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A REMARK ON THE INTERSECTION OF PLANE CURVES

C. CILIBERTO, F. FLAMINI, M. ZAIDENBERG

Abstract. Let D be a very general curve of degree d = 2ℓ − ε in P
2, with ε ∈ {0, 1}. Let Γ ⊂ P

2 be an

integral curve of geometric genus g and degree m, Γ 6= D, and let ν : C → Γ be the normalization. Let δ

be the degree of the reduction modulo 2 of the divisor ν∗(D) of C (see § 2.1). In this paper we prove the

inequality 4g + δ > m(d− 8 + 2ε) + 5. We compare this with similar inequalities due to Geng Xu ([10, 11])

and Xi Chen ([1, 2]).

Contents

Introduction 1

1. Focal loci 3

2. Double planes 4

2.1. The δ–invariant 4

2.2. Basics on a certain weighted projective 3-space 4

2.3. The even degree case 5

2.4. The odd degree case 6

3. The main result 7

3.1. Constructing appropriate families 7

3.2. Proof of Theorem 3.1 8

References 10

Introduction

Given an effective divisor D ∈ |OPn(d)| and an integral (i.e., reduced and irreducible) projective curve Γ

of degree m in P
n, which is not contained in supp(D), let j(D,Γ) be the order of Γ ∩D. Assume D is very

general and set

j(n, d,m) := min{j(D,Γ) |Γ ⊂ P
n as above} and j(n, d) := min

m>1
{j(n, d,m)}.

Similarly, with Γ and D as before, let i(D,Γ) stand for the number of places of Γ on D, that is, the number

of centers of local branches of the curve Γ on D. Then, set

i(n, d,m) := min{i(D,Γ) |Γ ⊂ P
n as above} and i(n, d) := min

m>1
{i(n, d,m)}.

The problem of computing j(n, d) and i(n, d) has been considered in [1, 10, 11] (basically devoted to

n = 2 case) and [2] (where the case n > 2 is considered). The relations of this with the famous Kobayashi

problem on hyperbolicity of the complement of a very general hypersurface in P
n is well known and we do

not dwell on this here (see, e.g., [2]).

Acknowledgements: This research was done during a visit of the third author at the Dept. of Mathematics of Univ. Roma

“Tor Vergata” (Sept.-Dec. 2015 – supported by this Department, the INdAM “F. Severi” in Rome and the cooperation program

GDRE-GRIFGA) and of the second author at the Institut Fourier (July 2016 – supported by INdAM-GNSAGA and within the

context of the International Associated Laboratory LIA AMU-CNRS-INdAM). The authors thank all these institutions and

programs for the support and the excellent working conditions.

2010 Mathematics Subject Classification: 14N25, 14J70.

Key words: projective hypersurfaces, intersection number, foci, geometric genus, algebraic hyperbolicity.

1



2 C. CILIBERTO, F. FLAMINI, M. ZAIDENBERG

Geng Xu ([10, Thm. 1]) proved that

j(2, d) = d− 2, for any d > 3,

where the equality is attained either by a bitangent line or by an inflectional tangent line of D, i.e. the

minimum is achieved by m = 1. Moreover, for d = 3, he also proved in [11, Corollary] that, for any integer

m > 1, the number of rational curves of degree m which meet set-theoretically a given (arbitrary) smooth

plane cubic curve D at exactly one point is finite and positive. Therefore, for d = 3 the minimum j(2, 3) = 1

is achieved by any integer m > 1.

Xi Chen ([1, Thm. 1.2]) proved that, for d > m, one has

j(2, d,m) > min

{
dm−

m(m+ 3)

2
, 2dm− 2m2 − 2

}
.

Furthermore (cf. [1, Cor. 1.1]), for d > max{3m
2 − 1, 3} one has

j(2, d,m) = dm− dim(|OD(m)|) = dm−
m(m+ 3)

2
.

In addition, he conjectured (see [1, Conj. 1.1]) that

j(2, d,m) = dm− dim(|OD(m)|) if d > max{m, 2}.

In arbitrary dimension n > 2, Xi Chen ([2, Thm 1.7]) proved that, for D very general and Γ as above,

one has

2g − 2 + i(D,Γ) > (d− 2n)m, (1)

where g is the geometric genus of Γ, i.e., the arithmetic genus of its normalization.

In this paper we obtain a new inequality of type (1), although only in the case n = 2 (see Theorem 3.1).

