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Online Unmixing of Multitemporal Hyperspectral

Images Accounting for Spectral Variability
Pierre-Antoine Thouvenin, Student Member, IEEE, Nicolas Dobigeon, Senior Member, IEEE,

and Jean-Yves Tourneret, Senior Member, IEEE

Abstract— Hyperspectral unmixing is aimed at identifying the
reference spectral signatures composing a hyperspectral image
and their relative abundance fractions in each pixel. In practice,
the identified signatures may vary spectrally from an image
to another due to varying acquisition conditions, thus inducing
possibly significant estimation errors. Against this background,
the hyperspectral unmixing of several images acquired over the
same area is of considerable interest. Indeed, such an analysis
enables the endmembers of the scene to be tracked and the corre-
sponding endmember variability to be characterized. Sequential
endmember estimation from a set of hyperspectral images is
expected to provide improved performance when compared
with methods analyzing the images independently. However, the
significant size of the hyperspectral data precludes the use of
batch procedures to jointly estimate the mixture parameters of a
sequence of hyperspectral images. Provided that each elementary
component is present in at least one image of the sequence, we
propose to perform an online hyperspectral unmixing accounting
for temporal endmember variability. The online hyperspectral
unmixing is formulated as a two-stage stochastic program, which
can be solved using a stochastic approximation. The performance
of the proposed method is evaluated on synthetic and real data.
Finally, a comparison with independent unmixing algorithms
illustrates the interest of the proposed strategy.

Index Terms— Hyperspectral imagery, perturbed linear
unmixing (PLMM), endmember temporal variability, two-stage
stochastic program, stochastic approximation (SA).

I. INTRODUCTION

H
YPERSPECTRAL imagery has known an increasing

interest over the past decades due to the significant

spectral information it conveys. Acquired in hundreds of

contiguous spectral bands (e.g., from 300 nm to 2600 nm for

the AVIRIS sensor), hyperspectral (HS) images facilitate the

identification of the elements composing the imaged scene.1

However, the high spectral resolution of these images is
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1Note that some airborne sensors cover larger wavelength range, while some

mounted sensors can offer millimeter spatial resolutions.

mitigated by their lower spatial resolution, which results in

pixel spectra composed of mixtures of reference signatures.

Spectral unmixing consists of determining the reference spec-

tral signatures composing the data – referred to as endmem-

bers – and their abundance fractions in each pixel according

to a predefined mixture model accounting for several envi-

ronmental factors (declivity, multiple reflections,…). Provided

microscopic interactions between the materials of the imaged

scene are negligible and the relief of the scene is flat, a

linear mixing model (LMM) is traditionally used to describe

the data [1]. However, varying acquisition conditions such as

illumination or natural evolution of the scene may significantly

alter the shape and the amplitude of the spectral signatures

acquired, thus affecting the extracted endmembers from an

image to another. In this context, HS unmixing of several

images acquired over the same area at different time instants

can be of considerable interest. Indeed, such an analysis

enables the endmembers of the scene and endmember vari-

ability to be assessed, thus improving endmember estimation

when compared to independent image analyses performed with

any state-of-the-art unmixing method.

So far, spatial variability within a given image has been

considered in various models either derived from a statistical

or a deterministic point of view [2]. The first class of methods

assumes that the endmember spectra are realizations of multi-

variate distributions [3]–[5]. The second class of methods rep-

resents endmember signatures as members of spectral libraries

associated with each material (bundles) [6]. Another recently

proposed approach consists in estimating the parameters of an

explicit variability model [7]. To the best of our knowledge,

spatio-temporal variability has been analyzed for the first time

in the Bayesian framework proposed in [8]. Another recent

contribution similarly resorts to a batch estimation technique

to address spectral unmixing of multi-temporal HS images [9].

However, HS unmixing using a significant number of images

or several large images precludes the use of batch estimation

procedures as in [8] and [9] due to limited memory and

computational resources. Since online estimation procedures

enable data to be sequentially incorporated into the estimation

process without the need to simultaneously load all the data

into memory, we focus in this paper on the design of an online

HS unmixing method accounting for temporal variability.

Since the identified endmembers can be considered as

time-varying instances of reference endmembers, we use the

perturbed linear mixing model (PLMM) proposed in [7] to

account for spectral variability. However, inspired by the works

presented in [10] and [11], we formulate the unmixing problem



as a two-stage stochastic program that allows the model

parameters to be estimated online contrary to the algorithm

proposed in [7]. To the best of our knowledge, it is the first

time HS unmixing accounting for temporal variability has been

formulated as a two-stage stochastic program solved by an

online2 algorithm.

The paper is organized as follows. The proposed

PLMM accounting for temporal variability is introduced

in Section II. Section III describes an online algorithm

to solve the resulting optimization problem. Experimental

results obtained on synthetic and real data are reported in

Sections IV and V respectively. The results obtained with

the proposed algorithm are systematically compared to those

obtained with the vertex component analysis/fully constrained

least squares (VCA [12]/FCLS [13], [14]), SISAL [15]/FCLS,

the ℓ1/2 non-negative matrix factorization (NMF) [16] and

the BCD/ADMM algorithm of [7], each method being inde-

pendently applied to each image of the sequence. Section VI

finally concludes this work.

