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Abstract

These last years, there has been a regain of interest in unsuper-

vised sub-lexical and lexical unit discovery. Speech segmenta-

tion into phone-like units may be a first interesting step for such

a task. In this article, we report speech segmentation experi-

ments in Xitsonga, a less-represented language spoken in South

Africa. We chose to use convolutional neural networks (CNN)

with FBANK static coefficients as input. The models take bi-

nary decisions whether a boundary is present or not at each sig-

nal sliding frame. We compare the use of a model trained exclu-

sively on Xitsonga data to the use of a bootstrap model trained

on a larger corpus of another language, the BUCKEYE U.S.

English corpus. Using a two-convolution-layer model, a 79%

F-measure was obtained on BUCKEYE, with a 20 ms error tol-

erance. This performance is equal to the human inter-annotator

agreement rate. We then used this bootstrap model to segment

Xitsonga data and compared the results when adapting it with 1

to 20 minutes of Xitsonga data.

Index Terms: Convolutional Neural Networks, phonemes, seg-

mentation, under-resourced languages

1. Introduction

Speech segmentation is the process, human (cognitive) or auto-

matic (when performed by a machine), which aims to identify

the boundaries between units (words, syllables and phonemes)

in a registration or a voice stream. In automatic speech process-

ing is a subproblem that has various applications in automatic

speech recognition (ASR). Currently, the automatic segments

discovery to identify words or sub-lexical units was driven by

interest in unsupervised learning of these units, to build a pro-

nunciation lexicon by identifying words and phones inventory

without linguistic knowledge a priori [1] or to make connec-

tions with the human and language acquisition, particularly by

children [2].

In this context, we can mention the growing interest of the

scientific community for the automatic processing of languages

called little-feature, with the organization of conferences and

special sessions dedicated to this theme each year, such as the

Workshop on speech technologies for low-resourced languages

SLTU. To these are added challenges such as Zero Resource

Speech Challenge [3], which was to identify words or pseudo-

words and sub-word units from recordings only. The data used

in this challenge were the spontaneous speech corpus BUCK-

EYE, American English, and also a small corpus of a poorly

endowed language, Xitsonga, a language of South Africa.

Deep neural networks (DNN) became popular in signal pro-

cessing because of their excellent performances, especially in

ASR. According to the considered problem, they give similar

or better results than GMM. For example, [4] get an absolute

gain of 3% in classification of vowels. Neural networks have

the characteristic of being adaptable to data and the requested

task, approaching the form most suited to the problem. In [5],

networks were found to be able to mimic representations close

to the filter banks directly when taking time series as input sig-

nal.

In this work, we addressed the automatic segmentation into

phones by modeling the segment boundaries rather than the seg-

ments themselves, in a supervised fashion. We use convolu-

tional neural networks (CNN) as they were shown to outperform

DNN for a variety of ASR tasks [6]. After a brief description of

our system in Section 2, corpus and assessment metrics in Sec-

tion 3, we compare different configurations of models (number

of neurons, filters), and illustrate the influence of the data used

(small quantities, different language) when training neural net-

works. We also test the use of a network trained for English

segmentation on Xitsonga.

2. System description

Figure 1 represents the basic processing pipeline of our segmen-

tation system of speech into phone-like units. The three steps

are detailed in the following subsections.

Figure 1: Diagram of the segmentation system

2.1. Acoustic features

Following various tests on time and frequency features, we use

32 filter bank coefficients (FBANK), computed on 16 ms sliding

windows with a 4 ms hop size for better precision. We extract

the FBANK coefficients and give then as input to the neural net-

work. We recall that the process of extracting FBANK is based

on the transformation of the spectral amplitude through a fil-

ter bank characterized by triangular filters, linearly distributed

along the Mel scale. FBANK coefficients are the energy loga-

rithm of each filter.

2.2. Neural networks

CNN are very efficient in recognizing patterns: for example,

more than 99% of correct recognition on handwritten numbers

(MNIST) [7]. MLP can achieve similar results, but with more

layers: 12 layers fully connected against 6 (1 layer of convolu-

tion and 5 fully connected) for a CNN [8]. So, we chose to use

a CNN, after having tested MLP and DNN.

