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INTRODUCTION

HE study of means (centers of mass) for a set of symmetric positive definite (SPD) matrices has recently attracted much attention, driven by practical problems in radar data processing, image and speech processing, computer vision, shape and movement analysis, medical imaging (especially diffusion magnetic resonance imaging and brain-computer interface), sensor networks, elasticity, numerical analysis and machine learning (e.g., [START_REF] Arsigny | Geometric means in a novel vector space structure on symmetric positive-definite matrices[END_REF][START_REF] Arnaudon | Riemannian Medians and Means With Applications to Radar Signal Processing[END_REF][START_REF] Barachant | Multi-Class Brain Computer Interface Classification by Riemannian Geometry[END_REF][START_REF] Barachant | Classification of covariance matrices using a Riemannian-based kernel for BCI applications[END_REF][START_REF] Congedo | EEG Source Analysis[END_REF][START_REF] Kalunga | Online SSVEP-based BCI using Riemannian geometry[END_REF][START_REF] Faraki | More about VLAD: A leap from Euclidean to Riemannian manifolds[END_REF][START_REF] Fillard | A Riemannian Framework for the Processing of Tensor-Valued Images[END_REF][START_REF] Fletcher | Geodesic Regression and the Theory of Least Squares on Riemannian Manifolds[END_REF][START_REF] Li | Riemannian Distances for Signal Classification by Power Spectral Density[END_REF][START_REF] Li | EEG signals classification for sleepstate decision -A Riemannian geometry approach[END_REF][START_REF] Moakher | On the averaging of symmetric positive-definite tensors[END_REF][START_REF] Zhang | Efficient Temporal Sequence Comparison and Classification using Gram Matrix Embeddings On a Riemannian Manifold[END_REF]). In many applications the observed data can be conveniently summarized by SPD matrices, for example, some form of their covariance matrix in the time, frequency or time-frequency domain, or autocorrelation matrices. In others, SPD matrices arise naturally as kernels, tensors (or slice of), density matrices, elements of a Submitted on July 15 2016. This work has been partially supported by European project ERC-2012-AdG-320684-CHESS.
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search space, etc. Averaging such SPD matrices is a ubiquitous task. In signal processing we find it in a wide variety of datadriven algorithms allowing spatial filters, blind source separation, beamformers and inverse solutions. While robust estimation of covariance matrices and related quantities is a long-standing topic of research, only recently an information/differential geometry perspective has been considered [START_REF] Bhatia | Positive Definite Matrices[END_REF][START_REF] Sra | Positive definite matrices and the S-divergence[END_REF][START_REF] Chebbi | Means of Hermitian positive-definite matrices based on the log-determinant α-divergence function[END_REF][START_REF] Moakher | The Riemannian Geometry of the Space of Positive-Definite Matrices and Its Application to the Regularization of Positive-Definite Matrix-Valued Data[END_REF][START_REF] Moakher | A differential geometric approach to the arithmetic and geometric means of operators in some symmetric spaces[END_REF][START_REF] Bhatia | Riemannian geometry and matrix geometric mean[END_REF][START_REF] Nakamura | Geometric Means of Positive Operators[END_REF][START_REF] Georgiou | Distances and Riemannian Metrics for Spectral Density Functions[END_REF][START_REF] Jiang | Distances and Riemannian Metrics for Multivariate Spectral Densities[END_REF].

Once observations are represented as SPD matrices, they may be treated as points on a smooth Riemannian manifold in which the fundamental geometrical notion of distance between two points and the center of mass among a number of points are naturally defined [START_REF] Bhatia | Positive Definite Matrices[END_REF]. In turn, these notions allow useful operations such as interpolation, smoothing, filtering, approximation, averaging, signal detection and classification. In classification problems a simple Riemannian classifier based on a minimum distance to mean (MDM) procedure [START_REF] Barachant | Multi-Class Brain Computer Interface Classification by Riemannian Geometry[END_REF] has been tested with success on electroencephalographic data, in several kinds of brain-computer interfaces [START_REF] Barachant | Multi-Class Brain Computer Interface Classification by Riemannian Geometry[END_REF][START_REF] Barachant | Classification of covariance matrices using a Riemannian-based kernel for BCI applications[END_REF][START_REF] Congedo | EEG Source Analysis[END_REF][START_REF] Kalunga | Online SSVEP-based BCI using Riemannian geometry[END_REF] and in the analysis of sleep stages [START_REF] Li | Riemannian Distances for Signal Classification by Power Spectral Density[END_REF][START_REF] Li | EEG signals classification for sleepstate decision -A Riemannian geometry approach[END_REF], as well as on motion capture data for the classification of body movements [START_REF] Zhang | Efficient Temporal Sequence Comparison and Classification using Gram Matrix Embeddings On a Riemannian Manifold[END_REF]. A similar method has been used for clustering in the context of video-based face and scene recognition [START_REF] Faraki | More about VLAD: A leap from Euclidean to Riemannian manifolds[END_REF] and in radar detection [START_REF] Arnaudon | Riemannian Medians and Means With Applications to Radar Signal Processing[END_REF]. These examples demonstrate that simple machine learning algorithms, which are known to allow poor performance using the Euclidean metric, can be easily translated into equivalent Riemannian classifiers using an appropriate metric, obtaining excellent performance.

Among the several means one may define from an information geometry point of view, so far the geometric mean (sometimes referred to as Karcher, Cartan or Fréchet mean) has been the most studied and the most used in practical applications. It is the natural definition of mean when the Fisher-Rao metric is applied to multivariate Gaussian distributions [START_REF] Nakamura | Geometric Means of Positive Operators[END_REF][START_REF] Georgiou | Distances and Riemannian Metrics for Spectral Density Functions[END_REF], but also arises naturally from a pure geometrical and algebraic perspective without making assumptions on the data distribution [START_REF] Bhatia | Positive Definite Matrices[END_REF]. It so happens that the geometric mean satisfies a number of desirable invariances, including congruence invariance, self-duality, joint homogeneity and the determinant identity [START_REF] Congedo | Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices[END_REF]. The simultaneous verification of all these properties is hard to find for means based on other metrics, such as the arithmetic, harmonic and log-Euclidean mean, thus the geometric mean of SPD matrices is not just important in practice, but a fundamental mathematical object per se.