II. PROBLEM STATEMENT

A. Perturbed Linear Mixing Model (PLMM)

We consider HS images acquired at T different time instants

over the same scene, assuming that at most R endmembers

are present in the resulting time series and that the images

share these R common endmembers. Each endmember does

not need to be present in each image, but at least in one

image of the time series. Given an a priori known number

of endmembers R, the PLMM consists in representing each

pixel ynt by a linear combination of the R endmembers –

denoted by mr – affected by a perturbation vector dmrt

accounting for temporal endmember variability. The proposed

model considers the case where the variability essentially

results from the evolution of the scene or from the global

acquisition conditions from one image to another. As a first

approximation, the variability is assumed to be constant on

each image. The resulting PLMM can thus be written

ynt =
R∑

r=1

arnt

(
mr + dmrt

)
+ bnt (1)

for n = 1, . . . , N and t = 1, . . . , T , where ynt denotes the nth

image pixel at time t , mr is the r th endmember, arnt is the

proportion of the r th endmember in the nth pixel at time t ,

and dmrt denotes the perturbation of the r th endmember

at time t . Finally, bnt models the noise resulting from the

data acquisition and the modeling errors. In matrix form, the

PLMM (1) can be written as

Yt = (M + dMt )At + Bt (2)

where Yt =
[
y1t , . . . , yNt

]
is an L × N matrix containing

the pixels of the tth image, M denotes an L × R matrix

containing the endmembers, At is an R × N matrix composed

of the abundance vectors ant , dMt is an L × R matrix

whose columns are the perturbation vectors associated with the

2The terminology “online” is slightly abusive in our context since the time
difference between two consecutive images can extend to several months.

tth image, and Bt is an L×N matrix accounting for the noise at

time instant t . The non-negativity and sum-to-one constraints

usually considered to reflect physical considerations are

At � 0R,N , AT
t 1R = 1N , ∀t = 1, . . . , T

M � 0L ,R (3)

where � denotes a component-wise inequality. We also con-

sider the following assumptions on the inherent variability of

the observed scenes

‖dMt‖2F ≤ σ 2, for t = 1, . . . , T (4)
∥∥∥∥∥
1

T

T∑

t=1

dMt

∥∥∥∥∥

2

F

≤ κ2 (5)

where σ and κ are fixed positive constants, and ‖·‖F denotes

the Frobenius norm. These two constraints can be interpreted

in terms of the feasible domain of M and dMt . Indeed,

introducing the perturbed endmembers Mt , M + dMt , the

constraint (4) can be reformulated as

‖dMt‖2F = ‖M − Mt‖2F ≤ σ 2 ⇔ M ∈
T⋂

t=1

BF(Mt , σ )

where BF(Mt , σ ) is the ball of center Mt and of radius σ .

This highlights the fact that the number of constraints imposed

on the endmembers increases with T , i.e., the more images

are processed, the more information can be extracted in terms

of endmember signatures. On the other hand, (5) constrains

the perturbed endmembers to be distributed around the true

endmembers, i.e., the endmember signatures M should reflect

the average behavior of the perturbed endmembers Mt in

the sequence. In practice, setting σ to a reasonable value is

desirable from a modeling point of view, since very large

perturbations should probably be interpreted as outliers, thus

leading to the removal of the corrupted elements from the

unmixing process. Note however that the algorithm proposed

in Section III-B is independent from any consideration on the

values of σ 2 and κ2.

Remark 1: In practice, HS unmixing is performed on

reflectance data, hence Yt ∈ [0, 1]L×N . The abundance

sum-to-one and non-negativity constraints further imply

M ∈ [0, 1]L×R . In fact, the compactness of both the data

support and the space associated with the endmember con-

straints – denoted by Y and M respectively – is crucial for the

convergence result given in Paragraph III-C. In addition, the

images Yt can be assumed to be independent and identically

distributed (i.i.d.) since these images have been acquired by

possibly different sensors at different time instants.

B. Problem Formulation

In order to design an online estimation algorithm, the

model (1) combined with the constraints (3) can be used to

formulate a two-stage stochastic program consisting in esti-

mating the endmembers present in the image sequence. Since

only the endmembers are supposed to be commonly shared

by the different images, we propose to minimize a marginal

cost function obtained by marginalizing an instantaneous cost

function over the abundances and the variability terms, so that



the resulting cost only depends on the endmembers. Assuming

the expectations are well-defined, we consider the following

optimization problem

min
M∈M

g(M) = EY,A,dM

[
f
(
Y, M, A, dM

)]
(6)

where M = [0, 1]L×R and where the function f is

defined as

f (Y, M, A, dM) = 1

2
‖Y − (M + dM)A‖2F

+ α8(A) + β9(M) + γϒ(dM). (7)

8,9 and ϒ denote appropriate penalization terms on the

abundances, the endmembers and the variability with

A ∈ AR =
{

A ∈ R
R×N

∣∣∣ an ∈ SR, for n = 1, . . . , N
}

(8)

dM ∈ D = BF(0, σ ) ∩
{
dM

∣∣ ∥∥E
[
dM

]∥∥
F

≤ κ
}
. (9)

and SR denotes the unit simplex of R
R . The parameters α, β

and γ ensure a trade-off between the data fitting term and the

penalties. In practice, g is approximated at time t by an upper

bound ĝt given by a stochastic approximation [11]

ĝt (M) = 1

2t

t∑

i=1

‖Yi − (M + dMi )Ai‖2F + β9(M)

= 1

t

t∑

i=1

(
1

2
‖MAi‖2F − 〈Yi − dMi Ai , MAi 〉

)

+ β9(M) + c

= 1

t

[
1

2
Tr(MTMCt ) + Tr(MTDt )

]
+ β9(M) + c

(10)

where 〈X, Y〉 = Tr(XTY), c is a constant independent from M

and

Ct =
t∑

i=1

Ai A
T
i , Dt =

t∑

i=1

(dMi Ai − Yi )A
T
i . (11)

Besides, D is approximated by

Dt = BF(0, σ ) ∩
{
dM

∣∣ ‖dM + Et−1‖F ≤ tκ
}

(12)

with

Et =
t∑

i=1

dMi . (13)

Examples of penalizations that will be considered in this study

are detailed in the following paragraphs.

