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ABSTRACT

Iterative methods are now recognized as powerful tools to solve inverse problems such as tomographic recon-
struction. In this paper, the main goal is to present a new reconstruction algorithm made from two components.
An iterative algorithm, namely the Conjugate Gradient (CG) method, is used to solve the tomographic problem
in the least square (LS) sense for our specific discrete Mojette geometry. The results are compared (with the
same geometry) to the corresponding Mojette Filtered Back Projection (FBP) method.

In the fist part of the paper, we recall the discrete geometry used to define the projection M and backpro-
jection M* operators. In the second part, the CG algorithm is presented within the context of the Mojette
geometry. Noise is then added onto these Mojette projections with respect to the sampling and reconstructions
are performed. Finally the Toeplitz block Toeplitz (TBT) character of M*M is demonstrated.

1. INTRODUCTION

Medical tomographic devices are mostly driven by the popular FBP algorithm. Iterative methods have proven
their ability to properly invert the projection data by incorporating a priori properties as well as the geometry
of the acquisition or the characteristics of the task that the physician has to perform on the final image. For
instance, during the last decade, J. Fessler and his colleagues have gave some understanding of iterative scheme?
applied to the minimization of penalized least square criteria. Our prime goal in this paper is to start over
with a new discrete geometry that does not correspond to the way data are collected today but rather gives the
discrete problem a simpler mathematical expression. This expression has been tested for direct inversion using
the zero degree spline FBP algorithm®* in another paper of these proceedings.” Conversely, the use of a simple
but iterative algorithm using the same discrete geometry modeling is the center of this paper. The discrete
Mojette sampling geometry is recalled in section 2 where the fact that the dual operator M* of the projector
M is exact is enhanced. The adopted iterative minimization scheme is the conjugate gradient (CG) method.
In section 3, the structure of the normal matrix M*M is studied. Finally, section 4 implements the conjugate
gradient algorithm and compares noisy phantom reconstructions both for the CG and FBP algorithms. Section
5 discusses and summarizes the existing differences between direct and iterative algorithms.
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2. MOJETTE SAMPLING GEOMETRY

The Mojette projection is a linear discrete exact version of the Radon transform. The projection directions are
defined by discrete angles (p, ¢) with tan = ¢/p with p and ¢ prime relatively and for ¢ >0 ¢ =0, p = 1. The
sampling on the projections is t = Ab/4/p? + ¢® where A is the pixel size and b the bin index onto the projection.
It allows for an exact backprojection with no interpolation scheme added onto the projections.® The sampling
geometry is adapted to the discrete geometry of the digital reconstructed image. The Mojette projector can be
defined for several pixel models. The simpliest is a Dirac pixel model as defined as:

oo +oo
projs(b.pa) = Y > f(k.1)5(b+ gk —pl) dr dy. (1)

k=—o0l=—x

The use of this projector with the discrete angle set S={(1,0),(1,1),(-2,1)} is illustrated on (Fig. 1).
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Figure 1. Mojette projections of a 4 x 4 image with projection directions (p, q) € {(1,0),(1,1),(-2,1)}

Pixel (k, 1) of the input object contributes to the bin b with a coefficient 1 when it is aligned with this bin in
the (p, q) direction, or 0 otherwise. Let N x N be the size of the input object. The latter can be rewritten in
column vector form where the pixel index is k 4+ x N.

The Mojette exact backprojector is defined as®:

+oo +oo —+oo

[M*proj(b,p, @)l(k,)) = Y > d(k—i)6(l—j) Y proj(b,p,q) Alb+ gi — pj) (2)

1=—00 j=—00 b=—o0

M* is the dual Mojette operator and the definition of M* shows M* = M7T where the T denotes the transpose
matrix.

3. M*M PROPERTIES

The matrix M*M represents the key point of the iterative scheme since we are looking to minimize | M* M p—M*b|.
In this section, we first derive its formula and then presents its main characteristics.



3.1. Expression of M*M

When a pixel (k,l) from a N x N image is projected in the (p,q) direction onto the bin b on the Mojette
projection, the indexes are linked by:
b+qgk—pl=0 (3)

To get the entries of M* M, the starting image is written as a vector of pixels according to the lexicographic
order. M performs the projection of this vector of pixels onto a vector of bins, while M* performs the back-
projection of the vector of bins into the pixel vector. The index ¢ in the pixel vector corresponds to the point
(kl, ll) with:

t=k+li xN (4)

where N is the width in pixels of the starting image.

In the M* M, matrix for a (p, ¢) projection direction, there is a coefficient sets to 1 in the (¢, 7) index only if
pixels ¢ and j are projected on the same bin in the (p,q) direction.

