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Abstract— In this paper, the popular FBP algorithm is revisited
using discrete tomography. More precisely, our version of the
discrete exact Radon (inverse) transform called the Mojette
transform is used to model the discrete geometry into which are
mapped the initial data. This allows for an exact backprojector
definition that is then mixed with the spline-FBP algorithm [2]
to produce a novel Mojette-FBP scheme. Adequation to practical
geometries used in 3D medical imaging as 3D-PET is presented.

I. I NTRODUCTION

The Radon Transform [10] represents an interesting problem
to discretize because of its ill-posed nature [2]. Discrete
operators start to emerge in the tomographic reconstruction
field. Until recently, the field of discrete tomography was
working onto the reconstruction problem with pure mathe-
matics objectives. Linking discrete tomography with medical
tomography is an ongoing process [4][8]. In this paper, we
are willing to give new discrete and consistent tools to the
tomographic reconstruction. First, the geometry of acquisition
can be modeled using discrete angles as was done by M. Katz
[7]. Second, the corresponding discrete Radon transform will
be derived properly using the Mojette transform that has been
studied in our group for some years [9]. Third, the stability
of the obtained exact backprojector and the instability of the
scheme in presence of noise lead to derive a new Mojette FBP
scheme that is finally presented.

II. A L INEAR DISCRETEEXACT RADON TRANSFORM:
THE MOJETTE OPERATOR

The splines spaces (since they represent a reproducing
kernel of Sobolev spaces) will be the choice to project the
discrete Radon solutions issued from our derived schemes.
Because of the recurrent relationships between spline orders,
only splines of order 0 are considered here without loss of
generality [6]. In other words, the formulation for a continuous
function f(x, y) from samplesf(k, l) is given by:

f0(x, y) =
+∞∑

k=−∞

+∞∑
l=−∞

f(k, l)β0(x− k)β0(y − l) (1)

where functionβ0(x) is the step function of unitary length.
The Radon transform is given in its continuous mode by:

proj(t, θ) = Rf(x, y)

=
∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ(t + x sin θ − y cos θ) dxdy

(2)

Using Eq. 2 to project the grid used in Eq. 1 leads to
the major choice of only using discrete angles of the form
θ = atan q

p where p and q are integers (moreover, a single
representant of the angle class is kept by restrictingp and
q to be prime together and q to be positive). Effectively,
when jointly using such an angle with the projection sampling
(wereb is called a bin) leads to a regular lattice with keeping
all pixels centers onto projection bins. In this case, Eq. 2 is
reduced to [3] :

proj(b, p, q) = Mδf(k, l)

=
+∞∑

k=−∞

+∞∑
l=−∞

f(k, l)∆(b + qk − pl)
(3)

where ∆(b) =
{

0 if b 6= 0
1 if b = 0 is the discrete Kronecker

symbol. Eq. 3 defines the Mojette transform operator (see Fig.
1).

Fig. 1. Mojette projection of a4 × 4 image with projection directions
(p, q) = {(1, 0), (−1, 1), (2, 1)}



The 2D Mojette transform defined in Eq. 3 has some
interesting properties. Linearity and shift-invarianceness of the
Radon transform are kept because both angular and projection
samplings are realized in an adequate manner. Reconstruction
can be exactly performed with a finite number of angles [9].
Notice that Eq. 3 could also be written as :

proj(b, p, q) = Mδf(k, l)

=
+∞∑

k=−∞

+∞∑
l=−∞

f(k, l)∆
(

b− P21

(
k
l

))
(4)

with P21 = (−q p).
This gives a simple way to derive the 3D Mojette operator

transform for a convex volumef(k, l,m) with the discrete
projection planes indexed by vectorBT = (b1, b2) at given
angle(p, q, r) with gcd(p, q, r) = 1 by :

proj(B, p, q, r) = Mδf(k, l,m)

=
+∞∑

k=−∞

+∞∑
l=−∞

+∞∑
m=−∞

f(k, l,m)∆

B − P32

 k
l
m

 (5)

with P32 =
(

1 0 −p
r

0 1 −q
r

)
whenr 6= 0.

The main characteristic of the Mojette transform lies in
the sampling (first presented in [7]). Another way of seeing
this is to say that the linear system expressed in Eq. 3 is
exactly invertible because of the sampling. From a rectangular
image Q × P , this matrix inversion must be possible to
perform an inverse mojette transform, i.e. a minimum number
of projections is required. For the rectangular shape, the Katz
criterion allows reconstruction if:

P ≤
I∑

i=1

|pi| or Q ≤
I∑

i=1

|qi| (6)

whereI is the number of projections.
In other words, the reconstruction does not depend directly

on the number of bins but is first related to the number of
projections. These reconstruction conditions have been gen-
eralized for any convex shape using a simple morphological
tool : a two pixel structuring element that depicts a discrete
direction [9].