1) Abundance Penalization: In this work, the abundance

penalization 8 has been chosen to promote temporally smooth

abundances – in the ℓ2-norm sense – between two consecutive

images, leading to

8(At ) = 1

2
‖At − At−1‖2

F . (14)

As long as 8 satisfies the regularity condition given in

Paragraph III-C, any other type of prior knowledge relative to

the abundances can be incorporated into the proposed method.

Algorithm 1 Online Unmixing Algorithm

2) Endmember Penalization: Classical endmember penal-

izations found in the literature consist in constraining the size

of the (R − 1)-simplex whose vertices are the endmembers.

In this paper, we consider the mutual distance between each

endmember introduced in [17] and [18], defined as

9(M) = 1

2

R∑

i=1

( R∑

j=1

j 6=i

‖mi − m j‖22
)

= 1

2

R∑

r=1

‖MGr‖2F (15)

where

Gr = −IR + er 1T
R (16)

and er denotes the r th canonical basis vector of R
R .

3) Variability Penalization: Assuming that the spectral vari-

ation between two consecutive images is a priori temporally

smooth, we consider the following ℓ2-norm penalization

ϒ(dMt ) = 1

2
‖dMt − dMt−1‖2

F . (17)

Similarly, any other type of prior knowledge relative to the

variability can be considered as long as ϒ satisfies the regu-

larity condition given in Paragraph III-C.

III. A TWO-STAGE STOCHASTIC PROGRAM

A. Two-Stage Stochastic Program: General Principle

The following lines briefly recall the main ideas presented

in the introduction of [10]. A two-stage stochastic program is

generally expressed as

min
M

EY,Z

[
f
(
Y, M, Z

)]
s.t. M ∈ M, with Z ∈ Z. (18)

At the first stage, M must be chosen before any new data

Y is available. At the second-stage, when M has been fixed

and a new data is acquired, the second-stage variable Z is

computed as the solution (if it is unique and well defined) to

the optimization problem

min
Z∈Z

f (Y, M, Z). (19)



Given an independent and identically distributed (i.i.d)

T -sample (Y1, . . . , YT ), problem (18) can be approximated

by the sample average approximation (SAA)

min
M,Z1,...,ZT

1

T

T∑

t=1

f (Yt , M, Zt ), s.t. M ∈ M, Zt ∈ Z. (20)

Moreover, when the second-stage (19) admits a unique

solution, (20) can be rewritten as

min
M∈M

1

T

T∑

t=1

h(Yt , M) (21)

h(Yt , M) = min
Z∈Z

f (Yt , M, Z) (22)

which is the SAA corresponding to

min
M∈M

EY

[
h(Y, M)

]
(23)

h(Y, M) = min
Z∈Z

f
(
Y, M, Z

)
(24)

where the two stages explicitly appear. However, f defined

in (7) is non-convex with respect to Z = (A, dM), where

Z = AR × D. Thus, problem (19) does not admit a unique

global minimum, and existing algorithms will at most provide

a critical point of f (Y, M, ·) + ιZ , where ιZ denotes the

indicator function of the set Z (ιZ(z) = 0 if z ∈ Z , +∞
otherwise). In this specific case, a new convergence framework

based on a generalized equation has been developed in [10].

Such a framework enables a convergence result in terms

of a critical point {M, Z1, . . . , ZT } of (20) to be obtained.

However, the significant size of the SAA problem (20) in our

case is generally too expensive from a computational point of

view. To alleviate this problem, we propose to slightly adapt

the work developed in [11] to propose an online estimation

algorithm described in Algo. 1. This algorithm has the same

convergence property as [11] provided the non-convex func-

tion f (Y, M, ·)+ ιZ exclusively admits locally unique critical

points. Further details are given in Paragraph III-C.

B. Parameter Estimation

Whenever an image Yt has been received, the abundances

and variability are estimated by a proximal alternating lin-

earized minimization (PALM) algorithm [19], which is guar-

anteed to converge to a critical point of f (Yt , M, ·, ·) +
ιAR×Dt

. The endmembers are then updated by proximal

gradient descent steps, similarly to [11]. Further details

on the projections involved in this section are given

in Appendix A.

1) Abundance and Variability Estimation: A direct applica-

tion of [19] under the constraints (3) leads to the following

abundance update rule

A
(k+1)
t = PAR

(
A

(k)
t − 1

L
(k)
1t

∇A f (Yt , M(t), A
(k)
t , dM

(k)
t )

)

(25)

where L
(k)
1t is the Lipschitz constant of

∇A f (Yt , M(t), ·, dM
(k)
t ), PAR

denotes the projection

Algorithm 2 Abundance and Variability Estimation Using

PALM

Algorithm 3 Endmember Estimation

onto AR and

∇A f (Yt , M(t), At , dMt ) = α(At − At−1)

+ (M(t) + dMt )
T
[
(M(t) + dMt )At − Yt

]
(26)

L
(k)
1t =

∥∥∥(M(t) + dM
(k)
t )T(M(t) + dM

(k)
t ) + αIR

∥∥∥
F
. (27)

Note that the projection PAR
can be exactly computed using

the algorithms proposed in [20] and [21]. Similarly, the update

rule for the variability terms is

dM
(k+1)
t = PDt(

dM
(k)
t − 1

L
(k)
2t

∇dM f (Yt , M(t), A
(k+1)
t , dM

(k)
t )

)
(28)

where L
(k)
2t is the Lipschitz constant of

∇dM f (Yt , M(t), A
(k+1)
t , ·), PDt

denotes the projection

onto Dt and

∇dM f (Yt , M(t), At , dMt ) = γ (dMt − dMt−1)

+
[
(M(t) + dMt )At − Yt

]
AT

t (29)

L
(k)
2t =

∥∥∥A
(k+1)
t A

(k+1)T
t + γ IR

∥∥∥
F
. (30)

Note that the projection PDt
can be efficiently approximated

using the Dykstra algorithm (see [22]–[24]). The resulting

algorithm is summarized in Algo. 2.

