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Abstract. Studying the evolutive and adaptative mechanisms of prokaryotes is a compli-
cated task. As these mechanisms cannot be easily studied “in vivo”, it is necessary to consider
other methods. We have therefore developed the RAevol model, a model designed to study
the evolution of bacteria and their adaptation to the environment. Our model simulates the
evolution of a population of artificial bacteria in a changing environment, providing us with
an insight into the strategies that digital organisms develop to adapt to new conditions.

In this paper we describe the principles and architecture of the model, focusing on the
mechanisms of the regulatory networks of artificial organisms. Experiments were conducted
on populations of artificial bacteria under conditions of stress. We study the ways in which
organisms adapt to environmental changes and examine the strategies they adopt. An anal-
ysis of these adaptation strategies is presented and a brief overview was proposed concerning
the patterns and topological characteristics of the evolved regulatory networks.

Key words: evolution, regulatory networks, modelling, motifs, adaptation mechanisms
AMS subject classification: 9204, 92D10, 92D15

1 Introduction

Prokaryote organisms are very diverse, living in different environments and developing vari-
ous abilities. Bacteria are found in every ecosystem — some being colonized only by micro-
organisms — illustrating the impressive adaptation capabilities of prokaryotes. They can be
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found, for example, surviving anaerobically in acid elements, in symbiosis with other or-
ganisms (e.g., Buchnera aphidicola, which lives in symbiosis with aphids, providing essential
amino acids for their host), or even in the human intestine where Escherichia coli favors
digestion and absorption of nutrients.

Bacteria are good examples of organism adaptation. They are able to react to variations
in their environment at different levels: bacteria strains can adapt to major environmental
changes by a darwinian evolutionary process and individual bacteria can adapt to short-term
changes in their environment. To achieve this kind of adaptation at different levels, bacteria
have developed a large repertoire of strategies that may themselves be optimized depending
on the characteristics of the environment: stability, periodicity, stochasticity, competition. ..

Although a lot of different strategies (e.g. evolution, regulation, bet-hedging, adaptive
mutation, gene amplification, Baldwin effect) have been identified and are relatively well
characterized individually, we only have a very partial insight into how they combine with
one another: in an idealized environment, one can identify the optimal strategy and math-
ematically find the optimal parameters. However real environments are far from ideal and
there will generally be a wide range of viable adaptation strategies, combining e.g., regu-
lation and evolution, evolution and bet-hedging, regulation and gene amplification or any
combination of these. For instance, if the environment changes slowly, bacteria may have
enough time to mutate and darwinian evolution can be sufficient to adapt to new conditions.
But, they may not be able to conserve complex regulation strategies since mutations quickly
degrade regulation mechanisms when these are inactive [14]. Now, if the environment varies
a little faster, evolution can be less efficient than regulation, provided that bacteria are able
to sense their environment at an acceptable cost and that environmental changes show some
regularities (e.g., switches between two different energy sources as in the well-known lac
operon). On the contrary, rare but unpredictable events put organisms under stress and are
known to promote specific adaptive strategies such as the development of mutator strains
[44]. All these different strategies imply plasticity at different levels: genetic, metabolic,
physiologic, phenotypic, all of which are involved in complex interactions.

These adaptation mechanisms help bacteria to adapt to changing environments. However
each has its own tempo, ranging from slow (i.e., darwinian strategy) to fast (i.e. stochastic
perturbations leading to phenotypic variability). In the middle, genetic regulation enables a
fast dynamic adaptation, enabling cells to react to chemical signals. Regulation is the main
mechanism to provide adaptive behavior at a metabolic level. However, regulation never acts
alone, it is obviously combined with evolution: genetic variations, gene duplication, gene loss
or chromosomal alterations [19] constitute a vast repertoire of variations that can be used by
a bacterial strain to adapt to its environment, but that can also provide bacteria individuals
with tools to develop more complex adaptation mechanisms. In specific conditions evolution
gives rise to regulatory systems that enable fast adaptation to rapidly changing environments.
In the case of the lac operon, regulation enables the organism to save energy when several food
sources are available. It is supposed that regulation is a result of adaptation to changing
environments. Yet, it can be shown that such a system can be very sensitive to changes
in the environment conditions: Dekel [14] has shown that only a few hundred generations
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are necessary for F. coli to drastically change its lac operon behavior when placed in new
conditions. At the other end of the time scale, the lac operon is known to have a stochastic
behavior [11, 17] and it can be shown that stochasticity of transcription interacts with the
regulatory activity of the operon, delaying the operon switch [23]. Thus, while regulation
activity has long been supposed to be independent of slow evolutionary changes or fast
stochastic variations, it is becoming more and more clear that the interactions of all these
adaptation strategies must be studied to fully understand their behavior [22].

It is still a matter of debate in what kind of situation /environment evolution promotes the
emergence of regulatory processes and how regulation interacts with the evolutionary process
itself. Hypotheses cannot be easily studied on real living systems. Although experimental
evolution is possible with micro-organisms [16], tracking changes in genomes, regulatory
networks and even phenotypes is almost impossible in “in vivo” tests. An alternative is to
use digital organisms to study the genetic bases of adaptation “in silico” [2]. In such artificial
models, organisms (i.e., computational data structures) are placed in a synthetic environment
that provides them with resources. In this environment the organisms reproduce, mutate
and compete for the resources, thus resulting in darwinian evolution. Since the organisms
as well as the environment are artificially defined they can both be perfectly and completely
described [38|. Such models have already shown their usefulness in studying evolution of
robustness [47] or in identifying indirect mutational pressure that regulates genome size [29].
Yet, since most of these models focus on mutational adaptation, they cannot be used to
study complex interactions between the different adaptation mechanisms.

The definition of a suitable model to describe this biological process would be useful to
tackle many open questions in the literature of this domain: How do organisms adapt to
environmental changes? What is the origin of regulatory networks? Why do regulatory net-
works appear during evolution? How do networks evolve over time? Studying the inclusion
of new nodes in already existing regulatory networks and studying the development of new
regulatory networks could help to answer some of these questions and provide us with a
better understanding of network evolution.

Genetic networks appear to be highly organized: they are modular [21], scale-free [7] and
some motifs are overrepresented [4]. Yet, the precise origin of these structures is not fully
understood. In particular, it is quite difficult to distinguish between selective origin (the
structure of the network is selected because it ensures a correct function in the organism’s
environment), mutational origin (the mutational process tends to favor some structures, as
in the preferential attachment model [7]) and indirect selective origin (the network structure
is selected because it is robust to mutation or, on the opposite, highly adaptable). It has
been shown that in some specific conditions, modular structures can be selected in evolved
networks [20, 25|. Here again, modelling is an essential tool to tackle such questions.

Structure and dynamics of regulatory networks are at the heart of systems biology. The
rapid development of this field has been followed by the development of a very active mod-
elling activity of such networks. As far as evolution of regulatory networks is concerned, the
work has been focused on the question of topology evolution [25, 26, 49|, evolution of network
robustness [3, 12, 42| and evolution of artificial functions [5, 6, 18, 32]. Most of these papers
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deal with direct evolution of genetic networks (i.e., in the model the network structure is
directly modified by the genetic operators — mutations, crossing-over and rearrangements) or
selection of the individuals on the basis of the network properties (e.g., selection of a specific
topology or selection of a specific regulation dynamic).

Additionally, many studies have been conducted to understand evolution of regulatory
networks from a bioinformatic perspective. Phylogenetic studies and sequence comparison
provide a quite precise view of the forces that shape bacteria genomes and influences the
evolution of their regulatory networks [35]. Thanks to these studies, it is now clearer that
large genomic events such as genomic rearrangement, horizontal gene transfer (HGT) [19, 31]
or gene duplication play a key role in the evolution of networks [45] and that the topology
of the network is for a large part indirectly shaped by the mutational dynamic [13].

All these approaches focus on a specific force that shape the network topology (e.g.,
mutational dynamic, selection for function, selection for robustness - either mutational or
functional robustness, ...). However, in a real biological regulation network, all these forces
are at work simultaneously and the network topology results from a compromise between all
the constraints a network and an organism must face. These constraints themselves depend
on the environmental properties: in a static environment, selection for functional robustness
is important while in a randomly (but slowly) evolving environment, the mutational dynamic
and /or evolvability property may be crucial for the organism. Thus, to better understand
how the environment modulates the emergence of specific network properties, an integrated
model is needed in which the appearance of different network topologies during the evolution
depends on the dynamical properties of the environment. Moreover, this model should
respect the main lines of organisms’ evolution. Organisms should own a genetic sequence
that allows a large variety of mutational events, a complex genotype-to-phenotype mapping
that includes a proteome level and enables the evolution of a genetic network inside the
organism. Thus, it should be stratified from a genomic level (the sequence being directly
modified by mutational events while all other organization levels are only indirectly modified
depending on the effect of the random mutations) to a phenotype level (the phenotype
level being the only one subject to selection while the other organization levels are only
indirectly selected depending on their influence on the phenotype). The proteome level
must respect the core properties of regulatory networks’ evolution: the regulation network
is neither directly mutated nor directly selected. The nodes of the networks are the proteins
of the organism but the links result from a complex interaction between the organisms
proteins and its genomic sequence: each protein may or may not interact with the sequence
at specific locations, modifying the transcriptional activity of a promoter and, consequently,
the transcription rate of one or many genes. Each gene is then transcribed at a specific
rate that depends on the intrinsic properties of its promoter and on the influence of the
regulation network (including activation, inhibition and self-regulation - see below). The
protein concentration is then governed by the transcription rate and by a degradation term.
Moreover, the whole transcription/translation process is highly stochastic and it is now
recognized that stochasticity influences the fate of organisms [17].

