data set to be mined is the matrix X, and we
always talk about rows and columns instead of objects
and properties. Let xij be the element corresponding to
row i and column j. For instance, xij might contain the
expression level of gene i in the experimental condition
j. Let xi. and y.j denote the vectors associated to,
respectively, row i and column j.

A co-clustering Ck×l over X produces simultane-
ously a set of k × l co-clusters (a partition Cr into k
groups of rows associated to a partition Cc into l groups
of columns). To obtain a first quality criterion, we first
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try to optimize a certain objective function.

Definition 3.1. (optimization constraint) Let us
assume an objective function f(X, Ck×l), an optimiza-
tion constraint copt(f, X,Ck×l) is satisfied iff Ck×l =
argminφ∈L

Ck×l
f(X, φ) where LCk×l is the the collection

of all possible co-clusterings.

Some examples of objective functions are the
Goodman-Kruskal’s τ coefficient and the loss of mutual
information [24, 14]. In this paper, we use the sum-
squared residue function introduced in [11]. For com-
putational feasibility reasons, co-clustering algorithms
relax these optimization constraints, e.g., using local
optimization heuristics. One can be interested in other
kinds of constraints which are now defined.

Definition 3.2. (must-link/cannot-link) If rows
ia and ib (resp. columns ja and jb) are involved
in a must-link constraint, denoted c=(ia, ib) (resp.
c=(ja, jb)), they must be in the same cluster of Cr =
r1, . . . , rk (resp Cc = c1, . . . , ck). If rows ia, ib (resp.
columns ja and jb) are involved in a cannot-link con-
straint, denoted c6=(ia, ib) (resp. c6=(ja, jb)), they can-
not be in the same cluster of Cr = r1, . . . , rk (resp
Cc = c1, . . . , ck).

These forms of constraints have been studied, even
in the semi-supervised clustering framework [8]. We
generalize them to be able to apply them both to row
sets and column sets. In an expression matrix, we
can now exploit the knowledge about genes and/or
experimental conditions. For example, if we know
that gene ia and gene ib have the same function (say
F ) in the biological process, we can enforce a must-
link constraint between these two genes to privilege
the search for co-clusters associating genes having this
function F and then identify a transcription module
which could support such a biological function. We
could also add some cannot-link constraints to avoid
associations between experimental conditions which we
would like to separate.

Let us now assume that a real value sc(j) (resp.
sr(i)) is associated to each column j (resp. row i). Then
we have sr : {1, 2, . . . ,m} → R and sc : {1, 2, . . . , n} →
R. For instance, sc(j) (resp. sr(i)) could be a temporal
or spatial measure related to j (resp. i). In microarray
data, sc(j) might be the sampling time related to the
DNA chip (say experiment) j. Another example would
be to consider sr(i) as a measure of the absolute spacial
position of a gene i in the DNA sequence of the studied
organism. The two functions sr and sc enable to define
an order ¹ over the set of columns and/or rows. Indeed,
we say that ja ¹ jb iff sc(ja) ≤ sc(jb). In the rest of

the paper, we say that, if a function sc exists, then all
the elements j are ordered, i.e., ∀ja, jb s.t. ja < jb,
sc(ja) ≤ sc(jb) (the same property holds for rows).

It could also be interesting to search for co-clusters
which are coherent with the order defined by functions
sr and sc. For instance, if we are interested in the
different stages of the cell development, and we want to
discover those genes that are mainly involved in each
stage, we will look for clusters which are contiguous
w.r.t. time. For this purpose, we can enforce an interval
constraint.

Definition 3.3. (interval constraint) If an order
(¹) is defined over the column set (resp. row set),
an interval constraint over this set, denoted cint(C

c),
specifies that each cluster in Cc has to be an interval:
∀c ∈ Cc, if ja, jb ∈ c then ∀jc such that ja ¹ jc ¹ jb,
jc ∈ c.