The index in the M*M matrix can be defined with index on the starting image.

i=ki+1li xN . I |_
{j:k2+lng Wlth{l2 ]

¥, )
N
where |z | denotes is the integer part of x.

If the pixels (k1,11) and (k2,1l3) are projected in the same direction, this gives:

by = —qk1 + ply
by = —qka +ply ~

(6)

The index (i,7) of matrix M*M is set to 1 if the two pixels are on the same bin if b, — by = 0, i.e.
—q(k1 — k2) + p(ls — l3) = 0. That gives the formula for one projection direction of (p, q):
MMk, 1) kot = Y Albr = ba), (7)
#(p,q)
here A(z) = 4 LET=0 gy Iso be written with (4,7) ind 1l the projecti
where A(z) = ¢ eowhere. q. can also be written with (4,7) index as a sum on all the projection
directions:
* C i J
MMy = A |ali- i)+ @V 4oy - LD 0
#(p.q)

With such an expression we can easily write the M*M matrix (Fig. 2)
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Figure 2. M*M expression for the (1,2) direction for a 3 x 3 image.



With the formalism described in! the matrix can be written:

£0,0)  £1,0) £20) | £0,1) f1,1)  £2,1) | £0.2) £(1,2) £2.2)
£(-1,0) £(-1,1) £(-1,2)
£(-2,0) £(-2,1) £(-2,2)
f0-1) f1-1) £2.1) | £0,0) HL0) £2,0) | f0,1) f1,1) f2,1)
f(-1,-1) £(-1,0) £(-1,1)
f(-2,-1) £(-2,0) £(-2,1)
£0,2) f(1,.2) £2,2) | £0,1) f(1,1) 2.-1) | £0,0) f(1,0) £2,0)
£(-1,-2) f(-1,-1) £(-1,0)
£(-2,-2) f(-2,-1) £(-2.0)

with
f(a,b) = ZA [—ga + pb] .

p.q

3.2. M*M is a TBT matrix

In this paragraph we show that the Matrix M*M is a block-Toeplitz matrix with Toeplitz blocks (in short, TBT
for Toeplitz-Block-Toeplitz).

For two pixels on the same line in the starting image translated of one row, their coefficient in the M*M
matrix will be translated of N row and N column in M*M. If these two aligned pixels are translated by one
column in the starting image, their coefficient will be translated of one row and one column in M*M.

If (i, j) and (i + 1,5 + 1) belong to the same block, d.e. if %! | = | %] and L%J:L%J then
. i+1 . j+1 i+1 j+1
- 1-N 1-n |12 Y )
(v [ ]) el v [ ) o [5F)  [
. i . J i J
(= [w]) e oyl ool5) =[5

Thus M*M ;11 jy1) = M*M; jy and M*M is composed of Toeplitz blocks.

Furthermore, as

. 1+ N . Jj+N 1+ N j+N
- N-—-N N-—-N|—— —
o(enn 5] el v (5 o[ o [
. 1 . J i j
_ _N|Z _N|ZL I I
(= [z ) ool s ) o505
we deduce that M* Mg N, j+n) = M*M(; ;) and we can conclude that M*M is TBT.
3.3. Conditioning of M*M

Since M* M is a square invertible matrix, its conditioning is given by:

cond(M* M) = || M*M]|.||(M*M) Y|

This formula, when computed for the Ly norm gives the result:

il A
Cy = condy(M*M) = 225N

ming| ;|
where )\; is an eigenvalue of M*M.

For block Toeplitz matrices, asymptotic eigenvalue distribution can be derived as in' using the Fourier domain.

For instance, for a 16 x 16 image, Table 1 gives both the exact conditioning of M*M and its approximation with
various numbers of angles.



Table 1. Comparison of exact and approximated M*M conditioning

angles exact Co approximated Co
32 18.04 28.96

64 8.13 8.22

128 3.83 4.74

256 2.34 2.72

4. CONJUGATE GRADIENT RECONSTRUCTION
4.1. CG Algorithm

Conjugate Gradient is a well-known algorithm to implement inverse problem solutions based on criterion mini-
mization3:.2 We define our estimated solution p as the image that minimizes the least square criterion:

J(p) = |lIb— Mpl|?, (9)

where p is the matrix of pixels and b the vector of the projected bins. Equivalently, p cancels the gradient of J,
i.e.,

M*Mp = M*b. (10)
In the present case, the standard form of the Conjugate Gradient method reads®:

k=0,1..