Following these principles, we have developed the “Regulatory Artificial Evolution” model
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(RAevol). In this model, artificial “digital” bacteria evolve in a variable environment. Along
their evolution, these bacteria acquire genes and evolve a complex genome, a complex regula-
tion network and an adapted phenotype. On an evolutionary time scale, the best individuals
are those which evolve the best mechanisms to face environmental variations. We are then
able to understand which of these mechanisms are efficient depending on the environmental
conditions. In this paper, we first describe the general principle of regulation in prokaryotes
and we expose the mechanisms that constitute the core of our model (Section 2). Then we
precisely describe the RAevol model (Section 3), focusing on the regulation properties. Fi-
nally we present a simple artificial evolution experiment that illustrates the main properties
of the model (Section 4) and discuss evolutionary scenarii that may be tested with RAevol.

2 Principles of Genetic Regulation in Prokaryotes

The principles of transcription regulation were described in the 60’s by Jacob and Monod [24].
Experimenting with FEscherichia coli, they showed that the transcription rate of a specific
genetic sequence depends on at least three factors: its promoter, which is the initial binding
sequence of the RNA polymerase, regulation sites (either activators or inhibitors) where
some specific proteins can bind, thereafter influencing the transcription process, and external
factors such as the concentration of RNA polymerase in the cell. Note that these principles
cannot be considered universal: in eukaryotic organisms, the regulation of transcription
activity depends on many different mechanisms, including chromatin dynamics.

Contrary to eukaryotes, in which promoters are generally inactive in the absence of
transcription factors (initiation complexes are necessary for the transcription to start and a
“naked” promoter will be essentially inactive), prokaryotic promoters and RNA polymerase
can directly interact with one another. In the absence of regulatory elements, a promoter
will have an inherent activity that mainly depends on its quality. When a promoter has a
primary sequence very similar to the consensus sequence, RNA-polymerase can easily bind
to it. The initiation of transcription will then regularly occur and the intrinsic transcription
level will be high (possibly at a maximum level if the promoter has a very good affinity with
the polymerase). In this case, the transcription rate will only depend on extrinsic factors such
as the RNA polymerase concentration and quality or the transcription elongation speed).

If the promoter affinity to the RNA polymerase is weak, transcription will only rarely
be initiated. The quality of the promoter thus determines the transcriptional ground tran-
scription level 3 (or “basal transcription level”, figure 1(a)) [43]. Thus, in the absence of
specific regulatory sequences, genes are transcribed at a rate that mainly depends on their
promoter strength, maximum transcription rate being bounded by global factors such as the
polymerase properties and concentration.

The transcription level can be modified by the action of regulatory proteins. These pro-
teins modify the transcription levels, enhancing or inhibiting gene transcription. In prokary-
otes, this process is mainly used to control energy consumption in order to maintain a good
balance between food availability and energy, and to adapt to environmental changes.

In prokaryotes, inhibition or repression of transcription occurs when a regulatory protein
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inhibits the initiation of transcription or the elongation of the transcript (i.e., repressor
proteins). Activation of transcription occurs when a protein promotes transcription initiation
[48]. When a promoter is activated, its activity can only rise up to a maximum transcription
level (meaning that intrinsically efficient promoters can only be marginally enhanced).

Transcription factors (activation and repression proteins) act by binding to specific re-
gions of the DNA that are near the promoter of the protein they regulate. Repressor proteins
bind to a region called operator (also called inhibitory region) generally situated downstream
from the promoter region. When bound there, a repressor may prevent RNA polymerase
from binding or block its displacement along the DNA thus disturbing RNA elongation (fig-
ure 1(b)). Activator proteins target activator-binding sites are usually located upstream
of the promoter region. They promote RNA-polymerase binding, thus enhancing protein
production (figure 1(c)).

DNA START STOP

enhancer promoter operator terminator

(a) When no proteins bind the regulatory regions the RNA tran-
scription is done at ground level.

RNA Polymerase

DNA START STOP

terminator
enhancer promoter operator transcription
translation

(b) A regulatory protein has targeted the operator. It blocks the
polymerase displacement along DNA and prevents it from tran-
scribing the gene. Thus this transcription factor represses the pro-
duction of the protein associated with this gene.

RNA Polymerase

DNA START SsTOP

terminator
enhancer promoter operator transcription
translation

»

(¢c) A protein binds the enhancer region, favoring the RNA-
polymerase (top arrow) binding and transcription initiation. Since
no inhibitory protein bind the operator, the RNA-Polymerase can
transcribe the gene more efficiently, thus enhancing the protein
production level.

Figure 1: Transcriptional states in prokaryotes.

In prokaryotes, multiple genes often share a single promoter, its operator and its activator
binding sites. These genes are co-transcribed and therefore co-regulated. Such a sequence in
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which several genes share their promoter and regulatory regions is called an operon because
all genes are under the control of a single operator (figure 2).

DNA RNA Polymerase START STOP START STOP
enhancer promoter operator transcription terminator
translation

>

Figure 2: Overview of an operon structure

The best known regulation system is probably the Lactose (lac) Operon which controls
the lactose-glucose metabolism in FEscherichia coli. When Monod experimented with the
effects of combining sugars as carbon sources for E. coli, he found that if glucose and lactose
are provided to the bacterium, it first metabolizes glucose and the colony grows fast. When
glucose is depleted, the bacteria stop growing. After a short period (lag-phase), bacteria
start consuming lactose and the colony grows again. Jacob and Monod later showed that
this adaptive behavior comes from a gene regulation mechanism.

In E. coli, the lactose metabolism is controlled by an enzyme, the 3-galactosidase protein,
that breaks down lactose into two simple sugars (galactose and glucose) and by a permease
protein that transports lactose from the environment to the cell. The former protein also
converts part of the lactose into allolactose.

The (-galactosidase protein is encoded by the LacZ gene and the permease by the LacY
gene. Both genes are grouped on an operon structure, the lac operon, and are under the
influence of the same promoter and the same operator. In fact the lac operon contains a third
gene, LacA, that encodes for a (-galactosidase transacetylase. A fourth gene, Lacl, that is
not on the same operon, completes the system by coding for a repressor of the lac operon.
The repressor protein is able to bind to the lac operator, preventing the transcription of the
operon (figure 3). However, when lactose is present in the cell, it interacts with the repressor
protein, and changes its conformation, preventing it from binding to the lac operon. When,
the operon is no longer repressed LacY and LacZ can be transcribed. Due to the permease,
lactose concentration thus increases, while $-galactosidase is produced and degrades lactose.

The Lacl control is an example of negative control. However, it is not sufficient to explain
the whole behavior of the lac operon. In particular, negative control cannot explain why,
in presence of both glucose and lactose, the operon is not transcribed. Indeed, the operon
is also controlled by a positive loop: the concentration of glucose is sensed by the cell via a
signaling molecule, cAMP; the more glucose in the environment, the lower the concentration
of cAMP. ¢cAMP binds to an inducer of the operon, the CAP protein, that itself binds on
the DNA upstream from the lac promoter. Then, the lac operon is transcribed if and only
if lactose is present in the environment and glucose is not (or no longer) present in the
environment?.

2A lots of secondary mechanisms have been discovered. They slightly modify the behavior of the lac
operon but the two main regulation loops are the negative loop due to Lacl and the positive loop due to
cAMP binding on CAP (figure 3).
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lac promoter lac promoter

lacl promoter Cap Site lac operator lacl promoter Cap Site
Terminator
\ Lac | Lacz LacY LacA ) o Lac |
\
H
H
lac represso*-" lac repress&

+ > > 3

Figure 3: The lac-operon example. When the Lacl repressor is present (because there is
no lactose in the cell), it binds to the operator of the lac-operon, repressing the production
of proteins encoded by LacZ ((-galactosidase), LacY (permease) and LacA ((-galactosidase
transacetylase). If lactose is present, it is converted into allolactose. Allolactose then binds
to Lacl, preventing the Lacl repressor from binding to the operator. When this occurs (-
galactosidase enzyme is produced and degrades the lactose that enters the cell due to the
permease enzyme.

lac operator T
LacZ LacY LacA

allolactose

At the genome level, all the regulation interactions compose a complex regulatory net-
work. Each network node represents both a gene and the protein it codes for; a link between
two nodes means the protein of one node has an influence on gene transcription of the other
node (figure 4). Links can be either positive or negative. For example, in figure 4 protein P3
targets the enhancing region of protein P, activating its production. However, when protein
P, binds to its own operator, it inhibits its own production.