In general, the satisfaction of the must-link, cannot-
link and interval constraints decreases the theoretical
optimum of the objective function. We want a co-
clustering algorithm which is able to take into account
such constraints while trying to optimize the retained
objective function. Notice that the satisfaction of a
conjunction of constraints c=, c6= and cint is not always
feasible. For instance, for three objects i1, i2, i3 such
that s(i1) < s(i2) < s(i3), the conjunction c=(i1, i3) ∧
c6=(i1, i2)∧ cint(C

r) can never be satisfied, even though
the sub-constraints of this conjunction do not cause
any problem. In this paper, we assume that the
processed conjunction of constraints is feasible. The
constraint feasibility problem for both partitioning and
hierarchical methods has been studied in [13, 12].

4 Using sum-squared residues

Our approach to constrained co-clustering is based
on an iterative algorithm that minimizes the sum of
squared residues. This objective function has been in-
troduced in [11] for unconstrained co-clustering applied
to gene expression data. It is an adaptation of a measure
designed for local pattern discovery [10].

Given a data matrix X ∈ Rm×n, we search for a
partition of X into k row clusters, and l column clusters.
Let I be the set of indices of the rows belonging to a row
cluster, and J the set of indices of the columns belonging
to a column cluster. The sub-matrix of X determined
by I and J is called a co-cluster. We use the definition
of residue in [10].

Definition 4.1. (residue) Given an element xij of
X, the residue of xij in the co-cluster defined by the sets
of indices I and J , and whose respective cardinalities are
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Figure 2: Three co-clustering results on Xr (permutations on columns and rows to emphasize the co-clusters)

|I| and |J |, is given by

hij = xij − xIj − xiJ + xIJ(4.1)

where

xIJ =
∑

i∈I,j∈J xij

|I|·|J|

xIj =
∑

i∈I xij

|I|

xiJ =
∑

j∈J xij

|J| .

Let H = [hij ] ∈ Rm×n denote the matrix of residues
computed using the previous definition. The objective
function to be minimized is the sum of squared residues
[11] computed as follows:

||H||2 =
∑

I,J

||hIJ ||
2 =

∑

I,J

∑

i∈I,j∈J

h2
ij(4.2)

We can rewrite the residue matrix in a more com-
pact form. Let us introduce the matrices R ∈ Rm×k

and C ∈ Rn×l which are defined as follows: each ele-
ment (i, r) (1 ≤ r ≤ k) of R is equal to m

−1/2
r if i is in

co-cluster r (mr is the number of rows in r), 0 otherwise.
Each element (j, c) (1 ≤ c ≤ l) of the matrix C is equal

to n
−1/2
c if j is in c (nc being the number of columns in

c), 0 otherwise. The residue matrix becomes:

H = (I − RRT )X(I − CCT )(4.3)

The proof of validity of this equation is given in [11].
The authors first demonstrate that (RRT X)ij = xIj ,
(XCCT )ij = xiJ and (RRT XCCT )ij = xIJ , before
showing that (4.3) is true. They conclude that, if we
consider the projection (I − RRT )X of the matrix X,
then ||H||2 gives the objective function of k-means for
this modified matrix.

Let us now consider our algorithmic contribution.
Our approach uses the so-called “ping-pong” technique
to process alternatively (applying a k-means method)
columns and rows. Thus, matrix C is updated only
after determining the nearest column cluster for each
column (and similarly for rows). For that, we can

decompose the objective function in terms of columns.
Given XP = (I − RRT )X, XC = (I − RRT )XC, and
X̂P = (I − RRT )XCCT = XCCT , we can rewrite the
objective function as follows:

||XP − X̂P ||2 =
l

∑

c=1

∑

j∈Jc

||XP
.j − X̂P

.j ||
2

=
l

∑

c=1

∑

j∈Jc

||XP
.j − (XCCT ).j ||

2

=
l

∑

c=1

∑

j∈Jc

||XP
.j − n1/2

c XC
.c ||

2.

In the same way, setting XP = X(I − CCT ), XR =
RT X(I −CCT ), and X̂P = RRT X(I −CCT ) = RXR,
we obtain the following decomposition in terms of rows:

||XP − X̂P ||2 =
k

∑

r=1

∑

j∈Ir

||XP
i. − m1/2

r XR
r. ||

2.

Then, matrices XC and XR correspond to the cluster
centroids for columns and rows respectively.