For the neural network, the segmentation task is a binary

classification task: presence or absence of boundary. Conven-



tionally, when assigning a class to a given window, it first cal-

culates for each class the probability that the window belongs to

it, then it indicates as output the most probable class. However,

this last step presents two difficulties: the two classes (pres-

ence, absence of boundary) being divided into unequal propor-

tions (i.e. 1/5, 4/5), the output probabilities favor the absence of

boundary. In addition, when a window has a high probability of

being a boundary, its neighboring windows are likely to belong

to the same class. To avoid this, we post-process the probabili-

ties outputted by the classifier and based the final decision on a

method of local maxima identification.

2.3. Local maxima identification

Figure 2: Illustration of our local maxima identification on a

200-sample analysis windows

Figure 2 illustrates the process of finding local maxima. For

each analysis window, the neural network calculates a probabil-

ity that the window contains a boundary. Each recording re-

sults in a probability curve, of length 200 samples in Figure 2,

for example. To avoid detecting local variations due to noise,

we smooth the curve using a convolution with a small Ham-

ming window of size 5 samples. In order to select the more

important peaks (local maxima), we only keep those above a

threshold. The threshold value can vary as needed to favor pre-

cision, recall and F-measure. After few empirical tests, it ap-

peared that the F-measure is maximized when the number of

peaks detected is close to that expected, that is on average 1

phone every 70 ms for conversational English or 1 phone every

90 ms for read speech in Xitsonga.

3. Corpora and assessment metrics

We used the American English corpus called BUCKEYE [9],

composed of spontaneous speech (radio recordings) collected

from 40 different speakers with about 30 minutes of time speech

per speaker. This corpus is described in detail in [10]. The

quality of the manual phone-level transcriptions was assessed

by the creators of the corpus. An inter-annotator agreement was

reported: about 76% of correct labels and 62% in F-measure

for the manual segmentation with a 10 ms margin (tolerance).

The percentage rises to 79% for a tolerance of 20 ms [11]. The

median duration of phonemes is about 70 ms, with 60 differ-

ent phonemes annotated, exceeding the number of 40 phones

usually reported for English, especially because of peculiar pro-

nunciations that the creators of BUCKEYE chose to distinguish

in different classes, particularly for nasal sounds. Basing our-

selves on the cutting of the challenge Zero Resource Speech, we

divided the whole training sub-corpus in two parts: a training

sub-corpus BUCKEYE-TRAIN (75%, 10 hours, 20 speakers), a

development corpus BUCKEYE-DEV (25%, 3 hours, 6 speak-

ers), and we kept the official test portion BUCKEYE-TEST (5

hours, 12 speakers) as is.

We performed our segmentation experiments also on a less-

resourced language called Xitsonga, a language spoken in South

Africa. The Xitsonga corpus [12] is composed of short read sen-

tences recorded on smart-phones, outdoors. We used nearly 500

phrases, with a total of 10,000 examples of phonemes annotated

manually, from the same challenge database than the one used

in the ”Zero Resource Speech” challenge. The median duration

of phones is about 90 ms and there are 49 different phones. We

divided this corpus in a training corpus (Xitsonga-train) of 20

minutes and a testing corpus (Xitsonga-test) of 10 minutes.

4. Experiments

4.1. Comparison of different configurations on

BUCKEYE-DEV

In the context of this article, we used Theano [13] and

Lasagne [14] for the implementation of the models. Using the

input filter bank and with the learning hyper-parameters prop-

erly chosen (learning rate = 0.007, regularization coefficient =

0.9, minibatchs of size 2000), CNN proved relevant. So we tried

to optimize the settings of the network (number of layers and of

neurons, size of convolution filters).

CNN seems to be optimal for our task when using between

50 and 400 neurons for the fully connected layers and the num-

ber of convolution filters (also called maps) had an impact of

around 1% or 2%, absolute. For instance, increasing their num-

ber from 15 to 120 filters brings a 1.2% absolute gain. To ex-

plain this experimental result, we have analyzed the different

filters and we were able to verify that only 15 were active filters

for a size of 3x2.

The number of context windows turned out to be one of

the most important parameters: changes of phones are located

thank to the context. In our experiments, the results improve

significantly with the increasing size of context and we chose

an optimal value of 18 neighboring windows (84 ms), which is

close to the median duration of phones.