The nature of the transcription network makes its evolution difficult to understand. Since
the links represent complex interactions between proteins and specific genetic sequences,
they cannot be modified independently: when a genetic sequence varies (e.g., due to point
mutation), it perturbs all the interactions between itself and the proteins susceptible to bind
to it. Consequently, the influence of the mutations on the network dynamics is a complex
process where links are modified collectively. That is why the evolutionary dynamics of
regulation networks cannot be fully described by models in which mutations act at a link
level (i.e., by adding/deleting single links or changing the weights one by one).

3 Regulation in Artificial Evolution, the RAevol Model

The RAevol model (from Regulatory Aevol Model) is an extension of the “Artificial Evolu-
tion” (Aevol) model, developed previously in our team to study robustness and evolvability
in organisms [27, 28, 29, 30]. In previous studies, it has been used to demonstrate how
individuals adapt their evolutionary strategy to the rate of mutational events. When or-
ganisms have low mutation rates, they accumulate non-coding sequences. On the contrary,
high mutation rates lead to compact genomes with few and short non-coding sequences.
Furthermore, when mutation rates are very high, organisms cannot maintain a large number
of genes. Thus, they have to adapt their genome structure to be more robust even though
this impairs their capacity to adapt. The Aevol model is well suited for our study because it
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Figure 4: Organization of a regulatory network. A protein P; can bind to a regulatory region
(enhancer or inhibitor site) R;. There, it regulates the transcription of genes G, in the T;
region. In this example G5 and G35 form an operon that is controlled by the R, 3 region.
Both genes are co-regulated. They are positively controlled by G5 and negatively controlled
by Gg.

already contains most of the elements needed to study evolution and individuals adaptation.

In Aevol, the genome structure is inspired by prokaryote DNA structure: it is a circular
double-strand binary string that contains a variable number of genes separated by non-
coding sequences. Each gene is transcribed at a specific rate that depends on the quality of
its promoter. Contrary to most artificial evolution models, function of genes do not depend
on their position on the genetic sequence. Hence, mutations (including point mutations and
genomic rearrangements) can change the genetic sequence as well as the genome structure
(e.g., number of genes, operon structure, ...). Finally, the genetic sequence is translated into
a set of proteins that interact with one another to produce a phenotype (that can be more
or less adapted to its environment).

Although it does not include any regulatory process, Aevol includes all the organiza-
tion levels needed to design an integrated model of genetic regulation. Its behavior is well
characterized and it has been shown to be consistent with bacterial evolution.

3.1 Structure of the RAevol artificial organisms

When designing a model, there is a trade-off between model correctness (regarding the bio-
logical objects it aims to describe) and simplicity. In the case of digital genetics, a complete
description of prokaryotic biochemistry is impossible. Instead, we will define an abstract,
artificial, biochemical framework (an “artificial chemistry” [15]) to be used by the digital
organisms to perform metabolic functions. In artificial evolution, the most popular artificial
chemistry framework derives from genetic programming. It was proposed by T. Ray in the
Tierra program [39] and extended by C. Adami who developed the Avida digital evolution
environment [1, 37]. In Avida, organisms’ genomes are computer programs written in a
simplified assembly language. The computation of organism metabolisms is then straight-
forward: the assembly language is “simply” executed on a virtual computer with a shared
memory.
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We argue that Avida’s artificial chemistry is in fact too straightforward to study the
evolution of regulation networks. In Avida, the genome and the metabolism are structurally
equivalent. There is no real transcriptional process and any mutation on the genetic sequence
has a direct impact on the organism’s metabolism. Avida’s chemistry is in fact closer to an
RNA-World than a DNA-World (obviously, there is no transcription regulation in RNA-
Worlds). Other artificial chemistry frameworks have been proposed and used in digital
evolution experiments [10, 21|. However, none of them are able to describe the complex
interactions between the genome, the proteome and the phenotype that are mandatory to
design an integrated model of genetic networks evolution.

In Aevol (and RAevol), the artificial chemistry is based on a mathematical description
of organism metabolism. Each organism is an abstract, virtual entity, represented as a
mathematical function, y = F (), where = € () represents a specific metabolic function and
y € [0,1] is the efficacy of the organism for this function (more precisely y is the degree of
possibility for the organism to perform this function, see below). Therefore, in our digital
world, € represents the abstract set of metabolic functions that can be performed by the
organisms. To keep the model simple, Q2 is a one-dimensional space, i.e., an interval (actually,
in all our experiments, = [0,1]). This means that, in Aevol and RAevol, a metabolic
function is described as a real number and that all metabolic functions are topologically
organized in ) meaning that there is a sort of “proximity” (similarity) between metabolic
functions. This mathematical description was inspired by fuzzy logic and the theory of
possibility [51]. Following the theory of possibility, F' is a possibility distribution: the space
() can be seen as the set of metabolic functions that the individual can achieve, and I as the
degree of possibility with which a specific function z is achievable by the organisms (a zero
possibility meaning that this function will not be performed while a degree 1 means that
it will actually be performed). F' is formed from the sum of all the metabolic subfunctions
accomplished by the protein, by using operators provided by fuzzy logic theory, where each
subfunction is described as a fuzzy set.

Fuzzy logic provides a set of boolean operators that enables us to combine the different
metabolic functions within an organism (described as fuzzy sets) and to compute the resulting
metabolism. Our metabolic chemistry must be complemented with a DNA/RNA translation
process. DNA and RNA are sequences that do not directly contribute to the metabolism but
can be transcribed and translated into metabolic elements. In our model, the DNA/RNA
chemistry is based on binary sequences: DNA is a binary double-strand circular sequence
and RNA sequences are described as linear binary sequences.

Most evolutionary models are based upon two-level description of organisms: given a
specific phenotype, one has to find an appropriate genetic description and then the genetic
operators that can manipulate the genome. In Aevol/RAevol, we introduced a third de-
scription level: the proteome. In the model, proteins are the knot that tie all the elements
together: genes are sequences that are to be translated into proteins, phenotypes result from
proteins interactions, proteins are the nodes of the regulation network, etc. These inter-
actions occur at different levels of description, which implies that proteins will need to be
described at these different levels (figure 5):
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e From a genetic point of view, a protein can be described as a linear sequence (i.e.
primary sequence) translated from a gene thanks to a genetic code;

e From a metabolic point of view, proteins contribute to the phenotype of the organism.
Each protein is described as an elementary possibility distribution f in  whose pa-
rameters are deduced from the protein’s primary sequence thanks to a functional code.
In turn, the intensity of the protein’s metabolic activity depends on its concentration
in the organism.

e From a regulatory point of view, proteins may interact with some specific locations on
the genome (namely enhancers and operators), thus modifying the transcription level
of genes. A third code will be used to compute the affinity of a given protein with a
given regulatory region (regulatory code).

We consider that the activity of a protein depends both on its intrinsic capability (i.e.
on its primary sequence) and on its concentration in the cell. The concentration is directly
modulated by the transcription activity (i.e., by the number of mRNA). Consequently, a
cell can modulate its protein production either by gene duplication/deletion or by gene
regulation.

Regulation

__ ——- —————

—

.- —
_~ "Regulatory Code : ~.
. N
L
\. Regul atory _)
~— -
\‘-—..______________
R Bl T S E S Rk T P
/‘f' . - ~. .
¢ Genome 3y RNA —)——Fp| Primary
3 Nl R )
s R —J. Yenetic L’
............... ez =T e
Transcriptor = = = " Teal code | ___.-- )
i ) functional .
Translation Met abol i ¢ =T Function —y| Phenotype
Protein

Figure 5: Overview of all the protein roles in the model. Proteins play different roles
depending on the elements they interact with. They are translated from the genome (actually
from mRNA); they can regulate mRNA transcription in addition to contributing to the
phenotype.

In the next section, we will carefully describe the model following the translation process
that goes from the genotype to the phenotype (section 3.2). Since the translation process is
not strictly linear, we will then describe more precisely the regulation model (section 3.3).
Finally, we will describe the global population level in which selection and competition will
actually take place (section 3.4).

