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Abstract

A large number of mathematical models have been proposed to describe the measured signal in diffusion-

weighted (DW) magnetic resonance imaging (MRI). However, model comparison to date focuses only on

specific subclasses, and little or no information is available in the literature on how performance varies

among the different types of models. To address this deficiency we organized the “White Matter Modeling

Challenge” during the International Symposium on Biomedical Imaging (ISBI) 2015 conference. This com-

petition aimed to compare a range of different kinds of model in their ability to explain measured in vivo

DW human brain data. We focus specifically on the challenge of explaining a large range of measurable

data. We used the Connectome scanner at the Massachusetts General Hospital, using gradients strengths

of up to 300 mT/m and a broad set of diffusion times. We focused on assessing the DW signal prediction

in two regions: the genu in the corpus callosum, where the fibres are relatively straight and parallel, and

the fornix, where the configuration of fibres is more complex. The challenge participants had access to

three-quarters of the dataset, and their models were ranked on their ability to predict the remaining unseen

quarter of the data. The challenge provided a unique opportunity for quantitative comparison of a diverse

set of methods from multiple groups worldwide. The comparison of the challenge entries reveals important

trends and conclusions that influence the next generation of diffusion-based quantitative MRI techniques.

The first is that signal models do not necessarily outperform tissue models; in fact tissue models on average

rank highest of those tested. The second is that assuming a non-Gaussian (rather than a purely Gaussian)
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noise model provides little benefit. The third is that preprocessing the training data (here, omitting signal

outliers) and using signal predicting strategies, such as bootstrapping or cross-validation, could benefit the

model fitting. The analysis in this study provides a benchmark for other models and the data remains

available to build up a more complete comparison over future years.

Keywords: diffusion MRI, model selection, Connectome, brain microstructure, genu, fornix

1. Introduction

Diffusion-weighted (DW) magnetic resonance imaging (MRI) can provide unique insights into the mi-

crostructure of living tissue and is increasingly used to study the microanatomy and development of normal

functioning tissue as well as its pathology. Mathematical models for analysis and interpretation have been

crucial for the clinical adoption of DW-MRI. Even though diffusion tensor imaging (DTI) (Basser et al.,

1994), which is based on a simple model of the DW-MRI signal, has shown promise in clinical applications

(Assaf and Pasternak, 2008), e.g. Alzheimer’s disease (Rose et al., 2000), Multiple Sclerosis (Werring et al.,

2000) or brain tumors (Price et al., 2006), a much wider variety of DW-MRI models has been proposed to

extract more information from the DW signal.

Models generally fall between two extremes of models of the tissue and models of the signal.Models of

the tissue (Behrens et al., 2003, 2007; Assaf and Basser, 2005; Alexander et al., 2010; Dyrby et al., 2013;

Sotiropoulos et al., 2012; Zhang et al., 2012; Scherrer et al., 2015; Kaden et al., 2016) explicitly describe

the underlying tissue microstructure in each voxel with a multi-compartment approach (Stanisz et al., 1997;

Panagiotaki et al., 2012; Nilsson et al., 2013). Models of the signal focus on describing the DW signal

attenuation without explicitly describing the underlying tissue composition that gives rise to the signal (Liu

et al., 2003; Tuch, 2004; Jensen et al., 2005a,b; Descoteaux et al., 2007; Assemlal et al., 2009; Yablonskiy

and Sukstanskii, 2010; Kiselev, 2011; Özarslan et al., 2008, 2013). Other approaches fall between these

two classes and include some features of the tissue, such as the distribution of fibre orientations, but often

describe the signal from individual fibres without modelling the fibre composition explicitly (Mitra et al.,

1992; Tournier et al., 2004; Alexander, 2005; Anderson, 2005; Jian and Vemuri, 2007; Jian et al., 2007; Sakaie

and Lowe, 2007; Dell’Acqua et al., 2007; Jbabdi et al., 2012; Rathi et al., 2014; Kaden et al., 2015).

Despite this explosion of DW-MRI models, a broad comparison on a common dataset and within a

common evaluation framework is lacking, so little is understood about which models are more plausible

representations or explanations of the signal. Panagiotaki et al. (2012) established a taxonomy of diffusion

compartment models and compared 47 of them using data from the fixed corpus callosum of a rat acquired
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on a pre-clinical system. Later, Ferizi et al. (2014) performed a similar experiment using data from a live

human subject, while Ferizi et al. (2013, 2015) explored a different class of models that aim to capture

fiber dispersion. Rokem et al. (2015) compared two classes of models using cross-validation and test-retest

accuracy. All these studies (Panagiotaki et al., 2012; Ferizi, 2014; Rokem et al., 2015) aim to evaluate varia-

tions with specific classes of models with all other variables of the parameter estimation pipeline (i.e. noise

model, fitting routine, etc.) fixed. While this provides fundamental insight into which compartments are

important in compartment models, questions remain about the broader landscape of models; in particular,

which classes of models explain the signal best and how strongly performance depends on the choice of

parameter-estimation procedure.

Publicly organized challenges provide a unique opportunity to bring a research community together to

gain a quantitative and unbiased comparison of a diverse set of methods applicable to a particular data-

processing task. Such publicly organized challenges have helped to establish a common ground for the

evaluation of competing methods in a variety of imaging-related tasks, e.g. registration of MRI brain images

(Klein et al., 2009), diagnostic group classification for dementia using structural MRI (Bron et al., 2015),

tissue segmentation on brain (Mendrik et al., 2015) and prostate tissue (Litjens et al., 2014), on CT images

for thoracic tissue (Murphy et al., 2011), carotid tissue (Hameeteman et al., 2011), and breathing airways

tissue (Lo et al., 2012), fetal ultrasound images (Rueda et al., 2014), or particle tracking (Chenouard et al.,

2014) have been organized. In DW-MRI, public challenges have focused on recovering synthetic intra-voxel

fibre configurations (Daducci et al., 2014) or evaluating tractography techniques (Fillard et al., 2011; Pujol

et al., 2015) and have been very successful at driving research and translation forward. Another interesting

comparison of reconstruction methods using DW-MRI data was based on signal acquired from a physical

phantom (Ning et al., 2015).

Here we report on such a community-wide challenge to model the variation of DW-MRI signals at the

voxel level in the in vivo human brain. Modelling the diffusion signal is a key step in realising practical and

reliable quantitative imaging techniques based on diffusion MRI. The challenge in the area is to extract the

salient features from the diffusion signal and relate them to the principal features of the underlying tissue

(e.g., in the case of brain white matter, the fibre orientation, axonal packing and axonal size). Three distinct

questions arise: i) given the richest possible dataset that samples the space of achievable measurements as

widely as possible, which mathematical model can capture best the intrinsic variation of the acquired signal;

ii) which tissue features can be derived from the model; iii) what subset of those features can we estimate

from limited acquisition time on a standard clinical scanner and what dataset best supports such estimates?

The intuition gained from (i) is generalisable over a wide range of applications, while (ii) and (iii) are

highly dependent on the MRI study design and the available hardware. Therefore, our challenge focuses on

question (i), as an understanding of (i) is necessary to inform (ii) and (iii). To that end, we acquire the

richest possible dataset using the most powerful hardware available and the most motivated subject available
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(UF). Specifically, we use the Connectome scanner (Setsompop et al., 2013), which is unique among human

scanners in having 300 mT/m gradients, rather than 40 mT/m typical of state-of-the-art human scanners.

Preclinical work by Dyrby et al. (2013) highlights the benefits of such strong gradients and the first results

from the Connectome scanner (McNab et al., 2013; Duval et al., 2014; Ferizi et al., 2015; Huang et al., 2015)

are now starting to verify those findings.