2) Endmember Estimation: Similarly to III-B.1, a direct

application of the method detailed in [11] and [19] yields

M(t,k+1) = P+

(
M(t,k) − 1

L3t

∇M ĝt (M
(t,k))

)
(31)



where P+ is the projector on
{
X

∣∣X � 0L ,R

}
and L3t denotes

the Lipschitz constant of ∇M ĝt(M
(t,k)). Note that

∇M ĝt (M) = M

(
1

t
Ct + β

R∑

r=1

Gr GT
r

)
− 1

t
Dt (32)

L3t =
∥∥∥∥∥
1

t
Ct + β

∑

r

Gr GT
r

∥∥∥∥∥
F

. (33)

The resulting algorithm is summarized in Algo. 3.

C. Convergence Guarantee

To ensure the convergence of the generated endmember

sequence (M(t))t towards a critical point of the problem (18),

we make the following assumptions.

Assumption 1: The quadratic functions ĝt are strictly con-

vex and admit a Hessian matrix lower-bounded in norm by a

constant µM > 0.

Assumption 2: The penalty functions 8, 9 and ϒ are

gradient Lipschitz continuous with Lipschitz constant c8, c9

and cϒ respectively. In addition, 8 and ϒ are assumed to be

twice continuously differentiable.

Assumption 3: The function f (Yt , ·, ·, ·) is twice continu-

ously differentiable. The Hessian matrix of f (Yt , M, ·, ·) –

denoted by H(A,dM) f – is invertible at each critical point.

In practice, Assumption 1 may be enforced by adding a

penalization term
µM

2
‖M‖2F to the objective function ĝt , where

µM is a small positive constant. Note that µM is only a

technical guarantee used in the convergence proof reported in

Appendix B, which should not be computed explicitly to be

able to run the algorithm. Assumption 2 is only included here

for the sake of completeness, in case other penalizations than

those given in Section II are considered. Indeed, this assump-

tion is obviously satisfied by the penalizations mentioned in

this work. Assumption 3, crucial to Proposition 1, is further

discussed in Appendix B to ease the reading of this paper. By

adapting the arguments used in [11], the convergence property

summarized in Proposition 1 can be obtained.

Proposition 1 (Convergence of (M(t ))t , [11]): Under the

assumptions 1, 2 and 3, the distance between M(t) and the

set of critical points of the hyperspectral unmixing problem

(6) converges almost surely to 0 when t tends to infinity.

Proof: See Appendix C. �

D. Computational Complexity

Dominated by matrix-product operations, the per image

overall complexity of the proposed method is of the order

O

{[
L R(N + N D

iter) + R2(L + N)
]
N P
iter + NiterL R2

}

where N D
iter, N P

iter, Niter denote the number of iterations for the

Dykstra algorithm involved in the variability projection (28),

the PALM algorithm and the endmember update respectively.

To be more explicit, the computation time for one image of

size 100 × 100 composed of L = 173 bands is approxi-

mately 6 s for a MATLAB implementation with an Intel(R)

Core(TM) i5-4670 CPU @ 3.40GHz. Note that the PALM

iterations (Algo. 2) and the endmember updates (Algo. 3) can

Fig. 1. Reference endmembers (red lines) and the corresponding instances
under spectral variability (blue lines) involved in the synthetic HS images.

be parallelized if needed due to the separability of the objective

function f chosen (separability with respect to the column of

the abundance matrix, and with respect to the rows of the

endmember and variability matrices).

IV. EXPERIMENT WITH SYNTHETIC DATA

This section considers an HS image sequence composed

of 10 images of size 98 × 102, each image composed

of 173 bands. The images correspond to linear mixtures

of 3, 6 and 10 endmembers affected by smooth time-varying

variability. The synthetic abundance maps of this scenario vary

smoothly from one image to another. Note that the pure pixel

assumption is not satisfied for all images of the experiment

with R = 3 endmembers in order to assess the algorithm

performance in a challenging scenario. The synthetic linear

mixtures have been corrupted by additive white Gaussian noise

to ensure a resulting signal-to-noise ratio of SNR = 30 dB.

Additional results for mixtures corrupted by colored Gaussian

noise are available in [25, Appendix D].

In order to introduce controlled spectral variability, the

endmembers involved in the mixtures have been generated

using the product of reference endmembers with randomly

generated piecewise-affine functions as in [7]. The corre-

sponding perturbed endmembers used in the experiment are

depicted in Fig. 1. Note that different affine functions have

been considered at each time instant for each endmember.

A. Compared Methods

The results of the proposed algorithm have been compared

to those obtained with several classical linear unmixing meth-

ods performed individually on each image of the time series.

The methods are recalled below with their most relevant imple-

mentation details. All the methods requiring an appropriate

initialization have been initialized with VCA/FCLS.

1) VCA/FCLS (no variability): for each image, the end-

members are first extracted using the vertex component

analysis (VCA) [12] which requires pure pixels to be

present in the analyzed images. The abundances are then

estimated for each pixel by solving a Fully Constrained

Problem (FCLS) with ADMM [14];



TABLE I

PARAMETERS USED IN THE EXPERIMENTS

2) SISAL/FCLS (no variability): the endmembers are first

extracted using the simplex identification via split aug-

mented Lagrangian (SISAL) [15]. Note that the pure

pixel assumption is not required to apply this method.