For positive numbers the arithmetic, geometric and harmonic mean are all members of the family of power means, also known as Hölder or generalized mean. Given a set of K positive numbers {x1,…xK} and K associated weights {w1,…,wK} satisfying Σkwk=1, the w-weighted power mean of order p, g, of {x1,…xK} is

  1 p p kk k g w x   . ( 1 
)
Power means interpolate continuously in between the limit p- (the minimum of the set) and the limit p+ (the maximum of the set), passing by p=-1 (harmonic mean) and p=1 (arithmetic mean), while the limit p0 from both sides allows the geometric mean. This generality of power means is appealing from a signal processing perspective; in a typical engineering scenario the sensor measurement is affected by additive noise and varying p one can find an optimal mean depending on the signal-to-noise-ratio (SNR), as we will show.

Recently [START_REF] Lim | Matrix Power means and the Karcher mean[END_REF] extended the concept of power means of positive numbers to SPD matrices for the continuum p[-1,1], with the case p=-1 being the matrix harmonic mean, p=1 the matrix arithmetic mean and the limit to zero from both sides allowing the matrix geometric mean we have discussed (see also [START_REF] Lawson | Weighted means and Karcher equations of positive operators[END_REF][START_REF] Lawson | Karcher means and Karcher equations of positive definite operators[END_REF][START_REF] Pálfia | Operator means of probability measures and generalized Karcher equations[END_REF]). So far power means of SPD matrices have not been applied in signal processing. Also, only a "naive" fixed-point algorithm has been proposed for their estimation [START_REF] Lim | Matrix Power means and the Karcher mean[END_REF] and its convergence behavior is unsatisfactory. In this article we report a fixed-point algorithm for computing power means of SPD matrices along the interval p(-1, 1)\{0}. This algorithm has been recently presented in [START_REF] Congedo | A Fixed-Point Algorithm for Estimating Power Means of Positive Definite Matrices[END_REF] and therein we have named it MPM (multiplicative power means). We then demonstrate a procedure to use MPM for approximating the geometric mean with a desired precision. By means of simulation we show that the MPM displays better convergence properties as compared to alternatives used for the geometric mean, with equal or lesser computational complexity. We also show that it offers a better estimation of the geometric mean as compared to the standard gradient descent algorithm. Then, we show the advantage of considering the whole family of power means, instead of the sole geometric mean as it is customary, in classification problems, by analyzing a data set of 38 subjects related to braincomputer interface event-related potentials. Finally, in the appendix we describe an approximation of the MPM algorithm with very low computational complexity. This approximation is applicable only for values of p=±½ and is meant for applications when the computational power and/or battery life is of importance, like in mobile devices.

A. The Manifold of Symmetric Positive-Definite matrices

In differential geometry, a smooth manifold is a topological space that is locally similar to the Euclidean space and has a globally defined differential structure. A smooth Riemannian manifold M is equipped with an inner product on the tangent space defined at each point and varying smoothly from point to point. The tangent space TGM at point G is the vector space containing the tangent vectors to all curves on M passing through G. For the manifold M of SPD matrices S ++ , this is the space S of symmetric matrices. (Fig. 1). For any two tangent vectors ζ1 and ζ2, we are concerned here with the inner product given by the Fisher-Rao metric at any base-point G [START_REF] Bhatia | Positive Definite Matrices[END_REF] :

  11 1 2 1 2 , G tr G G       . ( 2 
)

B. The Geodesic

The SPD manifold has non-positive curvature and is complete; for any two points C1 and C2 on M, a unique path on M of minimal length (at constant velocity) connecting the two points always exists. The path is named the geodesic and the points along it have analytical expressions given by

    1 1 1 1 2 2 2 2 t 1 t 2 1 1 2 1 1 # , t 0,1 C C C C C C C   , ( 3 
)
with t the arc-length parameter [START_REF] Bhatia | Positive Definite Matrices[END_REF]. With t=0 we are at C1, with t=1 we are at C2 and with t=1/2 we are at the geometric mean (or center of mass) of the two points (Fig. 1). As a special case we note I#tC=C t and C#tI=C

½ C -t C ½ = C 1-t . Geodesic equation (3) verifies C1#tC2=C2#1-tC1 and (C1#tC2) -1 =C1 -1 #tC2 -1 .
The points along the geodesic can be understood as means of C1 and C2 weighted by t according to the Riemannian metric, in analogy with the weighted mean according to the Euclidean metric given by (1-t)C1+tC2, which still results in a SPD matrix, but greater than C1#tC2 in the Loewner order sense [START_REF] Pálfia | Operator means of probability measures and generalized Karcher equations[END_REF]. departing from G and arriving at the projection of C1 (respectively C2) from the manifold onto the tangent space; we see that the geodesics on M through G are transformed into straight lines in the tangent space and that therein distances are mapped logarithmically; the map from the manifold (symmetric positive definite matrices S++) to the tangent space (symmetric matrices S) is of logarithmic nature. The inverse map from the tangent space to the manifold is of exponential nature. See [START_REF] Bhatia | Positive Definite Matrices[END_REF] for details on these maps and [START_REF] Barachant | Multi-Class Brain Computer Interface Classification by Riemannian Geometry[END_REF] for their use in classification problems.