The uniquely rich dataset from Ferizi et al. (2015), acquired on the Connectome system, samples around

five thousand points in the space of possible measurements from a standard Stejskal-Tanner DW-MRI

sequence. Each DWI has a unique combination of gradient strength, diffusion time, pulse width and echo

time; i.e. they vary all the key parameters of the sequence to highlight sensitivity to as many underlying

tissue properties as possible. This offers a unique opportunity for the comparison of the many different types

of models within a common framework, over a very wide range of the measurement space. Using this rich

dataset we organized the White Matter Modeling challenge, held during the 2015 International Symposium

on Biomedical Imaging (ISBI) in New York. The goal of the challenge was to evaluate and compare the

models in two different tissue configurations that are common in the brain: 1) a white matter region of

interest where fibers are relatively straight and parallel, specifically, the genu of the corpus callosum; and 2)

a region in which the fiber configuration is more complex, specifically, the fornix. Challenge participants had

access to three-quarters of each whole dataset; the participating models were evaluated on how well they

predicted the remaining ‘unseen’ part of the data. This kind of model comparison, based on prediction error,

is a common and crucial part of the development of any statistical model-based estimation applications.

Books such as ? explain how and why such comparisons should be performed to reject models that are

theoretically plausible but that the data do not support. As announced before the challenge, the final

ranking was based exclusively on the performance on the genu data. In this paper, however, we include

results from both the genu and the fornix.

The challenge entries include a wide range of different kinds of model and estimation procedure. In

contrast to earlier model comparisons (Panagiotaki et al., 2012; Ferizi, 2014; Rokem et al., 2015), the

results provide new insight into which broad classes of model explain the signal best and what features

of the estimation procedure are important. Although the sampling of the set of possible techniques is

necessarily sparse, as any model could in theory combine with any estimation procedure and each has many

variables, the results provide some surprising and key insights into the benefits of different approaches.

This information is very timely, as recent model-based diffusion MRI techniques, such as NODDI (Zhang

et al., 2012), SMT (Kaden et al., 2015, 2016), DIAMOND (Scherrer et al., 2015), DKI (Fieremans et al.,

2011) and LEMONADE (Novikov D, 2015), are starting to become widely adopted in clinical studies and

trials. Despite their success, intense debate continues in the field about applicability of different models and

fitting routines (Jelescu et al., 2015, 2016). The insights from this challenge provide key pointers to the

important features of the next-generation of front-line imaging techniques of this type. Moreover, the data
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and evaluation routines remain available to form the basis of an expanding ranking of models and fitting

routines and a standard yardstick for future model development.

The paper is organized as follows. We first describe in section 2 the experimental protocol, data post-

processing and preparation of the training and testing data. We then present the methods for ranking the

models and tabulate succinctly the various models involved in the competition. We report the challenge

results in section 3 and discuss these results in section 4; a more detailed description of the models follows

in the Appendix, section 7.

2. Material and Methods

2.1. The complete experiment protocol

One healthy volunteer was scanned over two non-stop 4h sessions. The imaged volume comprised twenty

4mm-thick whole-brain sagittal slices covering the corpus callosum left-right. The image size was 110 x 110

and the in-plane resolution 2 x 2 mm2. Forty-five unique and evenly distributed diffusion directions (taken

from http://www.camino.org.uk) were acquired for each shell, with both positive and negative polarities;

these directions were the same in each shell. We also included 10 interleaved b=0 measurements, leading to

a total of 100 measurements per shell. Each shell had a unique combination of ∆ = {22, 40, 60, 80, 100, 120}

ms, δ = {3, 8} ms, and |G| = {60, 100, 200, 300} mT/m (see Table 1). The measurements were randomized

within each shell, whereas the gradient strengths were interleaved. We visually inspected the images and

have not observed any obvious shifts from gradient heating. The minimum possible echo time (TE) for each

gradient duration and diffusion time combination was chosen to enhance SNR for shorter diffusion times,

and potentially enables estimation of compartment-specific relaxation constants. The SNR of b = 0 images

was 35 at TE = 49 ms and 6 at TE = 152 ms. To find the SNR we used the background signal, as well as

the signal noise floor in b = 0 images i.e. the residual signal along the fibres at the highest b-value. In both

cases these estimates matched reasonably well. More details about the acquisition protocol can be found in

Ferizi et al. (2015).

2.2. Post-processing

All post-processing was performed using FSL (Jenkinson et al., 2002). The DW images were cor-

rected for eddy current distortions separately for each combination of δ and ∆ using FSL’s Eddy module

(www.fmrib.ox.ac.uk/fsl/eddy) with its default settings. The images were then co-registered using FSL’s

Fnirt package. As the 48 shells were acquired across a wide range of TEs, over two days, we chose to proceed

in two steps. First, within each quarter of the dataset (different day, different δ) we registered all the b=0

images together. We then applied these transformations to their intermediary DW images, using a tri-linear

resampling interpolation. The second stage involved co-registering the four different quarters. To help the
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co-registration, especially between the two days’ images which required some through-plane adjustment as

well, we omitted areas of considerable eddy-current distortions by reducing the number of slices from 20 to

5 (that is, leaving two images either side of the mid-sagittal plane) and reducing the in-plane image size to

75x80.

2.3. Training and testing data

The data for this work originated from two ROIs, each containing 6 voxels (see Fig. 2). The first ROI

was selected in the middle of the genu in the corpus callosum, where the fibres are mostly straight and

coherent. The second ROI’s fibre configuration is more complex: it lies in the body of fornix, where two

bundles of fibers bend and bifurcate.

The dataset was split into two parts: the training dataset and the testing dataset. The training dataset

was fully available for the challenge participants. The testing dataset was retained by the organisers.

The DW signal of the training dataset (36 shells, with acquisition parameters shown in black in Table

1) was provided together with the gradient scheme on the challenge website (http://cmic.cs.ucl.ac.uk/

wmmchallenge/). This data was used by the participants to estimate their DW-MRI model parameters. The

signal attenuation in the testing dataset (12 shells, with acquisition parameters shown in red in Table 1)

was kept unseen. Participants were then asked to predict the signal for the corresponding gradient scheme.

The challenge participants were free to use as much or as little of the training data provided to predict the

signal of the test dataset for the six voxels in each ROI.

Figure 4 shows the DW signal attenuation for each shell in the genu dataset, with stars in the legend

indicating which shells were left out for testing. In this plot, a small number of data appear as ‘outliers’

(two such data are shown with arrows in the bottom-left subplot of Figure 4). Specifically, we counted

about 10 of them among more than 4812 measurements, most of them being in the b=300 s/mm2 shell.

Since these outliers appear to be specific to the b=300 s/mm2 shell, and not in other shells with similar

b-value, we attribute them to a momentary twitching of the subject rather than more systematic affects,

such as perfusion. Similarly, figure 6 shows the signal for the fornix region, with the signal over the six

voxels averaged out.

2.4. Models ranking

Models were evaluated and ranked based on their ability to accurately predict the unseen DW signal.

Specifically, the metric used was the sum of square differences between the hidden signal and the predicted

signal, corrected for Rician noise (Jones and Basser, 2004):

SSE =

N∑
i=1

(S̃i −
√
S2
i + σ2)2

σ2
(1)
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where N is the number of measurements, S̃i is the i-th measured signal, Si its prediction from the model,

and σ is the noise standard deviation.

2.5. Competing models

We give in this section a short summary of competing models in the challenge. Additionally, Table 2

provides a summary of the key characteristics of the competing models. A more detailed description of each

model is included in the Appendix, section 7.

• Ramirez-Manzanares: A dictionary-based technique that accounts for multiple fibre bundles, and

models the distribution of tissues properties (axon radius, parallel diffusivity) and the orientation

dispersion of fibres.

• Nilsson: A multi-compartment model that models isotropic, hindered and restricted diffusion, and

accounts for varying (T1, T2) relaxation times for each compartment (Nilsson et al., 2012).

