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eAbstra
t. Studying the evolutive and adaptative me
hanisms of prokaryotes is a 
ompli-
ated task. As these me
hanisms 
annot be easily studied �in vivo�, it is ne
essary to 
onsiderother methods. We have therefore developed the RAevol model, a model designed to studythe evolution of ba
teria and their adaptation to the environment. Our model simulates theevolution of a population of arti�
ial ba
teria in a 
hanging environment, providing us withan insight into the strategies that digital organisms develop to adapt to new 
onditions.In this paper we des
ribe the prin
iples and ar
hite
ture of the model, fo
using on theme
hanisms of the regulatory networks of arti�
ial organisms. Experiments were 
ondu
tedon populations of arti�
ial ba
teria under 
onditions of stress. We study the ways in whi
horganisms adapt to environmental 
hanges and examine the strategies they adopt. An anal-ysis of these adaptation strategies is presented and a brief overview was proposed 
on
erningthe patterns and topologi
al 
hara
teristi
s of the evolved regulatory networks.Key words: evolution, regulatory networks, modelling, motifs, adaptation me
hanismsAMS subje
t 
lassi�
ation: 9204, 92D10, 92D15
1 Introdu
tionProkaryote organisms are very diverse, living in di�erent environments and developing vari-ous abilities. Ba
teria are found in every e
osystem � some being 
olonized only by mi
ro-organisms � illustrating the impressive adaptation 
apabilities of prokaryotes. They 
an be1Corresponding author. Email: guillaume.beslon�liris.
nrs.fr27Article available at http://www.mmnp-journal.org or http://dx.doi.org/10.1051/mmnp:2008054
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Y. San
hez-Dehesa et al. Modelling evolution of regulatory networksfound, for example, surviving anaerobi
ally in a
id elements, in symbiosis with other or-ganisms (e.g., Bu
hnera aphidi
ola, whi
h lives in symbiosis with aphids, providing essentialamino a
ids for their host), or even in the human intestine where Es
heri
hia 
oli favorsdigestion and absorption of nutrients.Ba
teria are good examples of organism adaptation. They are able to rea
t to variationsin their environment at di�erent levels: ba
teria strains 
an adapt to major environmental
hanges by a darwinian evolutionary pro
ess and individual ba
teria 
an adapt to short-term
hanges in their environment. To a
hieve this kind of adaptation at di�erent levels, ba
teriahave developed a large repertoire of strategies that may themselves be optimized dependingon the 
hara
teristi
s of the environment: stability, periodi
ity, sto
hasti
ity, 
ompetition. . .Although a lot of di�erent strategies (e.g. evolution, regulation, bet-hedging, adaptivemutation, gene ampli�
ation, Baldwin e�e
t) have been identi�ed and are relatively well
hara
terized individually, we only have a very partial insight into how they 
ombine withone another: in an idealized environment, one 
an identify the optimal strategy and math-emati
ally �nd the optimal parameters. However real environments are far from ideal andthere will generally be a wide range of viable adaptation strategies, 
ombining e.g., regu-lation and evolution, evolution and bet-hedging, regulation and gene ampli�
ation or any
ombination of these. For instan
e, if the environment 
hanges slowly, ba
teria may haveenough time to mutate and darwinian evolution 
an be su�
ient to adapt to new 
onditions.But, they may not be able to 
onserve 
omplex regulation strategies sin
e mutations qui
klydegrade regulation me
hanisms when these are ina
tive [14℄. Now, if the environment variesa little faster, evolution 
an be less e�
ient than regulation, provided that ba
teria are ableto sense their environment at an a

eptable 
ost and that environmental 
hanges show someregularities (e.g., swit
hes between two di�erent energy sour
es as in the well-known la
operon). On the 
ontrary, rare but unpredi
table events put organisms under stress and areknown to promote spe
i�
 adaptive strategies su
h as the development of mutator strains[44℄. All these di�erent strategies imply plasti
ity at di�erent levels: geneti
, metaboli
,physiologi
, phenotypi
, all of whi
h are involved in 
omplex intera
tions.These adaptation me
hanisms help ba
teria to adapt to 
hanging environments. Howeverea
h has its own tempo, ranging from slow (i.e., darwinian strategy) to fast (i.e. sto
hasti
perturbations leading to phenotypi
 variability). In the middle, geneti
 regulation enables afast dynami
 adaptation, enabling 
ells to rea
t to 
hemi
al signals. Regulation is the mainme
hanism to provide adaptive behavior at a metaboli
 level. However, regulation never a
tsalone, it is obviously 
ombined with evolution: geneti
 variations, gene dupli
ation, gene lossor 
hromosomal alterations [19℄ 
onstitute a vast repertoire of variations that 
an be used bya ba
terial strain to adapt to its environment, but that 
an also provide ba
teria individualswith tools to develop more 
omplex adaptation me
hanisms. In spe
i�
 
onditions evolutiongives rise to regulatory systems that enable fast adaptation to rapidly 
hanging environments.In the 
ase of the la
 operon, regulation enables the organism to save energy when several foodsour
es are available. It is supposed that regulation is a result of adaptation to 
hangingenvironments. Yet, it 
an be shown that su
h a system 
an be very sensitive to 
hangesin the environment 
onditions: Dekel [14℄ has shown that only a few hundred generations28