C. The Distance

Given two matrices (points) C1 and C2 of dimension N·N on M, their Riemannian distance is the length of the geodesic (3) connecting them (Fig. 1). It is given by [START_REF] Bhatia | Positive Definite Matrices[END_REF]    

11 22 2 1 2 1 2 1 n n , Log log F C C C C C     , (4) 
where λ1,…,λN are the N eigenvalues of matrix CC  . This distance has a remarkable number of properties, some of which are listed in [START_REF] Congedo | Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices[END_REF]. Besides the obvious symmetry and positivity, particularly useful in signal processing are the following invariance properties, the first of which is true for any invertible matrix B: 

Congruence     2 1 2 1 , , TT BC B BC B C C   , ( 5 
)
Self-Duality     11 12 2 1 , , C C C C    , (6) 
  2 k k k k kk ; arg min F G G w w C G w C     C A , (7) 
   

1 2 1 1 1 k k k k kk ; arg min F G G w w C G w C         C H . (8) 

E. The Geometric Mean of a Matrix Set

In M the w-weighted Geometric Mean GG (w; C) is the point realizing the minimum of Σkwkδ 2 (Ck, G), where the Riemannian distance function δ(,) acting on M has been defined in [START_REF] Barachant | Classification of covariance matrices using a Riemannian-based kernel for BCI applications[END_REF]. The geometric mean is the unique point G on M satisfying nonlinear matrix equation [START_REF] Moakher | A differential geometric approach to the arithmetic and geometric means of operators in some symmetric spaces[END_REF]  

11 22 kk k Log 0 w G C G    . ( 9 
)
In general, it has closed-form solution only for K=2, in which case it is indeed equal to C1#½C2 (indicated shortly as C1#C2)see (3) and Fig. 1 -furthermore, for K=2 it is the unique solution to Riccati equation (C1#C2)C2 -1 (C1#C2)=C1 [START_REF] Arnaudon | Riemannian Medians and Means With Applications to Radar Signal Processing[END_REF] and is also equal to B -1 D1 ½ D2 ½ B -T for whatever joint diagonalizer B of C1 and C2, i.e., for whatever matrix B satisfying BC1B T =D1 and BC2B T =D2, with D1, D2 invertible diagonal matrices [START_REF] Congedo | Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices[END_REF]. The geometric mean enjoys all 10 properties of means postulated in the seminal work [START_REF] Ando | Geometric means[END_REF]. It also enjoys the congruence invariance and self-duality, inherited directly from the corresponding properties ( 5) and ( 6) of its associated distance function:

        1 K 1 K ; ,..., ; ,..., T T T G w BC B BC B BG w C C B  GG , ( 10 
)         1 1 1 1 K 1 K ; ,..., ; ,..., G w C C G w C C     GG . ( 11 
)

F. Power Means

Given again C={C1,…,CK} and w={w1,…,wK} with Σkwk=1, we can generalize to SPD matrices the power mean of real numbers in the continuum p[-1,1] by the one-parameter family of matrix power means

 

; ;p Gw C P given by the unique SPD solution G of non-linear matrix equation [START_REF] Lim | Matrix Power means and the Karcher mean[END_REF][START_REF] Lawson | Weighted means and Karcher equations of positive operators[END_REF][START_REF] Lawson | Karcher means and Karcher equations of positive definite operators[END_REF]  

k p k k # G w G C   , ( 12 
)
where for any pair (G, Ck) in M, G #pCk with p[0,1] is the mean of G and Ck weighted by p (3). Since G #pCk = Ck#1-pG (see section I.B) we see that a power mean is the arithmetic mean of the input matrices dragged along the geodesic toward the desired mean by an arc-length equal to 1-p. When the input matrices Ck all pair-wise commute, it has been proved in [START_REF] Lim | Matrix Power means and the Karcher mean[END_REF] (Property 1, p. 1502) that their power mean is

  1 p p kk k G w C   , ( 13 
)
which is the straightforward extension of (1) to SPD matrices.

As usual, such straightforward extensions work well in commuting algebra, but not in general, thus a general solution to ( 12) must be found by iterative algorithms. In the sequel, we will be using the following definition of power means Gp covering the whole interval p[-1,1]: 

                      
G w G w G w w G C G w G w G w G w G w G w                    CC C CC CC CC PA PP PG PP PH , ( 14 
)
where C -1 ={C1 -1 ,…,CK -1 }, GG (w;C) is the geometric mean of section II.E and GA (w;C), GH (w;C) are the arithmetic mean [START_REF] Faraki | More about VLAD: A leap from Euclidean to Riemannian manifolds[END_REF] and the harmonic mean [START_REF] Fillard | A Riemannian Framework for the Processing of Tensor-Valued Images[END_REF], respectively. GP (w;C;p) is named the w-weighted power mean of order p [START_REF] Lim | Matrix Power means and the Karcher mean[END_REF][START_REF] Lawson | Weighted means and Karcher equations of positive operators[END_REF][START_REF] Lawson | Karcher means and Karcher equations of positive definite operators[END_REF]. As per ( 14), the pair of power means obtained at opposite values of p around zero are the dual of each other; for a negative value of p the mean is defined as the inverse of the mean for -p as applied on the inverted input matrices C -1 . As for positive numbers, power means of SPD matrices so defined interpolate continuously in between the harmonic mean (p = -1), the geometric mean (p=0) and the arithmetic mean (p = 1). Thus, the power means family encompasses and generalizes all Pythagorean means we have encountered so far. All of them enjoy the congruence invariance as the geometric mean does [START_REF] Li | Riemannian Distances for Signal Classification by Power Spectral Density[END_REF], but their duality, expressed in the fourth line of ( 14), coincides with the self-duality property [START_REF] Li | EEG signals classification for sleepstate decision -A Riemannian geometry approach[END_REF] only for p = 0. The numerous properties of the power means can be found in [START_REF] Lim | Matrix Power means and the Karcher mean[END_REF] and a recent extension of this already quite general mathematical object has been proposed in [START_REF] Pálfia | Operator means of probability measures and generalized Karcher equations[END_REF].