3.2 From genotype to phenotype in RAevol

The genome is coded as a double-brand binary string, inspired from the bacteria’s genome.
The first step in genotype-phenotype mapping is genome decoding. The genome sequence
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is parsed to identify promoters and genes. Once genes are located they will be transcribed
and translated to compute the organism’s phenotype.

3.2.1 Transcription: From DNA to mRNA

Both strands of the binary genome are parsed to find the promoter-terminator structures.
A consensus sequence was defined and a genome sub-sequence is considered as a promoter
when its Hamming distance d from the consensus is less than or equal to the maximum
distance d,q;. In all our experiments, we used 0101011001110010010110 (22 bases pairs) as
a consensus sequence and fixed d,,q, = 4. The ground transcription state 5 € [0, 1] (section 2)
of the promoter depends on the similarity between the promoter and the consensus sequence
(equation 3.1).

d
=1-—- 3.1

Note that in the model, all concentrations and rates are given in arbitrary unities. Here,
the transcription rate is considered to be bound by extrinsic factors such as the concentration
and efficiency of the RNA polymerase. The maximum transcription value is the same for all
promoters.

The transcription level is modulated by all the protein-genome interactions that take
place in the regulatory regions (figure 6). In the model we consider two separate regulation
site of 20 nucleotides. The enhancer region (respectively the operator) is situated immedi-
ately upstream (resp. downstream) of the promoter. If a protein is able to bind to one of
these two regions, it modifies the transcription level of the promoter. Therefore, the actual
transcription rate s, (t) of a promoter depends on its ground state (3, on its regulators activ-
ity E;, (activation of the promoter p by the i*" protein) and I, (inhibition of the promoter p
by the i protein®) and on their concentration ¢; (¢) at time t. For example, if a transcription
factor binds to an enhancer region, it stimulates the production of the associated protein
(for a complete description of the regulation model see section 3.3).

Terminator signals are modeled on the stem-loop structure of bacteria p-independent
terminators. Here any sequence of the form abed * x % déba is considered as a potential termi-
nator (where a, b, ¢ and d are binary nucleotides and @, b, ¢ and d are there complementary
bases. * * * denotes any three nucleotides long sequence). Hence, the transcription is pro-
cessed downstream from the end of the promoter to the first stem-loop structure found on
the sequence. The resulting sequence (mRNA) is an oriented single-strand binary sequence.
Notice that a single DNA sequence can be translated several times on the same strand or on
the two complementary strands.

3In the remainder of the paper, we will use indifferently s; (¢), E;; and I;; to denote the transcription rate
(resp. activation and inhibition activity) of promoters and genes. Indeed, we consider that the transcription
of a gene is only governed by its promoter.
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3.2.2 Translation: From mRNA to protein primary sequence

Once an mRNA has been computed, it is parsed to search for coding regions. Each coding
region is then translated into a protein according to an artificial genetic code that asso-
ciates DNA codons with amino-acids (AA). In the model, there are six amino-acids (see
section 3.2.3) so we need eight codons to code for both these AA and the START/STOP
codons (there is no redundancy in our genetic code). The translation process is straight-
forward: the initiation signals are first localized on the mRNA (the initiation signal is the
motif 011011 * * % 000, where 011011 represents a Shine-Dalgarno-Like sequence and 000 is
the START codon?).

From the START codon, the protein sequence is extracted three nucleotides by three
nucleotides (i.e., codon by codon) until the termination signal (STOP codon) is found on the
same reading frame. Each codon is then translated into the associated amino-acid (table 1).
A given mRNA sequence can contain several initiation signals, thus forming an operon
structure. One single sequence can in fact code for various genes (and proteins) if several
initiation signals are found on different reading frames (genes can also overlap due to the
transcription of both strands).

3.2.3 “Folding”: from primary sequence to metabolic activity

In this model, a protein contributes to phenotype by its metabolic activity. The metabolic
activity is represented as a possibility distribution f : Q) — Rt with a standard shape (here
f is a piecewise-linear function — actually an isosceles triangle, figure 6). Hence, it can be
fully described by three parameters:

e The position of the triangle on the metabolic axis (i.e., its mean m € [0, 1]). This
represents the main protein process;

e The height h € [—1, 1] of the triangle. This determines the maximal possibility degree
of the protein (i.e., its activity for its main process). Proteins can either activate
(h > 0) or inhibit metabolic functions (h < 0). The possibility degree of the metabolic
contribution is given by |Al;

e The half-width w € [0, wy,q,] of the triangle. This represents the set of metabolic
process the protein can contribute to. This parameter expresses the protein pleiotropy
(i.e., its ability to achieve different — but related — metabolic processes).

The protein contributes to the set of biological functions ranging from m — w to m + w,
with a maximal efficiency degree h for the function m. The parameters of the protein are

4 Although the precision of the model may seem excessive (e.g., Shine-Dalgarno sequence) one has to bear
in mind that the model must respect some relative probabilities. Here, the Shine-Dalgarno sequence is used
to reduce the probability of initiating the translation process (regarding the probability of finding a sToP
codon). Similarly, in section 3.2.1, the complex structure of terminator sequences was used to ensure that
terminators are relatively frequent but that no short motifs are excluded from mRNA sequences.
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directly computed from the primary sequence of the protein. Once the primary sequence is
obtained from the mRNA sequence, three subsequences of codons are extracted according
to the metabolic function of each amino-acid (table 1). Each subsequence is then converted
into a binary sequence that can be decoded into an integer value (we use the gray code
to avoid Hamming-cliffs difficulties). Finally, the three parameters are normalized in the
appropriate range depending on the length of the binary sequence, to get the final m, w
and h values. Note that a protein can have no metabolic activity if its w or A values
are null (degenerated protein). However, this does not mean that it has no influence on
the phenotype: a degenerated protein can still have a regulatory influence on the genetic
network.

Codon 000 001 010 011 100 101 110 111
Translation function | START STOP - - - - - -
Amino-Acid - - Wo w1 my mq ho h1
Metabolic function - - W W M M H H
Value - - 0 1 0 1 0 1

Table 1: Genetic code in Aevol /RAevol model.

Figure 6 summarizes the overall transcription-translation-folding process. In this exam-
ple, the mRNA sequence is 100111011101111011010. Tt is translated into the mqhiwimq hiwwg
amino-acid sequence. The three parameters are then given by the three subsequences 01 (M
subsequence, length 2), 110 (W subsequence, length 3) and 11 (H subsequence, length 2).
Interpreting theses binary sequences with the Gray code we obtain three integer values (1,
3 and 2). Then, these values are converted into real values according to the length of their
binary sequence (3, 2 and %) and normalized. Finally we get m = 0.33 (m is normalized
between 0 and 1), w ~ 0.02 (w is normalized between 0 and wy,,, = =) and h = 0.33 (h is
normalized between —1 and 1).

1
%)

3.2.4 Biochemistry: from molecules to phenotype

When a protein ¢ is translated from the genetic sequence, its parameters m; and w; are
directly issued from its primary sequence. However, at a time ¢, the actual efficiency H; (¢)
of a protein i depends on its intrinsic efficiency h; modulated by its concentration ¢; (¢) in
the organism (see section 3.3 for the computation of protein concentrations): the higher the
concentration, the higher the metabolic activity. This is simply done by using the protein
concentration as a scaling factor for the metabolic fuzzy set of the protein (H; (t) = |h;|-c; (t)).
Then, the actual possibility set to be used for phenotype computation is an isosceles triangle
of mean m;, half-width w; and height H; (¢).

To compute the phenotype of an organism (i.e. the degree of possibility F' (x) with which
it performs each function z € ) we must combine the individual actions of each protein.
Each protein is represented by a possibility distribution f; (), that can either achieve a set
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Promoter START STOP Terminator
enhancer inhibitor
000 100 111 011 101 111 011 010 001
FUNCTIONAL CODE
TRANSCRIPTION 000 | start TRANSLATION
001 Stop
basal_level 100 MO
101 M1
010 wo MO H1 W1 M1 H1 W1 WO
011 w1
110 HO
111 H1
H=c * h
m gray = 01 m = 0.33 HE. ...

w gray = 110—) w =0.02 —)

h gray = 11 h =0.33

Figure 6: Overview of the transcription-translation-folding process. Once the promoter and
the terminator are located, boundaries of genes (START and STOP sequences) are identified
and the gene is translated into a protein primary sequence. Three subsequences are then
extracted from the primary sequence and decoded to compute the three parameter values
that determine the metabolic contribution of the protein. Notice that the exact activity level
of the protein (H) depends both on its intrinsic activity (h) and on its concentration (c).

of metabolic processes (h; > 0) or inhibit them (h; < 0). The global functional abilities
of an organism are the functions that are activated by at least one protein while not being
inhibited by at least one other protein. More formally, we can use boolean operators to
compute the phenotype. First of all we compute the activated functions F4 and then the
inhibited functions F;. The activated functions F4 are the functions activated by protein 1
(fa,) OR by protein 2 (fa,) OR ...OR by protein n (fa,). The inhibited functions F; are
calculated following the same procedure as F4, by using the functions inhibited by protein ¢
(f1,)- Now the global functional possibility distribution F is equal to the combined possibility
distributions of all the activated functions Fy AND NOT the possibility distributions of all
inhibited functions Fy [28]. In terms of fuzzy sets, this leads to equation 3.2.
F=FsnN E = (UifA,-) N (Uijj) (32)

where F' (respect. Fa, Fy, fa, and fr,) is the fuzzy set corresponding to the possibility
distribution F'() (respect. Fa(), F1(), fa,() and f7,()).