Indeed, let D be a very general curve of degree d = 2ℓ− ε in P
2, with ε ∈ {0, 1}. Let Γ be an integral curve

in P
2 of geometric genus g and degree m, Γ 6= D, and let ν : C → Γ be the normalization. Let δ(D,Γ) be

the degree of the reduction modulo 2 of the divisor ν∗(D) on C (cf. § 2.1). In Theorem 3.1 we prove that

4g + δ(D,Γ) > m(d+ 2ε− 8) + 5. (2)

Note that δ(D,Γ) 6 i(D,Γ), and the equality holds if and only if at any place p of Γ on D, the local

intersection multiplicity of D and Γ at p is odd. This happens, for instance, if Γ intersects D transversely.

In the latter case δ(D,Γ) = i(D,Γ) = md and both (1) and (2) are uninteresting. On the other hand, (1)

and (2) become interesting when δ(D,Γ) and i(D,Γ) are small. Though the difference between the two

quantities is a priori unpredictable, one may expect that, generally speaking, δ(D,Γ) is strictly smaller than

i(D,Γ). Unfortunately, the genus g works against us in (2); however, for g = 0, 1 and d even, (2) is better

than (1). Further related problems have been recently considered in [3, 7, 8].

As a final additional remark, note that (2) is more useful than (1) if one looks, as we do in this paper,

at the geometric genera of curves contained in a double cover of P2 branched along a very general curve of

even degree. For example, letting g = 0, δ(D,Γ) = 0, 2 and d even, which corresponds to looking at rational

curves on a double plane, that is, the double cover of P2 branched along a very general curve D of degree d.

By (2) we see that such a rational curve over Γ might exist, as expected, only for d 6 6 (for low m one has

even smaller bounds on d). The case d = 6 corresponds to a K3 surface, which always contains infinitely

many rational curves. By contrast, the double planes with very general branching curves of even degree > 8

do not carry any rational curves.

The proof of Theorem 3.1 presented in §3 follows, with minor variations due to the different setting, the

basic ideas exploited in [5] (and later in [6]). These are based on a smart use of the theory of focal loci, see

e.g. [4]. For the reader’s convenience, we recall in § 1 the basic notions and results of this theory. We apply

this technique to families of double covers of P2 branched along a very general plane curve D or along D

plus a general line, according to whether the degree of D is even (see § 2.3 and § 3.2.1) or odd (see § 2.4 and

§ 3.2.2).
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1. Focal loci

For the reader’s convenience, we recall here some basic notions from [4, 5].

Let X be a smooth projective variety of dimension n+1. Assume we have a flat, projective family D
p

−→ B
of effective divisors on X over a smooth, irreducible, quasiprojective base B, with irreducible general fiber.

Up to shrinking B to a suitable Zariski dense, open subset, we may suppose that for any closed point b ∈ B

the fiber Db of D
p

−→ B over b is irreducible.

Assume we have a commutative diagram

C

q
''O

OO
OO

OO
OO

OO
OO

�

� i
// D

p

��

B

(3)

where q : C → B is a flat projective family such that, for all b ∈ B, the fiber Γb over b is a reduced curve of

geometric genus g, and where i is an inclusion: so, for any b ∈ B, one has Γb ⊂ Db via the inclusion ib.

By a result of Tessier (see [9, Théorème 1]), there is a simultaneous normalization

C

q
''O

OO
OO

OO
OO

OO
OO

ν
// C

q

��

B

(4)

such that C is smooth and, for every b ∈ B, the fiber Cb of q : C → B is the normalization νb : Cb → Γb of

Γb. For any b ∈ B, the curve Cb is smooth of (arithmetic) genus g.

Composing with the inclusion D
j
→֒ B ×X, we get the commutative diagram

C

q
((Q

QQ
QQ

QQ
QQ

QQ
QQ

QQ

ν
// C

q

��

�

� i
// D

p

��

�

� j
// B ×X

pr1
vvmm
mm
mm
mm
mm
mm
mm
m

pr2
��

B
id

// B X

(5)

where pri is the projection onto the ith factor, for i = 1, 2.

We set

s := j ◦ i ◦ ν : C → B ×X ,

and let N := Ns be the normal sheaf to s, defined by the exact sequence

0−→TC
ds
−→ s∗(TB×X)−→N−→0 ,

where TY stands for the tangent sheaf of a smooth variety Y .

For b ∈ B we set

Nb := N|Cb
= N ⊗OCb

and sb = s|Cb
: Cb → {b} ×X = X .

In addition, we let

ϕ := pr2 ◦ s : C → X .

Then ϕb = ϕ|Cb
coincides with sb for any b ∈ B, that is,

ϕb = sb : Cb
νb

// Γb
�

� ib
// Db

�

�
(pr2◦j)b

// X .

