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ABSTRACT

The goal of this paper is to characterize the noise properties of a spline Filtered BackProjection
(denoted as FBP) reconstruction scheme. More specifically, the paper focuses on angular and radial
sampling of projection data and on assumed local properties of the function to be reconstructed. This
new method is visually and quantitatively compared to standard sampling used for FBP scheme.

In the second section, we recall the sampling geometry adapted to the discrete geometry of the
reconstructed image. Properties of the discrete zero order Spline Ramp filter for classic angles and
discrete angles generated from Farey’s series reconstruction are used to generate their equivalent
representations for first order Spline filters. Digital phantoms are used to assess the results and the
correctness of the linearity and shift-invariantness assumption for the discrete reconstructions. The
filter gain has been studied in the Mojette case since the number of projections can be very different
from one angle to another.

In the third section, we describe the Spline filter implementation and the continuous/discrete
correspondence.

In section 4, Poisson noise is added to noise-free onto the projections. The reconstructions
between classic angle distribution and Mojette acquisition geometry are compared. Even if the
number of bins per projections is fixed for classic FBP while it varies for the Mojette geometry
(leading to very different noise behavior per bin) the results of both algorithms are very close.

The discussion allows for a general comparison between classic FBP reconstruction and Mojette
FBP. The very encouraging results obtained for the Mojette case conclude for the developments of
future acquisition devices modeled with the Mojette geometry.

1. INTRODUCTION

Sampling is still a major issue for tomographic devices. The last decade has seen breakthroughs
as fully 3D CT that allows for new and better device sampling. New acquisition devices have to
be re-understood via the best way the data can be computed thereafter. For us, the sooner the
data fill a proper projection space, the more precise the final tomographic reconstruction because no
compromise has to be done with noisy data inside the tomographic box. This was the starting point
for deriving the Mojette transform ten years ago. This version of a discrete exact Radon transform
that can only (at the beginning) reconstruct exact data was extended. Last year, we presented a
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revisited version of the FBP algorithm® using the sampling point of view of the Mojette transform
and results are recalled in section 2. The pixel intensity distribution model used for the spline 0 also
called the Haar function box (low frequency part of the Haar wavelet). In this paper, we start by
extending this previous result to spline of higher degrees. From such a filter, we can implement a set of
filters of spline of order n depending either to the spline of order 0 or 1. These filter implementations
are described in section 3. Moreover, these filters respect the general sampling theorem of Unser-
AlDroubi® because of the structure of the initial data sampling. It must be pointed out that it was
not ”"exactly” the case for the initial implementation of Guedon-Bizais* for spline filters where they
used an oversampling ratio between projection sampling path and pixel resolution to overcome the
structuring problem of the sampling that is naturally solve with the Mojette geometry.

Our goal in this paper is to understand the noise characteristics for the Mojette tomographic
operator. Of course its Fourier components are very different from a standard FBP operator because
of the projection sampling that implies the 2D sampling in the Fourier domain to match a cartesian
grid instead of the classical radial one. Section 4 presents the results of very simple phantoms
designed for exact and noisy tomographic reconstructions both for standard and Mojette sampling.
Section 5 discusses these results in terms of how the comparison can be done. This firstly adresses
the way of distributing the noise among the recorded bins and secondly the simple figure of merit
used here.

2. FBP MOJETTE
2.1. Mojette sampling geometry

The Mojette projector is a linear discrete exact version of the Radon transform. To obtain this
projector, the object is discretized using a pixel model, as described in the next section, and the
angular sampling is performed as follows.

The projection directions are defined by tan @ = ¢/p with p relatively ¢ prime and ¢ > 0 (except

for ¢ = 0, p = 1). The sampling path on the projection is ¢ = ﬁi = where A is the pixel size

p2+q
and b the bin indice. This sampling gives an exact backprojection with no interpolation onto the
projection.® The sampling geometry is adapted to the discrete geometry of the digital reconstructed

image.

The Mojette FBP transform allows one to do tomographic reconstruction with good accuracy
compared to the classical reconstruction method, especially on the shape boundaries. Moreover, the
FBP scheme gives a complete continuous-discrete equivalence® due to the discretization scheme.