The tolerance for the stopping rule has been set to 10−3.

The abundances are then estimated by FCLS;

3) ℓ1/2 NMF (no variability): the algorithm described

in [16] is applied to each image, with a stopping criterion

set to 10−3 and a maximum of 300 iterations. The

regularization parameter has been set as in [16];

4) BCD/ADMM: the algorithm described in [7] is applied

to each image with a stopping criterion set to 10−3.

The endmember regularization recalled in (15) has been

used, with a parameter set to the same value as the

one used for the proposed method. The abundance

regularization parameter (spatial smoothness) has been

set to 10−4, and the variability regularization parameter

has been set to 1;

5) Proposed method: endmembers are initialized with VCA

applied to the union of the pixels belonging to the

R − 1 convex hull of each image. The abundances are

initialized by FCLS, and the variability matrices are

initialized with all their entries equal to 0. Whenever the

algorithm is applied to a previously processed image,

the previous abundance and variability estimates are

taken as a warm-restart. Algo. 2 (PALM algorithm) is

stopped after N P
iter iterations and the Dykstra algorithm

used to compute the projection in (28) is iterated N D
iter

times. Moreover, Algo. 3 is stopped after Niter iterations.

Finally, Algo. 1 is stopped after Nepochs cycles – referred

to as epochs – on the randomly permuted training set to

approximately obtain i.i.d. samples [11]. In particular,

the number of cycles Nepochs and sub-iterations Niter

have been empirically chosen to obtain a compromise

between the estimation accuracy and the implied com-

putational cost. We also included a constant forgetting

factor ξ ∈ (0, 1) in order to slowly forget the past data.

The closer to one ξ is, the more slowly the past data are

forgotten.

The performance of the algorithm has been assessed in

terms of endmember estimation using the average spectral

angle mapper (aSAM) defined as

aSAM(M) = 1

R

R∑

r=1

arccos

(
mT

r m̂r

‖mr‖2‖m̂r‖2

)
(34)

as well as in terms of abundance and perturbation estimation

through the global mean square errors (GMSEs)

GMSE(A) = 1

T RN

T∑

t=1

‖At − Ât‖2F (35)

GMSE(dM) = 1

T L R

T∑

t=1

‖dMt − d̂Mt‖2F. (36)

As a measure of fit, the following reconstruction error (RE)

has been considered

RE = 1

T L N

T∑

t=1

‖Yt − Ŷt‖2F (37)

where Ŷt is the matrix formed of the pixels reconstructed with

the parameters estimated for the image t .

B. Results

The parameters used for the proposed algorithm, which

have been adjusted by cross-validation, are detailed in Table I.

For the dataset associated with mixtures of R = 3 end-

members, the abundance maps obtained by the proposed

method are compared to those of VCA/FCLS in Figs. 2 to 4,

whereas the corresponding endmembers are displayed in

Fig. 5. The abundance maps obtained by SISAL/FCLS, ℓ1/2
NMF and BCD/ADMM, somewhat similar to those obtained

by VCA/FCLS, are included in a separate technical report [25],

along with a more detailed version of Table II and the

endmembers extracted by all the unmixing strategies. The

performance of the unmixing methods is finally reported

in Table II, leading to the following conclusions.

• The proposed method is more robust to the absence of

pure pixels in some images than both VCA/FCLS and

SISAL/FCLS. Note that ℓ1/2 NMF and BCD/ADMM

converge to poor local optima, which directly results from

the poor performance of VCA in this specific context. On

the contrary, the estimated abundances obtained with the

proposed method (second line of Figs. 2 to 4) are closer to

the ground truth (first line) than VCA/FCLS (third line).

This observation is confirmed by the results given

in Table II;

• The proposed method provides competitive unmixing

results while allowing temporal endmember variability to

be estimated for each endmember (see Fig. 5);

• The abundance GMSEs and the REs estimated with

the proposed method are lower or comparable to those

obtained with VCA/FCLS and SISAL/FCLS applied to

each image individually (see Table II), without introduc-

ing much more degrees of freedom into the underlying

model when compared to BCD/ADMM;

• Even though the performance of the proposed method

degrades with the number of endmembers, the results



Fig. 2. Abundance maps of the first endmember used in the synthetic mixtures (theoretical abundances on the first line, VCA/FCLS on the second line,
proposed method on the third line). The top line indicates the theoretical maximum abundance value and the true number of pixels whose abundance is greater
than 0.95 for each time instant.

Fig. 3. Abundance maps of the second endmember used in the synthetic mixtures (theoretical abundances on the first line, VCA/FCLS on the second line,
proposed method on the third line). The top line indicates the theoretical maximum abundance value and the true number of pixels whose abundance is greater
than 0.95 for each time instant.

Fig. 4. Abundance maps of the third endmember used in the synthetic mixtures (theoretical abundances on the first line, VCA/FCLS on the second line,
proposed method on the third line). The top line indicates the theoretical maximum abundance value and the true number of pixels whose abundance is greater
than 0.95 for each time instant.

remain better or comparable to those of the other

methods.

Whenever an endmember is scarcely present in one of

the images, the proposed method outperforms VCA/FCLS

as can be seen in Figs. 2 to 4. Note that the maximum

theoretical abundance value and the number of pixels whose

abundances are greater than 0.95 are mentioned on the top

line of Figs. 2 to 4, to assess the difficulty of recovering each

endmember in each image. This result was expected, since

VCA is a pure pixel-based unmixing method.