As in [5, § 2], we set

z(C) := dim (ϕ(C)), (6)

so that z(C) 6 n+ 1 = dim(X). If z(C) = n+ 1 one says that C
q

−→ B, or C
q

−→ B, is a covering family.

Proposition 1.1 (See [4, Prop. 1.4 and p. 98]). In the above setting, we have:
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(a) for any b ∈ B, the sheaf Nb fits into the exact sequence

0 −→ TCb

dsb−→ s∗b(TX) −→ Nb −→ 0

and C
q

−→ B induces on Cb a characteristic map

χb : TB,b ⊗OCb
−→ Nb ,

where TB,b denotes the tangent space to B at b;

(b) if b ∈ B and x ∈ Cb are general points, then

dim (Nb,x) = dim (s∗b(TX)x)− dim (TCb,x) = n and rk (χb,x) = z(C) − 1 .

Definition 1.2 (See [4, Def. (1.5)]). Given b ∈ B, the focal set of C
q

−→ B on Cb is the closed subscheme

Φb of Cb defined as

Φb := {x ∈ Cb| rk(χb,x) < z(C) − 1}.

If b ∈ B is general, then Φb is a proper subscheme of Cb. The points in Φb are called focal points of C
q

−→ B
on Cb. We denote by Φsm

b the open subset of Φb consisting of the points x ∈ Φb which map to smooth points

of Γb via the normalization morphism νb : Cb → Γb.

Proposition 1.3 ([5, Prop. 2.3 and Prop. 2.4]). Let C −→ B be a covering family. Then the following hold.

(i) Suppose that for x ∈ Cb the point s(x) is smooth in both Γb and Db. Assume also that s(x) is a

fundamental point of the family D
p

−→ B, i.e. it is a base point of the family. Then x ∈ Φsm
b .

(ii) For a general point b ∈ B one has

deg(Φsm
b ) 6 2g − 2−KX · Γb . (7)

2. Double planes

In this section we collect useful material for the proof of our main result. The result itself is stated and

proven in §3. The contents of this section, which suffice for our applications, can be easily adapted to the

higher dimensional case.

2.1. The δ–invariant. Let C be any smooth, irreducible, projective curve, and let ∆ =
∑

imipi be an

effective divisor on C. We set ∆2 :=
∑

imipi , where mi ∈ {0, 1} is the residue of the integer mi modulo 2.

We also set δ2(∆) := deg(∆2).

For any smooth curve D ⊂ P
2 and any integral curve Γ ⊂ P

2, Γ 6= D, with normalization ν : C → Γ, we

set

δ(D,Γ) := δ2(ν
∗(D)) . (8)

We notice that

δ(D,Γ) 6 i(D,Γ).

2.2. Basics on a certain weighted projective 3-space. For any positive integer ℓ, we denote by Lℓ the
linear system |OP2(ℓ)| of plane curves of degree ℓ, and by Uℓ its open dense subset of points corresponding

to smooth curves. We let Nℓ = dim(Lℓ) =
ℓ(ℓ+3)

2 . We denote by Dℓ → Lℓ the universal curve, and we use

the same notation Dℓ → Uℓ for its restriction to Uℓ.

The linear system Lℓ determines the ℓth Veronese embedding P
2 vℓ
→֒ P

Nℓ , whose image is the ℓ–Veronese

surface Vℓ in P
Nℓ . Let [x] = [x0, x1, x2] be homogeneous coordinates in P

2, and let

[xI ], where I = (i0, i1, i2) is a multiindex such that |I| = i0 + i1 + i2 = ℓ,

be homogeneous coordinates in P
Nℓ. In these coordinates the Veronese map is given by

P
2 ∋ [x]

vℓ−→ [xI ]|I|=ℓ ∈ P
Nℓ , where xI := xi00 x

i1
1 x

i2
2 .

We equip the weighted projective 3-space P(1, 1, 1, ℓ) with weigthed homogeneous coordinates [x, z] :=

[x0, x1, x2, z], where x0, x1, x2 [resp. z] have weigth 1 [resp. has weight ℓ]. We introduce as well coordinates

[xI , z]|I|=ℓ in P
Nℓ+1 and embed P

Nℓ in P
Nℓ+1 as the hyperplane Π with equation z = 0. Then P(1, 1, 1, ℓ)
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can be identified with the cone Wℓ ⊂ P
Nℓ+1 over the l–Veronese surface Vℓ with vertex P = [0, . . . , 0, 1].

