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Abstract—Estimating means of data points lying on the 

Riemannian manifold of symmetric positive-definite (SPD) 

matrices has proved of great utility in applications requiring 

interpolation, extrapolation, smoothing, signal detection and 

classification. The power means of SPD matrices with exponent p 

in the interval [-1, 1] interpolate in between the Harmonic mean (p 

= -1) and the Arithmetic mean (p = 1), while the Geometric 

(Cartan/Karcher) mean, which is the one currently employed in 

most applications, corresponds to their limit evaluated at 0. In this 

article we treat the problem of estimating power means along the 

continuum p(-1, 1) given noisy observed measurement. We 

provide a general fixed point algorithm (MPM) and we show that 

its convergence rate for p = ±0.5 deteriorates very little with the 

number and dimension of points given as input. Along the whole 

continuum, MPM is also robust with respect to the dispersion of 

the points on the manifold (noise), much more so than the gradient 

descent algorithm usually employed to estimate the geometric 

mean. Thus, MPM is an efficient algorithm for the whole family of 

power means, including the geometric mean, which by MPM can 

be approximated with a desired precision by interpolating two 

solutions obtained with a small ±p value. We also present an 

approximated version of the MPM algorithm with very low 

computational complexity for the special case p=±½. Finally, we 

show the appeal of power means through the classification of 

brain-computer interface event-related potentials data. 

 
Index Terms—Brain-Computer Interface, Geometric Mean, 

High Dimension, Power Means, Riemannian Manifold, Symmetric 

Positive-Definite Matrix. 

 

I. INTRODUCTION 

HE study of means (centers of mass) for a set of symmetric 

positive definite (SPD) matrices has recently attracted 

much attention, driven by practical problems in radar data 

processing, image and speech processing, computer vision, 

shape and movement analysis, medical imaging (especially 

diffusion magnetic resonance imaging and brain-computer 

interface), sensor networks, elasticity, numerical analysis and 

machine learning (e.g., [1-13]). In many applications the 

observed data can be conveniently summarized by SPD 

matrices, for example, some form of their covariance matrix in 

the time, frequency or time-frequency domain, or 

autocorrelation matrices. In others, SPD matrices arise naturally 

as kernels, tensors (or slice of), density matrices, elements of a 
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search space, etc. Averaging such SPD matrices is a ubiquitous 

task. In signal processing we find it in a wide variety of data-

driven algorithms allowing spatial filters, blind source 

separation, beamformers and inverse solutions. While robust 

estimation of covariance matrices and related quantities is a 

long-standing topic of research, only recently an 

information/differential geometry perspective has been 

considered [14-22].  

Once observations are represented as SPD matrices, they may 

be treated as points on a smooth Riemannian manifold in which 

the fundamental geometrical notion of distance between two 

points and the center of mass among a number of points are 

naturally defined [14]. In turn, these notions allow useful 

operations such as interpolation, smoothing, filtering, 

approximation, averaging, signal detection and classification. 

In classification problems a simple Riemannian classifier based 

on a minimum distance to mean (MDM) procedure [3] has been 

tested with success on electroencephalographic data, in several 

kinds of brain-computer interfaces [3-6] and in the analysis of 

sleep stages [10, 11], as well as on motion capture data for the 

classification of body movements [13]. A similar method has 

been used for clustering in the context of video-based face and 

scene recognition [7] and in radar detection [2]. These examples 

demonstrate that simple machine learning algorithms, which 

are known to allow poor performance using the Euclidean 

metric, can be easily translated into equivalent Riemannian 

classifiers using an appropriate metric, obtaining excellent 

performance.  

Among the several means one may define from an information 

geometry point of view, so far the geometric mean (sometimes 

referred to as Karcher, Cartan or Fréchet mean) has been the 

most studied and the most used in practical applications. It is 

the natural definition of mean when the Fisher-Rao metric is 

applied to multivariate Gaussian distributions [20, 21], but also 

arises naturally from a pure geometrical and algebraic 

perspective without making assumptions on the data 

distribution [14]. It so happens that the geometric mean satisfies 

a number of desirable invariances, including congruence 

invariance, self-duality, joint homogeneity and the determinant 

identity [23]. The simultaneous verification of all these 

properties is hard to find for means based on other metrics, such 

as the arithmetic, harmonic and log-Euclidean mean, thus the 
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geometric mean of SPD matrices is not just important in 

practice, but a fundamental mathematical object per se.  

For positive numbers the arithmetic, geometric and harmonic 

mean are all members of the family of power means, also 

known as Hölder or generalized mean. Given a set of K positive 

numbers {x1,…xK} and K associated weights {w1,…,wK} 

satisfying Σkwk=1, the w-weighted power mean of order p, g, of 

{x1,…xK} is 

  
1

pp

k kk
g w x  .  (1) 

 

Power means interpolate continuously in between the limit p-

 (the minimum of the set) and the limit p+ (the maximum 

of the set), passing by p=-1 (harmonic mean) and p=1 

(arithmetic mean), while the limit p0 from both sides allows 

the geometric mean. This generality of power means is 

appealing from a signal processing perspective; in a typical 

engineering scenario the sensor measurement is affected by 

additive noise and varying p one can find an optimal mean 

depending on the signal-to-noise-ratio (SNR), as we will show. 

Recently [24] extended the concept of power means of positive 

numbers to SPD matrices for the continuum p[-1,1], with the 

case p=-1 being the matrix harmonic mean, p=1 the matrix 

arithmetic mean and the limit to zero from both sides allowing 

the matrix geometric mean we have discussed (see also [25-

27]). So far power means of SPD matrices have not been 

applied in signal processing. Also, only a “naive” fixed-point 

algorithm has been proposed for their estimation [24] and its 

convergence behavior is unsatisfactory. In this article we report 

a fixed-point algorithm for computing power means of SPD 

matrices along the interval p(-1, 1)\{0}. This algorithm has 

been recently presented in [28] and therein we have named it 

MPM (multiplicative power means). We then demonstrate a 

procedure to use MPM for approximating the geometric mean 

with a desired precision. By means of simulation we show that 

the MPM displays better convergence properties as compared 

to alternatives used for the geometric mean, with equal or lesser 

computational complexity. We also show that it offers a better 

estimation of the geometric mean as compared to the standard 

gradient descent algorithm. Then, we show the advantage of 

considering the whole family of power means, instead of the 

sole geometric mean as it is customary, in classification 

problems, by analyzing a data set of 38 subjects related to brain-

computer interface event-related potentials. Finally, in the 

appendix we describe an approximation of the MPM algorithm 

with very low computational complexity. This approximation 

is applicable only for values of p=±½ and is meant for 

applications when the computational power and/or battery life 

is of importance, like in mobile devices. 