• Scherrer A multi-compartment model in which each compartment is modelled by a statistical distri-

bution of 3-D tensors (Scherrer et al., 2015)

• Ferizi1 and Ferizi2: Two three-compartment models that account for varying T2 relaxation times for

each compartment. As regards the intracellular compartment, Ferizi1 models the orientation dispersion

by using dispersed sticks as one compartment; Ferizi2 uses a single radius cylinder instead (Ferizi et al.,

2015).

• Poot: A 3-compartment model comprising an isotropic diffusion compartment, a tensor compartment,

and a model-free compartment in which an ADC is estimated for each direction independently. T2

relaxation times are also estimated for each compartment (Poot and Klein., 2015).

• Rokem: A combination of the sparse fascicle model Rokem et al. (2015) with restriction spectrum

imaging White et al. (2013) that describes the signal arising from a multi-compartment model in a

densely sampled spherical grid, using L1 regularization to enforce sparsity.

• Eufracio: An extension of the Diffusion Basis Function (DBF) model that accounts for multiple b-value

shells.

• Loyas-Olivas1 and Loyas-Olivas2: Two models based on the Linear Acceleration of Sparse and Adap-

tive Diffusion Dictionary (LASADD) technique. Loyas-Olivas1 uses the DBF signal model, while

Loyas-Olivas2 uses a three-compartment tissue model. The optimization uses linearized signal models

to speed up computation and sparseness constraints to regularise.

• Alipoor: A model of fourth-order tensors, corrected for T2-relaxation across different shells. A robust

LS fitting was applied to mitigate influence of outliers.
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• Sakaie A two-compartment model of restricted and hindered diffusion with angular variation. A simple

exclusion scheme based on the b=0 signal intensity was applied to remove outliers.

• Fick: A spatio-temporal signal model to simultaneously represent 3-D diffusion signal over varying

diffusion time. Laplacian regularization was applied during the fitting (Fick et al., 2015).

• Rivera: A regularized linear regression model of diffusion encoding variables. This is intentionally

built as a simplistic model to be used as a baseline for model comparison.

3. Results

Figure 8 shows the averaged prediction error in each ROI (top subplot is for the genu, bottom subplot

is for the fornix) and the corresponding overall ranking of the participating models in the challenge. The

first six models in the genu ranking performed similarly, each higher ranked model marginally improving

on the prediction error. The prediction error clearly increased at a higher rate for the subsequent models.

In the fornix dataset, the prediction error was higher than in the genu. For both datasets the first six

models were the same, albeit permuted. Most of the models performed similarly in terms of ranking in both

genu and fornix cases, i.e. Nilsson (2nd in genu/1st in fornix), Scherrer (3rd/2nd) and Ferizi 2 (4th/4th).

Others performed significantly better in one of the cases, with Ramirez-Manzanares (1st/6th) being the

most notable.

Figure 8 also details the prediction error for different ranges of b-values in the unseen dataset. Models

inevitably vary in their prediction capabilities; some models perform better within a given b-value range

but are penalised more in another. Across the models, as the figure shows, the ranking between models was

dominated by the signal prediction accuracy for b-values between 750 and 1400 s/mm2; specifically, the shell

which has the largest weight on this error is the b=1100 s/mm2 one. The top-ranking models, nevertheless,

were better at predicting the signal for higher b-value images as well. The prediction performance of lower

b-value images (<750 s/mm2) in the genu was less consistent across ranks. For example the models of

Rokem and Sakaie outperformed most of the higher ranking models in this low b-value range. The fornix

is a more complex region than the genu, hence the performance across the shells is less consistent. In the

fornix the prediction errors were generally larger than in the genu across all b-values for all models, except

Rivera’s, which showed the opposite. The prediction errors of the b = 0 images were also larger than in

the genu, especially for the highly ranked models of Poot and Ferizi. The prediction errors in other b-value

shells followed more closely the overall ranking of the models.

Figure 10 shows the prediction error for each voxel independently. In the genu plot, the best performing

models had high consistency of low prediction errors across all individual voxels. These were followed by the

models with consistent larger prediction error in all voxels. Most of the lowest ranking models not only had
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largest prediction errors, they also showed large variations in prediction performance. For example, while

the model of Loya-Olivas 2 was competitive in voxel 5, it ranked low due to large prediction errors in voxel

4 and voxel 6. The results in the fornix show a lower consistency of prediction errors between the voxels

than in the genu. Specifically, two voxels (3 and 4) showed substantially larger prediction errors and were

likely responsible for much of the overall ranking.

Finally, we report in figures 12 and 14 an illustration of the quality of fit of each model to 4 representative

shells, including the b=1100 s/mm2 shell mentioned above.

4. Discussion

The challenge set out to compare the ability of various kinds of models to predict the diffusion MR signal

from white matter over a very wide range of measurement parameters – exploring the boundaries of possible

future quantitative diffusion MR techniques. The fourteen challenge entries were a good representation of the

many available models that are proposed in the literature. They also use a variety of fitting routines, and so

provide additional insight into the effects of algorithmic choices during parameter estimation. Although the

set of methods tested is not sufficient to make a full comparison of each independent feature (diffusion model,

noise model, fitting routine, etc.), and the number of combinations prohibits an exhaustive comparison, the

results of the challenge do reveal some important trends.

4.1. Main conclusions

The first insight is on the type of model used. Signal models do not necessarily outrank tissue models;

indeed, models of the signal (Alipoor, Sakaie, Fick, Riviera) ranked on average lower than models of the

tissues with our dataset, despite their theoretical ability to offer more flexibility in describing the raw signal.

This is quite surprising, as the current perception within the field is that, generally, we can capture the

signal variation much better through a functional description of the signal (signal models) rather than via a

biophysical model of the tissue (tissue models). The former generally consist of bases of arbitrary complexity,

whereas the latter are generally very parsimonious models that rely on extremely crude descriptions of

tissue (e.g. white matter as parallel impermeable cylinders). The results suggest that the flexibility of signal

models can rapidly lead to over-fitting. However, the tissue models can explain the signal relatively well even

with just a few parameters (compare the quality-of-fit plots of the Rivera model in figure 14 to the signal

prediction of the top models in figure 12; the higher the b-value, the worse the prediction of the linear signal

model). Certain underlying assumptions may cause the signal models to perform less well than expected.

For example, they are often designed to work with data with a single diffusion time and do not generalise

naturally to incorporate the additional dimension (although see Fick et al. (2015) for some steps towards

generalisation). Many of the tissue models on the other hand naturally account for finite δ, varying diffusion

times and gradient strength (e.g. the Ramirez-Manzanares, Nilsson and Ferizi models in our collection).
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The second insight concerns the choice of noise modelling. Assuming a non-Gaussian noise model, as

used by three models, provides little benefit over a Gaussian assumption. This is likely because much of

the data has high SNR. Although signal levels at high b-values do often hit the noise floor, the magnitude

of the noise floor is small compared to signals at moderate b-values. In this challenge most participants

used non-linear least-squares or maximum likelihood optimisation. Additional regularisation of the objective

function (Eufracio&Rivera/Lasso, Rokem/Elastic Net, Fick/Laplacian) appeared to have little benefit over

non-regularised optimization.

The third observation is about removing signal outliers. Five of the eleven models preprocessed the

training data by clearing out outliers, including the top two models. We tried this procedure with two

good models which did not use such a procedure, Ferizi1 and Ferizi2, and observed that it did not affect

the ranking, though it did marginally improve the prediction error. This is understandable considering the

relative little weight these apparent outliers have on the total number of measurements (10 points from

a 4812-strong dataset). Additionally, specific strategies for predicting signal, e.g. bootstrapping or cross-

validation, as used by the top two models of Ramirez-Manzanares and Nilsson, may also help the model

ranking.