Blowing P up yields a minimal resolution

ρ : Zℓ →Wℓ
∼= P(1, 1, 1, ℓ),

with exceptional divisor E ∼= Vℓ ∼= P2. The projection from P induces a P1–bundle structure

π : Zℓ → Vℓ ∼= P
2 .

Let f be the class of a fiber of π. One has

Zℓ ∼= P(OP2(ℓ)⊕OP2) and OZℓ
(1) = ρ∗(OWℓ

(1)).

For every integer m, we set

Oℓ(m) := π∗(OP2(m)) and Lℓ(m) := |Oℓ(m)| . (9)

Note that

OZℓ
(1) ∼= Oℓ(ℓ)⊗OZℓ

(E). (10)

Since

E ∼= P
2, OZℓ

(1) ⊗OE
∼= OE , and Oℓ(ℓ)⊗OE

∼= OP2(ℓ),

we deduce

OZℓ
(E)⊗OE

∼= OP2(−ℓ). (11)

Finally, we denote by Kℓ the canonical sheaf of Zℓ.

Lemma 2.1. One has

Kℓ
∼= Oℓ(ℓ− 3)⊗OZℓ

(−2) ∼= Oℓ(−ℓ− 3)⊗OZℓ
(−2E) .

Proof. The Picard group Pic(Zℓ) is freely generated by the classes Oℓ(1) and OZℓ
(E), and also by Oℓ(1) and

OZℓ
(1), see (10). Let H [resp. L] be a general member of |OZℓ

(1)| [resp. of Lℓ(1)]. Write Kℓ ∼ αH + βL,

where α, β ∈ Z. From the relations Kℓ · f = −2, H · f = 1, and L · f = 0 one gets α = −2.

By adjunction formula and (11) we obtain

OP2(−3) ∼= KE = (Kℓ + E)|E ∼= (−2H + βL+ E)|E ∼= OP2(β − ℓ) .

So, β = ℓ− 3, as desired. �

Finally, let Gℓ be the group of all automorphisms of P(1, 1, 1, ℓ) which stabilize the divisor with equation

z = 0. This group is naturally isomorphic to the automorphism group of the pair (Wℓ, Vℓ), i.e. automor-

phisms of Wℓ stabilizing Vℓ, where Vℓ is cut out on Wℓ by Π. In turn, the latter group is isomorphic to the

automorphism group of the pair (Zℓ, ρ
∗(Vℓ)). One has the exact sequence

1 → C
∗ → Gℓ → PGL(3,C) → 1. (12)

2.3. The even degree case. Let D be a smooth curve in P
2 of even degree d = 2ℓ > 2 which, in

the homogeneous coordinate system fixed in §2.2, is given by equation f(x0, x1, x2) = 0, where f is a

homogeneous polynomial of degree d. Viewed as a hypersurface of Vℓ, D is cut out on Vℓ by a quadric with

equation Q(xI)|I|=ℓ = 0, where Q is a homogeneous polynomial of degree 2 in the variables {xI}|I|=ℓ.

The double plane associated with D is the double cover ψ : D∗ → P
2 branched along D. It can be

embedded in P(1, 1, 1, ℓ) as a hypersurface D
∗
a defined by a (weighted homogeneous) equation of the form

az2 = f(x0, x1, x2), for any a ∈ C
∗. Under the identification of P(1, 1, 1, ℓ) with Wℓ, we see that D

∗
a is cut

out on Wℓ by a quadric in P
Nℓ+1 of the form az2 = Q(xI)|I|=ℓ.

Consider the sublinear system Qℓ of |OWℓ
(2)| of surfaces cut out on Wℓ by the quadrics of PNℓ+1 with

equation of the form az2 = Q(xI)|I|=ℓ.

When a 6= 0, the quadrics in question are such that their polar hyperplane with respect to P has equation

z = 0. When a = 0, such a quadric is singular at P , it represents the cone with vertex at P over the quadric

in Π = {z = 0} ∼= P
Nℓ with equation Q(xI)|I|=ℓ = 0 and it cuts out on Wℓ a cone, with vertex at P , over a

quadric section of Vℓ.
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In particular, Qℓ contains the codimension 1 sublinear system Qc
ℓ of all such cones with vertex at P over

a quadric section of Vℓ, thus dim(Qℓ) = Nd + 1. Moreover Qℓ is stable under the action of Gℓ on Wℓ.