2.2. Use a pixel model in projection modeling

To map the object onto the discrete space, we use a pixel model. The choice of a pixel model will
define the Mojette projector.

The Mojette projector depends on the pixel model pm(z, y) chosen to describe the object f(z,y)?:

+oo +oo

fley)= > > fkDpm(z —k,y —1), (1)

k=—o0l=—00

and defines the general Mojette projection:

+oo  +oo +oo +oc
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With such an expression, and a Dirac pixel model:

pm(w, U) = 5<I)6(U)’ (3)



we define the Dirac Mojette projector as:

—+o0o +oo

projs(b.p.a) = Y > [k )AD+ gk — pl). (4)

k=—o0l=—00

The use of this projector with the discrete angle is illustrated (Fig. 1).
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Figure 1. Mojette projections of a 4 x 4 image with projections directions (p, q) € {(1,0),(1,1),(-2,1)}

With the same definition, the Spline Mojette projector is define at any Spline order n:

—+o00 —+o0 +o00
projs.bpa) = S S f(kD) /  Bule— ko~ D3+ ar —py)dady. (5)
k=—o0 l=—o0 B
Lif |t] < %
In this paper, we will use only Spline 0, fo(t) = { 1if [t| =5 , and Spline 1 pixel model 3;(t) =
0 elsewhere

Bo(t) x Bo(t) where * denotes the convolution operator.

2.3. Mojette backprojection

The Mojette backprojector is defined as the dual of the Mojette projector. For a Dirac pixel model,
the Mojette exact backprojector is defined as®:

+oo +oo
(M projl(k, 1) = > > 8(k—i)d(1 - ) Z proj(b, p, ) A(b+ gi — pj) (6)
1=—00 j=—00 b=—o0

This means for one projection (p, q): fpq(k,1) = M§proj The Mojette dual operator M* corresponds
to an exact discrete backprojector operator. Then, using a Mojette angle sampling allows to back-
project onto pixel centers without any interpolation. The angular assessment of the Mojette FBP
scheme has been done with Mojette angles equally sampled given by larges Farey series.



The Farey series of order N (F) is the set of all fractions in lowest terms between 0 and 1 whose
denominators do not exceed NN, arranged in order of magnitude. For example, Fy is composed of
{%, i, %, %, %, %, %} Using symmetry, we found discrete angles into the whole space with the fraction
denominator as p and the numerator as g. For a square image N x N, using the Farey’s series of
order N, all the discrete directions to go from a pixel to an other one in the image are obtained.
Our test images are 128 x 128, so we first generate 20088 (Card(Fi2s)) projections and in this set

we choose equally distributed discrete angles that give a good reconstruction.”

3. FILTER IMPLEMENTATION AND CONTINUOUS DISCRETE
CORRESPONDENCE

3.1. Spline filter definition
3.1.1. Ramp filter for Spline of order 0: kg

The Spline 0 Mojette operator that corresponds to model the bin value by the entire continuous line
summation (not the discrete line as the Dirac Mojette operator) will be used. The continuous exact
Spline 0 FBP filter was derived in Guédon and Bizais* and its expression in the Fourier domain is
given by:

Ko(v,0) = A?r|v|sinc(vcos@)sinc(vsin 0), (7)
where the apodisation function corresponds to the projection of the filter onto the Spline space of

order 0. The pixel size is A.

The inverse fourier transform of (Eq.7) was derived as

1

Wl A%(1 4 sin(26))
7 sin(26) .

ko(t,0) = 5 -
(t.9) 2 — AT(l — sin(20))

; (8)

for t # 0 and 0 €]0, Z] and ko(t,0) = =2 22+

Discretizing with Mojette angles (tan = %) with the projection sampling ¢t = \/1%112 leads to:

b2 _ (L)Q
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for b # 0 and (p, q) # (1,0) and ko(b,1,0) = =L 25—

This filter can not be implemented in a straightforward manner in the spatial domain. It exhibits
discontinuities at the points where the projection of the pixel (described by a trapezoidal shape) is
continuous but not differentiable. The Ramp filter acting as a derivative operator, the values at these
points have to be computed using a Dirichlet condition. Implementing the FBP Mojette operator
uses the Mojette projector, the kg filter and the Mojette backprojector. This FBP Mojette scheme
is exact for the filter when an infinite number of angles is used and exact for the backprojection of
these filtered angles.