4.2. Limitations and future directions

Although this challenge provides several new insights into the choice of model and fitting procedure for

diffusion-based quantitative imaging tools, it has a number of limitations that future challenges might be

designed to address. One limitations of the study is that we use a very rich acquisition protocol that is not

representative of common or clinical acquisition protocols. In particular, we cover a very wide range of b-

values and the data acquisition (protocol) we use consists of many TEs unlike many other multi-shell diffusion

datasets that use a fixed TE. As stated in the Introduction, our intention is to sample the measurement space

as widely as possible to support the most informative models possible. Varying the TE makes it possible to

probe compartment-specific T2 (whose decay Ferizi et al. (2015) finds to be monoexponential at the voxel

level), an investigation which would be impossible with a single TE. However, the good performance of

DIAMOND also shows that a model with fixed δ and ∆ could be used with multi-TE datasets, and that,

while the majority of the full data was ignored in each of the reconstructions, its prediction error compared

favourably with other techniques.

We use the unique human Connectome scanner (Setsompop et al., 2013) to acquire a dataset with

gradients of up to 300 mT/m, which is not readily available in most current MR machines. However,

previous preclinical work by Dyrby et al. (2013) suggests that high diffusion gradients enrich the signal,

which helps model fitting and comparison. Future challenges might be designed that focus on explaining

the signal and estimating parameters from data more typical of clinical acquisitions.

Assessing the prediction performance on unseen data as in this challenge is different from assessing the
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fitting error: it implicitly penalises models which overfit the data. However, since most of the missing

shells lie in-between other shells (in terms of b-values, TEs, etc.), the quality of signal extrapolation was not

assessed. We get a glimpse of this from figure 8, where the SSE is unevenly distributed between the b-values.

Here, the shell which bore the largest error is the b=1100 s/mm2 one; see also figures 12 and 14. Of all

“unseen” shells, this shell combines the lowest ∆ and highest |G|, placing it on the edge of the range of the

measurement space sampled. Such a b-value shell combines high signal magnitude with high sensitivity (i.e.

the gradient of signal against b-value is highest in this range), which makes it hard to predict. Future work

can take this further, by selecting unseen shells outside of the min-max range of experimental parameters.

This is likely to penalise more complex models that overfit the data even more strongly.

We did not take into account the computational demand of each model, and this might limit the gener-

alisation of the results. Models that use bootstrapping generally have a higher computational burden and

may not be feasible for large datasets, e.g. whole brain coverage.

The dataset used in this challenge is specific to one subject who underwent a long duration acquisition,

which adds to the question of the generalisability. The subsequent preprocessing of the data is also a factor

to bear in mind: the registration of two 4h datasets, across such a broad range of echo times, poses its

own challenges for certain non-homogenous regions in the brain, such as the fornix (as compared with, for

example, the relatively large genu). Thus the results may be somewhat subject specific and may be affected

by residual alignment errors.

Another limitation is that we only look at isolated voxels inside the corpus callosum and the fornix.

Questions still remain about which models are viable even in the most coherent areas of the brain with

the simplest geometry so we believe our focused challenge on well-defined areas is an informative first step

necessary before extending the idea to the whole of white matter, which would make for an extremely

complex challenge. We note however, recent work by Ghosh et al. (2016) that illustrates such an approach

with Human Connectome Project (HCP) data.

We focused here on comparing models based on their ability to predict unseen data. Although models

that reflect true underlying tissue structure should explain the data well, we cannot infer in general that

models that predict unseen data better are mechanistically closer to the tissue than those that do not. As

we discuss in the introduction, the main power of evaluating models in terms of prediction error is to reject

models that cannot explain the data. Thus, while the identification of parsimonious models that explain

the data certainly has great benefit, further validation is necessary through comparison of the parameters

that they estimate with independent measurements, e.g. obtained through microscopy (our challenge makes

no attempt to assess the integrity of parameter estimates themselves, but future challenges might use such

performance criteria). We note however that major difficulties arise in obtaining ground truth in realistic

samples. In particular, histology does not provide a perfect ground truth for assessing quantitative non-

invasive techniques. There are two good reasons for this: a) the histological preparation process disrupts
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the tissue from its in-vivo state and b) certain parameters simply cannot be measured histologically, e.g.

diffusivity and permeability. Moreover, the results from this study do not immediately translate into the

ability of estimated models to provide useful information about the WM microstructure integrity, such as the

presence of axonal loss, demyelination or oedema in abnormal tissue. Specifically for tissue models, obtaining

a direct histological analogue is often difficult. One good example of this are models that incorporate an

axonal radius parameter, known to generally overestimate the true axonal radius, as discussed in detail e.g.

by Barazany et al. (2009), Alexander et al. (2010) and Dyrby et al. (2013).

5. Conclusion

Challenges such as this have great value in bringing the community together and provide unbiased

comparison of wide ranging solutions to key data-processing problems. They raise new insights and ideas

motivating more directed future studies. The data is publicly available for others to use, with more details

of the dataset given on the Challenge website http://cmic.cs.ucl.ac.uk/wmmchallenge/. On this website,

an up-to-date ranking of the models will be available too, where additional models can be added after

the publication of the article. This will provide an important yardstick for future models and parameter

estimation routines.
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7. Appendix: Competing models

7.1. Tissue models

7.1.1. Ramirez-Manzanares (CIMAT, Mexico): Empirical Diffusion-and-Direction Distributions (ED3)

This work builds on the statistical modelling of the apparent diffusion coefficient (Yablonskiy et al.,

2003), and tackles the modelling of axon fiber dispersion in single (Axer et al., 2001; Zhang et al., 2012)

and multiple fibre bundle cases. The method empirically estimates (rather than imposes) the distribution

of tissue properties (axon radius, parallel diffusion, etc.), as well as the orientational distribution of the

bundles. The general framework is as follows:

• estimation of mean principal diffusion directions (PDD) per axon bundle;

• selection of a dense set of orientationally–focused basis directions that capture the discrete non–

parametric fiber dispersion;

• design of a dictionary of intra/extra cellular synthetic DW–signals which are precomputed along the

basis directions (see the DBF method in Ramirez-Manzanares et al. (2007));

• computation of the size compartments per diffusion atom of the dictionary (model fitting).

The PDDs are estimated from the DT (single bundle case) and DBF (Ramirez-Manzanares et al., 2007)

(complex structure cases). The 120 orientations closest to the PDDs are selected from a set of 1000, evenly

distributed orientations. The intra axonal signals Si are precomputed from the model in Van Gelderen

et al. (1994) for restricted diffusion within a cylinder with radius R = 1, 2, . . . , 10 µm and parallel diffusion

d‖ = 1, 1.1, . . . , 2.1 µm2/ms. The extra-axonal signals are generated as: Se from zeppelins with combinations

of parallel and radial diffusion, d‖ = 1, 1.1, . . . , 2.5 µm2/ms and d⊥ = 2, 3, . . . , 8 µm2/ms, the isotropic

diffusion compartment signals Sisoi = exp−qτdiso for diso = 2, 2.1, 2.2, . . . , 4 µm2/ms, and the dot signal

that takes into account static proton density. The values of the dictionary-atoms above were tuned by

cross validation (Stone, 1974). The size compartments β ≥ 0 computed in the weighted non–negative LS

formulation: ∣∣∣∣∣∣
∣∣∣∣∣∣W
S − STE0

 Ni∑
i=1

βiiS
i
i −

Ne∑
j=1

βejS
e
j −

Niso∑
k=1

βisok Sisok + βdot

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

(2)

indicate the atoms that explain the signal, the W weights are proportional to SNR. Overfitting is reduced

by a bootstrap (Efron, 1979) procedure.