II. ALGORITHMS FOR POWER MEANS

A. Motivation

We sought a general algorithm for computing the w-weighted power mean of order p, with p(-1, 1)\{0}. We are also interested in an effective algorithm for estimating the geometric mean, the third line in [START_REF] Bhatia | Positive Definite Matrices[END_REF]. The most popular algorithm for computing the geometric mean is a Riemannian gradient descent flow with fixed step size [START_REF] Afsari | On the convergence of gradient descent for finding the Riemannian center of mass[END_REF][START_REF] Jeuris | A survey and comparison of contemporary algorithms for computing the matrix geometric mean[END_REF]. The convergence rate of this algorithm deteriorates rapidly as the SNR decreases (high dispersion of points on the manifold). The same is true for the method based on approximate joint diagonalization in [START_REF] Congedo | Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices[END_REF].

Second order methods have complexity growing very fast with the size of the input matrices, thus they are little useful in practical applications [START_REF] Jeuris | A survey and comparison of contemporary algorithms for computing the matrix geometric mean[END_REF]. The algorithm proposed in [START_REF] Zhang | A Majorization-Minimization Algorithm for the Karcher Mean of Positive Definite Matrices[END_REF] has high complexity per iteration and slow convergence rate. For a review of available algorithms for estimating the geometric mean see [START_REF] Congedo | Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices[END_REF][START_REF] Jeuris | A survey and comparison of contemporary algorithms for computing the matrix geometric mean[END_REF]. Our algorithm does not need to make use of Riemannian geometry optimization in the manifold of SPD matrices, with consequent conceptual and computational advantage. For instance, we will be able to derive a fast approximation based exclusively on triangular matrix algebra and on the Cholesky decomposition.

B. A General Multiplicative Fixed-Point Algorithm

Hereafter it will be convenient to lighten notation; let us denote the weighted power mean of order p as P, which by ( 14) is equal to GP (w;C;p) if p(0, 1) or to (GP (w;C -1 ;-p)) -1 if p(-1,0). This way we will need to handle only one expression for whatever value of p(-1, 1)\{0}, such as

  ** ; ; p P G w  C P , ( 15 
)
where |p|=abs(p) and we define the dual operator *=sgn(p). Definition ( 15) is here introduced so as to state an algorithm with identical convergence behavior for all pairs of values ±p for |p|(0, 1). Therefore we will show results only for p positive. As initialization we take the closed form solution of the mean in the case when all matrices in set C all pair-wise commute, given by [START_REF] Zhang | Efficient Temporal Sequence Comparison and Classification using Gram Matrix Embeddings On a Riemannian Manifold[END_REF].

Let us now turn to the iterations. We write out (15) from definition (12) and using (3) to obtain

  * 2 2 2 2 p ** kk k P P w P C P P          . ( 16 
)
In [START_REF] Lim | Matrix Power means and the Karcher mean[END_REF] the authors have shown that the map defined by 16) as it is (hereafter referred to as "naive fixed-point") results in a rather slow convergence rate, maximal for |p|=½, but slower and slower as |p| get closer to 0 or to 1. In order to hasten convergence we design a multiplicative algorithm as follows:

post-multiplying both sides of ( 16) by P -*/2 and taking the inverse at both sides we obtain 

From [START_REF] Chebbi | Means of Hermitian positive-definite matrices based on the log-determinant α-divergence function[END_REF] we see that upon convergence H=I. H here plays the role of the origin in the SPD manifold M for data linearly transformed by P -*/2 . In particular, the identity matrix I is the point of symmetry in M corresponding to 0 in the Euclidean space due to the logarithmic map; as P -1/2 is a whitening matrix for the arithmetic mean (p=1), so P -*/2 is a whitening matrix for the whole family of power means. We wish to proceed by multiplicative updates according to [START_REF] Moakher | The Riemannian Geometry of the Space of Positive-Definite Matrices and Its Application to the Regularization of Positive-Definite Matrix-Valued Data[END_REF]. Rather than to P * itself, we thus seek an algorithm converging to P -*/2 , which is its inverse square root for * = 1, i.e., when p(0, 1] and its square root for * = -1, i.e., when p[-1,0). The numerical stability of fixed-point iterates ( 17) is ensured by the fact that H converges toward I. Moreover, using our update rule any update matrix with form H -φ in ( 17) is equivalent to H -1 upon convergence. We have observed that replacing H -1 by H -φ in the update rule [START_REF] Moakher | The Riemannian Geometry of the Space of Positive-Definite Matrices and Its Application to the Regularization of Positive-Definite Matrix-Valued Data[END_REF] does not alter the convergence to the fixed point. Nonetheless, the value of exponent φ impacts the convergence rate. In practice, using an optimal value of φ leads to a significantly faster convergence as compared to the one achieved by setting φ=1. This holds true for power means in the whole interval p(-1, 1)\{0}. Therefore, we will use iterate ** 22

P H P      . ( 19 
)
Interestingly, optimal convergence speed is observed taking φ in an interval whose extremes vary proportionally to |p| -1 . An heuristic rule that has proven adequate in intensive experiments using both real and simulated data is

  1 1 2 φ ε p , 2 ε 1,    , ( 20 
)
where ε is a constant eccentricity parameter for hyperbolas (20) (Fig. 2).

Figure . 2: The φ function of |p| ( 20) comprises a boomerang-shaped area enclosed by two hyperbolas: the upper limit is the unit hyperbola (ε=1) and the other hyperbola obtained for ε=2 is the lower limit. This area delimits an acceptable range of φ values for any given |p|.

The exponent -φ in [START_REF] Bhatia | Riemannian geometry and matrix geometric mean[END_REF] acts by retracting the jumps of the fixed point iterations: since the fixed point is reached at H=I, and φ is always positive in [START_REF] Nakamura | Geometric Means of Positive Operators[END_REF], H -φ = H #-φ I = I #1+φ H (see section I.B) is a move over the geodesic from I to H (i.e., in the direction opposite to convergence) retracting H by a distance equal to φ times the distance between I and H (here φ is the arc-length parameter of Eq. ( 3)). The retraction is maximal for the unit hyperbola (ε =1) and minimal for ε=2. By increasing ε toward 2 we obtain faster convergence in general, up to a certain value, which according to our observations mainly depends on the signal to noise ratio. In this study we take ε as 4/3 and we keep it fixed in all analyses; this value has proven nearly optimal on the average of many combinations of SNR, input matrix size and dimension we have tested. The MPM algorithm in algebraic pseudo-code follows:

Algorithm MPM (Multiplicative Power Means) 

INPUT: p(-
w T H XC X      X H X    UNTIL 1 N F HI   RETURN     1 p 0, 1 p 1,0 T T X X if P X X if         

C. Geometric Mean Approximation by Power Means

As an approximation of the geometric mean of section I.E we consider the midpoint of geodesic (3) joining a pair of power means obtained by MPM at two small values ±p (in this article we will use p=±0.01). Using this procedure we aim at improving current estimates of the geometric mean using the MPM algorithm.