To combine proteins possibility distributions, we use the Lukasiewicz fuzzy operators:

NOT : fxr (x) = 1— fa (2)
OR : fAIUA2 (SL’) = min (fAl SL’) + fA2 (SL’) ) 1) (33)
AND 1 fayna, (2) = max(fa, (x) + fa, (z) = 1,0)

Note that in RAevol, the protein concentration can change over time. Thus, all the fuzzy
sets must be considered as dynamic functions f (¢f). However, in the experiments presented
in section 4, the global phenotype is computed only once, after a transient period.
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3.2.5 Struggle for life: from phenotype to fitness

Our interest in the phenotype of organisms is not the phenotype itself but its adaptation to
the environment. In Aevol/RAevol, the environment is modeled as a fuzzy set of functions
that are assumed to be useful in this ecosystem. We then define a possibility distribution
E(x) that specifies the optimal degree of possibility for each biological function (E(z) can
vary over time, either at an evolutionary time scale or at an individual time scale). Then, we
use the gap g between this optimal function set and the individual phenotype as a measure
of the organism’s adaptation to its environment (equation 3.4 and figure 7).

o= [ 1B@) = F@lde = [ 18G) - P@)ds (3.4

As shown by figure 7, this measure penalizes the under-realized functions as well as the
over-realized ones. Once the gaps of all organisms in the population are calculated, we are
able to compute the organism’s adaptation and fitness. The adaptation of an organism will
then be inversely proportional to the gap (the smaller the gap, the better the adaptation)
and the fitness results from a competition with the other organisms in the population. In
RAevol, the computation in based on a rank-based selection algorithm: the N organisms
are ordered from the least adapted to the best. Then, the reproductive probability P; of an
organism is proportional to its rank r; in the list. Other selection schemes are also available
in the model such as adaptation-proportionate selection or direct exponential-rank-based
selection (see |9, 27, 30] for details).

possibility
degree

A

0.8

environment

0.6

phenotype

P
\

<

0.2

o == T T T —=

0 0.2 0.4 0.6 0.8 biological
function

Figure 7: Measure of an individual adaptation. Dashed curve: environmental distribution
E(z). Solid curve: phenotypic distribution F' (resulting profile after combining all proteins).
Filled area: gap g.
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3.3 The regulation mechanism in RAevol

The main difference between Aevol and RAevol is the explicit modelling of protein concentra-
tion and the modelling of an individual time distinct from the evolutionary time. In RAevol,
the proteins are explicitely produced at a given rate that depends on the regulation network
and degraded at a constant rate. Their contribution to the metabolism is modulated by their
concentration in the cell (section 3.2.4). So, the phenotype of the organisms is no longer a
constant set of metabolic functions (as it was in Aevol). Now it is a dynamic set of functions
that can change during the “life” of the individuals.

3.3.1 Computation of proteins concentration

In RAevol the protein concentration depends on three factors: the promoter quality, the
degradation rate and the regulation activity. The promoter quality gives the ground tran-
scription state 3 (equation 3.1, section 3.2.1). The degradation rate is considered constant
for all the proteins (exponential decay). Now, the regulation activity depends on all the
proteins present in the organism, their concentration and the intensity of their regulatory
activity on the operators and on the enhancers.

So the protein concentration ¢;(t) is governed by the following equation:

ac;
0 i) — o) 35)

where s;(t) represents the transcription/translation rate of protein i at time ¢ and ¢ the
degradation rate (assumed to be constant in the model). The initial concentration of a
protein is given by the promoter ground state: ¢;(0) = ;. We plan to use an initial state
¢;(0) equal to the proteins’ concentration in the mother cell at the time it divides.

As we have seen in Section 2, the transcription process is regulated by transcription
factors that can decrease the transcription rate from the ground state to zero (inhibitors)
or increase it up to a maximum value that depends on extrinsic factors (mainly the RNA
polymerase). Furthermore, the transcription factors’ activity depends on their ability to
bind to the DNA molecules at specific locations (enhancers and operators). In RAevol, this
regulation process is modeled in two steps: first, we list the regulation capacities of all the
proteins on all the promoters (activation and inhibition). This gives us the topology of the
regulation network. Then, given the topology and the current concentration of each protein,
we are able to compute the regulation activity exerted on each node (i.e., on each gene), and
hence to deduce the transcription rate of each protein.

Here, we consider the simplified situation in which the transcription factors activities are
purely additive. Therefore, at time ¢ the global activation exerted on the promoter® i is given

5For sake of simplicity, we consider here the case of a one-to-one association between promoters and genes.
Thus, the promoter i is supposed to govern the transcription of the gene i. In the model — and in the real
life — the association is not one-to-one, e.g., in case of operon structures.
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by:
Ai(t) = Z ci(t)Ajr (3.6)

where A;; represents the positive regulation activity exerted by the protein j on the promoter
I (see next section for the computation of the individual regulation activities). Similarly,
the whole inhibition activity is given by the sum of the individual inhibitions modulated by
the proteins concentration:

L(t) = ex(t)us (3.7)

Then, the transcription activity is given by a Hill-like kinetic [36] scaled in order to respect
the basic principles of prokaryotic transcription (see section 2): without any regulators, the
promoter is transcribed at the ground state (5. It can be up-regulated to a maximum level
(that also depends on the strength of the promoter) and down-regulated to zero. The general
equation that describes the transcription rate over time is defined as:

0= (yra) (00 (-9) () 09

where n and 6 are constant coefficients that determine the shape of the Hill-function (in
simulations presented in section 4, we used: n =4 and 6 = 0.5).

3.3.2 Computation of the binding properties

The mechanisms that regulate gene expression in prokaryotes are very diverse and most of
them are only slightly characterized. Therefore, a precise modelling of regulation is beyond
the scope of a digital evolutionary model. In RAevol, we chose to describe the regulation
activity in a simple way: as described in section 2, in a first approximation one can consider
that the regulatory property of a transcription factor depends on its ability to bind to the
DNA at specific locations (binding sites). Moreover, the contribution of the transcription
factor to the promoter activity is strongly dependent on the position of the binding site
relative to the promoter.

In the model, each promoter is surrounded by two binding sites of 20 base-pairs (i.e.,
20 bits). The upstream site is the enhancer and the downstream site is the operator. Each
protein has a probability to bind a given site that depends on its affinity with this site. We
will obviously not be able to compute or model a “real” protein-DNA affinity; what we need
is a procedure that (i) gives the capacity of any protein to bind to any sequence of 20 bits;
(ii) is relatively independent of the metabolic capacity of the protein (i.e. a protein can
have a regulatory activity while having no metabolic activity, two proteins with the same
metabolic activity can have different regulatory capacities, etc.), (iii) enables us to fix the
probability that any protein can work as a transcription factor and (iv) is simple enough to
be computed rapidly and therefore to be used in an evolutionary model®.

6In a population of N organisms,having a mean number of genes of M and whose evolution is simulated
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To compute the affinity of a protein with a given binding site, we align the primary
protein sequence with the binary sequence of the binding site. Since the artificial chemistry of
proteins and DNA are not compatible (the “proteome” chemistry is based upon amino-acids —
wo, w1, hg, . .. —and metabolic fuzzy sets while the DNA chemistry is made of bit sequences),
the alignments are evaluated thanks to an affinity matrix (figure 8). In this matrix, each
cell represents the affinity between a specific animo-acid and a regulatory subsequence of 4
bases. Thus, given the size of the binding site, the affinity will be the maximum alignment
value for all possible subsequences of five amino-acids in the protein primary sequence.

For a given protein j and a given binding site I (of protein i), the k possible alignments
of the amino-acid sequence on the binding site are computed (e.g. for a protein of length [,
k =1—4). For each alignment, we compute the local affinity A,;[k] thanks to the affinity
matrix (figure 8). The protein affinity with the enhancer is then given by A;; = max, A;/[k].