3.1.2. Ramp filter for Spline of order 1: k;

The properties of the kq(t, ) (respectively ko (b, p, q)) discrete Spline 0 Ramp filter for classic angles
(resp. discrete angles derived from Farey’s series with tand = ¢/p) reconstruction are used to
generate their equivalent representations for first order Spline filters k1 (¢, 0) and k1(b,p,q) :

Kl(lj, 0) = Kg(l/, 9) X W()(l/, 9) (10)



where Ko(v,0) = nA? |v|sinc(Av cos 0)sinc(Avsinf) and Wy(v, 6) is the Fourier transform of the
projection of the Spline 0 pixel model in the 6 direction. The k; filter is obtained in the spatial
domain for the continuous case

[ 8t%In|t| 1
—4(t — Asinf)?In |t — Asin)
t+ Asin€)?In|t + Asin6)|

t—Acosf)?In|t — Acos0)|
t—|—Acos€)21n|t+ACOSO| , (11)

—4(
—4(
k1 (t,0) —4(
+2(t + Acosf + Asin0)?In |t + A cos + Asin 6|
+2(¢
+2(
+2(

:27rsi11229x
+ Acosf — Asinf)?In |t + Acos — Asin 6|
+2(t — Acosf + Asinf)?In |t — Acos + Asind|
2(t — Acos — Asinf)?In|t — Acos — Asin6)| |

This corresponds for the Mojette case to:
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For knots as b = £p, b = ¢, b = 0 we use lim,_oz>Inz — 0, and for the angle (1,1) where
there is still a singularity we compute an interpolation.

3.2. Continuous-Discrete equivalence

The use of the Spline 0 pixel model and the kg filter gives a continuous to discrete equivalence for
all the FBP processes. The K, Fourier expression (Eq.7) is divided in two parts: a perfect Ramp
filter and a trapezoidal shape. This trapezoid is the projection of the Spline 0 pixel Model. (Eq.5)
with the Spline 0 pixel model represents the use of the corresponding Riesz basis (constructed by
tensorial product of 3y) to get the continuous-discrete equivalence of the original image f(z,y). Ap-
plying the FBP Mojette scheme, the f(k,[) is projected using the Spline 0 Mojette projection. The
projections are convolved with the kg filter, i.e. with the perfect Ramp filter then with a trapezoid.
The last stage is the Dirac Mojette backprojection. These stages are equivalent to a Spline 0 Mojette
projection, a filtering with the Ramp filter and a Spline 0 Mojette backprojection. For the Spline 0

Bo =0 for the Unser-Aldroubi scheme, where g is the dual function of .

This equivalence is generalized following the general sampling theory (fig.2). The same equiva-
lence can be shown for all spline order.

ky, reconstructions are implemented by:
e a Ramp filtering step
e followed by n convolutions with wq, (evntually no convolution for kg)

e a backprojection step.

The last two stages are equivalent to a Spline n backprojection. With the dual function of the
Spline interpolator, a continuous object equivalent to the discrete one reconstructed is obtained.
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Figure 2. Generalized continuous discrete equivalence using Spline pixel models and Spline based filters.

4. NOISY RECONSTRUCTION

To simulate a tomographic acquisition, the FBP Mojette reconstruction is performed with noisy data
for a different number of projections but with the same total number of photons. If T is the total
photon numbers, S the total sum of the pixels density and I the number of projections, we have:

axSxI=T, (13)

where a is a multiplicative factor. Before noise addition, the sum on each projection equals to aS.

The phantoms background is i The first test image is a square 128 x 128 image with 17 x 17

centered pixels with a Dirichlet condition with the value 1 in the centered 15 x 15 square, % in the

boundaries and 1—76 in the corners (fig.3a). The second one is a disk with 21 pixels diameters and

the pixels value on the boundaries depends on intercepted surface between the pixel and the disk
(fig.3b).