Figure 3: Five examples of CNN filters that seem to perform

derivation

The derivative and the second derivative of the FBANK fea-

tures are often used in ASR systems as input parameters but,

for our task, they did not provide any additional information to

the CNN compared to using static features only. To understand

why, we studied the filters of the first convolution layer. Fig-

ure 3 shows five examples of filters with a 3x2 size, with the

x-axis being the time axis. We can clearly see that these filters

approximate a derivation computation. Studying each of these

filters, we see that they approximately perform the following

calculations, for a time t and a signal s:

1. s(t)− s(t+ 1)

2. s(t− 1)− s(t+ 1)

3. − 1

2
s(t− 1)− 1

2
s(t) + s(t+ 1)

4. s(t− 1)− 1

2
s(t)− 1

2
s(t+ 1)

5. s(t− 1)− 1

2
s(t) + s(t+ 1).

The different approximations of these derivatives are

learned by the model directly from the input data, and there-



Figure 4: Probabilities output CNN for segmentation on BUCKEYE-TEST. Top: temporal signal in blue with manually annotated

boundaries represented by vertical bars in purple. Bottom: spectrogram of the signal with manually annotated boundaries in purple

and CNN probabilities outputs represented by the black curve.

fore, static features seem to be the most appropriate input for

our task.

4.2. Results on BUCKEYE-TEST

The dimension of the input layer of our CNN is 18× 32, since

we use a 18-window context, and 32 FBANK coefficients per

window. The CNN is composed of two convolution layers with

3x2 filters (3 for time) and 2x2 filters with 40 filters. Each con-

volution layer is followed by 2× 2 max-pooling layer. Follows

a fully connected layer of 200 units before the 2-d output last

layer that gives the probability of having a boundary. With this

CNN, we obtained F-measures of 68% and 79% with a 10 ms

or 20 ms tolerance values, respectively. With a high threshold,

we can achieve an accuracy greater than 90% if we agree to

find only a sixth of the boundaries. Or, with a very low thresh-

old, we obtain a recall of 72% with half of erroneous detections

(see Table 1).

Table 1: BUCKEYE-TEST results for 3 threshold values and

10 ms of tolerance

Phone median size (ms) Precision Recall F-measure

52 0.52 0.72 0.61

72 0.71 0.65 0.68

272 0.94 0.16 0.27

Figure 4 is an example of a result obtained by the neural

network, showing the curve of probabilities superimposed to

the signal spectrogram. The high values of the curve actually

correspond to changes in the spectrum and are correlated with

the boundaries.

We analyzed the boundary detection rate of some phones

among the most frequent ones. We find that boundaries of

phones with a strong attack, such as [g] or [k] , are more easily

found that for [l] or [ô], who encounter more difficulties. We

also observed that boundaries between two consecutive vow-

els are difficult to retrieve, especially because is a slow and

small variation. In addition, annotators noticed that precision

of boundary depends of the size of the phone. For example,

boundaries between [oU] and [aI] are rarely found.

Globally speaking, the results are close to the inter-

annotator agreement between human annotators. Table 2 even

shows that our system is more accurate when it locates a true

boundary: we have a better F-measure for 10 ms of error tol-

erance and its increase between 10 ms and 20 ms is lower than

that observed between annotators. In comparison, for an error

tolerance of 20 ms, a random baseline is around 47%. For infor-

mation, a state-of-the-art result reported in [15] reaches 77% in

F-measure on another corpus: TIMIT, with 20 ms of tolerance.

Table 2: Comparison of F-measures between human annotators

and the CNN on BUCKEYE-TEST

Tolerance (ms) Random Annotators CNN

10 0.26 0.62 0.68

20 ms 0.47 0.79 0.79

4.3. Application to a poorly endowed language (Segmenta-

tion with little training data)

Segmentation is a ”simple” binary task. So we can expect that

little data would be sufficient to train a model, or that using a

model learned with a different language for which large datasets

are available could help detecting boundaries in a less-resourced

language.

From BUCKEYE to the Xitsonga corpus, the only param-

eter to adjust is the threshold applied to the output of the net-

work. Choosing the threshold value is equivalent to choosing

the median size of inferred segments. As can be seen in the Fig-

ure 5, the optimal phone duration that maximizes the F-measure

is close to the data-driven one.

Using our model trained on U.S. English, we obtained a

62% F-measure with a 20 ms error margin on the Xitsonga test

data. Performance was much lower with a 10 ms error mar-

gin. To better understand this decrease, we measured the evolu-

tion of the F-measure depending on the amount of BUCKEYE

training data. We observed that during training on BUCKEYE,
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Figure 5: Influence on the F-measure of the segment median

size, segments obtained with different thresholds. For refer-

ence, the real median size of the phones tested corpus is in-

dicated by dotted lines. Results for a network learned with

BUCKEYE-TRAIN only.

performance on BUCKEYE-TEST kept increasing when more

training epochs were performed, while performance quickly

reached a plateau when testing the model on the Xitsonga-test

data. In contrast, with a 20 ms tolerance, performance on both

English and Xitsonga data kept increasing. So it seems that

training on a different language helps locating boundaries ap-

proximately, with a lack of precision in time. In order to in-

crease precision in time, we tried to adapt the English model

with Xitsonga data.