Now we can introduce our constrained co-clustering
algorithm. First, we give a version to solve the satisfac-
tion problem for a conjunction of must-link and cannot-
link constraints. Then, we introduce a version which
processes the interval constraint. Finally, we sketch a
possible strategy to integrate those two principles.

4.1 Satisfying must-link and cannot-link con-

straints The transitivity of the must-link constraint
is a well known property. We can then transform a
set of must-link constraints over rows into a collection
Mr = M1, . . . ,MN , where each Mi is a set of rows
involved by the same transitive closure of must-link
constraints. Let us denote Mc the same set built for
columns and let Cr and Cc be the sets of cannot-link
constraints for rows and columns respectively.
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Algorithm 4.1. Co-clustering under must-link and
cannot-link constraints.

ConsCoClust(X,k,l,Mr,Mc,Cr,Cc)
Input Data matrix X, k, l, cannot-link sets Cr and
Cc, collections Mr et Mc

Output Matrices R and C
Initialize R et C
∆ = 1; τ = 10−2||X||2

t = 0
objt = ||(I − RRT )X(I − CCT )||2

while ∆ > τ
t = t + 1
XC = (I − RRT )XC
XP = (I − RRT )X
foreach 1 ≤ j ≤ n

L = ∅
if ∃Mv ∈ Mc t.q. j ∈ Mv

MLColumnAssign(X,l,L,Mv,Cc)
else

L = {1 ≤ c ≤ l | ∄jc | γ
t[jc] = c

∧c6=(j, jc) ∈ Cc}

γt[j] = argminc∈L ||XP
.j − n

−1/2
c XC

.c ||
2

Update C using γ
XR = RT X(I − CCT )
XP = X(I − CCT )
foreach 1 ≤ i ≤ m

if ∃Mu ∈ Mr t.q. i ∈ Mu

MLRowAsssign(X,k,L,Mu,Cr)
K = ∅
else

K = {1 ≤ r ≤ k | ∄ir | ρ
t[ir] = r

∧c6=(i, ir) ∈ Cr}

ρt[i] = argminr∈K ||XP
i. − m

−1/2
r XR

r. ||
2

Update R using ρ
objt = ||(I − RRT )X(I − CCT )||2

∆ = |objt − objt−1|

Algorithm 4.1 enables to co-cluster data when con-
junctions of must-link et cannot-link constraints are
given. It starts with some initialization (e.g., random
initialization) of matrices C and R. During each itera-
tion, the algorithm associates each column (resp. row)
to the nearest column (resp. row) cluster which does
not introduce any cannot-link violation. If a column
(resp. row) is involved in a must-link constraint (see
Algorithms 4.2 and 4.3), the algorithm associates the
whole set of columns (resp. rows) involved in the transi-
tive closure of this constraint to the column (resp. row)
cluster such that the average distance is minimum, and
controlling that there is no cannot-link constraint which
is violated by this operation. Then the algorithm up-
dates the matrix C (resp. R) following the assignment
schema resulting from the previously described oper-

ations. This process is iterated until the diminution
of the objective value turns to be smaller than a user-
defined threshold τ .

Algorithm 4.2. Constrained column assignment.

MLColumnAssign(X,l,L,Mv,Cc)
foreach jv ∈ Mv

L = L ∪ {1 ≤ c ≤ l | ∄jc | γ
t[jc] = c

∧c6=(jv, jc) ∈ Cc}

γt[Mv] = argminc∈L

∑
jv∈Mv

||XP
.j−n−1/2

c XC
.c ||

2

|Mv|

Algorithm 4.3. Constrained row assignment.

MLRowAssign(X,k,L,Mu,Cr)
foreach iu ∈ Mu

K = K ∪ {1 ≤ r ≤ k | ∄ir | ρ
t[ir] = r

∧c6=(iu, ir) ∈ Cr}

ρt[Mu] = argminr∈K

∑
iu∈Mu

||XP
i. −m−1/2

r XR
r. ||

2

|Mu|

Notice that the initialization step should not neces-
sarily take into account constraints, since their satisfac-
tion is ensured by the first iteration of the algorithm.
A possible improvement would consist in using a best
assignment criterion for objects involved in cannot-link
constraints. Moreover, we know that satisfying a set of
cannot-link constraints for a given number of clusters is
NP-complete [13].