 

A. The Manifold of Symmetric Positive-Definite matrices 

In differential geometry, a smooth manifold is a topological 

space that is locally similar to the Euclidean space and has a 

globally defined differential structure. A smooth Riemannian 

manifold M is equipped with an inner product on the tangent 

space defined at each point and varying smoothly from point to 

point. The tangent space TGM at point G is the vector space 

containing the tangent vectors to all curves on M passing 

through G. For the manifold M of SPD matrices S ++ , this is the 

space S of symmetric matrices. (Fig. 1). For any two tangent 

vectors ζ1 and ζ2, we are concerned here with the inner product 

given by the Fisher-Rao metric at any base-point G [14] : 

 

  1 1

1 2 1 2
,

G
tr G G     .  (2) 

 

B. The Geodesic 

The SPD manifold has non-positive curvature and is complete; 

for any two points C1 and C2 on M, a unique path on M of 

minimal length (at constant velocity) connecting the two points 

always exists. The path is named the geodesic and the points 

along it have analytical expressions given by 

 

    
1 1 1 1

2 2 2 2

t

1 t 2 1 1 2 1 1
# ,   t 0,1C C C C C C C

 

  ,  (3) 

 

with t the arc-length parameter [14]. With t=0 we are at C1, with 

t=1 we are at C2 and with t=1/2 we are at the geometric mean 

(or center of mass) of the two points (Fig. 1). As a special case 

we note I#tC=C 
t and C#tI=C 

½ C 
-t C 

½ = C 
1-t. Geodesic equation 

(3) verifies C1#tC2=C2#1-tC1 and (C1#tC2)-1=C1
-1#tC2

-1. The 

points along the geodesic can be understood as means of C1 and 

C2 weighted by t according to the Riemannian metric, in 

analogy with the weighted mean according to the Euclidean 

metric given by (1-t)C1+tC2, which still results in a SPD matrix, 

but greater than C1#tC2 in the Loewner order sense [27]. 

 

 
 

Figure 1: Schematic representation of the SPD manifold, the geometric mean G 
of two points and the tangent space at G. Consider two points (e.g., two 

covariance matrices) C1 and C2 on M. The geometric mean of these points is the 

midpoint on the geodesic connecting C1 and C2, i.e., it minimizes the sum of the 

two squared distances δ2(C1, G)+δ2(C2, G). Now construct the tangent space 

TGM at G. There exists one and only one tangent vector ζ1 (respectively ζ2) 

departing from G and arriving at the projection of C1 (respectively C2) from the 

manifold onto the tangent space; we see that the geodesics on M through G are 

transformed into straight lines in the tangent space and that therein distances 
are mapped logarithmically; the map from the manifold (symmetric positive 

definite matrices S++) to the tangent space (symmetric matrices S) is of 

logarithmic nature. The inverse map from the tangent space to the manifold is 
of exponential nature. See [14] for details on these maps and [3] for their use in 

classification problems. 

 

C. The Distance 

Given two matrices (points) C1 and C2 of dimension N·N on M, 

their Riemannian distance is the length of the geodesic (3) 

connecting them (Fig. 1). It is given by [14]  
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1 1

2 2 2

1 2 1 2 1 nn
, Log log

F

C C C C C 
 

   ,  (4) 

 

where λ1,…,λN are the N eigenvalues of matrix 
1 1

2 2

1 2 1
C C C

 

 or of 

the similar matrix 
1

1 2
C C

. This distance has a remarkable 

number of properties, some of which are listed in [23]. Besides 

the obvious symmetry and positivity, particularly useful in 

signal processing are the following invariance properties, the 

first of which is true for any invertible matrix B: 

 

Congruence    2 1 21
,  ,  T TBC B BC B C C  ,    (5) 

Self-Duality    1 1

1 2 21
,  ,  C C C C    ,  (6) 

 

D. Means of a Matrix Set: Variational Definition 

Let C={C1,…,CK} be a set of K SPD matrices and 

w={w1,…,wK} a set of associated K positive weights verifying 

Σkwk=1. Typically, in signal processing the elements of C are 

noisy data points (recordings, observations, etc.) or quantities 

derived thereof. Following Fréchet’s variational approach, the 

center of mass G of set C given a distance function d(,) is the 

point G minimizing the variance (dispersion) of points, that is,  

Σkwkd²(G, Ck). This definition applies in general. For instance, 

the w-weighted Arithmetic and Harmonic Mean are defined, 

respectively, as 

 

  
2

k k k kk k
; argmin

F
G

G w w C G w C   C
A

,  (7) 

    
12

1 1 1

k k k kk k
; argmin

F
G

G w w C G w C


     C
H

.  (8) 

 

E. The Geometric Mean of a Matrix Set 

In M the w-weighted Geometric Mean GG (w; C) is the point 

realizing the minimum of Σkwkδ2(Ck, G), where the Riemannian 

distance function δ(,) acting on M has been defined in (4). The 

geometric mean is the unique point G on M satisfying non-

linear matrix equation [18] 

 

  
1 1

2 2

k kk
Log 0w G C G

 

 .  (9) 

 

In general, it has closed-form solution only for K=2, in which 

case it is indeed equal to C1#½C2 (indicated shortly as C1#C2) - 

see (3) and Fig. 1 - furthermore, for K=2 it is the unique solution 

to Riccati equation (C1#C2)C2
-1(C1#C2)=C1 [2] and is also equal 

to B-1D1
½D2

½B-T for whatever joint diagonalizer B of C1 and C2, 

i.e., for whatever matrix B satisfying BC1BT=D1 and BC2BT=D2, 

with D1, D2 invertible diagonal matrices [23]. The geometric 

mean enjoys all 10 properties of means postulated in the 

seminal work [29]. It also enjoys the congruence invariance and 

self-duality, inherited directly from the corresponding 

properties (5) and (6) of its associated distance function: 

 

     1 K 1 K
; ,..., ; ,...,T T TG w BC B BC B BG w C C B

G G
,  (10) 

      1 1 1

1 K 1 K
; ,..., ; ,...,G w C C G w C C   

G G
.  (11) 

F. Power Means 

Given again C={C1,…,CK} and w={w1,…,wK} with Σkwk=1, we 

can generalize to SPD matrices the power mean of real numbers 

in the continuum p[-1,1] by the one-parameter family of 

matrix power means  ; ;pG w C
P

 given by the unique SPD 

solution G of non-linear matrix equation [24-26] 

 

  k p kk
#G w G C ,  (12) 

 

where for any pair (G, Ck) in M, G #pCk with p[0,1] is the mean 

of G and Ck weighted by p (3). Since G #pCk = Ck#1-pG (see 

section I.B) we see that a power mean is the arithmetic mean of 

the input matrices dragged along the geodesic toward the 

desired mean by an arc-length equal to 1-p. When the input 

matrices Ck all pair-wise commute, it has been proved in [24] 

(Property 1, p. 1502) that their power mean is 

  

  
1

pp

k kk
G w C  ,  (13) 

 

which is the straightforward extension of (1) to SPD matrices. 