The cross-validation experiments indicate that the reconstructions given by the robust fitting of this rich

multi-compartment diffusion dictionary allows to accurately predict non acquired MR signals for different

machine protocols. This is of most interest in the development of methods able to detect the complex

microstructure heterogeneity associated with the different compartments within the voxels. The atoms
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with coefficients β > 0 depict the empirical distributions, and their orientations indicate non-parametrical

bundle–dispersion configurations (as fanning or radially symmetrical). The recovered distributions reveal,

for instance, the presence of axon radius only among 1 and 4 µm. One should take into account, however,

that since the heterogeneous intra/extra-axonal T2 relaxation feature is not explicitly modeled, the method

may compensate T2 variations by using, for instance, large isotropic diso coefficients to accurately fit the

signal. For this reason, a direct interpretation of the fitted parameters may be misleading. The use of more

specific models is a part of ongoing work.

7.1.2. Nilsson (Lund, Sweden) : Multi-compartment model outlier rejection and separate fitting of b0 data

This multiple compartment model was developed specifically for the ISBI WM challenge and built up

by a relaxation-weighted and time-dependent diffusion tensors according to

S = S0

∑
i

wi e
−B:Die−TE/T2i

(
1− e−(TR−TE/2)/T1i

)
(3)

where B = b~n⊗2 and b = (γδg)2td. The diffusion time td was corrected for rise times (ξ) according to

td = ∆ − δ/3 + ξ3/30δ2 − ξ2/6δ. Each component was also described by a weight (wi) and relaxation

times (T1i and T2i). The model featured three types of components, with either isotropic, hindered and

restricted diffusion. Diffusion in the isotropic component was modeled by a single diffusion coefficient. The

hindered and restricted components were modeled by cylinder-symmetric tensors described by axial and

radial diffusivities together with the polar and azimuth angles. In the restricted component, the apparent

diffusion coefficient of the radial component depended on δ and ∆, as well as on the cylinder radius, according

to Vangelderen et al. (1994).

Three modifications were performed to this very general model. First, to accommodate for potential

bias in the b0 images (which was the case for fornix data where deviations of up to 20σ was observed),

the prediction for b0 data was obtained from the median of all signals acquired with identical TE instead

of from eq. 3. Second, opposite direction acquisitions were rescaled by a free model parameter, in order

to allow for potential gradient instabilities inducing differences between the directions and their opposite

directions. Third, models were generated dynamically during fitting by randomly selecting up to four

hindered components and up to three restricted components. One isotropic component was always included.

The model was first fitted to half of the diffusion-weighted data (randomly selected), after which outliers

were rejected (> 2.5σ). Thereafter a second fit was performed. Both fit steps assumed Gaussian noise and

utilized the ’lsqcurvefit’ function in Matlab. The procedure was repeated 100 times for different randomly

generated models.

To prepare for submission of the results, only the models that best predicted the hidden half of the data

was selected, after which the median of the selected predictions were used for the final prediction.
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7.1.3. Scherrer (Harvard, USA): Distribution of anisotropic microstructural environments in diffusion com-

partment imaging (DIAMOND)

DIAMOND models the set of tissue compartments in each voxel by a finite sum of unimodal continuous

distributions of diffusion tensors. This corresponds to a hybrid tissue model that combines biophysical and

statistical modeling. As described in (Scherrer et al., 2015), the DW signal Sk for a gradient vector gk and

b-value bk is modeled by: Sk = S0

[∑N
j=0 fj

(
1 +

bkg
T
k D0

jgk

κj

)−κj ]
, where S0 is the non-attenuated signal,

N is the number of compartments, fj the relative fraction of occupancy of the jth compartment and κj

are D0
j are respectively the concentration and the expectation of the jth continuous tensor distribution.

DIAMOND enables assessment of compartment-specific diffusion characteristics such as the compartment

FA (cFA), the compartment RD (cRD) and the compartment MD (cMD). It also provides a novel measure

of microstructural heterogeneity for each compartment.

The estimation of a continuous distribution of diffusion tensors requires DW data acquired with same

timing parameters δ and ∆ (Scherrer et al., 2015). To compare DIAMOND to other models on this dataset,

we fitted separately one DIAMOND model for each {δ, ∆} group (i.e., for each TE group), leading to 12

DIAMOND models. One shell was missing in each TE group; we predicted its signal using the corresponding

DIAMOND model. The model estimation was achieved as follows. We first computed the mean and standard

deviation of S0 (µS0
and σS0

) within each TE group and discarded DW-signals whose intensity were larger

than µS0
+ 3σS0

(simple artefact correction). We then estimated DIAMOND parameters as described in

Scherrer et al. (2015), considering Gaussian noise and cylindrical anisotropic compartments. For the genu we

considered a model with one freely diffusing and one anisotropic compartment; for the fornix we considered

a model with one freely diffusing compartment and two anisotropic compartments.

7.1.4. Ferizi 1 and Ferizi 2 (UCL, England)

This submission uses two three-compartment models, as described in previous studies (Ferizi et al., 2014,

2013). These models consist of: 1) either a Bingham distribution of sticks or a Cylinder for the intracellular

compartment; 2) a diffusion tensor for the extracellular compartment; 3) an isotropic CSF compartment.

The T2 relaxation element is fitted beforehand, to the (variable echo time) b=0 measurements. The signal

model is:

S = S̃0

(
fi exp (−TE

T i2
)Si + fe exp (−TE

T e2
)Se + fc exp (−TE

T c2
)Sc

)
(4)

where fi, fe and fc are the weights of the intracellular, extracellular, and third normalised compartment

signals Si, Se and Sc, respectively; the values of compartmental T2 are indexed similarly; S̃0 is the proton

density signal (which is TE-independent, and obtained from fitting to the b = 0 signal). These models, as

shown in the figure below, emerged from previous studies (see references below). Here, however, a single

white matter T2 and separate compartmental diffusivities are additionally fitted.
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There is a two-stage model fitting procedure. The first step estimates the T2 decay rate of tissue,

separately in each voxel, by fitting a bi-exponential model to the b=0 intensity as a function of TE, in which

one component is from tissue and the other from CSF. A preliminary analysis of voxels fully inside WM

regions shows no significant departure from mono-exponential decay, equal T2 are then assumed within the

intra and extracellular compartments. When fitting the bi-exponential model, the value of T2 in CSF is

fixed to 1,000ms (a more precise value of CSF is unlikely to be estimated with this protocol). Thus, for each

voxel, the volume fraction of CSF, the S̃0 and the T2 of the tissue are estimated. These three estimates

are then fixed for all the subsequent model fits. Then, each model is fitted using the Levenberg-Marquardt

algorithm with an offset-Gaussian noise model.

7.1.5. Poot (Erasmus, the Netherlands)

This submission uses a three compartment model, with for each compartment a different complexity of

the diffusion model and an individual T2 value. This model was developed specifically for the ISBI WM

challenge and is the result of iteratively visualizing different projections of the residuals and trying to infer

the maximum complexity that the rich data supports.

The first compartment models isotropic diffusion and, through the initialization procedure, it captures

the fast diffusion components. The second compartment is modelled by a second order (diffusion) tensor

and models intermediate diffusion strengths. The third compartment is model-free as the ADC is estimated

for each direction independently. Each compartment additionally has an individual T2 value and signal

intensity at b = 0, TE = 0 (which could easily be translated into volume fractions). Hence, the complete

model of a voxel in image j is given by

Sj(θ) =

3∑
i=1

Aie
−TEjR2,ie−bjADC j,i =

3∑
i=1

eMi,jθ (5)

where Sj is the predicted signal intensity of image j, Ai is the non-diffusion weighted signal intensity

of compartment i at zero TE , TE is the echo time, R2 is the reciprocal of the T2 relaxation time of

compartment i, b = (∆ − δ/3)δ2|G|2γ2, with γ = 42.5781MHz/T , ADC j,1 = c, ADC j,2 = gTj Dgj ,

ADC j,3 = dhTj , where d is a vector with the ADC value of each orientation group and hj is a vec-

tor that selects the orientation group to which image j belongs (90 groups in total). Note that hj has

at most one nonzero element and that element has a value of one. As displayed in the right most part

of Eq. (5), the model can be written as a multiplication of matrices Mi, containing all rows Mi,j , with

θ = [lnA1, R2,1, c, lnA2, R2,2, D11, D12, D13, D22, D23, D33, lnA3, R2,3, d]T , which combines all 103

parameters into a single parameter vector. All parameters are simultaneously estimated from the provided

3 311 measurements per voxel by a maximum likelihood estimator that assumes a Rician distribution of the

measurements and simultaneously optimizes the noise level (Poot and Klein., 2015). The exact initialization

and details of the optimization procedure are provided in the online supporting material. Finally, the signal
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intensities of the ‘unseen’ data are predicted by substituting the estimate into Eq. (5).

