
HAL Id: hal-01500521
https://hal.science/hal-01500521v1

Submitted on 3 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A simple account of multi-agent epistemic planning
Martin Cooper, Andreas Herzig, Faustine Maffre, Frédéric Maris, Pierre

Régnier

To cite this version:
Martin Cooper, Andreas Herzig, Faustine Maffre, Frédéric Maris, Pierre Régnier. A simple account
of multi-agent epistemic planning. 22nd European Conference on Artificial Intelligence (ECAI 2016),
Aug 2016, The Hague, Netherlands. pp. 193-201. �hal-01500521�

https://hal.science/hal-01500521v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 17045

The contribution was presented at ECAI 2016 :
http://www.ecai2016.org/

To cite this version : Cooper, Martin and Herzig, Andreas and Maffre, Faustine
and Maris, Frédéric and Régnier, Pierre A simple account of multi-agent
epistemic planning. (2016) In: 22nd European Conference on Artificial
Intelligence (ECAI 2016), 29 August 2016 - 2 September 2016 (The Hague,
Netherlands).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

A simple account of multiagent epistemic planning

Martin C. Cooper, Andreas Herzig, Faustine Maffre, Frédéric Maris, Pierre Régnier

IRIT - CNRS UMR 5505 – University of Toulouse, France
cooper@irit.fr, herzig@irit.fr, maffre@irit.fr,

maris@irit.fr, regnier@irit.fr

Abstract A realistic model of multiagent planning must allow us to model notions which are absent in
classical planning such as communication and knowledge. We investigate multiagent planning based on a
simple logic of action and knowledge that is based on the visibility of propositional variables. Using such
a formal logic allows us to deduce the validity of a plan from the validity of the individual actions which
compose it. We present a coding of multiagent planning problems expressed in this logic into the classical
planning language PDDL. Feeding the resulting problem into a PDDL planner provides a provably correct
plan for the original multiagent planning problem. We use the gossip problem as a running example.

Keywords: Planning, multiagent system, epistemic logic

1 Introduction

Suppose there are n people, and each of them knows some item of gossip not known to the others. They
communicate by telephone, and whenever one person calls another, they tell each other all they know at that
time. How many calls are required before each item of gossip is known to everyone ? This can be viewed
as a multiagent planning problem where contrarily to classical planning it is not the world that evolves but
the agents’ knowledge. In this paper we provide a simple multiagent epistemic logic allowing to reason
about such problems. We also study how they can be encoded into PDDL, the classical Planning Domain
Definition Language first introduced by (Mc Dermott et al., 1998).

2 A simple epistemic logic

We start by defining a language and semantics of a simple logic of action and knowledge that is ba-
sed on the visibility of propositional variables. Our logic is a dialect of Dynamic Logic of Propositional
Assignments DL-PA (Balbiani et al., 2013).

2.1 Language

Let PVar = {p1, p2, . . .} be a finite set of propositional variables and Agt = {i1, i2, . . .} a finite set of
agents. To each p ∈ PVar and each agent i ∈ Agt we associate one more propositional variable Kwip,
which reads “i knows whether p”. We understand this as follows : when i knows whether p then either p is
true and i knows that, or p is false and i knows that. The set of atomic formulas of our language is then

Fml0 = PVar ∪ {Kwip : i ∈ Agt and p ∈ PVar}.

We remark that our framework can be further extended to also contain information of the form KwiKwjp
(‘i knows whether j knows whether p’). Note that the latter does not entail that i himself knows whether p.

Our language has two syntactical entities, formulas and programs. They are defined by mutual recursion
as follows :

ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | 〈π〉ϕ

π ::= +α | −α | π;π | π ⊔ π | ϕ? | π∗

where α ranges over the set of atomic formulas Fml0.

〈π〉ϕ is the formula which results when the program π is applied to the formula ϕ. It reads “there exists an
execution of π after which ϕ is true”. The other boolean operators ⊥, ⊤, ∨, → and ↔ and the dual operator
[π]ϕ = ¬〈π〉¬ϕ (which reads “after every execution of π, ϕ is true”) are defined as usual.

Programs are composed of instructions which are either assignments (+α or −α), sequences of instruc-
tions (π;π), non-deterministic choice between instructions (π ⊔ π), tests (ϕ?) or repetitions (π∗).