4.2 Satisfying the interval constraint Algo-
rithm 4.4 enables to solve the satisfaction problem for
the interval constraint (the part concerning row assign-
ment (⋆⋆) is omitted here). The initialization (⋆) of
partitions interested by this constraint should produce
a number l (resp. k) of intervals over columns (resp.
rows). Then, the assignment process only considers the
frontiers between intervals. More precisely, it first pro-
cesses the left frontier, then the right frontier iteratively.
A column (resp. row) can be assigned to the adjacent
interval if the distance is smaller than the distance com-
puted over its original interval. In this case, we continue
processing the remaining columns (resp. rows). When
the left frontier and the right frontier of an interval cor-
respond to the same column (resp. row), the algorithm
starts to process the next frontier. If there is no neces-
sity to reassign the column (resp. row), the algorithm
stops the current frontier processing and it skips to the
following one. Notice that, contrary to [22, 23], the
satisfaction of the interval constraint on the computed
bi-partition is here ensured.

We do not consider the combination of these two al-
gorithms to process a conjunction of must-link, cannot-
link and interval constraints. However, let us sketch
research guidelines for this purpose. We first have to
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ensure that each set Mr ∈ Mr (or Mc ∈ Mc) is an in-
terval. For instance, for a set of objects {i1, i2, i3, i4, i5},
and a set Mr = {i2, i4}, we should include object i3
into Mr because of the definition of intervals. Then,
we need the initialization to produce a partition which
takes into account the whole set of constraints (notice
again that satisfying a conjunction of cannot-link con-
straints is a NP-complete problem). Finally, it is pos-
sible to reuse the strategy described by Algorithm 4.1
only on the frontiers, following the schema presented in
Algorithm 4.4.

Notice that this approach is intrinsically different
than applying existing mono-dimensional constraint-
based clustering algorithms alternatively on row and
column vectors. In fact, each column (row) reassign-
ment step of the algorithm takes into account the pre-
vious row (column) reassignment step through the com-
mon objective function. As a consequence, constraints
on one dimension potentially influence the partition on
the other dimension.

4.3 A running example According to the objective
function given by Equation 4.3, an optimal co-clustering
result for Xr (see the toy example in Fig. 1), is given by
matrix X1

r in Fig. 2. If we enforce Object 1 and Object
2 to be in two different clusters by setting a cannot-link
constraint c 6=(1, 2), then we obtain the results shown
by matrix X2

r . Notice that, even if Object 5 is not
concerned by this constraint, in the final bi-partition it
is clustered together with Object 2. In fact, Object 2
and Object 5 share the same feature values.

If we set an interval constraint on the set of columns
(namely cint(C

c)), we obtain the co-cluster structure
shown by X3

r in Fig. 2. Notice that, though only
the column set is constrained, the resulting object
partition is also different from the one obtained when
no constraint is given. This is a direct consequence of
using an objective function which takes into account
both object and attribute partitions.

4.4 Computational complexity Let us first con-
sider Algorithm 4.1. Computing (I−RRT )X(I−CCT )
only requires the number of operations needed to com-
pute RT XC, i.e., kn(m + l). It gives O(N) time com-
plexity (when N = mn) under the reasonable hypothe-
sis that k ≃ l << m ≃ n. Assigning columns and rows
to the new clusters can be performed in O(N(k + l))
time at each iteration. The overall complexity of the al-
gorithm is then O(N(k+l)t), where t is the total number
of iterations to complete the co-clustering. Complexity
of Algorithm 4.4 is trivially the same. In general, the
fact that we only process the interval frontiers increase
the performances during the assignment step.

Algorithm 4.4. Co-clustering with an interval con-
straint.