7.1.6. Rokem (Standford, USA): A restriction spectrum sparse fascicle model (RS-SFM)

The Sparse Fascicle Model, SFM (Rokem et al., 2015), is a member of the large family of models that

account for the diffusion MRI signal in the white matter as a combination of signals due to compartments

corresponding to different axonal fiber populations (fascicles), and other parts of the tissue. Model fitting

proceeds in two steps. First, an isotropic component is fit. We model the effects of both the measurement

echo time (TE), as well as the measurement b-value on the signal. These are fit as a log(TE)-dependent

decay with a low order polynomial function, and a b-value-dependent multi-exponential decay (including

also an offset to account for the Rician noise floor). The residuals from the isotropic component are then

deconvolved with the perturbations in the signal due to a set of fascicle kernels each modeled as a radially

symmetric (λ2 = λ3) diffusion tensor. The putative kernels are distributed in a dense sampling grid on the

sphere. Furthermore, Restriction Spectrum Imaging (RSI (White et al., 2013)) is used to extend the model,

by adding a range of fascicle kernels in each sampling point, with different axial and radial diffusivities,

capturing diffusion at different scales. To restrict the number of anisotropic components (fascicles) in each

voxel, and to prevent overfitting, the RS-SFM model employs the Elastic Net algorithm (EN (Zou and

Hastie, 2005)), which applies a tunable combination of L1 and L2 regularization on the weights of the

fascicle kernels. We used elements of the SFM implemented in the dipy software library (Garyfallidis et al.,

2014) and the EN implemented in scikit-learn (Pedregosa et al., 2011). In addition, to account for differences

in SNR, we implemented a weighted least-squares strategy whereby each signal’s contribution to the fit was

weighted by its TE, as well as the gradient strength used. EN has two tuning parameters determining: 1)

the ratio of L1-to-L2 regularization, and 2) the weight of the regularization relative to the least-squares fit

to the signal. To find the proper values of these parameters, we employed k-fold cross-validation (Rokem

et al., 2015), leaving out one shell of measurement in each iteration for cross-validation. We determined

that the tuning parameters with the lowest LSE (Panagiotaki et al., 2012) provide an almost-even balance

of L1 and L2 penalty with weak overall regularization. Because of the combination of a dense sampling

grid (362 points distributed on the sphere), and multiple restriction kernels (45 per sampling point), the

maximal number of parameters for the model is approximately 16,300, more than the number of data points.

However, because regularization is employed, the effective number of parameters is much smaller, resulting

in an active set of approximately 20 regressors (Zou et al., 2007). We have made code to fully reproduce

our results available at https://arokem.github.io/ISBI2015.

7.1.7. Eufracio (CIMAT, Mexico): Diffusion Basis Functions for Multi–Shell Scheme

This model is based on the Diffusion Basis Functions (DBF) model (Ramirez-Manzanares et al., 2007),

a discrete version of the Gaussian Mixture Model for the sphere: ŝi =
∑m
j=1 αjφij + ε, with ŝi = si/s0,
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φij = exp
(
− bqTi Tjqi

)
and Tj = (χ1vjv

T
j + χ2I). The DBF model is reformulated by substituting φij and

Tj : ŝi =
∑m
j=1 αj exp

(
−biχ2g

T
i gi
)

exp
(
−biχ1(vTj gi)

2
)

+ ε. The first exponential can be defined as a scale

factor that depends on the b-values, βi = exp(−biχ2q
T
i qi). In this way, the βi factors are associated with

different b-values, so the new model includes the information of multi-shell schemes. The coefficients α and

the shell scale factor β are computed by solving the optimisation problem:

min
α,βc

f(α, βc;λα, λβ) = ‖BΦ̃α− S‖22 + λα‖α‖1 + λβ‖β0
c − βc‖22 s.t. 1Tα = 1, α ≥ 0 (6)

where B = diag(βc), βc = 1
#C

∑
i∈C exp

(
− biχ̂2(qTi qi)

)
and C is the set of indices grouped by different

b-values (and #C is the number of elements in it). The regularization term weighted by λα demands

sparseness and the term weighted by λβ prevents an over-fitting. The problem in eq.(6) is solved in three

steps. First, the active atoms are predicted (αi > 0) with α̃ = argminα f(α, βc;λα, λβ). Second, the

active atoms are corrected with α = argmin{αi}:α̃i>0 f(α, βc; 0, λβ). Finally, the factors βc are updated with

βc = argminβc
f(α, βc;λα, λβ). To solve each step, the active sets algorithm for quadratic programming is

used.

To train the model for the WMM’15 data, eq.6 is solved for each voxel with the training data to find

the optimal weights αj and scale factors βc that best reproduce the training data. For this challenge, the

βc factors are grouped by the 36 training shells and the method parameters are set by hand: λα = 0.5,

λβ = 0.02, χ1 = 9.5× 10−4and χ2 = 5× 10−5. To predict the unseen signal at each voxel, the reformulated

model is used with the optimal weights αj and the 12 scale factors for the unseen βc are calculated by

interpolation with the 36 optimal βc of the training data.

7.1.8. Loya-Olivas 1 and Loya-Olivas 2 (CIMAT, Mexico): Linear Acceleration of Sparse and Adaptive

Diffusion Dictionary (LASADD)

LASADD is a multi–tensor based technique to adapt dynamically the Diffusion Functions (DFs) dictionary

to a DW–MRI signal (Loya-Olivas et al., 2015; Loya, 2015). The method changes size and orientation of

relevant Diffusion Tensors (DTs). The optimisation algorithm uses a special DT expression and assumptions

to reduce the computational cost.

The one–compartment version (LASADD–1C) is based on DBF multi–tensor model (Ramirez-Manzanares

et al., 2007): s∗i =
∑n
j=1 αjφi,j where s∗i = si

s0i
, φi,j = exp

(
−bigTi Tjgi

)
, αj > 0, and

∑n
j=1 αj = 1. LASSAD

expresses the DT as

Tj = χ1jvjv
T
j + χ2jI, (7)

where χ{1,2}j are scalars associated to the eigenvalues, vj is the Principal Diffusion Direction (PDD), and

I is the identity matrix. The algorithm iterates three steps, like Aranda et al. (2015a,b): Predict, Correct,

and Generate, until convergence. Prediction selects the relevant DFs using LASSO to regulate the number
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to choose. Correction adjusts volume fraction, size, and orientation of the DTs. Taking advantage of DT

expression and Taylor first order series approximation of the exponential, the optimisations are reduced to

bounded Least Squares problems which are solved by a Projected Gauss-Seidel scheme. Generation controls

the overestimation of fibers by adding to the basis the resulted DTs of combining two and three DFs for the

new iteration.