As usual, such straightforward extensions work well in 

commuting algebra, but not in general, thus a general solution 

to (12) must be found by iterative algorithms. In the sequel, we 

will be using the following definition of power means Gp 

covering the whole interval p[-1,1]: 

 

 

   

    

   

    

   

k pk

1 1

  

  

      

   

; ;p 1         ; ,

; ;p 0,1 # ,

; ;p = 0   , ,

; ;p 1,0 ; ; p ,

; ;p = -1   ;

k

G w G w

G w w G C

G w G w

G w G w

G w G w

 


 


 





  






C C

C

C C

C C

C C

P A

P P

P G

P P

P H

 , (14) 

 

where C-1={C1
-1,…,CK

-1}, GG (w;C) is the geometric mean of 

section II.E and GA (w;C), GH (w;C) are the arithmetic mean (7) 

and the harmonic mean (8), respectively. GP (w;C;p) is named 

the w-weighted power mean of order p [24-26]. As per (14), the 

pair of power means obtained at opposite values of p around 

zero are the dual of each other; for a negative value of p the 

mean is defined as the inverse of the mean for –p as applied on 

the inverted input matrices C -1. As for positive numbers, power 

means of SPD matrices so defined interpolate continuously in 

between the harmonic mean (p = -1), the geometric mean (p=0) 

and the arithmetic mean (p = 1). Thus, the power means family 

encompasses and generalizes all Pythagorean means we have 

encountered so far. All of them enjoy the congruence invariance 

as the geometric mean does (10), but their duality, expressed in 

the fourth line of (14), coincides with the self-duality property 

(11) only for p = 0. The numerous properties of the power 

means can be found in [24] and a recent extension of this 

already quite general mathematical object has been proposed in 

[27].  
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II. ALGORITHMS FOR POWER MEANS 

A. Motivation 

We sought a general algorithm for computing the w-weighted 

power mean of order p, with p(-1, 1)\{0}. We are also 

interested in an effective algorithm for estimating the geometric 

mean, the third line in (14). The most popular algorithm for 

computing the geometric mean is a Riemannian gradient 

descent flow with fixed step size [30-31]. The convergence rate 

of this algorithm deteriorates rapidly as the SNR decreases 

(high dispersion of points on the manifold). The same is true for 

the method based on approximate joint diagonalization in [23]. 

Second order methods have complexity growing very fast with 

the size of the input matrices, thus they are little useful in 

practical applications [31]. The algorithm proposed in [32] has 

high complexity per iteration and slow convergence rate. For a 

review of available algorithms for estimating the geometric 

mean see [23, 31]. Our algorithm does not need to make use of 

Riemannian geometry optimization in the manifold of SPD 

matrices, with consequent conceptual and computational 

advantage. For instance, we will be able to derive a fast 

approximation based exclusively on triangular matrix algebra 

and on the Cholesky decomposition. 

 

B. A General Multiplicative Fixed-Point Algorithm 

Hereafter it will be convenient to lighten notation; let us denote 

the weighted power mean of order p as P, which by (14) is equal 

to GP (w;C;p) if p(0, 1) or to (GP (w;C-1;-p)) -1 if p(-1,0). This 

way we will need to handle only one expression for whatever 

value of p(-1, 1)\{0}, such as  

 

  * *; ; pP G w CP ,  (15) 

 

where |p|=abs(p) and we define the dual operator *=sgn(p). 

Definition (15) is here introduced so as to state an algorithm 

with identical convergence behavior for all pairs of values ±p 

for |p|(0, 1). Therefore we will show results only for p 

positive. As initialization we take the closed form solution of 

the mean in the case when all matrices in set C all pair-wise 

commute, given by (13).  

 

Let us now turn to the iterations. We write out (15) from 

definition (12) and using (3) to obtain 

 

   *
2 2 2 2

p
* *

k kk
P P w P C P P

    
  

 
 . (16) 

 

In [24] the authors have shown that the map defined by 

   * *; ; pf P G w CP  is a strict contraction for the Thompson 

metric with the least contraction coefficient less than or equal 

to 1-|p| and as such has a unique SPD fixed point. Numerical 

experiments show that iterating expression (16) as it is 

(hereafter referred to as “naive fixed-point”) results in a rather 

slow convergence rate, maximal for |p|=½, but slower and 

slower as |p| get closer to 0 or to 1. In order to hasten 

convergence we design a multiplicative algorithm as follows: 

post-multiplying both sides of (16) by P-*/2 and taking the 

inverse at both sides we obtain 

 

 
* *

2 21P H P   ,  (17) 

where 

  2 2

p
*

k kk
H w P C P

   .  (18) 

 

From (16) we see that upon convergence H=I. H here plays the 

role of the origin in the SPD manifold M for data linearly 

transformed by P-*/2. In particular, the identity matrix I is the 

point of symmetry in M corresponding to 0 in the Euclidean 

space due to the logarithmic map; as P-1/2 is a whitening matrix 

for the arithmetic mean (p=1), so P-*/2 is a whitening matrix for 

the whole family of power means. We wish to proceed by 

multiplicative updates according to (17). Rather than to P* 

itself, we thus seek an algorithm converging to P-*/2, which is 

its inverse square root for * = 1, i.e., when p(0, 1] and its 

square root for * = -1, i.e., when p[-1,0). The numerical 

stability of fixed-point iterates (17) is ensured by the fact that H 

converges toward I. Moreover, using our update rule any update 

matrix with form H-φ in (17) is equivalent to H-1 upon 

convergence. We have observed that replacing H-1 by H-φ in the 

update rule (17) does not alter the convergence to the fixed 

point. Nonetheless, the value of exponent φ impacts the 

convergence rate. In practice, using an optimal value of φ leads 

to a significantly faster convergence as compared to the one 

achieved by setting φ=1. This holds true for power means in the 

whole interval p(-1, 1)\{0}. Therefore, we will use iterate 

 

 
* *

2 2P H P   .  (19) 

 

Interestingly, optimal convergence speed is observed taking φ 

in an interval whose extremes vary proportionally to |p|-1. An 

heuristic rule that has proven adequate in intensive experiments 

using both real and simulated data is  

 

   11
2φ ε  p ,  2  ε 1,  ,  (20) 

 

where ε is a constant eccentricity parameter for hyperbolas (20) 

(Fig. 2).  

 

 
Figure. 2: The φ function of |p| (20) comprises a boomerang-shaped area 

enclosed by two hyperbolas: the upper limit is the unit hyperbola (ε=1) and the 

other hyperbola obtained for ε=2 is the lower limit. This area delimits an 
acceptable range of φ values for any given |p|. 
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The exponent -φ in (19) acts by retracting the jumps of the fixed 

point iterations: since the fixed point is reached at H=I, and φ is 

always positive in (20), H-φ = H #-φ I = I #1+φ H (see section I.B) 

is a move over the geodesic from I to H (i.e., in the direction 

opposite to convergence) retracting H by a distance equal to φ 

times the distance between I and H (here φ is the arc-length 

parameter of Eq. (3)). The retraction is maximal for the unit 

hyperbola (ε =1) and minimal for ε=2. By increasing ε toward 

2 we obtain faster convergence in general, up to a certain value, 

which according to our observations mainly depends on the 

signal to noise ratio. In this study we take ε as 4/3 and we keep 

it fixed in all analyses; this value has proven nearly optimal on 

the average of many combinations of SNR, input matrix size 

and dimension we have tested. The MPM algorithm in algebraic 

pseudo-code follows: 

 

 

Algorithm MPM (Multiplicative Power Means)     

 
INPUT:  p(-1, 1)\{0}, K positive weights w={w1,…,wK} such that 

Σkwk=1 and K NN SPD matrices C *={C1
*,…,CK

*}, with *=sgn(p).  