Ao Ay Wa Wi Hq Hy Start
DNA enhancer promoter 0000 | 0.621294 0.797917 0.472641 0.803376  0.049579 0.074509
0 8

--------------------------- “49TRT  0.955 5 48365 ;e
...1101110001 |0100 1001 0011 0001 0110 EeNNeNNeRRNe[oNRRNJoNNe ok eARNe} 01001001110 .... PO el Odeilnl gy’ fasdad oo @ Salbee

0010 | 0.051620 0.924256 0.010539 0. 79 0.000000 0.725215

--------------------------- 0011 0.511176  0.000000 @ 0.493761 0.528880 0.452844
T T T e 0100 @ 0.000000  0.508549 U003 0.537400 0.315913  0.877033

A0 HL W1 M1 AL WO Al> > 0101 | 0337670 0.268657 0.000000 0.904534 0.853420 0.974473

0110 | 0.031969 @ 0.247085  0.019950 0.386009 0.312712  0.000000

0111 | 0.387487 0 6 0.626080 0.754808 0.121314  0.000000  0.000000

1000 | 0301194 0.306006 0.326490 0.828298 0.000000 (357495 0.693670

1001 | 0.543644 0.000000 0.626592 0.506510 0.136002 0.000000

1010 | 0.295707 0.220555 0.331294 0.000000 0.199195 0.723339 0.000000
1011 | 0.694573 0.393785 0.828505 0.994704 0.000000 0.339311  0.000000
1 h 1100 | 0.000000 0.623747 0.835268 0.744280 0.935072 0.711471 0.889950

A [ []_:| = H |' 4".-[4. ;1 SE0 1101 | 0.114172 0214537 0.969292 0.402094 0.000000 0.000000 0.453586
J i} LR TEY 1110 | 0.655020 0.884130 0.794194 0.649743 0.623270 0.000000 0.667005
1111 | 0.863602 0.015699 0.623551 0.508015 0.000000 0.959038 0.917856

Figure 8: Affinity calculation. In this example protein j is aligned on the enhancer region of
promoter /. The first local affinity A;; is computed as the multiplication value of the table
entries corresponding to each pair AA /subsequence. We can compute A;;[1] ~ 0.0000. The
protein is then shifted leftwards to compute A;7[2] ~ 0.01998 and A;;[3] ~ 0.00865. Then,
the affinity of the protein on this enhancer site is given byA;; = maxy, A;[k] ~ 0.0.01998.
This value is to be reported in equation 3.6 to compute the transcription rate of the promoter
i.

Using this simple alignment procedure, we are able to define the distribution of regulation
by choosing the values in the affinity table. In our experiments, values in the affinity table
are randomly chosen following a uniform law between 0 and 1, with the exception of a
fixed proportion of cells o that are filled with null values. The parameter o enables us to
increase the proportion of null regulation weights (figure 9). Thus we are able to indirectly
fix the mean connectivity degree in our networks. Moreover, in RAevol, we actually use two
different affinity matrices M4 and M;. The former is used to compute proteins’ affinities
with enhancer sites, the latter with operator sites. This allows RAevol users to set different
proportions between spontaneous activation and inhibition; experimenters can use either

during T generations, the binding computation procedure will be executed N*M*T times. In the experiments
presented section 4, N = 1000, M ~ 40 and T > 20000.
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identical or different matrices depending on whether they want the spontaneous proportion
of inhibitory links to be higher or lower than the proportion of activation links or not.
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Figure 9: Distribution of regulatory links for random binding sites and random protein of
21 Amino-Acids. Left: distribution for a matrix filled with uniform random values (a = 0).
Right: distribution for a matrix with 50% of null values (o = 0.5).

3.4 The Evolutionary Process

In previous sections, we have precisely described the organisms in RAevol. These organisms
are subjected to an evolutionary process. In a fixed population, organisms are evaluated
thanks to the selection procedure (section 3.2.5). Then, a biased random process is used
to determine which of these organisms will reproduce. The reproduction process is based
on DNA replication. During this process the DNA can undergo replication errors. These
errors (mutations) are governed by operators that are directly inspired from prokaryotic
reproduction. Genomes can undergo seven different kinds of mutations: three of them being
point mutation, and four large chromosomic rearrangements.
The three point mutations are the switch and the two INDELs:

Switch: A randomly chosen nucleotide switches from 0 to 1 or 1 to 0;

Insertion: A random position is chosen in the genome and a small random sequence (1 to
6 bits) is inserted at this point;

Deletion: A random position is chosen in the genome and a small sequence (1 to 6 bits) is
deleted at this point.
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The four chromosomic rearrangements are the following:

Duplication: Two positions are randomly selected in the chromosome. The segment be-
tween these two positions is copied and inserted at a third random position;

Translocation: Two positions are randomly selected in the chromosome. The segment
between these two positions is excised and inserted at a third random position;

Large deletion: Two positions are randomly selected in the chromosome. The segment
between these two positions is deleted;

Inversion: Two positions are randomly selected in the chromosome. The segment between
these two positions is inverted (i.e., the sequences are conserved but they move from
one strand to the other).

These mutations affect the genome, and some of them change the genome size (indels,
insertions, deletion, duplications and large deletions). Indirectly, they can modify the reg-
ulatory network topology by either duplicating/deleting genes or promoter regions. They
can modify the affinities between transcription factors and binding regions: when a muta-
tion occurs in the regulatory region of a promoter, the protein’s affinities with this region
can change. Reciprocally, when a gene undergoes a mutation, the primary sequence of the
protein it codes for may change, thus affecting one or both of the protein functions: its
regulatory abilities and its metabolic activity.

4 RAevol in action: Scenario and results

The main interest of digital organisms is that they enable practitioners to perform evolu-
tionary experiments on which they have very good control [38, 2|. To make proper use of
such models, one has to follow an experimental procedure in which (i) a testing environment
is carefully designed, (ii) some parameters of either the environment or the organisms are
modified, (iii) the experimenter lets the evolutionary process run for many generations (typ-
ically thousands of generations in digital evolution) while carefully gathering information
about the evolutionary process and (iv) the experimenter interprets the results as a function
of the parametric differences. Thus, although completely artificial, digital evolution is closer
to experimental evolution than to mathematical evolutionary models such as population ge-
netic models. It thus makes it possible to test hypotheses that would be out of reach of
mathematical models because they cannot sufficiently express the complexity of the system.

In this section, we present a typical experiment with the RAevol model. We will first
detail the experimental setup and then compare nine evolutionary experiments (three types
of organisms times three different seeds for each one). Finally, we describe the structure of
one of the regulatory networks obtained at the end of the evolutionary process.
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4.1 Experimental setup

To test the ability of RAevol organisms to develop an efficient regulatory network, we de-
signed a scenario in which, during their lives, the individuals must alternatively achieve two
different sets of metabolic functions. In the first set, individuals have to perform three groups
of metabolic functions, modeled as three lobes in the € space (the exact distribution of pos-
sibility of the environment, F;, is presented on figure 7). When initialized the organisms
phenotypes only depend on the basal level of their promoters. After a short transient period
(10 simulation time steps), the regulatory networks are very likely to have changed the pro-
tein concentrations (see figure 20(b)). It is only at this stage that the organisms are tested
for the first time. At time 10, the phenotype is compared to F;, resulting in the first gap
g1. Then, the environmental reference is changed (removal of the right lobe, environment
E,, figure 10) and a signaling protein is sent to the organisms. This protein (whose sequence
is 1 hywohomywohimyhg) has no metabolic function (because it contains no w; amino-acid)
but is long enough to be able to bind to the DNA and hence have a regulatory activity. We
then wait for a second transient period (10 steps) and the phenotype is compared with Es,
resulting in a second gap value go. The fitness of the organism is then computed on the
basis of the mean gap value %(91 + ¢2). Given the difference between E; and Es, we can
approximate that, for an organism without regulation abilities (NULL context, see below),
the minimum gap will be given by half of the difference between the two environmental
distributions: ¢, >~ 0.011

According to this scenario, organisms can develop different strategies depending on their
ability to tune their transcription levels. The simplest strategy would be to develop strong
operators with a high affinity with the signaling protein. If they are associated with the
promoters of the proteins in the right side of the metabolic space (proteins with metabolic
functions x € Q, where x is close to 1), these operators can repress the transcription of these
proteins during the second part of the organisms’ “life”. A more elaborate strategy would be
to develop a complex regulation network, e.g., to activate some proteins (possibly without
any metabolic function) that will themselves inhibit others. Such a network could accelerate
the metabolism response to the signaling protein. Finally, if the organisms do not succeed
in developing a regulation network, they can stabilize on the mean value of the metabolic
process in order to minimize their metabolic error.