We define the more standard modal operator ‘knowing that’ ranging over literals as follows :

Kip
def
= p ∧Kwip

Ki¬p
def
= ¬p ∧Kwip

A boolean formula is a formula without the dynamic operator 〈.〉. The set of all boolean formulas is
noted FmlBool. We note var(ϕ) the set of atomic formulas appearing in the boolean formula ϕ. For example,
var(q ∧Kwip) = {q,Kwip}. (Note that p /∈ var(q ∧Kwip).) The set of atomic programs is

Pgm0 = {+α : α ∈ Fml0} ∪ {−α : α ∈ Fml0}.

Two elements of Pgm0 are in conflict if they assign different truth values to the same variable.

2.2 Semantics

A state is a subset of the set of atomic formulas (corresponding to exactly those atomic formulas that are
true in this state). Formulas are interpreted as sets of states (those states in which the formula is true) and
programs are interpreted as relations on states.

||α|| = {s : α ∈ s}

||¬ϕ|| = 2Fml0 \ ||ϕ||

||ϕ ∧ ψ|| = ||ϕ|| ∩ ||ψ||

||〈π〉ϕ|| = {s : there is a s
′ ∈ ||ϕ|| such that 〈s, s ′〉 ∈ ||π||}

||+α|| = {〈s, s ′〉 : s
′ = s ∪ {α}}

||−α|| = {〈s, s ′〉 : s
′ = s \ {α}}

||π1;π2|| = ||π1|| ◦ ||π2||

= {〈s, s ′〉 : there is s ′′ such that 〈s , s ′′〉 ∈ ||π1|| and 〈s ′′, s ′〉 ∈ ||π2||}

||π1 ⊔ π2|| = ||π1|| ∪ ||π2||

||ϕ?|| = {〈s, s〉 : s ∈ ||ϕ||}

||π∗|| = (||π||)∗

In words, a propositional variable α is true in s if it belongs to it ; the negation of a formula ¬ϕ is true
in all worlds where ϕ is not true ; the conjunction ϕ ∧ ψ is true in states where both ϕ and ψ are true ; and
〈π〉ϕ is true if there is a state reachable by executing π where ϕ is true. Concerning programs, assignments
update the state by adding or removing the corresponding variable ; the sequence π1;π2 reaches a state by
executing π1 and executes π2 from this state ; the non-deterministic choice π1 ⊔ π2 represents the union of
the relations for π1 and for π2 ; the test ϕ? stays in the same state if it verifies ϕ (otherwise it fails and the
program stops) ; and the repetition π∗ reaches any state attainable if we repeat π any number of times by
making the reflexive transitive closure of the relation ||π||.

3 Action theories and planning tasks

A conditional action is a couple a = 〈pre(a), eff(a)〉 where pre(a) is a boolean formula (the precondition

of a) and eff(a) is a set of conditional effects : couples of the form 〈condi, πi〉 such that condi ∈ FmlBool is
a boolean formula and πi ∈ Pgm0 is an assignment.

As an example, let us consider the conditional action toggle(p) of flipping the truth value of the propo-
sitional variable p. It is described as togglep = 〈pre(togglep), eff(togglep)〉 with pre(togglep) = ⊤ and
eff(togglep) = {〈p,−p〉, 〈¬p,+p〉}.

Example 1

The action callij corresponds to agents i and j telling each other every secret they know among all n secrets.

The secret of agent i is modelled by a propositional variable si and agent j’s knowledge of this secret is

modelled by Kwjsi. We have callij = 〈pre(callij), eff(callij)〉 with pre(callij) = ⊤ and

eff(callij) = {〈Kwis1,+Kwjs1〉, . . . , 〈Kwisn,+Kwjsn〉,

〈Kwjs1,+Kwis1〉, . . . , 〈Kwjsn,+Kwisn〉}.

Intuitively, we check knowledge of both agents about every secret and add knowledge of a secret to one

agent only if it is known to the other.

A given conditional action a determines a relation between states :

||a|| =
{

〈s, s ′〉 : s ∈ ||pre(a)|| and there is no 〈cond1, π1〉, 〈cond2, π2〉 ∈ eff(a)

such that π1 and π2 are in conflict and s ∈ ||cond1 ∧ cond2||

and s
′ =

(

s \ {α : there is 〈cond,−α〉 ∈ eff(a) and s ∈ ||cond||}
)

∪ {α : there is 〈cond,+α〉 ∈ eff(a) and s ∈ ||cond||}
}

Thus an action is executable if its precondition is currently verified and if there cannot be any conflict.
When executed, for every conditional effect such that the condition is true, the action will remove every α
such that the effect is −α and add every α such that the effect is +α.