D. A Fast Approximation

We are also interested in reducing the complexity per iteration of the MPM algorithm. This may be important when the computational complexity and/or the energy consumption are of interest, like for example in portable devices. An approximated solution is proposed for values of p=±½ and is detailed in the appendix.

III. STUDIES WITH SIMULATED DATA

A. Simulated Data Model

In many engineering applications, the matrix condition number of the SPD matrices summarizing the data (observations, recordings,…) tends to be positively correlated with the number of sensors. Also, the dispersion in the manifold of the matrices is proportional to the noise level. The following generative model for input data matrices {C1,…,CK} of size NN is able to reproduce these properties:

  k k k k k TT C UD U V E V I     , (21) 
where -the signal part is given by UDkU T , where U is a matrix with elements drawn at random at each simulation from a uniform distribution in [-1,1] and then normalized so as to have columns with unit norm and Dk are K diagonal matrices with diagonal elements dk,n randomly drawn at each simulation from a chi-squared random variable divided by its degree of freedom and multiplied by 1/2^n. So, the expectation of each element is 1/2 n , where n{1,…,N} is the index of the N diagonal elements, thus forming elements of a well-known geometrical series absolutely converging to 1. The elements of the series represent the energy of N source processes, thus their sum is supposed finite (e.g., N brain dipole source processes with finite total energy).

-The uncorrelated noise part is given by  I, where I is the identity matrix and  here is taken as 10 -6 ;

-The structured noise part is given by VkEkVk T , where the Vk matrices are generated as U above, the Ek matrices are generated as Dk above and  is a constant controlling the SNR of the generated points [START_REF] Georgiou | Distances and Riemannian Metrics for Spectral Density Functions[END_REF] through

      k k k k k k tr tr T T UD U SNR V E V I      . ( 22 
)

B. Simulation

In the ensuing simulations we study relevant outcome parameters as a function of the SNR, which is inversely proportional to noise level as per [START_REF] Jiang | Distances and Riemannian Metrics for Multivariate Spectral Densities[END_REF], as well as a function of the size (N) and number (K) of input matrices. We compare the gradient descent algorithm for estimating the geometric mean (GDGM: section II.A), the naive fixed point algorithm for power means given in [START_REF] Lim | Matrix Power means and the Karcher mean[END_REF] (see [START_REF] Chebbi | Means of Hermitian positive-definite matrices based on the log-determinant α-divergence function[END_REF] in section II.B) and the MPM algorithm here presented, the latter for several values of p. In comparing the convergence rate of several algorithms the stopping criterion should be chosen identical for all of them: the relative error of matrix P with respect to a reference matrix Pref is a dimensionless measure defined as [START_REF] Higham | Stable iterations for the matrix square root[END_REF]:

22 ref ref FF P P P  . ( 23 
)
As a stopping criterion, considering two successive iterations P(i-1) and P(i), we use

    2 1 1 i i 1 N F P P I    , ( 24 
)
which magnitude does not depend on the size nor on the norm of the matrices.

We will also use simulated data to study the estimation of the geometric mean obtained by the gradient descent algorithm and by the procedure that uses the MPM algorithm as per section II.C. We are interested in the relative error ( 23) of these estimations with respect to the 'true' geometric mean: according to our data generating model ( 22), the true geometric mean is the geometric mean of the signal part given by matrices UDkU T , where Dk, k={1,…,K} are diagonal matrices. Because of the congruence invariance of the geometric mean, the true geometric mean is GG (w; {UD1U T , …, UDKU T }) = UGG (w; {D1, …, DK})U T and has algebraic solution, since the geometric mean of diagonal matrices is their Log-Euclidean mean [START_REF] Arsigny | Geometric means in a novel vector space structure on symmetric positive-definite matrices[END_REF], i.e.,

      1 K k k k ; ,..., Exp Log G w D D w D   G . ( 25 
)

C. Results

Figure 3 shows the typical convergence behavior for the gradient descent algorithm for computing the geometric mean (GDGM), the naive algorithm with p=0.5 and the MPM algorithm (p=0.5 and p=0.001), for K=100 input SPD matrices of dimension N=20, and SNR={100, 10, 1, 0.1}. This example illustrates the typical observed trend: the MPM algorithm is consistently faster as compared to both the naive and gradient descent algorithm. Moreover, it converges also in situations when the gradient descent and the naive algorithm do not (see also Fig. 4).

Figure 3: Typical behavior (on abscissa the number of iterations and on the ordinate the convergence as defined in ( 24)) on simulated data for the gradient descent algorithm for estimating the geometric mean (GDGM), naive fixed point power mean with p=0.5 and the MDM algorithm with p={0.5, 0.001}, for N=20 (dimension of input matrices), K=100 (number of input matrices) and SNR={100, 10, 1, 0.1} [START_REF] Jiang | Distances and Riemannian Metrics for Multivariate Spectral Densities[END_REF].