An extra refinement to the computed results, named LASADD–3C, splits each detected DF into three

compartments (Sherbondy et al., 2010): intracellular (IC), extracellular (EC) and CSF. The multi-tensor

model is s∗i =
∑n
j=1 α

IC
j ψi,j +

∑n
j=1 α

EC
j θi,j + αCSFωi with

∑n
j=1

(
αICj + αECj

)
+ αCSF = 1. The ψi,j

models the directional IC compartment diffusion for each fiber bundle using TIC
j = χ0jvjv

T
j . The EC

compartment with hindered diffusion uses the representation (7) for θi,j . The isotropic diffusion ωi uses

TCSF = χ3I. This stage keeps fixed the PDDs and only adjust the α’s and χ’s of the three compartments.

The parameters of the models were estimated using the training dataset: the b values using the equation

by Stejskal and Tanner (1965) and the S0 values as the median of the gradient–free signals with equal

echo time per voxel. The initial basis comprises 33 PDDs distributed in the unitary sphere. The bounds

χ{0,1} ∈ [1, 39] × 10−4 and χ{2,3} ∈ [1, 9] × 10−4mm2/s and the LASSO regularisation parameter (equals

1.7) were tuned by hand such that provides the minimum error. The best multi-tensorial model for both

algorithms was used for each voxel to predict the corresponding unseen data.

7.2. Signal models

7.2.1. Alipoor (Chalmers, Sweden)

The DMRI signal is modeled as a fourth-order symmetric tensor as proposed by (Özarslan and Mareci,

2003). Let gi = [xi yi zi] and ai = [z4
i 4yiz

3
i 6y2

i z
2
i 4y3

i zi y
4
i 4xiz

3
i 12xiyiz

2
i 12xiy

2
i zi 4xiy

3
i 6x2

i z
2
i 12x2

i yizi

6x2
i y

2
i 4x3

i zi 4x3
i yi x

4
i ]
T be a gradient encoding direction and corresponding design vector, respectively. The

diffusion signal is then described by

S(gi) = S0 exp(
−TE
T2

) exp(−btTai) (8)

where S(gi) is the measured signal when the diffusion sensitizing gradient is applied in the direction gi, S0 is

the observed signal in the absence of such a gradient, b is the diffusion weighting factor, and t ∈ R15 contains

the distinct entries of a fourth-order symmetric tensor. Note that d(gi,t) = d(gi) is used for simplification.

Given measurements in N > 15 different directions, the least squares (LS) estimate of the diffusion tensor is

t̂ = (GTG)−1GTy where G is an N × 15 matrix defined G = [a1 a2 · · · aN ]T and yi = −b−1 ln(S(gi)/S0).

We use the weighted LS tensor estimation method in (Alipoor et al., 2013) to mitigate the influence of

outliers.

To estimate the diffusion signal for a given acquisition protocol with TE = TEx, b = bx and δ = δx, the two

non-diffusion weighted measurements with the closest TEs to TEx (among measurements with δ = δx) are
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used to estimate T2 and S0 for each voxel. Then, data from the closet shell to bx (among shells with δ = δx)

are used to estimate the tensor describing the underlying structure.

7.2.2. Sakaie-Tatsuoka-Ghosh (Cleveland, USA): An Empirical Approach

As the extent of q-space in the dataset is unusually comprehensive, we chose a simple, generic approach

to gain intuition. Visual inspection suggested use of a restricted and hindered component each with angular

variation:

Si = ATEi
(fRi + (1− f)exp(−biDi)) (9)

where Si is the predicted signal for signal acquired with TEi, bi. ATEi is the median signal at a given TE

with no diffusion weighting. Fit parameters are f , the volume fraction of Ri, the restricted component, and

Di, the diffusivity. Ri and Di are modeled as spherical harmonics with real, antipodal symmetry (Alexander

et al., 2002) with maximum degree 4. The model has 31 fit parameters for each voxel. Data were fit using

using a nonlinear least squares algorithm (lsqcurvefit, MATLAB). Prior to the fit, data points with nonzero

bvalue that had signal higher than the the median of the b=0 signal plus 1.4826 times the median absolute

deviation were excluded. Shells with normalized median signal smaller than that of shells with lower bvalues

were also excluded. Normalization was performed by dividing by the median of the b=0 signal with the

same TE.

7.2.3. Fick (INRIA, France): A Spatio-Temporal Functional Basis to Represent the Diffusion MRI Signal

We use our recently proposed spatio-temporal (3D+t) functional basis (Fick et al., 2015) to simultane-

ously represent the diffusion MRI signal over three-dimensional wave vector q and diffusion time τ . Based on

Callaghan’s theoretical model of spatio-temporal diffusion in pores (Callaghan, 1995), our basis represents

the 3D+t diffusion signal attenuation E(q, τ) as a product of a spatial and temporal functional basis as

E(q, τ) =

Nmax∑
N=0

∑
{jlm}

Omax∑
o=0

c{jlmo} Sjlm(q, us)To(τ, ut) (10)

where To is our temporal basis with basis order o and Sjlm is the spatial isotropic MAP-MRI basis (Özarslan

et al., 2013) with radial and angular basis orders j, l and m. Here Nmax and Omax are the maximum spatial

and temporal order of the bases, which can be chosen independently. We formulate the bases themselves as

Sjlm(q, us) =
√

4πi−l(2π2u2
sq

2)l/2e−2π2u2
sq

2

L
l+1/2
j−1 (4π2u2

sq
2)Y ml (u)

To(τ, ut) = exp(−utτ/2)Lo(utτ)
(11)

with us and ut the spatial and temporal scaling functions, Y ml the spherical harmonics and Lo a Laguerre

polynomial. We calculate the spatial scaling us by fitting an isotropic tensor to the TE-normalized sig-

nal attenuation E(q, ·) for all q. Similarly, we compute ut by fitting an exponential e−utτ/2 to E(·, τ) for

all τ . We fit our basis using Laplacian-regularized least squares in the following steps: We first denote
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Ξi(q, τ, us, ut) = Sjlm(i)(q, us)To(i)(τ, ut) with i ∈ {1 . . . Ncoef} with Ncoef the number of fitted coefficients.

We then construct a design matrix Q ∈ RNdata×Ncoef with Qik = SNi
(A,qk)Toi(τk, ut). The signal is then

fitted as c = argminc‖y − Qc‖2 + λU(c) with y the measured signal, c the fitted coefficients and λ the

weight for our analytic Laplacian regularization U(c). We used generalized cross-validation (Craven and

Wahba, 1978) to find the optimal regularization weighting λ in every voxel. In our submitted results, we

used a spatial order of 8 and a temporal order of 4, resulting in 475 fitted coefficients.

7.2.4. Rivera (CIMAT, Mexico): Baseline Method: Robust Regression

We regard this very simplistic model as a baseline for other model-based methods. It assumes as

little information as possible from the diffusion signal. The vector of independent variables is xi =

[gi, |G|i,∆i, δi, TEi, bi], containing the gradient strength g, the echo time TE and the b-value b. Given

signal si, we then estimate the parameters of the linear regression model:

s = Xθ + ε (12)

where θ ∈ R23 is the unknown vector of coefficients, ε is the residual error and

X =
[
x, x|2,∆ δ,∆TE,∆ b, δ TE, δ b, TE b, 1

]
is the matrix design (x|2 is obtained from squaring each element of the matrix x). To account for outliers

we estimate θ with a weighted (robust) least squares approach using the Lasso Regularization:

θt+1 = argmin
θ

‖W t(Xθ − y)‖22 + λ‖θ‖1 (13)

where W 0 is the identity matrix and each subsequent W computed via:

W t+1 = diag(vt+1
i wt+1

i ) (14)

with outlier weighting in ωt+1
i = κ2/(κ2 + (yi −Xθt+1

i )2) though κ, an arbitrary parameter that controls

the outlier sensitivity. The protocol weight

vt+1
i = meanj∈Ωi

{wt+1
j } and Ωi = {j : TEj = TEi, |Gj | = |Gi|} (15)

computes a confidence factor for the complete protocol.