We say that a state s is reachable from a state s0 via a set of actions Act if there is a sequence of actions
〈a1, . . . , an〉 and a sequence of states 〈s0, . . . , sn〉 with n ≥ 0 such that sn = s and 〈sk−1, sk〉 ∈ ||ak|| for
every k such that 1 ≤ k ≤ n.

A planning task is a triple 〈Act, s0,Goal〉 where Act is a finite set of actions, s0 ⊆ Fml0 is a state (the
initial state) and Goal ∈ FmlBool is a boolean formula (the goal). It is solvable if at least one of the goal
states in ||Goal|| is reachable from s0 via Act ; else it is unsolvable.

Example 2 (Example 1, ctd.)

The planning task corresponding to the gossip problem is 〈Act, s0,Goal〉 with Act = {callij : i, j ∈ Agt

and i 6= j}, s0 = {Kwisi : 1 ≤ i ≤ n} (every agent knows its own secret) and Goal =
∧

i,j∈Agt Kwisj

(every agent knows every secret).

4 Encoding into DL-PA

Consider an action a = 〈pre(a), {〈cond1, π1〉, . . . , 〈condn, πn〉}〉. Action a can be directly coded into
PDDL as we will show in Section 5. However, some extra work is required to code actions in DL-PA.

Before executing an action, we have to check that its effects are not in conflict ; if two effects are, the
action can only be executed if these effects cannot both happen. The formula

conflicta =
∨

〈condi,πi〉,〈condj ,πj〉∈eff(a),
πi and πj are in conflict

condi ∧ condj

is true when there is a couple of effects of a whose effects are conflicting and whose conditions are both
true. We suppose that the disjunction of an empty set is ⊥. In our running example there are no conflicts :
we have conflictcallij = ⊥.

We also have to take care that the truth value of conditions cannot change because of effects. To achieve
this, we copy our conditions at the beginning of the action and evaluate copies. Note that this technical
problem is specific to DL-PA ; when coding a planning problem in PDDL this problem does not arise since
in PDDL all conditions are checked before any effects are produced. We use copies of atomic variables α,
noted α′. We suppose that α′ is syntactically different from every β ∈ Fml0. Then the copy of a formula
ϕ is noted ϕ′ and is defined such that every α occurring in ϕ is replaced by its copy α′. Furthermore, we
define the program assigning the value of α to its copy α′ by

copy(α) = (α?;+α′) ⊔ (¬α?;−α′).

Given a set of atoms A = {α1, . . . , αm}, we define the program copy(A) = copy(α1); . . . ; copy(αm)
storing the the truth values of the αi by copying them. (Note that the order does not matter.) Remark that
ϕ↔ [copy(var(ϕ))]ϕ′ is valid.

We can finally associate to a the DL-PA program :

proga = pre(a)?;¬conflicta?; copy
(

⋃

〈condi,πi〉∈eff(a)

var(condi)
)

;

(

(cond1
′?;π1) ⊔ ¬cond1

′?
)

; . . . ;
(

(condn
′?;πn) ⊔ ¬condn

′?
)

.

Proposition 1

The program proga is well-defined ; in other words, ||a|| = ||proga||.

Proof 1

Take a state s .

If s /∈ ||pre(a)||, then the program proga fails because of the first test pre(a)?, thus is not related to any

state, as specified by ||a||. The next test conflicta? exactly corresponds to the constraint on conflict in ||a|| :

if conflicta is false in s then no couple of conditional effects of a is in conflict and the program continues.

Furthermore, the ordering of the sequence proga does not matter because we test copies of the atoms

occurring in the conditions (thus we test the truth of every condition in s). By the semantics of the non-

deterministic choice operator ⊔, each instruction (condi
′?;πi)⊔¬condi

′? is equivalent to an if-then control

sequence : if the guard condi
′ is true then πi is executed, whereas if ¬condi

′ is true then no instruction is

executed and the program continues. Therefore, if the condition is verified in s , then, due to the semantics

of +α and −α, if πi is of the form +α then α is added to s , while if πi is of the form −α then α is removed

from s , as specified in ||a||.