Y. San
hez-Dehesa et al. Modelling evolution of regulatory networksare ne
essary for E. 
oli to drasti
ally 
hange its la
 operon behavior when pla
ed in new
onditions. At the other end of the time s
ale, the la
 operon is known to have a sto
hasti
behavior [11, 17℄ and it 
an be shown that sto
hasti
ity of trans
ription intera
ts with theregulatory a
tivity of the operon, delaying the operon swit
h [23℄. Thus, while regulationa
tivity has long been supposed to be independent of slow evolutionary 
hanges or faststo
hasti
 variations, it is be
oming more and more 
lear that the intera
tions of all theseadaptation strategies must be studied to fully understand their behavior [22℄.It is still a matter of debate in what kind of situation/environment evolution promotes theemergen
e of regulatory pro
esses and how regulation intera
ts with the evolutionary pro
essitself. Hypotheses 
annot be easily studied on real living systems. Although experimentalevolution is possible with mi
ro-organisms [16℄, tra
king 
hanges in genomes, regulatorynetworks and even phenotypes is almost impossible in �in vivo� tests. An alternative is touse digital organisms to study the geneti
 bases of adaptation �in sili
o� [2℄. In su
h arti�
ialmodels, organisms (i.e., 
omputational data stru
tures) are pla
ed in a syntheti
 environmentthat provides them with resour
es. In this environment the organisms reprodu
e, mutateand 
ompete for the resour
es, thus resulting in darwinian evolution. Sin
e the organismsas well as the environment are arti�
ially de�ned they 
an both be perfe
tly and 
ompletelydes
ribed [38℄. Su
h models have already shown their usefulness in studying evolution ofrobustness [47℄ or in identifying indire
t mutational pressure that regulates genome size [29℄.Yet, sin
e most of these models fo
us on mutational adaptation, they 
annot be used tostudy 
omplex intera
tions between the di�erent adaptation me
hanisms.The de�nition of a suitable model to des
ribe this biologi
al pro
ess would be useful tota
kle many open questions in the literature of this domain: How do organisms adapt toenvironmental 
hanges? What is the origin of regulatory networks? Why do regulatory net-works appear during evolution? How do networks evolve over time? Studying the in
lusionof new nodes in already existing regulatory networks and studying the development of newregulatory networks 
ould help to answer some of these questions and provide us with abetter understanding of network evolution.Geneti
 networks appear to be highly organized: they are modular [21℄, s
ale-free [7℄ andsome motifs are overrepresented [4℄. Yet, the pre
ise origin of these stru
tures is not fullyunderstood. In parti
ular, it is quite di�
ult to distinguish between sele
tive origin (thestru
ture of the network is sele
ted be
ause it ensures a 
orre
t fun
tion in the organism'senvironment), mutational origin (the mutational pro
ess tends to favor some stru
tures, asin the preferential atta
hment model [7℄) and indire
t sele
tive origin (the network stru
tureis sele
ted be
ause it is robust to mutation or, on the opposite, highly adaptable). It hasbeen shown that in some spe
i�
 
onditions, modular stru
tures 
an be sele
ted in evolvednetworks [20, 25℄. Here again, modelling is an essential tool to ta
kle su
h questions.Stru
ture and dynami
s of regulatory networks are at the heart of systems biology. Therapid development of this �eld has been followed by the development of a very a
tive mod-elling a
tivity of su
h networks. As far as evolution of regulatory networks is 
on
erned, thework has been fo
used on the question of topology evolution [25, 26, 49℄, evolution of networkrobustness [3, 12, 42℄ and evolution of arti�
ial fun
tions [5, 6, 18, 32℄. Most of these papers29