Fig. 5. Estimated endmembers on the synthetic hyperspectral time series
(PLMM endmembers in red with variability in blue dotted lines on the
first line, VCA-extracted endmembers on the second line, SISAL endmembers
are omitted since very similar to those obtained with VCA).

TABLE II

SIMULATION RESULTS ON SYNTHETIC DATA (aSAM(M) IN (°),

GMSE(A)×10−2, GMSE(dM)×10−4 , RE ×10−4 , TIME IN (s))

C. Hyper-Parameter Influence on the Reconstruction Error

Considering the significant number of hyper-parameters to

be tuned (i.e., α, β, γ, σ, κ), a full sensitivity analysis is a chal-

lenging task, which is further complexified by the non-convex

nature of the problem considered. To alleviate this issue, each

parameter has been individually adjusted while the others

were set to a priori reasonable values (i.e., (α, β, γ, σ 2, κ2) =
(10−2, 10−4, 10−4, σ̂ 2, 10−3), where σ̂ 2 = 0.0372 denotes the

theoretical average energy of the variability introduced in the

synthetic dataset used for this analysis). The appropriateness

of a given range of values has been evaluated in terms of the

RE of the recovered solution. The results reported in Fig. 6

suggest that the proposed method is relatively robust to the

choice of the hyper-parameters. More precisely, as can be seen

in Figs. 6b and 6c, only β and γ may induce oscillations

(of very small amplitude) in the RE. Based on this analysis, it

is interesting to note that the interval [2×10−3, 10−2] can be

chosen in practice to obtain reasonable reconstruction errors.

To conclude, the two following remarks can be made on the

choice of σ and κ :

• the value chosen for σ results from an empirical compro-

mise between the risk to capture noise into the variability

terms (σ too large) and the risk to lose information

Fig. 6. Sensitivity analysis of the reconstruction error RE with respect to the

tuning of the algorithm hyper-parameters (σ̂ 2 = 0.0372 denotes the theoretical
average energy of the variability introduced in the synthetic dataset used for
this analysis).

(σ too small). The sensitivity analysis conducted in

Fig. 6d shows that σ 2 ∈ [10−1, 1] provides interesting

results for this experiment;

• κ should be set to a value ensuring that M reflects the

average spectral behavior of the perturbed endmembers.

Fig. 6e shows that κ2 ∈ [10−3, 1] provides interesting

results for the synthetic dataset used in the experiment.

V. EXPERIMENT WITH REAL DATA

A. Description of the Dataset

The proposed algorithm has been applied to real HS images

acquired by the Airborne Visible Infrared Imaging

Spectrometer (AVIRIS) over the Lake Tahoe region

(California, United States of America) between 2014

and 2015.3 Water absorption bands were removed from

the 224 spectral bands, leading to 173 exploitable bands.

In absence of any ground truth, the sub-scene of interest

(150 × 110), partly composed of a lake and a nearby field,

has been unmixed with R = 3, 4 and 5 endmembers to obtain

a compromise between the results of HySime [26], those of

the recently proposed eigen-gap approach (EGA) [27] (see

Table III), and the consistency of the resulting abundance

maps. The parameters used for the proposed approach are

given in Table I, and the other methods have been run with

the same parameters as in Section V. Note that a 4 × 4 patch

composed of outliers has been manually removed from the

last image of the sequence prior to the unmixing procedure.

3The images used in this experiment are freely available from the online
AVIRIS flight locator tool at http://aviris.jpl.nasa.gov/alt_locator/.



Fig. 7. Scenes used in the experiment, given with their respective acquisition date. (a) 04/10/2014 (b) 06/02/2014 (c) 09/19/2014 (d) 11/17/2014
(e) 04/29/2015.

Fig. 8. Water abundance maps (proposed method on the first line, VCA/FCLS
on the second line, SISAL/FCLS on the third line).

Fig. 9. Soil abundance maps (proposed method on the first line, VCA/FCLS
on the second line, SISAL/FCLS on the third line).

B. Results

Since no ground truth is available, the algorithm per-

formance is evaluated in terms of the reconstruction error

defined in (37). Only the more consistent abundance maps

and endmembers obtained for R = 3 are presented in

Figs. 8 to 11 due to space constraints. Complementary results

are available in [25]. The proposed method provides com-

parable reconstruction errors (see Table IV), yields more

consistent abundance maps when compared to VCA/FCLS and

SISAL/FCLS especially for the soil and the vegetation for a

somewhat reasonable computational cost. In particular, note

that the estimated vegetation abundance map of the fourth

image depicted in Fig. 10 (area delineated in red) presents

significant errors when visually compared to the corresponding

RGB image in Fig.7d. These errors can be explained by the

Fig. 10. Vegetation abundance maps (proposed method on the first line,
VCA/FCLS on the second line, SISAL/FCLS on the third line). The region
delineated in red, where almost no vegetation is supposed to be present, reveals
that the water endmember extracted by VCA has been split into two parts.
This observation is further confirmed in Figs. 11d and 11f.

TABLE III

ENDMEMBER NUMBER R ESTIMATED ON EACH IMAGE OF THE

REAL DATASET BY HySime [26] AND EGA [27]

fact that the water endmember extracted by VCA has been

split into two parts as can be seen in Figs. 11d and 11f (see

signatures given in black). Indeed, the VCA algorithm cannot

detect the scarcely present vegetation. On the contrary, the

joint exploitation of multiple images enables the faint traces

of dry vegetation to be captured. Albeit impacted by the results

of VCA/FCLS (used as initialization), the performance of ℓ1/2
NMF and BCD/ADMM remains satisfactory on each image of

the sequence since they tend to correct the endmember errors

induced by VCA. However, ℓ1/2 NMF produces undesirable

endmembers with an amplitude significantly greater than 1 on

the 4th image (Fig. 7d). Besides, BCD/ADMM yields very low

reconstruction errors at the price of a computational cost which

may become prohibitive for extended image sequences. The

figures related to ℓ1/2 NMF and BCD/ADMM are available in

the associated report [25] due to space constraints.