OUTPUT: P, the w-weighted Power Mean of order p.  

Initialize X as the principal square root inverse of (13) if p(0,1] or as 

its principal square root if p[-1,0). 

Set ζ equal to a small floating precision number (e.g., 10-10) 

Set φ = 0.375/|p|  

 

REPEAT 

      
p

*
k kk

w  TH XC X
 

   
  

     X H X   

UNTIL     1

N F
H I    

RETURN  
 

 

1

   

       p  0,  1

          p 1,0

T

T

X X if
P

X X if

   
  

   

  

 

 

C. Geometric Mean Approximation by Power Means 

As an approximation of the geometric mean of section I.E we 

consider the midpoint of geodesic (3) joining a pair of power 

means obtained by MPM at two small values ±p (in this article 

we will use p=±0.01). Using this procedure we aim at 

improving current estimates of the geometric mean using the 

MPM algorithm.   

 

D. A Fast Approximation 

We are also interested in reducing the complexity per iteration 

of the MPM algorithm. This may be important when the 

computational complexity and/or the energy consumption are 

of interest, like for example in portable devices. An 

approximated solution is proposed for values of p=±½ and is 

detailed in the appendix. 

 

III. STUDIES WITH SIMULATED DATA 

A. Simulated Data Model 

In many engineering applications, the matrix condition number 

of the SPD matrices summarizing the data (observations, 

recordings,…) tends to be positively correlated with the number 

of sensors. Also, the dispersion in the manifold of the matrices 

is proportional to the noise level. The following generative 

model for input data matrices {C1,…,CK} of size NN is able to 

reproduce these properties: 
 

  k k k k k

T TC UD U V E V I    ,  (21) 

where  

 

- the signal part is given by UDkUT, where U is a matrix with 

elements drawn at random at each simulation from a uniform 

distribution in [-1,1] and then normalized so as to have 

columns with unit norm and Dk are K diagonal matrices with 

diagonal elements dk,n randomly drawn at each simulation 

from a chi-squared random variable divided by its degree of 

freedom and multiplied by 1/2^n. So, the expectation of each 

element is 1/2n, where n{1,…,N} is the index of the N 

diagonal elements, thus forming elements of a well-known 

geometrical series absolutely converging to 1. The elements 

of the series represent the energy of N source processes, thus 

their sum is supposed finite (e.g., N brain dipole source 

processes with finite total energy). 

 

- The uncorrelated noise part is given by  I, where I is the 

identity matrix and  here is taken as 10-6; 

 

- The structured noise part is given by VkEkVk
T, where the Vk 

matrices are generated as U above, the Ek matrices are 

generated as Dk above and  is a constant controlling the SNR 

of the generated points (21) through 

 

 
 

  
kk

k k kk

tr

 tr

T

T

UD U
SNR

V E V I 







. (22) 

 

B. Simulation 

In the ensuing simulations we study relevant outcome 

parameters as a function of the SNR, which is inversely 

proportional to noise level as per (22), as well as a function of 

the size (N) and number (K) of input matrices. We compare the 

gradient descent algorithm for estimating the geometric mean 

(GDGM: section II.A), the naive fixed point algorithm for 

power means given in [24] (see (16) in section II.B) and the 

MPM algorithm here presented, the latter for several values of 

p. In comparing the convergence rate of several algorithms the 

stopping criterion should be chosen identical for all of them: the 

relative error of matrix P with respect to a reference matrix Pref 

is a dimensionless measure defined as [35]: 

 

 
2 2

ref refF F
P P P  . (23) 
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As a stopping criterion, considering two successive iterations 

P(i-1) and P(i), we use 

 

    

2
11

i i 1N
F

P P I
  ,  (24) 

 

which magnitude does not depend on the size nor on the norm 

of the matrices.  

 

We will also use simulated data to study the estimation of the 

geometric mean obtained by the gradient descent algorithm and 

by the procedure that uses the MPM algorithm as per section 

II.C. We are interested in the relative error (23) of these 

estimations with respect to the ‘true’ geometric mean: 

according to our data generating model (22), the true geometric 

mean is the geometric mean of the signal part given by matrices 

UDkUT, where Dk, k={1,…,K} are diagonal matrices. Because 

of the congruence invariance of the geometric mean, the true 

geometric mean is GG (w; {UD1UT, …, UDKUT}) = UGG (w; 

{D1, …, DK})UT and has algebraic solution, since the geometric 

mean of diagonal matrices is their Log-Euclidean mean [1], i.e.,  

 

     1 K k kk
; ,..., Exp LogG w D D w D G .  (25) 

 

C. Results 

Figure 3 shows the typical convergence behavior for the 

gradient descent algorithm for computing the geometric mean 

(GDGM), the naive algorithm with p=0.5 and the MPM 

algorithm (p=0.5 and p=0.001), for K=100 input SPD matrices 

of dimension N=20, and SNR={100, 10, 1, 0.1}. This example 

illustrates the typical observed trend: the MPM algorithm is 

consistently faster as compared to both the naive and gradient 

descent algorithm. Moreover, it converges also in situations 

when the gradient descent and the naive algorithm do not (see 

also Fig. 4). 

 
Figure 3: Typical convergence behavior (on abscissa the number of iterations 
and on the ordinate the convergence as defined in (24)) on simulated data for 

the gradient descent algorithm for estimating the geometric mean (GDGM), 

naive fixed point power mean with p=0.5 and the MDM algorithm with p={0.5, 
0.001}, for N=20 (dimension of input matrices), K=100 (number of input 

matrices) and SNR={100, 10, 1, 0.1} (22). 

 

Figure 4 analyzes the convergence behavior of the naive fixed 

point, the MPM fixed point and GDGM. We show there the 

main effects (bars) and their standard deviation (sd: lines) 

across 50 simulations of N={10, 25, 50}, K={10, 100, 500} and 

SNR={100, 1, 0.01} on the number of iterations. “Main effects” 

means that for each level of N, K and SNR the average and sd 

of the number of iterations are computed across all levels of the 

other two variables, as in a classical analysis of variance 

(ANOVA). We see that the number of iterations required by the 

MPM algorithm is always smaller as compared to the naive 

algorithm and that the naive algorithm converges very slow or 

does not converge at all for p=0.01 (the maximum number of 

iterations allowed was fixed to 50 for all algorithms). 