Figure 4 analyzes the convergence behavior of the naive fixed point, the MPM fixed point and GDGM. We show there the main effects (bars) and their standard deviation (sd: lines) across 50 simulations of N={10, 25, 50}, K={10, 100, 500} and SNR={100, 1, 0.01} on the number of iterations. "Main effects" means that for each level of N, K and SNR the average and sd of the number of iterations are computed across all levels of the other two variables, as in a classical analysis of variance (ANOVA). We see that the number of iterations required by the MPM algorithm is always smaller as compared to the naive algorithm and that the naive algorithm converges very slow or does not converge at all for p=0.01 (the maximum number of iterations allowed was fixed to 50 for all algorithms). We see that for negative SNR values (more noise than signal) all MPM-based estimations are closer to the true geometric mean as compared to the estimation offered by the gradient descent algorithm and that for all SNR values the midpoint of the geodesic joining the MPM estimations obtained with p±0.01 is as good as the best competitor, or better. Considering this and the convergence behavior of the MPM algorithm (Fig. 4), we conclude that the procedure based on MPM described on section II.G is preferable for estimating the geometric mean. Figure 6 shows the relative error of the mean obtained by the ½MPM algorithm (see Appendix) to the mean obtained by the MPM algorithm for p=½. For N small (N<20) the approximation found by the ½MPM algorithm is good in absolute terms, but it deteriorates fast as N increases. In tolerating the error engendered by the approximation one should consider the noise level. In fact, any relative error can be considered satisfactory as long as the noise level is much higher than that and usually in practical applications the noise level is much higher than 10 -1 . 

IV. STUDIES WITH REAL DATA

A. Procedures

We tested the classification performance obtained by several power means on a real electroencephalography (EEG) data set acquired at the GIPSA-lab in Grenoble on 38 pairs of subjects participating to a Brain-Computer Interface (BCI) experiment.

The BCI we used is the multi-subject Brain Invaders [START_REF] Korczowski | Single-Trial Classification of Multi-User P300-Based Brain-Computer Interface Using Riemannian Geometry[END_REF], which user-interface is similar to the joystick-controlled vintage video-game Space Invaders [START_REF] Congedo | Brain Invaders': a prototype of an open-source P300-based video game working with the OpenViBE platform[END_REF]. The BCI shows for several levels of the game 36 aliens on the screen and flash them in random patterns of 6 aliens [START_REF] Congedo | Brain Invaders': a prototype of an open-source P300-based video game working with the OpenViBE platform[END_REF]. The task of the participant is to destroy a TARGET alien only concentrating on it (i.e., without moving at all). The on-line classifier analyzes the event-related potentials (ERPs) produced during 1s after each flash and decides after every sequence of 12 flashes what alien is to be destroyed. The level continues until the TARGET alien is destroyed or 8 attempts have failed, after which a new level begins. For this analysis power means of special covariance matrices (see [START_REF] Congedo | EEG Source Analysis[END_REF]) for the TARGET and NON-TARGET ERPs are estimated on a training set and the remaining trials are used for producing the area under the ROC curve (AUC). An AUC equal to 1 indicates perfect classification accuracy, while an AUC equal to 0.5 indicates random classification accuracy. We employed the Riemannian classifier described in [START_REF] Congedo | EEG Source Analysis[END_REF], which uses only means of SPD matrices and distance function (4) in order to reach a decision. In the experiment, across subjects the average (sd) number of TARGET and NON-TARGET trials available was 109.9 (26.2) and 549.48 (130.1), respectively. In order to keep the amount of data constant across subjects, only the first 80 TARGET and 400 NON-TARGET trials are used. AUC is evaluated by using a Monte Carlo cross-validation (MCCV) procedure averaging 10 random samples comprising 25% of the data selected as the test set and the remaining used as training set. EEG data were acquired by 16 scalp electrodes.

Power means were tested at values of p={±1, ±0.8, ±0.6, ±0.4, ±0.2, ±0.1, 0}.

B. Results

The individual area under the ROC curve (AUC) for the braincomputer interface experiment on 38 subjects is shown in Fig. 7A. The AUC as a function of p is a smooth curve. The value of p offering the maximum AUC appears to gravitate around zero. This illustrates a reason why the geometric mean is found useful in practice. However, the geometric mean (p=0) is optimal only for three out of the 38 subjects and the optimal value of p is highly variable across individuals. This demonstrates that the use of power means instead of the sole geometric mean has potential to increase the accuracy. Finally, the Pearson correlation between the maximal value of AUC obtained and the value of p allowing such maximum is 0.49. A statistical test for the null hypothesis that this correlation is equal to zero against the alternative hypothesis that it is larger than zero gives a probability of type I error equal to 0.002. We therefore reject the null hypothesis and conclude that the higher the AUC, that is, the higher the SNR of the data, the higher the optimal value of p. This result matches our intuition; when the noise is higher than the signal, a power mean with negative p will suppress the noise more than the signal and vice versa. 

V. MEAN FIELDS

The family of power means is continuous and monotonic. Figure 8 is a TraDe plot (log-trace vs. log-determinant) for a sampling of power means along continuum p[-1, 1] illustrating the monotonicity of power means. We name a sampling of power means like those in Fig. 7 and Fig. 8 a Pythagorean Mean Field. Applications of mean fields include the possibility to evaluate the most appropriate choice of mean depending on its use and on the data at hand. Mean fields also allow robust extensions of current Riemannian classifiers, such as in [START_REF] Arnaudon | Riemannian Medians and Means With Applications to Radar Signal Processing[END_REF][START_REF] Barachant | Multi-Class Brain Computer Interface Classification by Riemannian Geometry[END_REF][START_REF] Barachant | Classification of covariance matrices using a Riemannian-based kernel for BCI applications[END_REF][START_REF] Congedo | EEG Source Analysis[END_REF][START_REF] Kalunga | Online SSVEP-based BCI using Riemannian geometry[END_REF][START_REF] Li | Riemannian Distances for Signal Classification by Power Spectral Density[END_REF][START_REF] Li | EEG signals classification for sleepstate decision -A Riemannian geometry approach[END_REF][START_REF] Moakher | On the averaging of symmetric positive-definite tensors[END_REF][START_REF] Zhang | Efficient Temporal Sequence Comparison and Classification using Gram Matrix Embeddings On a Riemannian Manifold[END_REF]. For instance, we may want to combine Riemannian classifiers applied to all the points of a mean field.