Furthermore the instantaneous variability energy (computed

as ‖dmrt‖22/L for r = 1, . . . , R and t = 1 . . . , T ) can reveal

which endmember deviates the most from its average spectral



Fig. 11. Endmembers and variability (endmembers in red lines, variability
in blue dashed lines) recovered by the proposed method on the first line,
VCA-extracted endmembers on the second line, SISAL-extracted endmembers
on the third line). The endmembers given in black on the second line
correspond to the endmembers identified by VCA on the image 7d, where
the water endmember has been split into two parts (see Figs. 11d and 11f).
(a) Water. (b) Soil. (c) Vegetation. (d) Water (VCA). (e) Soil (VCA). (f) Veg-
etation (VCA). (g) Water (SISAL). (h) Soil (SISAL). (i) Vegetation (SISAL).

behavior. In this experiment, the soil and the vegetation

signatures – which seem to vary the most over time (see

Fig. 7) – are found by the proposed method to be affected

by the most significant variability level (see Table V). In this

experiment, a significant increase can be observed in the

endmember variability energy over the last three images of

the sequence (see Table V), suggesting that the endmembers

are apparently better represented in the two first images of the

sequence (see Fig. 7). This observation suggests the proposed

method captures the average endmember spectral behavior and

enables the time at which the greatest spectral changes occur to

be identified. However, a detailed analysis of this observation

is out of the scope of the present paper.

VI. CONCLUSION AND FUTURE WORK

This paper introduced an online hyperspectral unmixing

procedure accounting for endmember temporal variability

based on the perturbed linear model considered in [7]. This

algorithm was designed to unmix multiple HS images of mod-

erate size, potentially affected by smoothly varying endmem-

ber perturbations. Indeed, the number of spurious local optima

of the cost function used in this paper can significantly increase

with the size of the images and the number of endmem-

bers considered, which is a problem common to many blind

source separation problems (such as the unmixing problem

addressed in this paper). The underlying unmixing problem

was formulated as a two-stage stochastic program solved by

a stochastic approximation algorithm. Simulations conducted

on synthetic and real data enabled the interest of the proposed

approach to be appreciated. Indeed, the proposed method

compared favorably with established approaches performed

TABLE IV

SIMULATION RESULTS ON REAL DATA (RE ×10−4 )

TABLE V

EXPERIMENT WITH REAL DATA FOR R = 3: ENERGY OF THE

VARIABILITY CAPTURED FOR EACH ENDMEMBER AT

EACH TIME INSTANT (‖dmkt ‖22/L × 10−5

FOR k = 1, . . . , R , t = 1, . . . , T )

independently on each image of the sequence while providing

a relevant variability estimation. Assessing the robustness of

the proposed technique with respect to estimation errors on

the endmember number R and applying the proposed method

to real dataset composed of a larger number of endmembers

are interesting prospects for future work. Possible perspectives

also include the extension of the method to account for spatial

variability and applications to change detection problems.

A distributed unmixing procedure is also under investigation

to solve the resulting high dimensional problem.

APPENDIX A

PROJECTIONS INVOLVED IN THE PARAMETER UPDATES

The projections involved in the PALM algorithm [19]

described in Algo. 2 are properly defined, since the associated

constraint spaces are closed convex sets. More precisely,

• Dt is closed and convex as the (non-empty) intersection of

two closed balls. The projection onto Dt can be approx-

imated by the Dykstra algorithm [22], [24]. Besides, the

projection on a Frobenius ball is given by [28]

PBF(X,r)(Y) = X + min

(
1,

r

‖Y − X‖F

)
(Y − X);

(38)

• projecting M onto R
L×R
+ is explicitly given by

P+(M) = max(0L ,R, M) (39)

where the max is taken term-wise.



APPENDIX B

DISCUSSION ON ASSUMPTION 3

The Hessian matrix of f (Y, M, ·, ·), denoted by H(A,dM) f ,

is given by

H(A,dM) f =
[

H1 H2

H3 H4

]
(40)

M̃ = (M + dM) (41)

H1 = IN ⊗ (M̃TM̃), H4 = (AAT) ⊗ IL (42)

H3 = HT
2 =

{
IR ⊗

[
−Y+M̃A

]}
SR,N +[A ⊗ M̃] (43)

where SR,L is the perfect shuffle matrix. The block matrix

H(A,dM) f is invertible if, for instance, H1 and its Schur

complement S = H4 − H3H−1
1 H2 are invertible. In practice,

H1 is generally invertible since M + dM is full column

rank. The invertibility of the Schur complement S can be

ensured via an appropriate regularization term
µ
2

‖A‖2F added

to the original objective f . Indeed, we first note that such a

perturbation regularizes the Hessian by modifying its diagonal

block H4, replaced by H4 + µI.

Denote by λ1 > λ2 > . . . > λr the ordered eigenvalues

of S, where r denotes the number of distinct eigenvalues.

By the spectral theorem, there exists an orthogonal matrix

(with respect to the canonical euclidean inner product) Q such

that S = QTDQ, where D is a diagonal matrix composed of

the λk . Note that each eigenvalue may have a multiplicity order

greater than 1 with the adopted notations. If there exits k such

that λk = 0, then λk+1 < 0. Adding
µ
2

‖A‖2F to the original

objective function, with µ < |λk+1|, is then sufficient to ensure

the invertibility of the Schur complement

(H4 − H3H−1
1 H2) + µI = QTDQ + µI = QT(D + µI)Q

associated to the new Hessian matrix, thus ensuring its

invertibility.