_ rTrk
po given = FrArAL
0

2N N P41 = pr + apdi
To : M=b M A[po Tk+1 =Tk — Osz*]\/[dk
d() =T0 s
k+1Tk+1

rire
k41 = Ti+1 + Brt1dy

Brt1 =

where 1, = —VJ(px)/2 = M*b — M*Mpy, and «y, dj, are the current values of the stepsize and of the descent
direction, respectively.
4.2. Reconstruction without noise

The first test image is a square 128 x 128 image with 17 x 17 centered pixels with a Dirichlet condition with the
value 1 in the centered 15 x 15 square, g in the boundaries and % in the corners (fig.3a). The background value
is i. The second one is a disk with a diameter of 21 pixels. The value of the pixels on the boundary of the disk
depends on the intercepted surface between the pixel and the disk (fig.3b).

The Mojette operator is used to get analytical projections b equally distributed on [0,7[. In such an ideal
case, the tests images are perfectly reconstructed.

The FBP Spline 0 was also implemented as described in a companion paper in these proceedings.”

Table 2. Iteration number for a CG reconstruction without noise.

’ Phantom | 32 projections | 64 projections | 128 projections | 256 projections | 512 projections
Square 1366 82 31 22 14
Circle 2785 147 35 24 16




(b) disk 128 x 128
phantom

(a) square 128 x 128
phantom

Figure 3. Test images

4.3. Noisy reconstruction and comparison to FBP reconstruction
A noise sequence following a Poisson statistics is produced and added onto the projections with respect to the
number of bins per projection angle (p, q).

We obtain good LS solutions on noisy projections using the CG scheme with Mojette Dirac projector and
backprojector (fig. 4) onto this phantom.

Compared to FBP reconstructions (fig. 5), the LS solutions are less noisy for the same initial noise level.

The MSE is calculated onto the phantom shape on a 23 x 23 pixel square centered onto the square shape and
on a 27 x 27 square centered onto the disk shape.
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Figure 4. Square phantom LS solution obtained by CG with gracefully distributed discrete angles on [0, 7[.

5. DISCUSSION

5.1. Mojette Tomographic Geometry

The first lesson given by using the Mojette geometry with the operators M and M* is the stability of the results.
Their behaviors both for direct and iterative methods are close to the standard sampling schemes.



(a) Recon-
structed image
with  Poisson
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= 0.2711
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Figure 5. Spline 0 square image reconstruction with uniformly distributed Katz angles on [0, 7| filtered by ko (b, p, ¢) and
backprojected with a Mojette backprojection. The resulting images are normalized onto [0, 1].

(e) Recon-
structed image
with  Poisson
noise, 512
projections,

17 iterations,
MSE = 0.0625

Figure 6. Circular phantom LS solution obtained by CG with gracefully distributed discrete angles on [0, 7].

It should be pointed out that the obtention of the initial Mojette projection sampling is not discussed in this
paper. The necessary rebinning step (according to a classical 3D acquisition device) with introduce an initial
supplementary smoothing. Notice that this step can also be made without interpolation as in the 3D PET
acquisition.

5.2. Noise Versus Number of Projections Behaviors

The reconstructions and the MSE indicator computed onto the central region follow the classical results obtained
with iterative LS methods and direct FBP ones. It should be stressed that for a very low number of projections,
the LS approximation without penalties behaves in a very good manner but the streaks artifacts of the FBP
algorithm are not much better. As soon as a correct (even low, e.g 64) number of projections is chosen (according
to the size of the image), the CG-MSE will not only beat the FBP-MSE Figure of Merit but the rate of decrease
is very low for the latter while the iterative CG algorithm will take benefits of the increase of conditioning of the
M*M matrix.

Finally, the very close results between the square and disk phantoms allows for assessing the same behavior



(a) Recon-
structed image
with  Poisson
noise, 32 pro-
jections, MSE
= 0.4620

(b) Recon-
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Figure 7. Spline 0 circular image reconstruction with 128 uniformly distributed Katz angles on [0, 7| filtered by ko (b, p, q)
and backprojected with a Mojette backprojection. The resulting images are normalized onto [0, 1]

of both algorithms in situations where the high frequencies content are either constant (projections of the disk)
or very different as for the square.

6. CONCLUSION

A new algorithm has been proposed. It is composed of a standard Conjugate Gradient algorithm expressed for
our Mojette discrete geometry. The comparison with the FBP Reconstruction shows a good behavior of the CG
reconstruction. The next step is to preconditionnate the Conjugate Gradient algorithm to converge faster. Our
ultimate goal is to devise a 3D, fast iterative reconstruction technique for Mojette geometry data in the noisy
data case.
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