We simulate the evolution of populations of 1000 organisms in this environment for
25000 generations (organisms are initialized with random genomes of 5000 bp each). Each
individual dynamic is simulated during 20 time steps in order to compute g; and go. Then,
the selection process is used to determine which organisms will reproduce and how many
offsprings they will have. New individuals will replace the old population, with the population
size remaining constant. During the mutational process, organisms undergo mutations with
a fixed mutation rate of 107® mutations per base pair (in these experiments, the mutation
rate is the same for all types of mutations including point mutations and rearrangements).
Finally, we tested three different types of organisms characterized by their affinity matrix M
(the same for both activation and inhibition):
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Figure 10: Objective functions to reach during individuals life. In the first stages, three
metabolic functions represented by the sum of three Gaussian functions (one being negative).
The arrival of an external protein into the cell must be taken into account by the organisms
to modify their behavior. The new objective function is a set of two metabolic functions,
represented by the sum of two Gaussian functions(one being negative).

NULL: these organisms are used as a reference to test the effect of the regulation process.
In the NULL organisms, the affinity matrix M is filled with null values (v = 1. So, the
NULL organisms are not able to regulate their transcription activity (i.e., the genes are
always transcribed at their basal levels).

FULL: in the FULL context, the affinity matrix is initialized with random values in [0, 1]
(uniform sampling with o = 0). The resulting distribution of regulatory links is shown
on figure 9(a).

HALF-HALF: in this context, the affinity matrix values are computed in the same way as
in the previous one except that half of the entries are filled with a null value (o = 0.5).
Thus, the affinity values are generally lower than in the second context and a larger
proportion of protein/binding sites pairs have a null affinity (figure 9(b)).

For each one of these contexts, we performed three different simulations using three dif-
ferent seeds. Indeed, since the evolutionary process is mainly governed by random events,
every experiment must be conducted several times in order to distinguish between the re-
producible effect of selection (either direct or indirect) and the effect of drift and contingent
events.

4.2 Evolutionary process unfolding

During the 25000 generations of a simulation, the organisms progressively acquire genes that
enable them to enhance their metabolic performances (figures 11(a) and 11(b)). During
the first generations, organisms acquire “essential genes”, i.e., genes with a large metabolic
contribution, and hence, the gap g of the organisms quickly decreases. Then, organisms
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continue to increase their performances but at a lower speed. During this second phase,
organisms adapt to their environment either by acquiring new genes (figure 11(b)) or by
optimizing the metabolic contribution of the existing ones. The optimization of the metabolic
contribution of existing proteins implies an increase in the average gene length. Indeed as
a protein’s contribution results from the normalization of the values given by its primary
sequence, a greater level of precision can only be achieved by an increase in the length of
this sequence: in the model protein parameters, m, w and h, need longer sequences to be
more precise (see transcription process in Section 3.2.3). It is worth noting that, in RAevol,
as in Aevol, genes are acquired thanks to a duplication-divergence process [27, 29|.
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Figure 11: Adaptation values for the best individual for the three contexts (three seeds for
each context). Adaptation value is the gap between the objective function and the metabolic
function achieved by organisms (i.e. the reverse of fitness).

4.2.1 Evolution of the genetic structure

The only difference between the types of organisms tested in our experiments is the pro-
portion « of non-null values of the affinity matrix, which ranges from zero (NULL context)
to 1 (FULL context). Analysis of different genomic characteristics (genome size, number of
genes, mean gene length) and the main phenotype parameter (the gap) clearly shows that
the density of the affinity matrix has a strong influence on the course of evolution. Sur-
prisingly, the worst organisms are not the NULL ones (i.e., organisms that are not able to
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regulate their gene transcription) but the FULL ones (figure 11(a)). This can be easily un-
derstood when looking at the evolution of the genetic structure (figure 11(b)): in the FULL
context, the genomes contain fewer genes than in the two other contexts. In a previous
experiment conducted with a simplified version of the model, we have already shown that,
in the FULL context, the individuals have a poor evolvability due to the over-connectivity of
the regulation network [40, 41]. The high density of the affinity matrix results in a highly
connected regulation network (figure 9(a)). Any perturbation of a protein and/or binding
site has a high impact on the organism’s phenotype (because it systematically affects sev-
eral genes). Moreover the metabolism and the genetic network are strongly linked, making
the equilibrium between them very unstable and thus lowering the organisms’ evolvability.
It is worth noting that this effect would not be visible in classical evolutionary models of
regulation networks because, in these models, the mutations act directly on the regulatory
links allowing the organisms to remain evolvable by providing them with the possibility to
modify the regulatory links independently of one another.

When looking at the genome size we cannot conclude that the density of the affinity
matrix influences the genome size (figure 12(a)). However, if we compare the number of genes
and the mean size of the genes in the different contexts we can see that FULL organisms are
less compact, having more non-coding regions (figure 12(c)). Using the Aevol model it has
been previously shown that these parameters directly depend on the mutational robustness
of the organisms [30, 29]. Therefore, we now need to test the robustness of the evolved
organisms by artificial mutagenesis experiments’.

While the FULL organisms are the worst ones, the best ones are not the NULL ones but the
HALF-HALF ones. It seems that the mid-density of the affinity matrix gives the regulatory
network the ability to evolve in a relatively independent way. While in the two other contexts
(FULL and NULL) the number of regulatory links is either null or directly determined by the
number of genes (roughly equal to the square of the number of genes), which means the
gene network is either fully connected or not connected at all, in the HALF-HALF context the
regulatory network is only partially connected. This provides a greater degree of freedom for
the organisms to evolve their regulatory network. Figure 13 shows that, in the HALF-HALF
context, the number of links evolves continuously while, in the FULL context, it undergoes
long stationary phases, resulting in long period of stasis in the organism’s fitness.

As we can see in figure 12(d), the number of non-metabolic proteins increases over time.
These proteins cannot achieve metabolic functions but they are able to develop regulatory
tasks: they can bind to regulatory regions and modify the transcription of associated proteins.
They can be considered as transcription factors (TF). Note that TFs mainly appear in the
HALF-HALF context. The acquisition of transcription factors is one of the signs that indicate
the creation of a complex regulatory network.

"In these experiments, an organism is submitted to a repeated mutagenesis process in order to measure
the fitness loss.
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Figure 12: Evolution of the genome structure for the best individual of the population. The
non coding regions are considered as the genomic sequences between a terminator and the

next promoter.

4.2.2 Evolution of the regulation network

Figures 13, 14, 15 and 16 present a global overview of the evolution of the genetic network.
While figure 13 shows that links are regularly added to the network (mainly thanks to a
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gene duplication divergence process), either the mean link weight (figure 14) or the link
weight histograms (figures 15 and 16) are mainly stable. Moreover, in the case of FULL
organisms, the link histograms are close to random distributions (figure 15 left columns),
showing that, in such conditions, the link weights are mainly contingent. In the case of
HALF-HALF organisms, distributions are biased toward null values (figure 16), with a few
strong links.
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Figure 13: Number of activation and repression links in the regulatory network for the best
individual at each generation for all the simulations.

The organization of the regulation network appears more clearly when one looks at the
interactions between the signaling protein and the rest of the network (figures 17 and 18).
Both histograms (either activation of inhibition) are clearly different from the random ones:
for the FULL context, the signaling protein has a strong inhibitory influence over many
nodes in the network (figure 17, bottom line) while having only a little activation influence.
This shows that, in the FULL context, the evolution has mainly selected direct influence of
the signaling protein over the network. This is consistent with the previous results: since
the network is only very slightly evolvable, the organisms were not able to develop a system
involving the internal dynamic of the network to regulate their phenotype. The only solution
is to use the external signal directly in order to regulate the transcription (even though the
fitness curves show that this regulation is not very efficient, figurell(a)).

On the contrary, in the HALF-HALF context, the signaling protein is only locally connected
to the network (figure 18). Therefore, the genetic network must transmit its influence toward
all the proteins whose transcription rate needs to be modified during the organism'’s lifespan.
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Figure 14: Average weight of activation and repression links in the regulatory network of the
best individual at each generation for all the simulations.

This is probably the reason why, in this context, the networks are composed of a larger
number of enhancers than inhibitory links. Figure 11(a) shows that the result is indeed very
efficient since HALF-HALF organisms have the smallest gap, hence the best fitness.

These results indicate that, in the FULL context, organisms have only developed a very
simple (and almost inefficient) regulatory network. On the contrary, HALF-HALF organisms
seem to develop a complex network. Nevertheless these histograms are not sufficient to
understand the mechanisms of these complex networks, and so we will need to study their
properties more precisely. To do so, we studied the final regulatory network of the best
individual for the best simulation in order to see how it is structured. Results are presented
in the next section.

4.3 Analysis of a particular network

After 25000 generations, the HALF-HALF context presents a very efficient behavior: the gap
value of the best individual is 0.0069 (whereas, without any regulation, the best possible gap
is ~ 0.011). It has a long genome (~ 10100 base pairs) with 51 genes (10 of them being
transcription factors) and has developed a complex regulation network (figure 19).