 
Figure 4: main effects average (bars) and sd (lines) number of iterations 

obtained across 50 repetitions for N={10, 25, 50}, K={10, 100, 500} and 

SNR={100, 1, 0.01} for the MPM algorithm with p={0.5, 0.25, 0.01}, the naive 
algorithm with p={0.5, 0.01} and the gradient descent algorithm for estimating 

the geometric mean (GDGM). 

 

Figure 5 shows the relative error to the true geometric mean of 

the GDGM algorithm, MPM with p=0.1, 0.01 and of the middle 

point of the geodesic joining the two MPM estimations obtained 

with p±0.01 (see section II.C), for several SNR in the range 

SNR={10-3,…, 103}, N=20, and K=5 (left) or K=80 (right). We 

see that for negative SNR values (more noise than signal) all 

MPM-based estimations are closer to the true geometric mean 

as compared to the estimation offered by the gradient descent 

algorithm and that for all SNR values the midpoint of the 

geodesic joining the MPM estimations obtained with p±0.01 is 

as good as the best competitor, or better. Considering this and 

the convergence behavior of the MPM algorithm (Fig. 4), we 

conclude that the procedure based on MPM described on 

section II.G is preferable for estimating the geometric mean.  

 

 
 Figure 5: Relative Error to the true geometric mean obtained with the GDGM 
algorithm, MPM with p=0.1, MPM with p=0.01 and as the midpoint of the 

geodesic joining the estimations obtained by MPM with p=±0.01 (section II.C). 

Left: N=20, K=5. Right: N=20, K=80. In both plots the horizontal axis is the 
SNR sampling the range {10-3, …,103}. 
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Figure 6 shows the relative error of the mean obtained by the 

½MPM algorithm (see Appendix) to the mean obtained by the 

MPM algorithm for p=½. For N small (N<20) the 

approximation found by the ½MPM algorithm is good in 

absolute terms, but it deteriorates fast as N increases. In 

tolerating the error engendered by the approximation one 

should consider the noise level. In fact, any relative error can 

be considered satisfactory as long as the noise level is much 

higher than that and usually in practical applications the noise 

level is much higher than 10-1.  

 

 
Figure 6: Main effects across 50 simulations of N={5, 10, 20, 50}, K={25, 50, 
100} and SNR={0.1, 1, 101} on the Relative Error of the mean obtained by the 

½MPM algorithm with respect to the mean obtained by the MPM algorithm 

with p=½. Identical results are found taking p=-½. 
 

IV. STUDIES WITH REAL DATA 

A. Procedures 

We tested the classification performance obtained by several 

power means on a real electroencephalography (EEG) data set 

acquired at the GIPSA-lab in Grenoble on 38 pairs of subjects 

participating to a Brain-Computer Interface (BCI) experiment. 

The BCI we used is the multi-subject Brain Invaders [38], 

which user-interface is similar to the joystick-controlled vintage 

video-game Space Invaders [39]. The BCI shows for several 

levels of the game 36 aliens on the screen and flash them in 

random patterns of 6 aliens [39]. The task of the participant is 

to destroy a TARGET alien only concentrating on it (i.e., 

without moving at all). The on-line classifier analyzes the 

event-related potentials (ERPs) produced during 1s after each 

flash and decides after every sequence of 12 flashes what alien 

is to be destroyed. The level continues until the TARGET alien 

is destroyed or 8 attempts have failed, after which a new level 

begins. For this analysis power means of special covariance 

matrices (see [5]) for the TARGET and NON-TARGET ERPs 

are estimated on a training set and the remaining trials are used 

for producing the area under the ROC curve (AUC). An AUC 

equal to 1 indicates perfect classification accuracy, while an 

AUC equal to 0.5 indicates random classification accuracy. We 

employed the Riemannian classifier described in [5], which 

uses only means of SPD matrices and distance function (4) in 

order to reach a decision. In the experiment, across subjects the 

average (sd) number of TARGET and NON-TARGET trials 

available was 109.9 (26.2) and 549.48 (130.1), respectively. In 

order to keep the amount of data constant across subjects, only 

the first 80 TARGET and 400 NON-TARGET trials are used. 

AUC is evaluated by using a Monte Carlo cross-validation 

(MCCV) procedure averaging 10 random samples comprising 

25% of the data selected as the test set and the remaining used 

as training set. EEG data were acquired by 16 scalp electrodes. 

Power means were tested at values of p={±1, ±0.8, ±0.6, ±0.4, 

±0.2, ±0.1, 0}.  

 

B. Results 

The individual area under the ROC curve (AUC) for the brain-

computer interface experiment on 38 subjects is shown in Fig. 

7A. The AUC as a function of p is a smooth curve. The value 

of p offering the maximum AUC appears to gravitate around 

zero. This illustrates a reason why the geometric mean is found 

useful in practice. However, the geometric mean (p=0) is 

optimal only for three out of the 38 subjects and the optimal 

value of p is highly variable across individuals. This 

demonstrates that the use of power means instead of the sole 

geometric mean has potential to increase the accuracy. Finally, 

the Pearson correlation between the maximal value of AUC 

obtained and the value of p allowing such maximum is 0.49. A 

statistical test for the null hypothesis that this correlation is 

equal to zero against the alternative hypothesis that it is larger 

than zero gives a probability of type I error equal to 0.002. We 

therefore reject the null hypothesis and conclude that the higher 

the AUC, that is, the higher the SNR of the data, the higher the 

optimal value of p. This result matches our intuition; when the 

noise is higher than the signal, a power mean with negative p 

will suppress the noise more than the signal and vice versa. 

 

 
 

Figure 7: A: from left to right and from top to bottom, AUC (disks) ± one 
standard deviation (vertical bars) obtained for 38 healthy subjects sorted by 

decreasing value of maximal AUC obtained across a sampling of power means 

in the interval p=[-1,…,1]. B: scatter plot and regression line of the maximal 

AUC and the value of p allowing the maximal value. Each disk represents a 

subject. 

 

V. MEAN FIELDS 

The family of power means is continuous and monotonic. 

Figure 8 is a TraDe plot (log-trace vs. log-determinant) for a 

sampling of power means along continuum p[-1, 1] 

illustrating the monotonicity of power means. We name a 

sampling of power means like those in Fig. 7 and Fig. 8 a 

Pythagorean Mean Field. Applications of mean fields include 

the possibility to evaluate the most appropriate choice of mean 
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depending on its use and on the data at hand. Mean fields also 

allow robust extensions of current Riemannian classifiers, such 

as in [2-6, 10-13]. For instance, we may want to combine 

Riemannian classifiers applied to all the points of a mean field. 

The application of mean fields to real data will be the object of 

future investigations. 

 

 
Figure 8: TraDe plot obtained with N=10, K=10 and SNR=1, for power means 

corresponding to p=1(Arithmetic), 0.5, 0.1, 0 (Geometric), -0.1, -0.5 and -1 

(Harmonic). The relationship between the trace and the determinant of power 

means is log-log linear. 
 