IntCoClust(X,k,l)
Input Data matrix X, k and l, intr, intc
Output Matrices R and C
Initialize R, C, left, right; (⋆)
∆ = 1; τ = 10−2||X||2

t = 0
objt = ||(I − RRT )X(I − CCT )||2

while ∆ > τ
t = t + 1
XC = (I − RRT )XC
XP = (I − RRT )X
foreach 1 ≤ c ≤ l

finish = false
while finish = false ∧ right[c] > left[c]

if c > 1
j = left[c]

if ||XP
.j − n

−1/2

c−1 XC
.c−1||

2 <

||XP
.j − n

−1/2
c XC

.c ||
2

γt[j] = c − 1
left[c] = left[c] + 1
right[c − 1] = right[c − 1] + 1

else

finish = true
finish = false
while finish = false ∧ right[c] > left[c]

if c < l
j = right[c]

if ||XP
.j − n

−1/2

c+1 XC
.c+1||

2 <

||XP
.j − n

−1/2
c XC

.c ||
2

γt[j] = c + 1
left[c + 1] = left[c + 1] − 1
right[c] = right[c] − 1

else

finish = true
Update C using γ
XR = RT X(I − CCT )
XP = X(I − CCT )
(⋆⋆)
Update R using ρ
objt = ||(I − RRT )X(I − CCT )||2

∆ = |objt − objt−1|

5 Experimental validation

We have studied the impact of our constraint-based
co-clustering approach on two well-documented mi-
croarray data sets, plasmodium [9] and drosophila [1].
The first one concerns the transcriptome of the in-
traerythrocytic developmental cycle of Plasmodium Fal-
ciparum, i.e., a causative agent of human malaria
[9]. The data provide the expression profile of 3 719
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genes in 46 biological samples. Each sample corre-
sponds to a time point of the developmental cycle:
it begins with merozoite invasion of the red blood
cells, and it is divided into three main phases, the
ring, trophozoite and schizont stages. These data, as
well as functional groups descriptions, are available
on ftp://ftp.camda.duke.edu/CAMDA04_DATASETS.
Missing values (about 0.5%) were replaced by zeros.

The second data set concerns the gene expression
of the Drosophila melanogaster during its life cycle
[1]. The expression levels of 3 944 genes are evalu-
ated for 57 sequential time periods divided into em-
bryonic, larval and pupal stages. It has been retrieved
from http://genome-www5.stanford.edu2. Missing val-
ues (less than 1%) were replaced by zeros.

Our algorithms are implemented in C, and all the
experiments have been performed on a PC (Windows,
Intel Core 2 Duo 2.00GHz, 2GB RAM). In all our
experiments the value of the stopping parameter τ
was set to 10−4||X||2. As the initial partitions were
randomly generated, our algorithm has been executed
20 times for each group of constraints. Running time is
about 60 seconds for plasmodium data, and 100 seconds
for drosophila.

5.1 Results for must-link et cannot-link con-

straints The first collection of experiments concerns
the use of must-link and cannot-link constraints in two
different situations. In the first one, we assume we know
a certain amount of information about some functional
groups of genes. We use it to set up a number of pair-
wise constraints, and then we measure the improvement
in co-clustering results w.r.t. the unconstrained version
of the same algorithm. In the second situation, we try
to discover one fixed partition by using the co-cluster
label to define some sets of pairwise constraints both on
the gene set and the biological condition set.

Constraints on gene set We studied must-link and
cannot-link constraints processing only for the gene set.
For this purpose, we used the plasmodium data set, for
which we can take advantage of a certain amount of
information about genes involved in the different devel-
opmental stages. In particular, we considered the cy-
toplasmic translation machinery (denoted CTM) group
(159 genes), which is known to be active during the first
phase of the life cycle of the bacterium, the merozoite
invasion (denoted MI) group (87 genes) particularly ac-
tive during the second phase, and the early ring tran-
scripts (denoted ERT) group (34 genes), which charac-

2The preprocessed and cleaned version of this data set is

available on http://www-kdd.isti.cnr.it/˜pensa/datasets/.

terizes the last stage of the developmental cycle. All
these functional groups have been described in [9]. We
randomly selected 20 sets of constraints based on these
well-described functional groups. Each set contains a
variable number of constraints, and the amount of genes
involved in each set is between 20% and 50% of the genes
involved in the threes functional groups. For this exper-
iment, we set k = 3 and l = 3 to be try to identify the
three developmental stages of Plasmodium Falciparum.