The equations (13) and (14) are iterated three times. The final estimated signal is computed using (12),

using the protocol of the unseen signal.
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Figure 1:

Figure 2: We only consider two ROIs, each containing six voxels from the genu in the corpus callosum, where the fibres are

approximately straight and parallel, and from the fornix, where the configuration of fibres is more complex.
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Acquisition Protocol

Nr Δ TE |G| b Nr Δ TE |G| b
(ms) (ms) (mT/m) (s/mm2) (ms) (ms) (mT/m) (s/mm2)

1 22 49 61 50(((((((((( 25 22 58 58 (((((((((300(

2 22 49 86 100(((((((( 26 22 58 95 (((((((((800(

3 22 49 192 500(((((((( 27 22 58 190 ((((((3,200(

4 22 49 285 1,100((((( 28 22 58 275 ((((((6,700(

5 40 67 63 (((((((((100( 29 40 72 59 (((((((((600(

6 40 67 100 (((((((((250( 30 40 72 100 ((((((1,700(

7 40 67 200 ((((((1,000( 31 40 72 200 ((((((6,850(

8 40 67 289 ((((((2,100( 32 40 72 292 ((((14,550(

9 60 87 63 150(((((((( 33 60 92 34 (((((((((300(

10 60 87 103 400(((((((( 34 60 92 100 ((((((2,650(

11 60 87 199 1,500((((( 35 60 92 200 ((((10,500(

12 60 87 290 3,200((((( 36 60 92 292 ((((22,350(

13 80 107 63 (((((((((200( 37 80 112 61 ((((((1,300(

14 80 107 99 (((((((((500( 38 80 112 100 ((((((3,550(

15 80 107 201 ((((((2,050( 39 80 112 200 ((((14,150(

16 80 107 291 ((((((4,300( 40 80 112 292 ((((30,200(

17 100 127 63 250(((((((( 41 100 132 60 ((((((1,600(

18 100 127 101 650(((((((( 42 100 132 100 ((((((4,450(

19 100 127 200 ((((((2,550( 43 100 132 200 ((((17,850(

20 100 127 291 ((((((5,400( 44 100 132 292 ((((38,050(

21 120 147 63 (((((((((300( 45 120 152 60 ((((((1,950(

22 120 147 99 (((((((((750( 46 120 152 100 ((((((5,350(

23 120 147 199 ((((((3,050( 47 120 152 200 ((((21,500(

24 120 147 291 ((((((6,500( 48 120 152 292 ((((45,900(

δ"
"=
""3
m
s

δ"
"=
""8
m
s

Note: We provide signal for the parts of protocol marked in black. In red is the 
protocol for which the signal needs to be predicted.

Table 1: The scanning protocol used, acquired in ∼8 hours over two non-stop sessions. The protocol has 48 shells, each with

45 unique gradient directions (‘blip-up-blip-down’).
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Type of

model

Nb of free

param.

(genu/fornix)

Models

effect of

δ and ∆

Noise

assumption

Optimization

algorithm

Outliers

strategy

Special

signal

prediction

strategy

R–Manzanares Tissue N/A Yes Gaussian
weighted-LS

bootstrapping
Yes CV

Nilsson Tissue < 12/12 Yes Gaussian LM Yes CV

Scherrer Tissue 10/16 No Gaussian Bobyqa Yes No

Ferizi 1 Tissue < 12/12 Yes approx.-Rician LM No No

Ferizi 2 Tissue < 10/10 Yes approx.-Rician LM No No

Alipoor Signal 17/17 No Gaussian weighted-LS Yes No

Sakaie Signal N/A No Gaussian nonlinear-LS Yes No

Rokem Tissue ∼20 No
Gaussian

+ Noise floor
Elastic net No CV

Eufracio Tissue 7/7 No Gaussian
bounded-LS

Lasso, Ridge
No No

Loya-Olivas 1 Tissue 11 No Gaussian
bounded-LS

& Lasso
No No

Loya-Olivas 2 Tissue 5 No Gaussian bounded-LS No No

Poot Signal 103 No Rician LM-like No No

Fick Signal 475 Yes Gaussian
Laplacian-

reg-LS
No partial-CV

Rivera Signal N/A Yes Gaussian Weighted Lasso Yes CV

Table 2: Summary of the various diffusion models evaluated. Tissue models are models that include an explicit description

of the underlying tissue microstructure with a multi-compartment approach. In contrast, signal models focus on describing

the DW signal attenuation without explicitly describing the underlying tissue and rather correspond to a “signal processing”

approach. (Abbreviations: LS=Least Squares, LM=Levenberg-Marquardt, CV=cross-validation, reg=regularized.)
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Figure 3:

Figure 4: Diffusion weighted signal from the genu ROI, averaged over the six voxels. Across each column and row, the signal

pertains to one of the gradient strengths or pulse times δ used; while in each subplot, the six shells shown in different colours

are ∆-specific, increasing in value (22, 40, 60, 80, 100, 120 ms) from top to bottom. Inside the legend, the b-value is in s/mm2

units; here, the HARDI shells kept for testing are those marked with a star; the remaining shells comprise the training data.

On the x-axis is the cosine of the angle between the applied diffusion gradient vector G and the fibre direction n. Some models

in this study omit data outliers; two such data points are shown in the bottom-left subplot with vertical arrows — obviously

each model has its own criteria for determining the outliers.
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Figure 5:

Figure 6: Similar to Figure 4, here is the diffusion weighted signal from the fornix ROI, averaged over the six voxels.
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Figure 7:

Figure 8: Overall ranking of models by sum-of-squared-error metric over all voxels in genu (top) and fornix (bottom) ROIs.

The colors represent different ranges of b-value shells.
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Figure 9:

Figure 10: Sum-of-squared-error per voxel for each model in genu and fornix. The size of rectangles represent the SSE value

per voxel.
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Figure 11:

Figure 12: An illustration of the observed and predicted genu signal of 7 of the 14 best models, shown in red circles, to 4 (of

the total 12) representative shells, shown in blue stars. The best models are listed first. The axes are as in Fig.4.
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Figure 13:

Figure 14: Similar to Fig.12, here we show the remaining 7 model synthesized signals.

35


	1 Introduction
	2 Material and Methods
	2.1 The complete experiment protocol
	2.2 Post-processing
	2.3 Training and testing data
	2.4 Models ranking
	2.5 Competing models

	3 Results
	4 Discussion
	4.1 Main conclusions
	4.2 Limitations and future directions

	5 Conclusion
	6 Acknowledgements
	7 Appendix: Competing models
	7.1 Tissue models
	7.1.1 Ramirez-Manzanares (CIMAT, Mexico): Empirical Diffusion-and-Direction Distributions (ED3)
	7.1.2 Nilsson (Lund, Sweden) : Multi-compartment model outlier rejection and separate fitting of b0 data
	7.1.3 Scherrer (Harvard, USA): Distribution of anisotropic microstructural environments in diffusion compartment imaging (DIAMOND)
	7.1.4 Ferizi_1 and Ferizi_2 (UCL, England)
	7.1.5 Poot (Erasmus, the Netherlands)
	7.1.6 Rokem (Standford, USA): A restriction spectrum sparse fascicle model (RS-SFM)
	7.1.7 Eufracio (CIMAT, Mexico): Diffusion Basis Functions for Multi–Shell Scheme
	7.1.8 Loya-Olivas_1 and Loya-Olivas_2 (CIMAT, Mexico): Linear Acceleration of Sparse and Adaptive Diffusion Dictionary (LASADD)

	7.2 Signal models
	7.2.1 Alipoor (Chalmers, Sweden)
	7.2.2 Sakaie-Tatsuoka-Ghosh (Cleveland, USA): An Empirical Approach
	7.2.3 Fick (INRIA, France): A Spatio-Temporal Functional Basis to Represent the Diffusion MRI Signal
	7.2.4 Rivera (CIMAT, Mexico): Baseline Method: Robust Regression