(a) square 128 x 128 (b) disk 128 x 128
phantom phantom

Figure 3. Test images

A Poisson noise is produced and added onto the projections corrected due to the number of
bins per projection. The reconstructions are compared for classic angle distribution and Mojette
acquisition geometry. Even if the number of bins per projections is fixed for classic FBP and varies
for the Mojette geometry (leading to very different noise behavior per bin) the results of both
algorithms are very close. All the reconstructed images are normalized between 0 and 1. The FBP
reconstruction are performed for 16, 32, 64 , 128 and 256 projections. The FBPMojette and the
classical reconstruction are first computed with the kg filter then with the k; one. The FBP Mojette
scheme is a Spline 0 Mojette projection, a kg filtering stage then a Dirac Mojette backprojection, than
it is a Spline 1 Mojette projection, a k; filtering stage, a Dirac Mojette backprojection and we obtain



Table 1. Square image reconstruction, the resulting images are normalized onto [0,1]. (a) Spline 0 recon-
struction with uniformly distributed Katz angles filtered by ko(b,p,q) and backprojected with a Mojette
backprojection, (b) Classical reconstruction with regularly distributed angles filtered by ko(t, 6) and back-
projected with a classical backprojection, (c) Spline 1 reconstruction with uniformly distributed Katz angles
filtered by k1 (b, p, ¢) and backprojected with a Mojette backprojection, (d) Classical square image reconstruc-
tion with regularly distributed angles filtered by k1 (t,6) and backprojected with a classical backprojection
I =16 I1=232 I =64 I =128 =256

MSE = 0.1867

MSE = 0.2977

MSE = 0.2203 MSE = 0.2035

MSE = 0.2711

MSE = 0.3560 MSE = 0.3110 MSE = 0.2797 MSE = 0.2718 MSE = 0.2472

MSE = 0.3373 MSE = 0.3075 MSE = 0.2773 MSE = 0.2600 MSE = 0.1978

(d) el
MSE = 0.3280 MSE = 0.2672 MSE = 0.2193 MSE = 0.1932 MSE = 0.1762

an image from the reconstructed coefficients with the Spline 1 dual function as explained before. The
classic reconstruction is performed with 128 bins onto each projection. Here T' = 1,000, 000 counts
and S = 4312.75 for the square phantom and S = 4355.77 for the disk phantom.

The MSE is calculated onto the phantom shape on a 27 x 27 pixel square centered onto the square
shape and on a 24 x 24 square centered onto the disk shape.

5. DISCUSSION
5.1. Spline implementation

The spline 0 Mojette filter corresponds to the differentiation of the trapezoidal shape made at discrete
knots and for discrete angles that select every specific non differentiable location for b = p—;q and
b = E54. Because angles were assumed equally distributed with the previous spline implementation
(i.e. )* these singularities were not computed at that time. For the spline 1 Mojette filter, the

T

128



Table 2. round image reconstruction, the resulting images are normalized onto [0, 1]. (a) Spline 0 recon-

struction with uniformly distributed Katz angles filtered by ko (b, p,q) and backprojected with a Mojette

backprojection, (b) Classical reconstruction with regularly distributed angles filtered by ko(t,6) and back-

projected with a classical backprojection, (c¢) Spline 1 reconstruction with uniformly distributed Katz angles

filtered by k1 (b, p, ¢) and backprojected with a Mojette backprojection, (d) Classical round image reconstruc-

tion with regularly distributed angles filtered by k1 (¢, 0) and backprojected with a classical backprojection
I =16 =32 I =64 I =128 =256

MSE = 0.3180

MSE = 0.4827 MSE = 0.4620 MSE = 0.4018 MSE = 0.3154

(b)

MSE = 0.5666 MSE = 0.5175 MSE = 0.4717 MSE = 0.4600 MSE = 0.4563

(c)