We set Q̃ℓ := ρ∗(Qℓ), which is a sublinear system of |OZℓ
(2)|. Note that Q̃ℓ contains the sublinear system

Q̃c
ℓ = ρ∗(Qc

ℓ) of all divisors of the form 2E plus a divisor in Lℓ(d).
We denote by Q∗

ℓ the dense open subset of Qℓ of points corresponding to smooth surfaces. Since no

surface in Q∗
ℓ passes through P , we may and will identify Q∗

ℓ with its pull–back via ρ on Zℓ, which is a dense

open subset of Q̃ℓ sitting in the complement of Q̃c
ℓ. We denote by ID∗

ℓ → Q∗
ℓ the universal family.

A surface D
∗ ∈ Q∗

ℓ cuts out on Vℓ a smooth curve D ∈ Uℓ and conversely; indeed the projection from P

realizes D∗ as the double cover of P2 branched along D. This yields a surjective morphism

Q∗
ℓ ∋ D

∗ β
−→ D

∗ ∩ Vℓ := D ∈ Ud ,

which sends the double plane D∗ to its branching divisor D. This morphism is equivariant under the actions

of Gℓ on both Q∗
ℓ and Ud, where Gℓ acts on Ud via the natural action of the quotient group PGL(3,C), see

(12). The morphism β is not injective, its fibers being isomorphic to C
∗.

As an immediate consequence of Lemma 2.1, we have:

Lemma 2.2. Let D be a smooth curve in P
2 of even degree d = 2ℓ > 2, let ψ : D∗ → P

2 be the double cover

branched along D, let Γ ⊂ P
2 be a projective curve of degree m not containing D, and let Γ∗ be its pull–back

via ψ considered as a curve in Zℓ. One has

Kℓ · Γ
∗ = −m(d+ 6) . (13)

In the setting of Lemma 2.2, consider the diagram

C∗

ψ′

��

ν∗
// Γ∗

ψ
��

C
ν

// Γ

(14)

where ν and ν∗ are the normalization morphisms and ψ and ψ′ have degree 2 (to ease notation, here we

have identified ψ with its restriction to Γ∗).

Let δ := δ(D,Γ). It could be that C∗ splits into two components both isomorphic to C; in this case δ = 0.

If δ = 0 and the genus of C is zero, then C∗ certainly splits. Suppose that C∗ is irreducible, and let g and

g∗ be the geometric genera of Γ and Γ∗ (i.e. the arithmetic genera of C and C∗, respectively). Since ψ′ has

exactly δ ramification points, the Riemann-Hurwitz formula yields

2(g∗ − 1) = 4(g − 1) + δ . (15)

2.4. The odd degree case. Fix a line h ∈ |OP2(1)|, and let D be a smooth curve in P
2 of degree d =

2ℓ−1 > 1, which intersects h transversely. We denote by Uhd the open subset of Ud consisting of such curves.

For each D ∈ Uhd , we consider the reducible curve of degree d+ 1 = 2ℓ

∆ := D + h ∈ |OP2(d+ 1)|

and the double cover ψ : D∗ → P
2, branched along ∆. The difference with the even degree case is that D

∗

is no longer smooth, but it has double points at the d points in D ∩ h. In any event, as in the even degree

case, we can consider the set Q∗
ℓ;h ⊂ |OZℓ

(2)| of all such surfaces D∗, with its universal family ID∗
ℓ;h → Q∗

ℓ;h

which parametrizes all double planes ψ : D∗ → P
2 as above. We still have the morphism

β : Q∗
ℓ;h → Uhd

associating to D
∗ the branching divisor ∆ of ϕ : D∗ → P

2 minus h.

The group acting here is no longer the full group Gℓ but its subgroup Gℓ;h which fits in the exact sequence

1 → C
∗ → Gℓ;h → Aff(2,C) → 1,

where Aff(2,C) is the affine group of all projective transformations in PGL(3,C) stabilizing h.
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Keeping the setting and notation of §2.3, Lemma 2.2 still holds, as well as diagram (14). If Γ intersects

h at m distinct points which are off D, then the double cover ψ′ : C∗ → C has δ +m > m > 0 ramification

points, where δ = δ(D,Γ) as above. In particular, C∗ is irreducible, and (15) is replaced by

2(g∗ − 1) = 4(g − 1) + δ +m. (16)

3. The main result

In this section we prove the following:

Theorem 3.1. Let δ > 0 be an integer such that, for a very general curve D in P
2 of degree d = 2ℓ − ε,

where ε ∈ {0, 1}, there exists an integral curve Γ ⊂ P
2, Γ 6= D, of geometric genus g and degree m with

δ(D,Γ) = δ. Then

4g + δ > m(d+ 2ε− 8) + 5. (17)

The proof of Theorem 3.1 will be done in §3.2. First we need some more preliminaries, which we collect

in the next subsection. We keep all notation and conventions introduced so far.