VI. CONCLUSIONS 

Power means are generalized means interpolating continuously 

in the interval p[-1, 1], with p=1 yielding the arithmetic mean, 

the limit of p→0 from both sides yielding the geometric mean 

and p=-1 yielding the harmonic mean. We have presented a new 

multiplicative algorithm for estimating power means of SPD 

matrices in the interval p(-1, 1)\{0}. A numerical analysis 

shows that its convergence rate is very fast and quasi-uniform 

for values of p close to ½ and –½, while for values of p close to 

0 or ±1 it is still faster as compared to the gradient descent with 

fixed step-size used for estimating the geometric mean. 

Furthermore, it converges also in low SNR situations, whereas 

the gradient descent algorithm fails. The approximation to the 

geometric mean we have proposed in section II.C gives better 

estimates of the geometric mean with respect to the gradient 

descent algorithm. We can therefore prefer MPM also for 

estimating the geometric mean. In conjunction with the 

procedure for p=0 of section II.C and expression (7) and (8) for 

p=1 and p=-1, respectively, using the MPM algorithm we can 

now estimate a number of means sampling along the 

Pythagorean continuum p=[-1, 1].  

 

The ½MPM algorithm offers a very efficient implementation to 

approximate the p=½ power mean. We have shown that the 

approximation is good in absolute terms for data matrices of 

small dimension (N<20), but it may turn useful also in higher 

dimension for noisy data, whenever the noise level is 

significantly higher than the error engendered by the 

approximation. However, while the MPM algorithm is 

computationally robust, ½MPM requires a careful 

implementation. In particular, Partlett’s recurrence [33, 34] 

should be used for computing the inverse of triangular matrices 

and input matrices may need a normalization and/or 

regularization in order to allow proper Cholesky 

decompositions (see the Appendix). 

 

Some works have focused on estimating geometric medians on 

Riemannian manifolds, extending the concept of median for 

random variables. This may provide a better estimation of the 

center of mass given a set of data points in the presence of 

outliers [40, 41]. Another current research direction is the 

definition of means of probability distributions rather than SPD 

matrices from a pure geometrical perspective, as we have done 

here. The geometric mean of Gaussian distributions and of 

mixtures of Gaussian distributions have been developed in [42, 

43]. A one-parameter family of “p-means” for probability 

distributions, leading to the geometric mean and median as 

special cases, have been developed in [44, 45]. 

 

APPENDIX 

We here develop a fast approximation to the MPM fixed point 

for the case p=±½. The computational complexity of the MPM 

algorithm is dominated by the computation of matrix H at each 

iteration (see pseudo-code of the MPM algorithm in section 

II.B). This requires 2K matrix multiplications and K 

eigenvalue-eigenvector (EVD) or Schur decompositions for 

evaluating the pth power of XCk
*XT. We here show how we can 

approximate H using 2K products of two triangular matrices 

and K matrix-triangular matrix multiplications. We wish an 

algorithm completely EVD-free and Schur decomposition-free, 

exploiting instead fast libraries for the Cholesky decomposition 

and triangular matrix operations.  

First, we renounce to smart initialization, since it also requires 

EVD or Schur decompositions. Then, we factorize the products 

XCk
*XT as products of triangular matrices and we consider a 

truncated iterative approach for approximating their square 

root; the approximation of the final solution will depend on the 

approximation engendered by this truncation. Finally, we will 

fix to 1.0 the φ parameter for the power H-φ, that is, we will stick 

to fixed point definition (17) as it is; for |p|=½ this value is 

acceptable in that it corresponds to the lower bound of the 

optimal interval (20) (see Fig. 2).  

 

Our goal here is to find an approximation to Fk=(XCk
*XT)½. 

Matrix X being an (inverse) square root of the sought mean P, 

we may take it lower triangular so as to verify XPXT=I, hence 

(XTX)-1=P; what it matters is that Fk is taken as the principal 

square root of XCk
*XT, i.e., the unique symmetric one [14]. For 

computational reasons we will also maintain in memory an 

upper triangular matrix YT=X-T. Before running the algorithm 

we will compute the Cholesky lower triangular factors Lk of all 

input matrices Ck
* and all the inverse transpose of these factors 

Rk
T=Lk

-T, which are upper triangular; these matrices are such 

that LkLk
T=Ck

*
 and Rk

TRk=Ck
*-1. As a consequence, matrices 

Mk=XLk are the Cholesky lower triangular factor of 

XLkLk
TXT=XCk

*XT, i.e., MkMk
T=XCk

*XT. The approximation of 

Fk goes like this: we know that 

 

 k k k k k½ ,T TF U M M U         (26) 

 

where Uk is the orthogonal polar factor in the right polar 

decomposition Mk=FkUk [35]. Since in our algorithm Mk can be 

computed easily by means of a triangular matrix multiplication, 
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we can considerably speed up the algorithm approximating Fk 

by approximating Uk. We will obtain this by means of a suitable 

Newton’s iteration converging to the polar factor Uk. We will 

use a well-established Newton’s iteration known for its 

excellent numerical accuracy and quadratic convergence rate 

[35-37]. Another reason for choosing these iterations is that the 

first one turns out to be very efficient for us: 

 

   ½ ½ ½ ½

k k k k
½ ½

T T T
U M M XL Y R   

  
    ,      (27) 

 

where  is a weight used for improving the convergence speed 

and YT=X-T can be computed fast by Parlett’s recurrence [33, 

34]. The optimal weight  has been established to be a function 

of the maximum and minimum singular values of Mk [35-37]; 

in our case those can be found at no cost from the maximum 

and minimum entry on the diagonal of XLk, which is triangular. 

In addition to the cited studies on polar orthogonal factor 

Newton’s algorithms, we introduce here the following 

improved a-posteriori scaling: in order to make matrix Uk 

closer to orthogonal form after the first iteration, we require it 

to verify the following diag-orthogonality condition: 

  

   k k k k

T Tdiag U U diag U U I  ,      (28) 

 

where the diag operator nullifies the off-diagonal elements of 

the argument. A finite sequence of the successive 

normalizations to unit norm of the columns and rows of Uk will 

converge to condition (28). The convergence rate is 

proportional of the size of Uk, as shown in Fig. 9 on random 

matrices. In this study we will use only two successive 

normalizations (error ≈ -20 dB for N=10 as shown in Fig. 9). 

Notice that each normalization has only quadratic complexity 

on N, thus the diag-orthogonality scaling does not increase 

significantly the overall computational cost, however, it 

improves the final approximation. Finally, note that although 

Fk=½(Uk
TMk + Mk

TUk), in order to compute the average of the 

Fk over K only the Uk
TMk terms need to be averaged; we will 

symmetrize it once the mean over K has been computed. The 

resulting fast approximated algorithm follows: 

 

 

 
Figure. 9: Typical convergence behavior of the successive unit-norm 

normalization of the columns and rows of matrices with entry randomly drawn 

from a standard Gaussian distribution for N (matrix dimension) = 10, 100 and 
1000. The convergence is the square root of the Euclidean mean square distance 

of the row and columns norm from unity after each iteration, in dB. The 

stopping criterion was set to convergence < -120 dB. 
 