It is interesting to note that coding epistemic planning into a formal logic has allowed us to identify the
problem of conflicting effects. This highlights the fact that an automatic planner designed to solve planning
problems expressed in PDDL and consisting of actions with conditional effects must take into account the
possibility of conflicting effects : if two conditions of an action a are true and their respective effects are
conflicting then action a cannot be executed. The possibility of conflicting effects is not explicitly prohibited
in PDDL and this potential problem must therefore be managed within the automatic planner.

Example 3 (Example 1, ctd.)

The action callij is associated to the program :

progcallij = ⊤?;¬⊥?; copy
(

{Kwisk : 1 ≤ k ≤ n} ∪ {Kwjsk : 1 ≤ k ≤ n}
)

;
(

(Kwis1
′?;+Kwjs1) ⊔ ¬Kwis1

′?
)

;

. . . ;
(

(Kwisn
′?;+Kwjsn) ⊔ ¬Kwisn

′?
)

;
(

(Kwjs1
′?;+Kwis1) ⊔ ¬Kwjs1

′?
)

;

. . . ;
(

(Kwjsn
′?;+Kwisn) ⊔ ¬Kwjsn

′?
)

Note that in this case, both pre(a)? and ¬conflicta? (which are respectively ⊤? and ¬⊥?) are always true,

and hence could clearly be omitted.

Proposition 2

A planning task 〈Act, s0,Goal〉 is solvable if and only if s0 satisfies
〈

(
⊔

a∈Act proga)
∗
〉

Goal.

Proof 2

We know by Proposition 1 that proga behaves correctly and produces the same effects as action a.

We can read the formula
〈

(
⊔

a∈Act proga)
∗
〉

Goal as follows :
⊔

a∈Act proga means choosing one action

from Act, then applying the star operator to this means a sequence of arbitrary length of arbitrary actions,

i.e., a plan π.

For a planning task to be solvable, at least one state satisfying the goal must be reachable from s0 by

actions from Act, that is, there is a sequence of actions such that executing them leads to a state in ||Goal||.
By the semantics, s0 satisfies 〈π〉Goal if and only if there exists an execution of π starting at s0 such that we

end in a state satisfying Goal ; this corresponds to our definition of reachable. Therefore the task is solvable

if and only if the formula is satisfied at the initial state.

5 Encoding into PDDL

In this section we present a method for automatically encoding planning problems defined in our logic
into PDDL. As already observed, in PDDL we do not need to make copies of variables as we were obliged
to do in DL-PA. We also make the assumption that the automatic planner does not allow the execution of
an action with conflicting effects : this means that we do not explicitly code the test for conflicts as we did
in DL-PA. Under this assumption, Proposition 2 guarantees that the planner will find a solution-plan if and
only if one exists.

Consider the planning task 〈Act, s0,Goal〉. In order to encode this planning problem into PDDL, some
requirement flags should be set depending on the form of the formulas condi used in the effects 〈condi, πi〉
of actions from Act, and on the formula Goal. Since all these formulas are in FmlBool, they have to be
encoded into PDDL using two boolean operators :

— and directly with default requirement flag :strips,

— not using the requirement flags :negative-preconditions if used only on atomic proposi-
tions, and :disjunctive-preconditions in addition if used on conjunctions.

Moreover, the operator or could also be used, when this latter requirement flag is set, in order to simplify
writing. Given a boolean formula ϕ ∈ FmlBool, we define a recursive function trPDDL(ϕ) which returns
the encoding of ϕ into PDDL :

trPDDL(p) ::= (p)

trPDDL(Kwip) ::= (Kw i p)

trPDDL(¬ϕ) ::= (not trPDDL(ϕ))

trPDDL(ϕ1 ∧ ϕ2) ::= (and trPDDL(ϕ1) trPDDL(ϕ2))

trPDDL(ϕ1 ∨ ϕ2) ::= (or trPDDL(ϕ1) trPDDL(ϕ2))