CTM MI ERT
Co-cluster1 94.43% 0.40% 20.44%
Co-cluster2 0.00% 80.11% 1.32%
Co-cluster3 5.57% 19.49% 78.24%

Table 1: Genes in the 3 clusters without constraints

CTM MI ERT
Co-cluster1 95.87% 0.39% 19.26%
Co-cluster2 0.01% 86.18% 2.09%
Co-cluster3 4.12% 13.43% 78.65%

Table 2: Genes in the 3 clusters under constraints

The results presented in Table 1 and 2 show for each
functional group the amount of genes involved in each
co-cluster. In general, co-clusters are better character-
ized when constraints are defined. The number of genes
belonging to each characterizing group increase in the
co-cluster involving experimental conditions which are
known to have this function activated. The improve-
ment is much more significant for the second group of
genes (merozoite invasion), while the last group (early
ring transcripts) seems to be less influenced by the ex-
ploitation of these forms of constraints.

Constraint on gene and condition sets We mea-
sured the impact of combining constraints over row sets
and column sets on the plasmodium data. For this
purpose, we selected a bi-partition among the uncon-
strained co-clustering results. In particular, we chose
the co-clustering results with the minimum objective
function value obtained at the end of the iterative pro-
cess. This value is about 1.99×104. Then, we generated
20 random sets of constraints involving gene and bi-
ological conditions. The number of genes involved in
those constraints is about 5% to 10% of the total size of
the gene set. For biological conditions, this number is
about 15% to 25%. To evaluate the agreement between
the selected bi-partition and the ones discovered by our
constrained algorithm, we used the adjusted Rand in-
dex [16]. If C = {C1 . . . Cz} is the partition built by
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Figure 3: Two different views of 3 co-clusters captured with conjunctions of must-link and cannot-link constraints.
The three top plots show the expression level of 100 randomly picked genes. Bottom plots show the expression
level of the 100 genes closest to the average expression profile.

the clustering algorithm and P = {P1 . . . Pz} is a pre-
defined partition, each pair of points can be assigned
to the same cluster or to two different clusters in each
partition. Let a be the number of pairs belonging to the
same cluster of C and to the same cluster of P. The
expected value of a denoted exp(a) (p being the number
of points) is computed as follows:

exp(a) =
|π(C)| · |π(P )|

p(p − 1)/2

where

|π(C)| =

∑z
k=1

|Ck|(|Ck| − 1)

2

|π(P )| =

∑z
k=1

|Pk|(|Pk| − 1)

2
.

Then, the maximum value for a is:

max(a) =
1

2
(|π(C)| + |π(P )|)

The agreement between C and P can be estimated
as follows:

AR(C,P) =
a − exp(a)

max(a) − exp(a)

Notice that when AR(C,P) = 1, we have identical
partitions.

Results obtained by using constraints have been
compared with those obtained by the unconstrained

ARr ARc ||H||2 Nb.Iter
Const. 0.88 0.73 2.16×104 9.18

Unconst. 0.70 0.43 2.21×104 9.35

Table 3: Adjusted Rand index, final objective function
value and number of iterations.

algorithm. Table 3 summarizes this experiment. We
can see that using constraints gives rise to an obvious
improvement of the agreement between the two bi-
partitions (ARr and ARc are the agreement indexes
measured on rows and columns respectively). As side
effects, the average number of iterations needed by
the algorithm to complete the co-clustering process
is slightly smaller. Moreover, specifying constraints
enables to improve the final value of the objective
function. Indeed, the ||H||2 value decreases by about
2%.

Examples of co-clusters discovered by our con-
strained techniques are given in Fig. 3. Even if gene
clusters contain more than 1000 genes, it remains pos-
sible to identify similar expression profiles in the plots
which show groups of 100 randomly picked genes for
each co-clusters. If we consider the group of 100 genes
which are the most similar with the average co-cluster,
the related plots show more coherent expression profiles.

Notice that, since the sets of constraints are

9



randomly selected, these experiments include results
achieved through constraints which can either positively
influence the results or do not introduce any quality im-
provement. However, as average clustering results are
good, we can conclude that our approach enables to
obtain more relevant bi-partitions according to prior bi-
ological knowledge.

5.2 Results for the interval constraint We evalu-
ated the added value of the interval constraint by apply-
ing our algorithm to the drosophila data set. Here, our
goal is to rediscover the three phases of the drosophila
life cycle using, as unique information, the number of
clusters (k = l = 3).