The inverse Mojette operator is also defined in a specific
way. Instead of a matrix inversion (which is possible), the
operator only proceeds by finding at each iteration a discrete
corner of the shape under reconstruction which is the only pro-
jected pixel onto a bin : the bin value is exactly backprojected
and all projections are updated. The algorithm complexity of
both the direct and inverse Mojette transform isO(IN) where
N is the number of pixels.

So far, the defined Mojette transform does not act onto the
spline spaces. Fortunately, a generalization of the operator to
any spline order is simple as shown in [3] and connect to the
FBP derivation made in [2]. The physical projection expressed
in Eq. 2 means that the integration line giving the bin value
could be interpreted as either discrete (jumps between pixel

centers) or continuous. Designing a projection operatorM0

as in Eq. 3 which will sum the whole line is simply adding
a convolution (in the image plane) with a spline 0 order as
expressed in Eq. 1.

proj0(b, p, q) = M0f(k, l)

=
+∞∑

k=−∞

+∞∑
l=−∞

f(k, l)trapeze(b + qk − pl)
(7)

Again, as demonstrated in [3], this corresponds to convolve
the discrete Mojette projection (this result is only valid for
(p, q)-angle) with a discrete trapezoidal filter. The latter can be
roughly expressed as the convolution of two series of unitary
values of respective lengthsp andq.

III. M OJETTE ANDPET GEOMETRIES

The geometry of PET acquisition devices can be modelled
by the discrete geometry derived from the Mojette discrete
space. As a matter of fact, each disintegration captured by
a pair of detectors corresponds to a solid angle defined by
the length between detectors and the size of an elementary
detector. In other words, a single photon count does not
corresponds to a single angle. So it can be assigned to any
angle lying into this solid angle. Specifically, we propose to
compute a discrete angle indexed by(p, q, r) to each detection
and to increment the corresponding Mojette bin onto the
discrete plane.

Mojette discrete geometry is used for 3D PET reconstruc-
tion by the choice of the(p, q, r) angles set for the whole
detection set which depends on the desired resolution for
reconstruction. This has been shown in a slight different
context [2] for SPECT acquisition. From the Mojette point of
view, it becomes clear that pixel and bin resolution are strongly
related through the angle direction. The set of planes allowing
(according to Katz’criterion) a given resolution is fulfilled with
this algorithm. Acting this way, the approximation between
original and discrete data is minimized.

Nevertheless, two main problems are still to be addressed.
First, data are noisy, whereas the standard inverse Mojette al-
gorithm does obviously a poor job in this case since errors will
propagate and increase from the corners to the center of the
image. This has led to use this instability for a watermarking
scheme where the mark acts as a noise added onto Mojette
projections [1]. This main concern can be overcome by the
use of a multiresolution algorithm that will evaluate the noise
and use the signal properties at each step. Second, there are
missing data on PET projection plane and again the standard
inverse Mojette reconstruction can not be simply implemented.

The other way to avoid these problems is to use a direct
reconstruction method which split the inverse Mojette operator
into a filter onto the projections and an exact backprojec-
tor.This is the FBP-Mojette algorithm now presented.

IV. T HE FBP-MOJETTE ALGORITHM

A. Theory

Following the discrete approach of the PET reconstruction
problem will lead to design an exact discrete filter which



has to be consistent with the discrete set of angles obtained
from the acquisition model. This induces a complicated design
corresponding to the notion of a an equivalent discrete Ramp
in the Z transform domain. However, a filter derived from a
corresponding continuous version can be used. In [3] the spline
Mojette operators have been presented. In particular, the Haar
Mojette operator that corresponds to model the bin value by
the entire continuous line summation (not the discrete line as
the Dirac Mojette operator) can be used. The continuous exact
Haar-FBP filter was derived in [2] and its expression in the
Fourier domain is given by:

K0(ν, θ) = π |ν| sinc(ν cos θ)sinc(ν sin θ) (8)

where the apodisation function corresponds to the projection
of the filter onto the spline of order 0 space. The pixel size is
1× 1

The inverse fourier transform of Eq. 8 was derived as

k0(t, θ) =
1

π sin(2θ)
ln

∣∣∣∣∣ t2 − ( 1+sin(2θ)
4 )

t2 − ( 1−sin(2θ)
4 )

∣∣∣∣∣ (9)

for t 6= 0 andθ ∈]0, π
4 ] andk0(t, 0) = −1

π
2

4t2−1 .

Discretizing with Mojette angles (tan θ = q
p ) with

the projection samplingt = b√
p2+q2

leads to:

k0(b, p, q) =
p2 + q2

2πpq
ln

∣∣∣∣∣b2 − (p+q
2 )2

b2 − (p−q
2 )2

∣∣∣∣∣ (10)

for b 6= 0 and (p, q) 6= (1, 0) andk0(b, 1, 0) = −1
π

2
4b2−1 .