An atomic proposition p ∈ PVar is encoded as a fluent without any parameters by its name (p), whereas
Kwip with i ∈ Agt and p ∈ PVar is encoded by a special fluent with i and p as parameters (Kw i p).
The initial state s0 is then trivially encoded, and the Goal and the preconditions of all actions in Act can be
encoded using the function above. Moreover, the requirement flag :conditional-effects must be
set, unless all the effects of the actions in Act are of the form 〈⊤, π〉 (recall that π ∈ Pgm0 is an assignment).
Consider an action a = 〈pre(a), {〈cond1, π1〉, . . . , 〈condn, πn〉}〉. For every 〈condi, πi〉 ∈ eff(a), we add
the following conditional effects to :effect of the action a in PDDL :

— if πk = +p, then we add (when trPDDL(condk) (p)) ;

— if πk = −p, then we add (when trPDDL(condk) (not p)) ;

— if πk = +Kwip, then we add (when trPDDL(condk) (Kw i p)) ;

— if πk = −Kwip, then we add (when trPDDL(condk) (not (Kw i p))) ;

Example 4 (Example 1, ctd.)

The action callij is coded in PDDL, using conditional effects as follows :

(:action call

:parameters (?i - gossip ?j - gossip)

:effect (and (when (Kw ?i s1) (Kw ?j s1))

...

(when (Kw ?i sn) (Kw ?j sn))

(when (Kw ?j s1) (Kw ?i s1))

...

(when (Kw ?j sn) (Kw ?i sn))))

Almost all planners from last International Planning Competition (IPC 2014) 1 handle conditional effects
and negative preconditions, and most of them handle disjunctive preconditions. Moreover, most of them
also handle universal effects which allows us to encode problems more succinctly, and to model actions
from a planning domain independently of the actual problem as we can see in the following example.

Example 5 (Example 1, ctd.)

Here is the action callij redefined in PDDL using universal effects :

(:action call

:parameters (?i - gossip ?j - gossip)

:effect (and (forall (?s - secret)

(and (when (Kw ?i ?s) (Kw ?j ?s))

(when (Kw ?j ?s) (Kw ?i ?s))))))

6 Variants

Several variants of the Gossip Problem have been studied in the literature, and a survey of these alterna-
tives and the associated results was published by Hedetniemi et al. (1988). We enumerate some of them and
give an intuition on how they could be encoded as actions.

A first variant is to consider a non-complete graph instead of a complete one, that is, some people can-
not call each other. We can add a variable linked ij such that the precondition of the action callij is now
linked ij ∧ linked ji. In this case, if the graph is connected, the minimal number of calls to obtain the solu-
tion is either 2n− 4 or 2n− 3, depending on the structure of the graph (Harary & Schwenk, 1974).

We can also restrict calls to one-way communications, such as mails, and thus considering directed
graphs. This can be achieved by only providing information from i in a call, thus callij is cut in half
and becomes 〈⊤, {〈Kwis1,+Kwjs1〉, . . . , 〈Kwisn,+Kwjsn〉}〉. (Thus callij is not equivalent to callji
anymore.) If the directed graph is strongly connected, the minimal number of calls is 2n − 2 (Harary &
Schwenk, 1974).

A well-known variant of the gossip problem is the NOHO (“No One Hears Own”) version (Baker &
Shostak, 1972) where nobody should hear their own secret. In this version, assuming agents cannot hide
secrets, a call can only take place between i and j if the precondition ¬Kwjsi ∧ ¬Kwisj is satisfied, that
is, j cannot tell i the secret of agent i and vice versa. Such a problem can only have a solution if n is even,
in which case the minimal number of calls is still 2n− 4 (West, 1982).

An interesting variant for temporal planning is to consider time instead of calls, and thus suppose that
several calls are executed in parallel. If the number of participants n is even, the time taken is ⌈log2 n⌉, and
if n is odd, it is ⌈log2 n⌉+ 1 (Bavelas, 1950; Landau, 1954; Knödel, 1975).