 

Algorithm Multiplicative ½ Power Mean (½MPM) 
 

INPUT p=½ or p=-½. Given K positive weights w={w1,…,wK} such 

that Σkwk=1 and K NN SPD matrices C *={C1
*,…,CK

*}, with 

*=sgn(p), input the K Cholesky lower triangular factors Lk and the K 

transpose inverse Rk
T=Lk

-T of the input matrices. 

OUTPUT P, an approximated w-weighted Power Mean of order p.  

Note: H and U are square matrices. X, Z and Lk are lower triangular 

matrices. YT, ZT and Rk
T are upper triangular matrices. 

Initialize X to the identity lower triangular matrix and set YT=XT.   

Set ζ equal to a small floating precision number (e.g., 10-10) 

 

REPEAT 

0H    

 For k:=1 to K do 

 Begin 

kM XL   

     min maxdiag M diag M     

1 1
2 2

k
T TU M Y R 



   

Normalize to unit norm the columns, then the rows  

of U, two times in this order. 

k
TH H w U M    

 End 

 1

2

TH H H    

 Do Cholesky(H)=ZZT;  
1X Z X ;  

T T TY Z Y   

UNTIL    1

N F
H I    

RETURN  
1

2

1
2  

             p=

            p=-

T

T

Y Y if
P

X X if

  
  
  

 

 

 

REFERENCES 

[1] V. Arsigny, P. Fillard, X. Pennec, N. Ayache, “Geometric means in a 
novel vector space structure on symmetric positive-definite matrices”, 
SIAM. J. Matrix Anal. Appl., vol. 29, no. 1, pp 328–347, 2007. 

[2] M. Arnaudon, F. Barbaresco, L. Yang "Riemannian Medians and Means 
With Applications to Radar Signal Processing", IEEE Journal of Selected 
Topics in Signal Processing, vol. 7, no. 4, pp. 595 – 604, 2013. 

[3] A. Barachant, S. Bonnet, M. Congedo, C. Jutten, “Multi-Class Brain 
Computer Interface Classification by Riemannian Geometry”, IEEE 
Trans. Biomed. Eng., vol. 59, no. 4,  pp. 920-928, 2012  

[4] A. Barachant, S. Bonnet, M. Congedo and C. Jutten, “Classification of 
covariance matrices using a Riemannian-based kernel for BCI 
applications“, Neurocomputing, vol. 112, pp 172-178, 2013. 

[5] M. Congedo, EEG Source Analysis, HDR presented at doctoral School 
EDISCE, Grenoble Alpes University, 2013. 

[6] E.K. Kalunga, S. Chevallier, Q. Barthélemy, K. Djouani, E. Monacelli, Y. 
Hamam, "Online SSVEP-based BCI using Riemannian geometry", 
Neurocomputing, vol. 191, pp. 55-68, 2016. 

[7] M. Faraki, M. T. Harandi and F. Porikli, "More about VLAD: A leap from 
Euclidean to Riemannian manifolds," 2015 IEEE Conference on 
Computer Vision and Pattern Recognition, Boston, MA, 2015, pp. 4951-
4960. 

[8] P. Fillard, V. Arsigny, N. Ayache, X. Pennec, “A Riemannian Framework 
for the Processing of Tensor-Valued Images”. DSSCV, 2005, pp. 112-
123. 

[9] P.T. Fletcher, “Geodesic Regression and the Theory of Least Squares on 
Riemannian Manifolds”, International Journal of Computer Vision, pp. 1-
15, 2012. 



Published in: IEEE Transactions on Signal Processing (2017), 65 (9) : 2211 - 2220. 

 

10 

[10] Y., Li, K.M. Wong, “Riemannian Distances for Signal Classification by 
Power Spectral Density”,  IEEE J. Sel. Top. Signal Process., vol. 7, no. 4,  
pp. 655-669, 2013. 

[11] Y. Li, K.M. Wong, and H. Debruin, “EEG signals classification for sleep-
state decision – A Riemannian geometry approach”, IET Signal 
Processing, vol. 6, no. 4, pp. 288–299, 2012. 

[12] M. Moakher. On the averaging of symmetric positive-definite tensors. 
Journal of Elasticity, vol. 82, no. 3, pp. 273-296, 2006. 

[13] X. Zhang, Y. Wang, M. Gou, M. Sznaier and O. Camps, “Efficient 
Temporal Sequence Comparison and Classification using Gram Matrix 
Embeddings On a Riemannian Manifold,” IEEE Conf. on Computer 
Vision and Pattern Recognition, 2016. 

[14] R. Bhatia, Positive Definite Matrices. New Jersey: Princeton University 
Press, 2007. 

[15] S. Sra, "Positive definite matrices and the S-divergence," Proc. Amer. 
Math. Soc., vol. 144, pp. 2787-2797, 2016. 

[16] Z. Chebbi and M. Moakher, “Means of Hermitian positive-definite 
matrices based on the log-determinant α-divergence function,” Linear 
Algebra and its Applications, vol. 436, no. 7, pp. 1872-1889, 2012. 

[17] M. Moakher, M. Zéraï, “The Riemannian Geometry of the Space of 
Positive-Definite Matrices and Its Application to the Regularization of 
Positive-Definite Matrix-Valued Data”, J. Math. Imaging Vis., vol. 40,  
pp. 171–187, 2011. 

[18] M. Moakher, “A differential geometric approach to the arithmetic and 
geometric means of operators in some symmetric spaces”. SIAM. J. 
Matrix Anal. Appl., vol. 26, no. 3, pp. 735-747, 2005. 

[19] R. Bhatia, J. Holbrook, “Riemannian geometry and matrix geometric 
mean”. Linear Algebra Appl., vol. 413, pp. 594–618, 2006. 

[20] N. Nakamura, ”Geometric Means of Positive Operators”. KYUNGPOOK 
Math. J., vol. 49, pp. 167–181, 2009. 

[21] T. T. Georgiou, "Distances and Riemannian Metrics for Spectral Density 
Functions," in IEEE Transactions on Signal Processing, vol. 55, no. 8, pp. 
3995-4003, Aug. 2007. 

[22] X. Jiang, L. Ning and T. T. Georgiou, "Distances and Riemannian Metrics 
for Multivariate Spectral Densities," in IEEE Transactions on Automatic 
Control, vol. 57, no. 7, pp. 1723-1735, July 2012. 

[23] M. Congedo, B. Afsari, A. Barachant, M. Moakher, “Approximate Joint 
Diagonalization and Geometric Mean of Symmetric Positive Definite 
Matrices”, PLoS ONE, vol. 10, no. 4, e0121423, 2015. 

[24] Y. Lim and M. Pálfia, “Matrix Power means and the Karcher mean”, J. 
Funct. Anal., vol. 262, pp. 1498-1514, 2012. 