Notice that this filter can not be implemented in a straight-
forward manner. It exhibits discontinuities at the points where
the projection of the pixel (which is described by a trapezoidal
shape) is continuous but not differentiable. The Ramp filter
acting as a derivation operator, the values at these points have
to be computed using the Dirichlet condition.

For a single angle(p, q) the discrete backprojector is defined
by:

f̃(k, l) = M∗proj(b, p, q)

=
∑

i

∑
j

δ(k − i)δ(l − j)∑
b

proj(b, p, q)∆(b + qi− pj)

(11)

Lemma: The Mojette dual operatorM∗ corresponds to an
exact discrete backprojector operator. (See Fig. 2) The demon-
stration is straighforward by applying the Mojette operator
onto Eq. 11 :

MM∗proj(b, p, q) =∑
k

∑
l

∑
i

∑
j

δ(k − i)δ(l − j)∆(b + qi− pj)∑
b

proj(b, p, q)∆(b + qk − pl)

(12)

leading to :

MM∗proj(b, p, q)

=
∑

b

proj(b, p, q)
∑

i

∑
j

∆(b + qi− pj) (13)

Then, using a Mojette angle sampling allows to back-project
onto pixel centres without any interpolation. In other words,
the FBP-Mojette operator is exact for the filter when an infinite
number of angles is used and exact for the backprojection of
these filtered angles.

bi+2
bi+1

bi

bi
bi+1bi+2

Fig. 2. (a) Interpolation onto the projection in order to backproject the right
value at the corresponding centre of the pixel, (b) Exact Mojette backprojector.

B. Implementation

We performed the implementation of the Mojette FBP
algorithm. The considered test image is only composed of a
centered square box with unitary value of 15 pixel width onto a
null background. An additional half-valued border was added
with quarter-valued corners to ensure a Dirichlet condition.
The image size was128× 128.

Projections angles were carefully computed as follow. The
Farey series of order 128 was used to generate a very high
(20088) number of projections. Then, a subset of 128 pro-
jections was chosen among the 20088 projections by taking
values close to the regular angular sampling. This computation
was mandatory to obtain a gracefully distributed set of discrete
angles. Indeed, choosing a Farey series of lower order leads



to unequal angular sampling that will result into degradation
of the FBP Mojette reconstruction. The projection operator
was simply designed by applying the Dirac-projector M (Eq.
3) without the smoothing by the trapezoidal window (which
would be necessary if the classical projection operator would
have to be simulated). Thus the spatial filterk0 was convolved
with the projection and the backprojectorM∗ applied. Fig.
3 shows the reconstruction for the set of 128 gracefully
distributed angles.

We measure the reconstruction error with thenormalised
root mean squared distance measureMRNSDM and the
normalised mean absolute distance measureNMADM [5]. A
large difference in a few places cause the NRNSDM to be
large. The NMADM emphasise the importance of a lot of
small errors rather than a few large errors. They are defined
by:

MRNSDM =

(∑N
k=1

∑N
l=1(pk,l − p̃k,l)2∑N

k=1

∑N
l=1(pk,l − p̄)2

) 1
2

(14)

NMADM =
∑N

k=1

∑N
l=1 |pk,l − p̃k,l|∑N

k=1

∑N
l=1 |pk,l|

(15)

with pk,l with k, l ∈ [1..N ] original image’s pixels,
p̃k,l with k, l ∈ [1..N ] reconstruct image’s pixels and̄p pixels
mean in original image.

Results are very promising. It has to be noticed that the
rule of thumb to get the appropriate sampling (projection
sampling compared to image sampling, number of projections)
given in [2] seems not respected here. In fact, the present
situation is highly difficult to assess because the sampling path
onto the projection is angle-dependent. For instance, the angle
θ = 0 leads to a convolution filter without oversampling (thus
misleading the Dirichlet condition). This explains the obtained
artefacts atθ = 0 or θ = π

2 .

Fig. 3. Image reconstruction with 128 gracefully distributed angles.
MRNSDM = 0.000814, NMADM = 0.313296

V. CONCLUSION

In this paper a new version of the classical FBP algorithm
has been presented. This FBP-Mojette algorithm is perfectly

suited for a discrete version of the Radon transform. It has to
be noticed that the proposed algorithm gives an exact backpro-
jector for the dual of the projection operator. This leads to an
implementation without approximations for the backprojector.
Therefore, the approximated part of the reconstruction is the
finite number of projections.

The next work in this direction will be to define the equiva-
lent filter corresponding to a finite number of projections. This
will allowed to connect with the inverse Mojette operator.
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[3] JeanPierre Gúedon and Nicolas Normand. Spline mojette transform.
application in tomography and communication.EUSIPCO, 2002.

[4] G Herman and A Kuba.Discrete tomography, Foundations, algorithms
and applications (Applied and numerical harmonics analysis series).
Springer-Verlag, 1999.

[5] Gabor T. Herman.Image Reconstruction From Projections. Computer
Science and Applied Mathematics,The Fundamentals of Computerized
Tomography, academic press edition, 1980.
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