Agents can be interested in learning at least k secrets without caring which secrets they access. This can
be modelled by changing the goal into a disjunction of all possible outcomes (conjunctions of Kwisj) such
that each agent learns k secrets. A complete study of the problem (called the partial gossiping problem

Richards & Liestman (1988)) and results depending on k can be found in (Chang & Tsay, 1996).
Finally, a last variant could be to find a sequence of calls such that no agent is allowed to lie by omission

(at each call, she always tells all the secrets she knows), but in the end, some people should not know some
secrets. This can actually be pretty easily achieved by only changing the goal (actions remain the same) to
allow negative literals in the conjunctions. As an example, take n = 3, a goal could be Kw1s1 ∧Kw1s2 ∧
Kw1s3 ∧Kw2s1 ∧Kw2s2 ∧Kw2s3 ∧Kw3s1 ∧¬Kw3s2 ∧Kw3s3 (everyone knows every secret except
3 that does not know the secret of 2). This can be achieved by the sequence of actions call13, call12. To the
best of our knowledge, this variant has not been studied. This problem is not always solvable as some goals
may not be reachable. For example, Kw1s1∧Kw1s2∧Kw1s3∧Kw2s1∧Kw2s2∧¬Kw2s3∧Kw3s1∧
¬Kw3s2∧Kw3s3 (2 does not know the secret of 3 and conversely) is not attainable since call23 must never
happen, so if 1 calls 2, then calls 3, then 3 will know the secret of 2 and if 1 calls 3 then 2, 2 will know the
secret of 3.

What we observe is that all these variants are easy to model by modifying planning tasks, and hence can
be directly encoded as DL-PA programs and PDDL tasks. This gives a sound and efficient method to fully
solve this problem.

1. http ://helios.hud.ac.uk/scommv/IPC-14/planners.html

7 Conclusion and future work

In this article we have made a first step towards a realistic and provably-correct method for multiagent
epistemic planning. Our use of a logic of action and knowledge, which is known to be sound, together
with an efficient automatic planner (which is assumed to be correct in the case of classical planning with
conditional effects) provides an efficient method for producing plans which are guaranteed to be correct.
We intend to continue this line of research by incorporating other important aspects of multiagent planning,
namely control (i.e. which agents are allowed to change the value of which variables) and mutual exclu-
sion (to guarantee that at most one agent has control of a variable at any instant), along with epistemic
aspects such as higher-order observation (visibility on visibility of agents). In the long term, we also aim to
generalise this approach to temporal planning in which actions are durative and may overlap.

We can note that, although we have only mentioned PDDL in this paper, alternative approaches exist. For
example, it is possible to code a planning problem containing actions with conditional effects directly into
SAT and then use an efficient SAT solver to find a plan (Rintanen et al., 2006).

Références

BAKER B. & SHOSTAK R. (1972). Gossips and telephones. Discrete Mathematics, 2(3), 191–193.
BALBIANI P., HERZIG A. & TROQUARD N. (2013). Dynamic logic of propositional assignments : a

well-behaved variant of PDL. In O. KUPFERMAN, Ed., Proceedings of the 28th Annual IEEE/ACM

Symposium on Logic in Computer Science (LICS), p. 143–152.
BAVELAS A. (1950). Communication patterns in task-oriented groups. The Journal of the Acoustical

Society of America, 22(6), 725–730.
CHANG G. J. & TSAY Y.-J. (1996). The partial gossiping problem. Discrete Mathematics, 148(1-3), 9–14.
HARARY F. & SCHWENK A. J. (1974). The communication problem on graphs and digraphs. Journal of

the Franklin Institute, 297(6), 491–495.
HEDETNIEMI S. M., HEDETNIEMI S. T. & LIESTMAN A. L. (1988). A survey of gossiping and broad-

casting in communication networks. Networks, 18(4), 319–349.
KNÖDEL W. (1975). New gossips and telephones. Discrete Mathematics, 13(1), 95.
LANDAU H. G. (1954). The distribution of completion times for random communication in a task-oriented

group. The Bulletin of Mathematical Biophysics, 16(3), 187–201.
MC DERMOTT D., GHALLAB M., HOWE A., KNOBLOCK C., RAM A., VELOSO M., WELD D. & WIL-

KINS D. (1998). PDDL—The Planning Domain Definition Language. Rapport interne CVC TR-98-
003/DCS TR-1165, Yale Center for Computational Vision and Control.

RICHARDS D. & LIESTMAN A. L. (1988). Generalizations of broadcasting and gossiping. Networks,
18(2), 125–138.

RINTANEN J., HELJANKO K. & NIEMELÄ I. (2006). Planning as satisfiability : parallel plans and algo-
rithms for plan search. Artif. Intell., 170(12-13), 1031–1080.

WEST D. B. (1982). A class of solutions to the gossip problem, part I. Discrete Mathematics, 39(3),
307–326.