[25] J. Lawson, Y. Lim, “Weighted means and Karcher equations of positive 
operators”, PNAS, vol. 110, no. 39, pp. 15626-32, 2013. 

[26] J. Lawson, Y. Lim, “Karcher means and Karcher equations of positive 
definite operators”, Trans Am Math Soc.  vol. 1, pp. 1-22, 2014. 

[27] M. Pálfia, “Operator means of probability measures and generalized 
Karcher equations”, Advances in Mathematics, vol. 289, pp. 951-1007, 
2016. 

[28] M Congedo, R. Phlypo, A Barachant, “A Fixed-Point Algorithm for 
Estimating Power Means of Positive Definite Matrices”, Proc. of the 
EUSIPCO Conf., 2016.  

[29] T. Ando, C.K Li, R. Mathias, ”Geometric means”, Linear Algebra Appl., 
vol. 385, pp. 305-334, 2004. 

[30] B. Afsari, R. Tron, R. Vidal, “On the convergence of gradient descent for 
finding the Riemannian center of mass”, SIAM J. Control Optim., vol. 51, 
no. 3, pp 2230–2260, 2013. 

[31] B. Jeuris, R. Vanderbril, B. Vandereycken, “A survey and comparison of 
contemporary algorithms for computing the matrix geometric mean”. 
Elec. Trans. Numer. Anal., vol. 39, pp. 379-402, 2012. 

[32] T. Zhang “A Majorization-Minimization Algorithm for the Karcher Mean 
of Positive Definite Matrices”, arXiv, 1312.4654, 2014. 

[33] B.N. Parlett, “A recurrence among the elements of functions of triangular 
matrices”, Linear Algebra and its Applications, vol. 14, no. 2, pp. 117-
121, 1976. 

[34] P.I. Davies, N.J. Higham, “A Schur-Parlett Algorithm for Computing 
Matrix Functions”, SIAM. J. Matrix Anal. & Appl., vol. 25, no. 2, pp. 
464–485, 2003. 

[35] N.J. Higham, “Stable iterations for the matrix square root”, Numerical 
Algorithms, vol. 15, no. 2, pp. 227-242, 1997. 

[36] C. Kenney, A.J. Laub, “On Scaling Newton’s Method for Polar 
Decomposition and the Matrix Sign Function”, SIAM. J. Matrix Anal. & 
Appl., vol. 13, no.3, pp. 688–706, 1992. 

[37] A. Kielbasinski, P. Zielinski, K. Zietak, “On iterative algorithms for the 
polar decomposition of a matrix and the matrix sign function”, Applied 
Mathematics and Computation, vol. 270, pp. 483-495, 2015. 

[38] L. Korczowski, M. Congedo, C. Jutten, “Single-Trial Classification of 
Multi-User P300-Based Brain-Computer Interface Using Riemannian 
Geometry”, Proc. of the 37th Int. Conf. of IEEE Engineering in Medicine 
and Biology Society, Milano, Italy, 2015. 

[39] M. Congedo, M. Goyat, N. Tarrin, L Varnet, B. Rivet, G. Ionescu, et al. 
“’Brain Invaders’: a prototype of an open-source P300-based video game 
working with the OpenViBE platform”, Proc. of the 5th Int. BCI Conf., 
pp. 280-283, 2011. 

[40] F. Barbaresco, “Information Geometry of Covariance Matrix: Cartan-
Siegel Homogeneous Bounded Domains, Mostow/Berger Fibration and 
Frechet Median”, In: Matrix Information Geometry, R. Bhatia and 
F.Nielsen, Eds. New York, NY, USA: Springer, 2012, pp. 199-256. 

[41] P.T. Fletcher, S. Venkatasubramanian, S. Joshi S, “The geometric median 
on Riemannian manifolds with application to robust atlas estimation”, 
Neuroimage, vol. 45, no. 1 Suppl., 2009, S143-52. 

[42] S. Said, L. Bombrun, Y. Berthoumieu, J. H. Manton, “Riemannian 
Gaussian Distributions on the Space of Symmetric Positive Definite 
Matrices”, arxiv, 2016 (in press in IEEE Trans Inf Theory). 

[43] P. Zanini, M. Congedo, C. Jutten, S. Said, Y. Berthoumieu, “Parameters 
estimate of Riemannian Gaussian distribution in the manifold of 
covariance matrices”, Proc. of the IEEE SAM 2016 Conf., 2016. 

[44] M. Arnaudon, L. Miclo, “A stochastic algorithm finding p-means on the 
circle”, Bernoulli, vol. 22, no. 4, pp. 2237-2300, 2016. 

[45] M. Arnaudon, L. Miclo, “A stochastic algorithm finding generalized 
means on compact manifolds. Stochastic Processes and their 
Applications”, vol. 124, pp. 3463-3479, 2014. 

 

 

Marco Congedo received the Ph.D. degree in 

Biological Psychology with a minor in 

Statistics from the University of Tennessee, 

Knoxville, in 2003. From 2003 to 2006 he has 

been a Post-Doc fellow at the French National 

Institute for Research in Informatics and 

Control (INRIA) and at France Telecom R&D, 

in France. Since 2007 Dr. Congedo is a Research Scientist at 

the “Centre National de la Recherche Scientifique” (CNRS) in 

the GIPSA Laboratory, Department of Images and Signal, 

University of Grenoble Alpes and Grenoble Institute of 

Technology, Grenoble, France. In 2013 he obtained the HDR 

degree (“Habilitation à Diriger des Recherches”) from 

Grenoble Alpes University. He is interested in Signal 

Processing and Applied Mathematics for the analysis and 

classification of human electroencephalography (EEG), with 

applications in Brain-Computer Interface and Neurofeedback. 

Dr. Congedo has authored and co-authored over 100 scientific 

publications. 

 

Alexandre Barachant received his Ph.D. 

degree in Signal Processing in 2012 from the 

Grenoble Alpes University, Grenoble, France. 

Between 2012 and 2013 he has been a post-

doc fellow of the “Centre National de la 

Recherche Scientifique” (CNRS) in the 

GIPSA-lab Laboratory, Grenoble, France. 

Since November 2014 he is with the Burke Medical Research 

Institute, New York. His research interests include Statistical 

Signal Processing, Machine Learning, Riemannian Geometry 

and Classification of Neurophysiological Recordings. 



Published in: IEEE Transactions on Signal Processing (2017), 65 (9) : 2211 - 2220. 

 

11 

 

 

 

Ehsan Kharati-Kooapei received both his 

Bachelor of Science in Statistics (2008) and 

Master of Science in Mathematical Statistics 

(2014) from Shiraz University, Shiraz, Iran. 

Since 2015 he is a Ph.D. student in the 

Department of Statistical Science, University 

of Padova, Italy. In 2016 he has been visitor 

student at the GIPSA-lab, Grenoble, France. He is interested in 

Big Data Analysis, High Dimensional Problems, Machine 

Learning, Statistical Models and Statistical Inference. 