AR ||H||2 Nb.Iter.
Const. 0.76 8.23×104 11.60
Unconst. 0.41 7.73×104 14.60
Const.Init. 0.54 7.86×104 11.05

Table 4: Adjusted Rand index, final objective function
value and number of iterations.

We compared the adjusted Rand index for the con-
strained and unconstrained versions of our algorithm
and for a collection of 20 randomly initialized runs. The
results (see Table 4), show that using an interval con-
straint enables to find more accurately the three stages
of the drosophila life cycle (the measured improvement
for the adjusted Rand index is about 85%). Moreover,
the number of iterations needed to complete the co-
clustering process is considerably smaller than the one
obtained when an interval constraint is enforced. No-
tice that the final value of the objective function for the
unconstrained version of the algorithm is better than
for the constrained version. It means that the structure
which our algorithm is able to discover is unlikely to be
the global optimum for this data set. Despite of this,
the unconstrained algorithm has never managed to find
intervals.

In Fig. 4, we plotted the average behavior of the
objective function value w.r.t. iterations. For this type
of data set, an interval-based initialization step gives
rise to a smaller initial objective function. Interestingly,
the objective function value for the unconstrained co-
clustering algorithm starts to be better after the first
iteration. Afterwards, the difference between the two
curves is just an offset, while the two convergence speeds
are quite similar. This example illustrates the tradeoff
between the objective function optimization and the
constraint satisfaction processes. We can comment
such a process considering the metaphor of the “tug of
war” game. When the only competitor is the objective

Figure 4: Object value vs. iterations

function, the only limit is its global optimum. When
a second competitor (say constraints) plays, it reduces
the objective function strength.

In order to measure the impact of the initialization
method on the iterative behavior of the algorithm, we
measured all the performances parameters already used
for the previous comparison (see Table 4). Initializing
the column partitions with a set of interval improve
the average adjusted Rand index value over 20 runs,
but this value is still far from the one achieved by the
constrained version. The number of iteration is the
only performance index which improves w.r.t. both
unconstrained and constrained algorithms. Notice that,
even if a constraint-oriented initialization has been used,
none of the 20 executions has been able to find intervals.

Figure 5: Object value vs. iterations

Finally, Fig. 5 illustrates that, after an improvement
in the initial objective function, there are no significant
differences between the totaly unconstrained algorithm
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and the interval-initialized one. It means that the ac-
tive constraint process introduced within Algorithm 4.4
is critical: a constraint-oriented initialization is not suf-
ficient to satisfy the interval constraint.

6 Conclusion

Co-clustering is an interesting conceptual clustering ap-
proach. Improving co-cluster relevancy remains a diffi-
cult task in real-life exploratory data analysis processes.
First, it is hard to capture subjective interestingness as-
pects, e.g., the analyst’s expectation given her/his do-
main knowledge. Next, when these expectations can be
declaratively specified, using them during the computa-
tional process of bi-partitions is challenging. In [22, 23],
a simple approach was suggested that was dedicated
to 0/1 data analysis and incomplete w.r.t. constraint
processing. In this paper, we have proposed a new con-
strained co-clustering algorithm. We explained how to
exploit user-defined constraints like must-link, cannot-
link , and interval constraints when co-clustering numer-
ical matrices. Applications on kinetic gene expression
data analysis have been considered. Many other appli-
cations rely on ordered data analysis and may benefit
from such constrained co-clustering approaches.

A short-term perspective is to combine properly
the strategies for exploiting must-link and cannot-link
constraints one one hand, and interval constraints on
another hand. So far, our approach does not look for
overlapping co-clusters while this may be interesting
for many applications. We may study the possibility
to discover overlapping co-clusters, like many local bi-
clustering approaches already do (see, e.g., [10, 17]).
Also, we are convinced that our approach can be easily
extended towards other kinds of objective functions
(e.g., mutual information [14] or the more general
setting of Bregman functions [2]), and other user-defined
constraints (e.g., balancing constraints [4]). Extending
our algorithms and using them in other application
domains (e.g., document clustering , privacy preserving
clustering) is also planned.
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