3.1. Constructing appropriate families. Fix integers m > 1 and g > 0. Let H be the locally closed

subset of Lm, whose points correspond to integral curves Γ ⊂ P
2 of degree m and geometric genus g; H is a

quasiprojective variety. We let U → H be the universal curve.

3.1.1. The even degree case. Fix an even positive integer d = 2ℓ and a non-negative integer δ. Consider the

locally closed subset I of H × Q∗
ℓ of pairs (Γ,D∗) such that Γ does not coincide with the branch curve D

of ψ : D∗ → P
2 and δ(D,Γ) = δ. Remember that we may equivalently interpret D∗ as a surface in Wℓ or in

Zℓ. Each irreducible component of I is fixed by the obvious action of Gℓ on H×Q∗
ℓ .

For any (Γ,D∗) ∈ I, the pull–back Γ∗ ⊂ D
∗ of Γ via ψ is a reduced curve in Zℓ. Hence there is a morphism

µ : I → K, where K is the Hilbert scheme of curves of Zℓ. We let V → K be the corresponding universal

family. The map µ is equivariant under the actions of Gℓ on both I and K.

Let π1 : I → H and π2 : I → Q∗
ℓ be the two projections. Under the hypotheses of Theorem 3.1 and with

notation as in § 2.3, the following holds.

Lemma 3.2. There exists an irreducible component I of I which dominates Qℓ via π2. Hence I dominates

also Ud ⊂ Ld via β ◦ π2.

Given I as in Lemma 3.2, we choose an irreducible, smooth subvariety B of I, such that π2 restricts to

an étale morphism of B onto its image, which is dense in Qℓ. To place our objects in the context of §1,
consider the universal family ID∗

ℓ → Q∗
ℓ (cf. § 2.3) of double planes D∗ [resp. V → K of curves Γ∗ ⊂ D

∗]. Up

to possibly shrinking B and performing an étale cover of it, the morphisms B
π2−→ Q∗

ℓ and B
µ

−→ K give rise

to families

D := π∗2(ID
∗
ℓ )

p
−→ B and C := µ∗(V)

q
−→ B .

over B fitting in diagram (3). We may assume that there exists a simultaneous normalization ν and a family

C
q

−→ B as in (4), with C smooth fitting in (5), where X = Zℓ.

3.1.2. The odd degree case. Fix now an odd positive integer d = 2ℓ − 1 and a non-negative integer δ, and

fix a line h in P
2. We consider the locally closed subset I of H×Qℓ;h consisting of pairs (Γ,D∗) ∈ H ×Q∗

ℓ

such that Γ is not contained in the branch divisor ∆ of ψ : D∗ → P
2, δ(D,Γ) = δ, and Γ intersects h at m

distinct points which are off D.

For any point (Γ,D∗) ∈ I, the pull–back Γ∗ ⊂ D
∗ of Γ via ψ is an integral curve in Zℓ. So, we still have

the morphisms µ : I → K, π1 : I → H and π2 : I → Q∗
ℓ;h equivariant under actions of Gℓ;h.

As before, we have the following

Lemma 3.3. There exists an irreducible component I of I which dominates Q∗
ℓ;h via π2.
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As in the even case, given I as in Lemma 3.3, we may construct a smooth B having an étale, dominant

morphism to Qℓ;h, together with families

D := π∗2(ID
∗
ℓ,h)

p
−→ B, C := µ∗(V)

q
−→ B,

fitting in diagram (3). Consider a simultaneous normalization ν and a family C
q

−→ B as in (4), with C
smooth. In view of Lemmata 3.2 and 3.3, the constructed families fit in diagram (5), with X = Zℓ.

In both cases, the next lemma allows to apply Proposition 1.3 in our setting.

Lemma 3.4. For any d > 0, C
q

−→ B is a covering family, i.e. z(C) = 3.

Proof. By the discussion in §3.1, for d even ϕ(C) is stable under the action of Gℓ on Zℓ, which is transitive;

for d odd ϕ(C) is stable under the action of Gℓ;h, which is transitive on the dense open subset of Zℓ whose

complement is π−1(h) ∪ E. This proves the assertion. �

3.2. Proof of Theorem 3.1. Our proof follows the one of Theorem (1.2) in [5]. First we recall the following

useful fact.

Lemma 3.5 (See [5, Lemma (3.1)]). Let g : V → W be a linear map of finite dimensional vector spaces.