Figure 6: Increase in F-measure based on the number of minutes

of Xitsonga for training.

Figure 6 represents the F-measure values obtained on the

Xitsonga-test corpus as a function of the number of minutes of

Xitsonga speech data used to adapt the bootstrap English model

(plain and dotted lines in blue) or used to train a model from

scratch (plain and dotted lines in red). For a margin of 20 ms

(plain lines), the bootstrap model outperforms the model trained

on Xitsonga data only. Adding only three minutes of Xitsonga

training data achieves a 65% of F-measure, a value close to the

best performance obtained with 20 minutes.

Adding a few minutes of training data greatly improved

these results, as shown in the figure. Indeed, only three minutes

brought about 10% absolute improvement in F-measure for a

10 ms margin. But using only these three minutes of Xitsonga

allows to match the results achieved by the bootstrap English

model for the same margin. The baseline English model visibly

seems to be more useful with a larger margin of error (20 ms).

There are several possible ways to adapt the bootstrap model.

Transfer learning, or more simply model adaptation, is usually

performed by retraining the deepest layers of a network. In

our case, simply retraining the output layer did not provide any

improvement. Improvements only occurred when retraining at

least the last dense hidden layer. Furthermore, retraining all the

layers was the best option according to the tests we did.

Still studying figure 6, we see that adapting with 20 min-

utes of Xitsonga outperforms from about 2% absolute the model

trained from scratch. Thanks to this Xitsonga-train corpus, we

get 52% of F-measure for 10 ms and 70% for 20 ms, that is re-

spectively 16% and 9% less than BUCKEYE-TEST. The curves

show that convergence is not finished and that more data could

improve the results. Another parameter to consider is the mean

duration of the phones. Indeed, the mean duration of the Xit-

songa phones being superior by a 2/7 factor compared to the

mean duration of the English phones from BUCKEYE, we can

assume that it penalizes the results on Xitsonga for a given mar-

gin of error.

Probably related to the difference in mean duration of their

phones, we noticed that the probabilities of the boundary pre-

dictions were lower for the network trained on Xitsonga only,

compared to the bootstrap model. We can perhaps explain

this observation because of the smaller ratio of the number

of boundaries/non-boundaries in the Xitsonga corpus than in

BUCKEYE, due to longer phones in Xitsonga. The network

therefore sees a lower proportion of boundaries and tends to as-

sign lower probabilities to the boundary class. We also found

that the two networks detect approximately the same bound-

aries. Despite the difference in scale on the borders, the proba-

bilities of the two models have a 0.91 correlation rate.

5. Conclusions

In this article, we reported speech segmentation experiments at

phone-level using CNN. We envisaged the segmentation task as

a binary classification problem in which the classifier has to de-

cide on the presence of an eventual phone boundary based on

FBANK coefficients as input. On the American English record-

ings of the BUCKEYE corpus, a CNN with two convolution

layers achieved some remarkable results: 68% of F-measure

for our best automatic segmentation system versus 62% for the

inter-annotator agreement with a tolerance of 10 ms on the loca-

tion of phones boundaries. Moreover, the models showed good

adaptation to difficult cases: little training data and application

to another less-resourced language, Xitsonga, a language spo-

ken in South Africa. We used a CNN trained on BUCKEYE

as a bootstrap to segment Xitsonga speech data. This model

achieved a 62% F-measure with a 20 ms error margin on this

data, which shows that using a model trained on a given lan-

guage can be used to segment speech from another language.

Then, we adapted the bootstrap model with little Xitsonga data.

Using only 3 minutes of adapting data brought a 10% F-measure

improvement with a 10 ms error tolerance. We plan to confirm

our findings by using larger quantities of adapting data and also

by testing the bootstrap models on other languages. For the seg-

mentation of under-resourced languages, such as Xitsonga, we

also plan to explore semi-supervised learning, i.e. segmenting

unseen data and then re-using this data as training data. Another

direction would be to investigate better feature representations

with techniques such as auto-encoders.
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