APPENDIX C

CONVERGENCE PROOF

Largely adapted from [11], the following sketch of proof

reduces to an adaptation of [11, Lemma 1, Proposition 1].

From this point, our problem exactly satisfies the assump-

tions required to apply the same arguments as in

[11, Propositions 2 and 3], leading to the announced conver-

gence result.

Lemma 1 (Asymptotic Variations of Mt [11]): Under

Assumptions 1 and 2, we have

∥∥∥M(t+1) − M(t)
∥∥∥
F

= O

(
1

t

)
almost surely (a.s.). (44)

Proof: According to Assumption 1, ĝt is strictly convex

with a Hessian lower-bounded by a scalar µM > 0. Conse-

quently, ĝt satisfies the second-order growth condition

ĝt(M
(t+1)) − ĝt (M

(t)) ≥ µM

∥∥∥M(t+1) − M(t)
∥∥∥
2

F
. (45)

Besides, since M ∈ [0, 1]L×R , we have ‖M‖F ≤
√

L R.

Hence ĝt is Lipschitz continuous with constant ct =

1
t

(
‖Dt‖F +

√
L R ‖Ct‖F

)
+ βc9 . Indeed, given two matrices

M1, M2 ∈ [0, 1]L×R , we have

|ĝt (M1) − ĝt (M2)| ≤ β
∣∣9(M1) − 9(M2)

∣∣

+ 1

t

∣∣∣∣
1

2
〈MT

1 M1 − MT
2 M2, Ct 〉 − 〈M1 − M2, Dt 〉

∣∣∣∣

≤ βc9 ‖M1 − M2‖F + 1

t
‖M1 − M2‖F ‖Dt‖F

+ 1

2t

∥∥∥MT
1M1 − MT

2 M2

∥∥∥
F
‖Ct‖F (46)

where Ct and Dt were defined in (11). In addition
∥∥∥MT

1M1 − MT
2 M2

∥∥∥
F

= 1

2
‖(M1 + M2)

T(M1 − M2)

+(M1 − M2)
T(M1 + M2)‖F

≤ 2
√

L R ‖M1 − M2‖F (47)

hence
∣∣ĝt (M1) − ĝt (M2)

∣∣ ≤ ct ‖M1 − M2‖F . (48)

Combining (45) and (48), we have
∥∥∥M(t+1) − M(t)

∥∥∥
F

≤ ct

µM

. (49)

Since the data, the abundances and the variability are respec-

tively contained in compact sets, Ct and Dt are (almost surely)

bounded, thus: ct = O
(
1
t

)
a.s. �

Proposition 2 (Adapted from [11]): We assume that the

requirements in Assumption 1 to 3 are satisfied. Let (Yt , M)

be an element of Y × M. Let us define

Zt = AR × Dt (50)

Q(Yt , M) = {(A, dM) ∈ Zt |
∇(A,dM) f (Yt , M, A, dM) = 0} (51)

(A∗
t , dM∗

t ) ∈ Q(Yt , M) (52)

v(Yt , M) = f
(
Yt , M, A∗

t , dM∗
t

)
. (53)

Then

1) the function v is continuously differentiable with respect

to M and ∇Mv(Yt , M) = ∇M f
(
Yt , M, A∗

t , dM∗
t

)
;

2) g defined in (6) is continously differentiable and

∇Mg(M) = EYt

[
∇Mz(Yt , M)

]
;

3) ∇Mg is Lipschitz continuous on M.

Proof: The existence of local minima of f (Yt , M, ·, ·) on

Zt follows from the continuity of f (Yt , M, ·, ·) and the com-

pactness of Zt . This ensures the non-emptiness of Q(Yt , M)

and justifies the definition of (A∗
t , dM∗

t ).

Furthermore, Assumption 3 requires the invertibility of the

Hessian matrix H(A,dM) f at the point (Yt , M, (A∗
t , dM∗

t )).

The first statement then follows from the implicit function

theorem [29, Th. 5.9, p. 19]: there exist two open subsets

V ⊂ M, W ⊂ Zt and a continuously differentiable function

ϕ : V −→ W such that

(i) (M, (A∗
t , dM∗

t )) ∈ V × W ⊂ M × Zt ;

(ii) for all (M̃, (A, dM)) ∈ V × W , we have

[∇(A,dM) f (Yt , M̃, A, dM) = 0]
⇒ [(A, dM) = ϕ(M̃)]; (54)



(iii) for all M̃ ∈ V ,

∂ϕ

∂M
(M̃) = −H−1

(A,dM) f (Yt , M̃, ϕ(M̃))

× ∂ f

∂M∂(A, dM)
(Yt , M̃, ϕ(M̃)). (55)

In particular, (M, (A∗
t , dM∗

t )) ∈ V ×W satisfies (54). Then,

taking the derivative of v(Yt , ·) in M leads to

∂v

∂M
(Yt , M) = ∂ f

∂(A, dM)
(Yt , M, ϕ(M))

︸ ︷︷ ︸
=0 since ϕ(M)∈Q(Yt,M)

∂ϕ

∂M
(M)

+ ∂ f

∂M
(Yt , M, ϕ(M)) (56)

The second statement follows from the continuous differen-

tiability of z(Yt , ·), defined on a compact set.

We finally observe that
∥∥A∗

t

∥∥
F

and
∥∥dM∗

t

∥∥
F

are respec-

tively bounded by a constant independent from Yt (since

(A∗
t , dM∗

t ) ∈ AR × Dt ). This observation, combined with the

expression of ∇M f and the compactness of M, leads to the

third claim. �
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