Network dynamics have very good performance, as we can see in figure 20(a): a few time
steps are enough to inhibit the subset of metabolic functions and to stabilize its behavior.
In figure 20(b) we can see that after the arrival of the external signal, it only takes a few
time steps to inhibit protein production and stabilize the network.
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Figure 15: Distribution of interactions in the genetic networks in the FULL context (mean
value for the three seeds). Top: Activators. Bottom: Inhibitory links. The first column
presents the distribution obtained for random binding sites and random proteins of 21 amino-
acids.

This network is highly connected: 47% of the links are active (791 active links vs 1688
possible links) — either positive (486 links, 56%) or negative (406 links, 44%)®. However, a
large amount of these connections are still weak (data not shown) although some very active
links have appeared in the network (mainly negative ones). In this experiment, the organisms
have to adapt their metabolism when a signaling protein is introduced in the “cell”. This
protein can influence the transcription rate of genes either directly (by binding to one of its
promoter’s regulatory regions) or indirectly (by involving other intermediate regulators, i.e.
transcription factors, in a complex regulation process). Indeed the regulation network does

8Note that the total number of links is not equal to the sum of enhancer links and inhibitory links. If
a protein binds to both the operator and the enhancing region of a single promoter, we only count one
regulatory link.
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Figure 16: Distribution of interactions in the genetic networks in the HALF-HALF context
(mean value for the three seeds). Top: Activation. Bottom: Inhibition. The first column
presents the distribution obtained for random binding sites and random proteins of 21 amino-
acids.

not need to be complex in order to be efficient.

In order to better understand the behavior of the regulation network, it is interesting to
analyze the motifs that have emerged in the network [4, 26]. Table 2 shows the proportion
of auto-regulation motifs in the evolved network. Clearly, the network has acquired more
Positive Auto-Regulation (PAR) loops than Negative Auto-Regulation (NAR) ones. Yet, it
has been demonstrated that Positive Auto Regulation slows down response time, decreases
stability and increases variability [8]. Thus PAR can be positively selected. However the
predominance of PAR may also be an indirect effect of the slightly higher proportion of
enhancer links. Further analysis is therefore needed to distinguish these two hypotheses
(selective hypothesis vs. neutral hypotheses) from each other.
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Table 2: Number of auto-regulation motifs in the network at generation 25000

Looking at two gene motifs (table 3), we can see the overrepresentation of Negative
Feedback Loops. As discussed above for Auto-Regulation loops, this can be either a selective
effect or a neutral effect. We now have to decipher between these two hypothesis.

Finally, when studying the regulatory network (figure 19), we have been surprised to

find activation links from the signaling protein to a few nodes in the network.
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Figure 18: Distribution of the influence of the signaling protein over the nodes of the genetic
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Bottom: Inhibition. The first column presents the distribution obtained for random binding
sites.

Positive | Negative | Positive

/ Activation | Inhibition | Feedback | Feedback | Feedback
Loop Loop Loop

0 0|0V |cO|dPIgDAD
620 303 227 38 64 23

Table 3: Number of binary motifs in the evolved network at generation 25000

when looking more precisely at the external protein links (Figure 21(a)) one can see that the
signaling protein activates genes 1 and 22 and that protein 22 also inhibits gene 1. The whole
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Figure 19: Regulatory Network of the best individual (HALF-HALF context). This image was
generated with Pajek (Program for Large Network Analysis and visualization developed at
Faculty of Social Sciences, Ljubljana). Inhibitory links are represented by dashed lines.

structure thus constitutes an incoherent Feed Forward Loop of type-1 (it is said incoherent
because one side of the loop activates gene 1 while the other side inhibits it). This kind of
loop has been well characterized in bacterial regulators (as found in E. coli) and it can carry
out a response acceleration in dynamical functions [34].

Protein 22 can be considered as a transcription factor because it doesn’t have any
metabolic activity (the parameters of the protein are: m = 0.28,w = 0.00 and h = —0.11).
The protein is weakly regulated (enhanced by protein 14 and the external signal; inhibited
by protein 31). It also enhances the activation of 6 proteins and it inhibits five proteins,
constituting a Single Input Modules (SIM) motif [4] (figure 21(a)). The architecture formed
by the external protein, protein 22 and proteins in the SIM motif has been found by Cordero
as the forerunner of FFL motifs avalanche [13].

Nodes 1 and 22 seem to act as sensory signal nodes. Protein 22, in particular, has
mainly output links. Tt transmits the external signal (triggered by the external protein) to
a subset of the other proteins. Protein 1 is a source of enhancing links but it only receives
inhibitory influences. Even if this protein is enhanced by the external protein, it will be
quickly repressed by incoming inhibitory links so its influence as an enhancer will be limited.
This behavior can be seen in figure 21(b): when the external signal arrives to the cell, protein
1 is strongly enhanced but only a few steps later it is repressed, reaching to a steady state
with a slightly higher concentration than before the arrival of the external signal.
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Figure 20: Kinetic behavior of regulatory network. Best individual at generation 25000

These first experiments show that the RAevol model is able to produce “viable” regulation
networks. However they also show that the high connectivity of the evolved regulation
networks makes them very difficult to analyze. Hence, and as we are now aware of the
influence of the affinity matrix on the connectivity of the resulting network, we can use these
parameters to obtain more sparsely connected networks.

The evolutionary design of regulatory networks opens a lot of experimental directions.
We are highly interested in investigating the mutational robustness of the networks: in
RAevol, the mutational process is biologically realistic (i.e., mutations act at the genomic
level rather than the regulatory level). Therefore, this model is particularly appropriate to
better understand the complex relationship between the robustness of the organisms and the
structure of their regulation networks.

Alternatively, we plan to extend the model by introducing stochasticity in the transcrip-
tion process as well as stochasticity in the environment. We are particularly interested in
the topology of the regulatory network: since the presence of Negative Auto-Regulation can
reduce cell-cell variations, it can prevent the regulation network transmitting the stochastic-
ity from the transcription process to the organism phenotype. On the contrary, variability
can be enhanced by the creation of Positive Auto-Regulation (PAR) motifs [50]. Thus, we
expect the number of PAR/NAR motifs to depend on the stochasticity of the environment:
in highly stochastic environments, PAR, should be positively selected for the phenotype to
be stochastic too (bet-hedging). On the contrary, in a stable environment, NAR, should be
positively selected in order to reduce the effects of stochastic transcription.
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Figure 21: Overview of the enhancing influences of external protein on the elements of the
network

5 Open Issues and Future Work

RAevol is an integrated evolutionary model that provides experimenters with an insight to
the complex adaptation mechanisms that prokaryotic organisms can adopt to face changing
environments. It models the main features of the evolution and regulation of prokaryotes
(although obviously in a very simplified way). In particular, it respects the different levels of
organization of bacterial organisms as well as the interaction between those levels. When used
to simulate the evolution of bacteria in a simple periodic and synchronized environment it
proved to be a very valuable tool. Indeed the organisms not only developed simple strategies
to regulate their metabolism but were also capable of building complex networks that allowed
them to react efficiently to external events. However further investigation are needed to
confirm these results. The behavior of the model itself also needs to be studied carefully: in
this paper we showed that the mean connectivity of the regulation network of an individual
has a strong influence on its evolutionary fate. We are now looking forward to conducting
experiments with more sparsely connected networks (introducing more null values into the
affinity matrix) in order to obtain biologically more plausible networks.

In the experiments presented here, the conditions our organisms had to face were quite
simple. We now plan to test our model in more complex situations, in particular with non-
synchronized environments where the optimal phenotype will vary in a more complex way.
We suppose that, in such conditions, the organisms will develop more sophisticated regula-
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tory networks, which would allow us to conduct a more in-depth study into the transcription
motifs. In this paper we analyzed the first and second degree motifs but could go no further
because of the high connectivity of the network. So, less connected networks would allow us
to study the emergence of third degree motifs, FFLs, SIMs, ...

We will also analyze the topological characteristics of the networks: will they be scale-free
[7]? will they adopt small-world [46] structure? Or will they have different characteristics
depending on the specific features of the environment?

An open question is the relationship between the regulation network and the mutational
robustness of the organisms. Does the regulation network enhance or reduce the organisms’
robustness? Our firsts results suggest the latter but it clearly needs more investigation.
A possible experiment would be to compare regulation networks evolved under different
mutational constraints (e.g., different mutation rates).

Regarding the development of the RAevol model, our next step will be to introduce
stochasticity in the transcription process and in the environment. From the work of Kussel
and Leibler [33], we know that phenotypic noise may be selected in variable environments.
Yet, it is an open question whether the regulation network will adopt a different structure
depending on the necessity to amplify (or to reduce) the intrinsic transcription noise in order
to adapt the phenotypic noise to the environmental conditions.
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