The application of mean fields to real data will be the object of future investigations. 

VI. CONCLUSIONS

Power means are generalized means interpolating continuously in the interval p[-1, 1], with p=1 yielding the arithmetic mean, the limit of p→0 from both sides yielding the geometric mean and p=-1 yielding the harmonic mean. We have presented a new multiplicative algorithm for estimating power means of SPD matrices in the interval p(-1, 1)\{0}. A numerical analysis shows that its convergence rate is very fast and quasi-uniform for values of p close to ½ and -½, while for values of p close to 0 or ±1 it is still faster as compared to the gradient descent with fixed step-size used for estimating the geometric mean. Furthermore, it converges also in low SNR situations, whereas the gradient descent algorithm fails. The approximation to the geometric mean we have proposed in section II.C gives better estimates of the geometric mean with respect to the gradient descent algorithm. We can therefore prefer MPM also for estimating the geometric mean. In conjunction with the procedure for p=0 of section II.C and expression ( 7) and ( 8) for p=1 and p=-1, respectively, using the MPM algorithm we can now estimate a number of means sampling along the Pythagorean continuum p=[-1, 1].

The ½MPM algorithm offers a very efficient implementation to approximate the p=½ power mean. We have shown that the approximation is good in absolute terms for data matrices of small dimension (N<20), but it may turn useful also in higher dimension for noisy data, whenever the noise level is significantly higher than the error engendered by the approximation. However, while the MPM algorithm is computationally robust, ½MPM requires a careful implementation. In particular, Partlett's recurrence [START_REF] Parlett | A recurrence among the elements of functions of triangular matrices[END_REF][START_REF] Davies | A Schur-Parlett Algorithm for Computing Matrix Functions[END_REF] should be used for computing the inverse of triangular matrices and input matrices may need a normalization and/or regularization in order to allow proper Cholesky decompositions (see the Appendix).

Some works have focused on estimating geometric medians on Riemannian manifolds, extending the concept of median for random variables. This may provide a better estimation of the center of mass given a set of data points in the presence of outliers [START_REF] Barbaresco | Information Geometry of Covariance Matrix: Cartan-Siegel Homogeneous Bounded Domains, Mostow/Berger Fibration and Frechet Median[END_REF][START_REF] Fletcher | The geometric median on Riemannian manifolds with application to robust atlas estimation[END_REF]. Another current research direction is the definition of means of probability distributions rather than SPD matrices from a pure geometrical perspective, as we have done here. The geometric mean of Gaussian distributions and of mixtures of Gaussian distributions have been developed in [START_REF] Said | Riemannian Gaussian Distributions on the Space of Symmetric Positive Definite Matrices[END_REF][START_REF] Zanini | Parameters estimate of Riemannian Gaussian distribution in the manifold of covariance matrices[END_REF]. A one-parameter family of "p-means" for probability distributions, leading to the geometric mean and median as special cases, have been developed in [START_REF] Arnaudon | A stochastic algorithm finding p-means on the circle[END_REF][START_REF] Arnaudon | A stochastic algorithm finding generalized means on compact manifolds[END_REF].

APPENDIX

We here develop a fast approximation to the MPM fixed point for the case p=±½. The computational complexity of the MPM algorithm is dominated by the computation of matrix H at each iteration (see pseudo-code of the MPM algorithm in section II.B). This requires 2K matrix multiplications and K eigenvalue-eigenvector (EVD) or Schur decompositions for evaluating the p th power of XCk * X T . We here show how we can approximate H using 2K products of two triangular matrices and K matrix-triangular matrix multiplications. We wish an algorithm completely EVD-free and Schur decomposition-free, exploiting instead fast libraries for the Cholesky decomposition and triangular matrix operations. First, we renounce to smart initialization, since it also requires EVD or Schur decompositions. Then, we factorize the products XCk * X T as products of triangular matrices and we consider a truncated iterative approach for approximating their square root; the approximation of the final solution will depend on the approximation engendered by this truncation. Finally, we will fix to 1.0 the φ parameter for the power H -φ , that is, we will stick to fixed point definition [START_REF] Moakher | The Riemannian Geometry of the Space of Positive-Definite Matrices and Its Application to the Regularization of Positive-Definite Matrix-Valued Data[END_REF] as it is; for |p|=½ this value is acceptable in that it corresponds to the lower bound of the optimal interval (20) (see Fig. 2).

Our goal here is to find an approximation to Fk=(XCk * X T ) ½ . Matrix X being an (inverse) square root of the sought mean P, we may take it lower triangular so as to verify XPX T =I, hence (X T X) -1 =P; what it matters is that Fk is taken as the principal square root of XCk * X T , i.e., the unique symmetric one [START_REF] Bhatia | Positive Definite Matrices[END_REF]. For computational reasons we will also maintain in memory an upper triangular matrix Y T =X -T . Before running the algorithm we will compute the Cholesky lower triangular factors Lk of all input matrices Ck * and all the inverse transpose of these factors Rk T =Lk -T , which are upper triangular; these matrices are such that LkLk T =Ck * and Rk T Rk=Ck *-1 . As a consequence, matrices Mk=XLk are the Cholesky lower triangular factor of XLkLk T X T =XCk * X T , i.e., MkMk T =XCk * X T . The approximation of Fk goes like this: we know that

  k k k k k ½, TT F U M M U  ( 26 
)
where Uk is the orthogonal polar factor in the right polar decomposition Mk=FkUk [START_REF] Higham | Stable iterations for the matrix square root[END_REF]. Since in our algorithm Mk can be computed easily by means of a triangular matrix multiplication, we can considerably speed up the algorithm approximating Fk by approximating Uk. We will obtain this by means of a suitable Newton's iteration converging to the polar factor Uk. We will use a well-established Newton's iteration known for its excellent numerical accuracy and quadratic convergence rate [START_REF] Higham | Stable iterations for the matrix square root[END_REF][START_REF] Kenney | On Scaling Newton's Method for Polar Decomposition and the Matrix Sign Function[END_REF][START_REF] Kielbasinski | On iterative algorithms for the polar decomposition of a matrix and the matrix sign function[END_REF]. Another reason for choosing these iterations is that the first one turns out to be very efficient for us:

    ½ ½ ½ ½ k k k k ½½ T T T U M M XL Y R            , ( 27 
)
where  is a weight used for improving the convergence speed and Y T =X -T can be computed fast by Parlett's recurrence [START_REF] Parlett | A recurrence among the elements of functions of triangular matrices[END_REF][START_REF] Davies | A Schur-Parlett Algorithm for Computing Matrix Functions[END_REF]. The optimal weight  has been established to be a function of the maximum and minimum singular values of Mk [START_REF] Higham | Stable iterations for the matrix square root[END_REF][START_REF] Kenney | On Scaling Newton's Method for Polar Decomposition and the Matrix Sign Function[END_REF][START_REF] Kielbasinski | On iterative algorithms for the polar decomposition of a matrix and the matrix sign function[END_REF]; in our case those can be found at no cost from the maximum and minimum entry on the diagonal of XLk, which is triangular. In addition to the cited studies on polar orthogonal factor Newton's algorithms, we introduce here the following improved a-posteriori scaling: in order to make matrix Uk closer to orthogonal form after the first iteration, we require it to verify the following diag-orthogonality condition:

    k k k k TT diag U U diag U U I  , ( 28 
)
where the diag operator nullifies the off-diagonal elements of the argument. A finite sequence of the successive normalizations to unit norm of the columns and rows of Uk will converge to condition [START_REF] Congedo | A Fixed-Point Algorithm for Estimating Power Means of Positive Definite Matrices[END_REF]. The convergence rate is proportional of the size of Uk, as shown in Fig. 9 on random matrices. In this study we will use only two successive normalizations (error ≈ -20 dB for N=10 as shown in Fig. 9). Notice that each normalization has only quadratic complexity on N, thus the diag-orthogonality scaling does not increase significantly the overall computational cost, however, it improves the final approximation. Finally, note that although Fk=½(Uk T Mk + Mk T Uk), in order to compute the average of the Fk over K only the Uk T Mk terms need to be averaged; we will symmetrize it once the mean over K has been computed. The resulting fast approximated algorithm follows: 
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 1 Figure 1: Schematic representation of the SPD manifold, the geometric mean G of two points and the tangent space at G. Consider two points (e.g., two covariance matrices) C1 and C2 on M. The geometric mean of these points is the midpoint on the geodesic connecting C1 and C2, i.e., it minimizes the sum of the two squared distances δ 2 (C1, G)+δ 2 (C2, G). Now construct the tangent space TGM at G. There exists one and only one tangent vector ζ1 (respectively ζ2)

  contraction for the Thompson metric with the least contraction coefficient less than or equal to 1-|p| and as such has a unique SPD fixed point. Numerical experiments show that iterating expression (

Figure 4 :

 4 Figure 4: main effects average (bars) and sd (lines) number of iterations obtained across 50 repetitions for N={10, 25, 50}, K={10, 100, 500} and SNR={100, 1, 0.01} for the MPM algorithm with p={0.5, 0.25, 0.01}, the naive algorithm with p={0.5, 0.01} and the gradient descent algorithm for estimating the geometric mean (GDGM).

Figure 5

 5 Figure5shows the relative error to the true geometric mean of the GDGM algorithm, MPM with p=0.1, 0.01 and of the middle point of the geodesic joining the two MPM estimations obtained with p±0.01 (see section II.C), for several SNR in the range SNR={10 -3 ,…, 10 3 }, N=20, and K=5 (left) or K=80 (right). We see that for negative SNR values (more noise than signal) all MPM-based estimations are closer to the true geometric mean as compared to the estimation offered by the gradient descent algorithm and that for all SNR values the midpoint of the geodesic joining the MPM estimations obtained with p±0.01 is as good as the best competitor, or better. Considering this and the convergence behavior of the MPM algorithm (Fig.4), we conclude that the procedure based on MPM described on section II.G is preferable for estimating the geometric mean.
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 5 Figure 5: Relative Error to the true geometric mean obtained with the GDGM algorithm, MPM with p=0.1, MPM with p=0.01 and as the midpoint of the geodesic joining the estimations obtained by MPM with p=±0.01 (section II.C). Left: N=20, K=5. Right: N=20, K=80. In both plots the horizontal axis is the SNR sampling the range {10 -3 , …,10 3 }.

Figure 6 :

 6 Figure 6: Main effects across 50 simulations of N={5, 10, 20, 50}, K={25, 50, 100} and SNR={0.1, 1, 101} on the Relative Error of the mean obtained by the ½MPM algorithm with respect to the mean obtained by the MPM algorithm with p=½. Identical results are found taking p=-½.

Figure 7 :

 7 Figure 7: A: from left to right and from top to bottom, AUC (disks) ± one standard deviation (vertical bars) obtained for 38 healthy subjects sorted by decreasing value of maximal AUC obtained across a sampling of power means in the interval p=[-1,…,1]. B: scatter plot and regression line of the maximal AUC and the value of p allowing the maximal value. Each disk represents a subject.

Figure 8 :

 8 Figure 8: TraDe plot obtained with N=10, K=10 and SNR=1, for power means corresponding to p=1(Arithmetic), 0.5, 0.1, 0 (Geometric), -0.1, -0.5 and -1 (Harmonic). The relationship between the trace and the determinant of power means is log-log linear.

Figure. 9 :

 9 Figure. 9: Typical convergence behavior of the successive unit-norm normalization of the columns and rows of matrices with entry randomly drawn from a standard Gaussian distribution for N (matrix dimension) = 10, 100 and 1000. The convergence is the square root of the Euclidean mean square distance of the row and columns norm from unity after each iteration, in dB. The stopping criterion was set to convergence < -120 dB.
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