MSE = 0.5479 MSE = 0.4932 MSE = 0.4185 MSE = 0.4032 MSE = 0.3343

(d)
MSE = 0.5217  MSE = 0.4171  MSE = 0.3647  MSE = 0.3821  MSE = 0.2831



only left singularity is for the angle (p =1, ¢ = 1) at both locations b = 0 and b = p — q. However,
the limit computation from the continuous expression (Eq. 10) of each side of ¢ gives the results.
Of course for higher spline order, the differentiability of the spline functions does not produce any
trouble. The continuous-discrete equivalence allows for having both the spline coefficients images and
their sampled counterpart using the postfilter described in Unser-AlDroubi works and that can be
fastly imlemented. The big advantage is to compute the infinite Spline Ramp filter (the costly part
of the FBP algortihmn) only once and to produce different images thereafter as made for the previous
spline implementation. The first visual conclusions for noisy reconstructions of different spline order
are the very close behavior betweenspline order images as already found for the classical spline FBP.
However, as explained in® when a global image processing as to be done after the reconstruction,
the total loss of information will be obtained by staying in the same spline functional subspace.

5.2. Noise phantoms and the noise distribution among bins

The simple square and circle phantoms were designed with a non-null background such that we are
able to compare the reconstructions with and without Poisson’s noise. Square corners are likely
to be rare in a medical image (this can however happens with bones) but since this produces high
frequencies in the corner of the Fourier domain, this is important to ckeck the LSI (linear shiftin-
variantness) property of the algorithm. This property can be seen with and without noise : there
are no differences between the kind of artifacts we obtained for the square or the disk.

The second important fact is that the simulated noise has the same structure in the reconstructed
image both for standard and Mojette FBP. This is very interesting since the noise distribution was
made in a very different fashion to follow the Poisson process since the number of bins per projection
and the amount of information into a bin is different in the two methods. In other words, the Mojette
reconstruction method that first takes the initial data and maps each bin into the discrete grid is
also valid for noisy information. This result was not taken for granted since all the properties of the
Mojette operator are projection based whereas the noise only acts on the bin basis. The only link
between projection and bin lies in the total amount of information that is kept constant, so for the
noise.

The third lesson that we have comes from the way of dispersing the initial noisy information
according to the number of projections. Even if the MSE of the center of the reconstruction as well
as the visual inspection are not objective measures, it is obvious that the quality of the reconstruction
for both standard and Mojette spline reconstructions improves as the number of angles increases.
Here again, the specificities of the FBP technique(streak artifact phenomenon) is proeminent over
the discrete geometry parameter. Here again this result was quite obvious for noise free data whereas
it is not for noisy bins since there are many projections where the number of bins is high so the
recorded information is low, resulting into a decrease of the signal to noise ratio per bin.

5.3. Figure of merit and computable distances

As already mentioned, the quality of the reconstructions have still to be well established. The direct
comparison between standard and Mojette spline 0 FBP reconstructions always gives the same results
for all tests. In a way, the mean square error (MSE) of the center of the picture is always lower for
the Mojette technique and the visual inspection makes the disk or square more easily detectable for
the Mojette versus standard technique. This conjunction allows to think that a filter matchering as
perform by an ideal or quasi-ideal observer will give the same result. These observer studies will
be conducted now. It consists in two different detection tasks as described in.® The first is the
low-contrast detection task between the signal present or absent (either made for the disk or the
square). The second is the high-frequency task to distinghish between the square and the disk in a
noisy context.



6. CONCLUSION

In this paper, the tomographic reconstruction using the Mojette spline FBP was presented, compared
to the standard spline FBP reconstruction and assessed in a noisy context. The standard spline
FBP reconstruction was known to respect the properties of the signal and noise as well as the LSI
properties of the FBP. The result of this study shows that its Mojette counterpart overcomes these
results. This was not surprising from noisy free data because of the mathematical properties of
the inverse operator. However, it can be interpreted as a powerful inheritance of the stability of
this inverse Mojette operator characteristics that the Mojette spline FBP performs as well in a noisy
context. An observer study will confirm these results both for low-contrast and high-frequency tasks.
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