Suppose that dim(g(V )) > k. Let {Vi}i∈I be a family of vector subspaces of V , such that
⋃
i∈I Vi spans V ,

and for any pair (i, j) ∈ I × I, with i 6= j, there is a finite sequence i1 = i, i2, . . . , it−1, it = j of distinct

elements of I with dim(g(Vih ∩Vih+1
)) > k, for all h ∈ {1, . . . , t− 1}. Then there is an index i ∈ I such that

dim(g(Vi)) > k.

3.2.1. The even degree case. We need to construct a suitable subfamily of C → B with the covering property.

Fix a general point b0 ∈ B, and let Γ∗
0 and D

∗
0 be the corresponding elements of the families C → B and

D → B, respectively.
Let L be the open subset of the linear system Lℓ(d− 1) as in (9) consisting of the surfaces F ∈ Lℓ(d− 1)

which do not contain Γ∗
0. A general such surface F meets Γ∗

0 transversely. By genericity, we may suppose

that all surfaces F defined by the pull–back via π : Zℓ → Vℓ ∼= P
2 of degree d− 1 monomials in the variables

x0, x1, x2 belong to L. For a given F ∈ L, we denote by BF the subvariety of B parameterizing all double

planes in D → B containing the complete intersection curve of F and D
∗
0. In addition, for a general point

ξ ∈ Γ∗
0 we let BF,ξ denote the subvariety of BF parameterizing all surfaces in D → BF which pass through ξ.

Lemma 3.6. For F ∈ L and ξ ∈ Γ∗
0 as above one has

dim(BF ) = 3 and dim(BF,ξ) = 2 .

Furthermore, b0 is a smooth point of both BF and BF,ξ.

Proof. Consider the sublinear system ΛF of Q̃ℓ = ρ∗(Qℓ) on Zℓ consisting of all surfaces containing the

complete intersection curve F ∩D
∗
0. Imposing to the surfaces in ΛF the condition to contain a general point

of F , the divisor F +2E splits off, and the residual surface sits in Lℓ(1). Hence ΛF contains a codimension 1

sublinear system consisting of surfaces of the form 2E+F +L, with L varying in Lℓ(1), which has dimension

2. Hence dim(ΛF ) = 3. Since B dominates Qℓ via π2, which is finite on B, and BF is the inverse image

of ΛF , one has dim(BF ) = dim(ΛF ) = 3. The proof is similar for BF,ξ. The final assertion follows by the

genericity assumptions. �

We denote by T0 the tangent space to B at b0, and by TF and TF,ξ the 3 and 2–dimensional subspaces of

T0 tangent to BF and to BF,ξ at b0, respectively.

Lemma 3.7. One has:

(a)
⋃
F∈L TF spans T0;

(b) given F ∈ L, the union
⋃
ξ∈Γ∗

0
TF,ξ spans TF .
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Proof. (a) Since π2 is étale on B, T0 is isomorphic to the tangent space to Qℓ at D
∗
0. Remember that, by §2.3,

the double plane D
∗
0, considered in Wℓ, is cut out by a quadric with equation z2 = Q(xI)|I|=ℓ. So T0 can be

identified with the vector space of homogeneous quadratic polynomials of the form az2 −G(xI)|I|=ℓ modulo

the one-dimensional linear space spanned by z2−Q(xI)|I|=ℓ and by the linear space of quadratic polynomials

in {xI}|I|=ℓ defining Vℓ.
1 Hence T0 can be identified with the vector space of quadratic polynomials in

{xI}|I|=ℓ, modulo the vector space of quadratic polynomials in {xI}|I|=ℓ defining Vℓ. This, in turn, can be

identified with the vector space Sd of homogeneous polynomials of degree d in x0, x1, x2.

Now TF can be identified with the vector subspace Sd(f) of T0 ∼= Sd of polynomials of the form fh,

where f is a fixed homogeneous polynomial of degree d− 1 (determined by F ), and h is any linear form. By

assumption on L,
⋃
F∈L TF contains all monomials of degree d, which do span Sd.

(b) Given F , TF,ξ can be identified with the vector space of homogeneous polynomials of the form fh,

where h vanishes at π(ξ) ∈ P
2. These polynomials do span TF ∼= Sd(f). �

Next we consider the restrictions

DF
p

−→ BF , CF
q

−→ BF , and DF,ξ
p

−→ BF,ξ, CF,ξ
q

−→ BF,ξ of D
p

−→ B and C
q

−→ B.

Proposition 3.8. For general F ∈ L and ξ ∈ Γ∗
0, the families

CF
q

−→ BF and CF,ξ
q

−→ BF,ξ

have the covering property.

Proof. We prove the assertion for CF
q

−→ BF . The proof for CF,ξ
q

−→ BF,ξ is similar (and analogous to the

proof of the corresponding statement in [5, Theorem (1.2)]), hence it can be left to the reader.

Let M be the set of all monomials of degree d − 1 in x0, x1, x2. Consider the family {FM}M∈M, where

FM ∈ L is defined by the pull–back via π : Zℓ → Vℓ ∼= P
2 of the monomial M . Take two monomials M ′,M ′′

which differ only in degree 1, i.e., their lowest common multiple U has degree d. Then BF
M′

∩BF
M′′

contains

the pull–back via π2 of an open, dense subset of the pencil 〈D∗
t 〉 spanned by D

∗
0 and FU , where FU is the

pull–back via π of the monomial U . The base locus of this pencil does not contain Γ∗
0. Therefore, Γ

∗
0 varies

in a non-trivial one-parameter family 〈Γ∗
t 〉 together with members D∗

t varying in the pencil 〈D∗
t 〉.

Next we apply Lemma 3.5 with

• V = T0;

• W = H0(Γ∗
0, NΓ∗

0 |Zℓ
);

• the linear map g induced by the characteristic map (see Proposition 1.1 (a));

• the family of subspaces {Vi}i∈I given by {TFM
}M∈M.

For each pair of monomials M ′,M ′′, there is a sequence of monomials M1 = M ′,M2, . . . ,Mt−1,Mt = M ′′,

such that for all i = 1, . . . , t − 1, the lowest common multiple of Mi and Mi+1 has degree d. The above

argument implies that g(TFMi
∩ TFMi+1

) has dimension at least 1, for all i = 1, . . . ,m− 1. Furthermore, one

has dim(g(T0)) > 2, because C → B is a covering family (see (b) of Proposition 1.1 and Lemma 3.4). By

Lemma 3.5 there is a monomial M ∈ M such that dim(g(TFM
)) > 2; by virtue of Lemma 3.6, this implies

that CFM
→ BFM

is a covering family. This proves the assertion. �

To finish the proof of Theorem 3.1 in this case, consider the covering family CF,ξ
q

−→ BF,ξ, with F ∈ L
and ξ ∈ Γ∗

0 general. Using (7), (13), and (15), for b = (Γ∗
b ,D

∗
b) ∈ BF,ξ general (see §3.1.1) we deduce

deg(Φsm
b ) 6 4(g − 1) + δ + 2m(ℓ+ 3) = 4(g − 1) + δ +m(d+ 6) . (18)

On the other hand, by construction and by (a) of Proposition 1.3,

deg(Φsm
b ) > 1 + deg(Γ∗

b ∩ F ) = 1 + 2(d− 1)m. (19)

Comparing (18) and (19) gives (17).

1An explanation is in order. Consider a vector space V and a nonzero vector v ∈ V , along with the associated projective

space P(V ) and the corresponding point [v] ∈ P(V ). Then the tangent space T[v]P(V ) can be canonically identified with

Hom(〈v〉, V/〈v〉) ∼= V/〈v〉.



10 C. CILIBERTO, F. FLAMINI, M. ZAIDENBERG

3.2.2. The odd degree case. The proof runs exactly as in the case of even d, so we will be brief and leave the

details to the reader.

Fix again b0 ∈ B, Γ∗
0 and D

∗
0 as in the even degree case. Following what we did in §3.1.2, we replace

Db by Db + h, where h ⊂ P
2 is a general line. In the present setting we let L be the open subset of Lℓ(d)

consisting of the surfaces F ∈ Lℓ(d) which do not contain Γ∗
0. Again we may assume that all surfaces F

defined by the pull–back via π of degree d monomials in the variables x0, x1, x2 belong to L. Given F ∈ L,
we define BF and BF,ξ as in the even degree case, and the analogue of Lemma 3.6 still holds. Then, with

the usual meaning for T0, TF and TF,ξ, the analogue of Lemma 3.7 holds. Similarly as in Proposition 3.8,

the covering property holds for the restricted families

DF
p

−→ BF , CF
q

−→ BF , and DF,ξ
p

−→ BF,ξ, CF,ξ
q

−→ BF,ξ .

We conclude finally as in the even degree case: (18) holds with no change, whereas (19) has to be replaced

by

deg(Φsm
b ) > 1 + deg(Γb ∩ F ) = 1 + 2dm ,

and again, (17) follows.
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