Y. San
hez-Dehesa et al. Modelling evolution of regulatory networksdeal with dire
t evolution of geneti
 networks (i.e., in the model the network stru
ture isdire
tly modi�ed by the geneti
 operators � mutations, 
rossing-over and rearrangements) orsele
tion of the individuals on the basis of the network properties (e.g., sele
tion of a spe
i�
topology or sele
tion of a spe
i�
 regulation dynami
).Additionally, many studies have been 
ondu
ted to understand evolution of regulatorynetworks from a bioinformati
 perspe
tive. Phylogeneti
 studies and sequen
e 
omparisonprovide a quite pre
ise view of the for
es that shape ba
teria genomes and in�uen
es theevolution of their regulatory networks [35℄. Thanks to these studies, it is now 
learer thatlarge genomi
 events su
h as genomi
 rearrangement, horizontal gene transfer (HGT) [19, 31℄or gene dupli
ation play a key role in the evolution of networks [45℄ and that the topologyof the network is for a large part indire
tly shaped by the mutational dynami
 [13℄.All these approa
hes fo
us on a spe
i�
 for
e that shape the network topology (e.g.,mutational dynami
, sele
tion for fun
tion, sele
tion for robustness - either mutational orfun
tional robustness, ...). However, in a real biologi
al regulation network, all these for
esare at work simultaneously and the network topology results from a 
ompromise between allthe 
onstraints a network and an organism must fa
e. These 
onstraints themselves dependon the environmental properties: in a stati
 environment, sele
tion for fun
tional robustnessis important while in a randomly (but slowly) evolving environment, the mutational dynami
and/or evolvability property may be 
ru
ial for the organism. Thus, to better understandhow the environment modulates the emergen
e of spe
i�
 network properties, an integratedmodel is needed in whi
h the appearan
e of di�erent network topologies during the evolutiondepends on the dynami
al properties of the environment. Moreover, this model shouldrespe
t the main lines of organisms' evolution. Organisms should own a geneti
 sequen
ethat allows a large variety of mutational events, a 
omplex genotype-to-phenotype mappingthat in
ludes a proteome level and enables the evolution of a geneti
 network inside theorganism. Thus, it should be strati�ed from a genomi
 level (the sequen
e being dire
tlymodi�ed by mutational events while all other organization levels are only indire
tly modi�eddepending on the e�e
t of the random mutations) to a phenotype level (the phenotypelevel being the only one subje
t to sele
tion while the other organization levels are onlyindire
tly sele
ted depending on their in�uen
e on the phenotype). The proteome levelmust respe
t the 
ore properties of regulatory networks' evolution: the regulation networkis neither dire
tly mutated nor dire
tly sele
ted. The nodes of the networks are the proteinsof the organism but the links result from a 
omplex intera
tion between the organismsproteins and its genomi
 sequen
e: ea
h protein may or may not intera
t with the sequen
eat spe
i�
 lo
ations, modifying the trans
riptional a
tivity of a promoter and, 
onsequently,the trans
ription rate of one or many genes. Ea
h gene is then trans
ribed at a spe
i�
rate that depends on the intrinsi
 properties of its promoter and on the in�uen
e of theregulation network (in
luding a
tivation, inhibition and self-regulation - see below). Theprotein 
on
entration is then governed by the trans
ription rate and by a degradation term.Moreover, the whole trans
ription/translation pro
ess is highly sto
hasti
 and it is nowre
ognized that sto
hasti
ity in�uen
es the fate of organisms [17℄.Following these prin
iples, we have developed the �Regulatory Arti�
ial Evolution� model30



Y. San
hez-Dehesa et al. Modelling evolution of regulatory networks(RAevol). In this model, arti�
ial �digital� ba
teria evolve in a variable environment. Alongtheir evolution, these ba
teria a
quire genes and evolve a 
omplex genome, a 
omplex regula-tion network and an adapted phenotype. On an evolutionary time s
ale, the best individualsare those whi
h evolve the best me
hanisms to fa
e environmental variations. We are thenable to understand whi
h of these me
hanisms are e�
ient depending on the environmental
onditions. In this paper, we �rst des
ribe the general prin
iple of regulation in prokaryotesand we expose the me
hanisms that 
onstitute the 
ore of our model (Se
tion 2). Then wepre
isely des
ribe the RAevol model (Se
tion 3), fo
using on the regulation properties. Fi-nally we present a simple arti�
ial evolution experiment that illustrates the main propertiesof the model (Se
tion 4) and dis
uss evolutionary s
enarii that may be tested with RAevol.2 Prin
iples of Geneti
 Regulation in ProkaryotesThe prin
iples of trans
ription regulation were des
ribed in the 60's by Ja
ob and Monod [24℄.Experimenting with Es
heri
hia 
oli, they showed that the trans
ription rate of a spe
i�
geneti
 sequen
e depends on at least three fa
tors: its promoter, whi
h is the initial bindingsequen
e of the RNA polymerase, regulation sites (either a
tivators or inhibitors) wheresome spe
i�
 proteins 
an bind, thereafter in�uen
ing the trans
ription pro
ess, and externalfa
tors su
h as the 
on
entration of RNA polymerase in the 
ell. Note that these prin
iples
annot be 
onsidered universal: in eukaryoti
 organisms, the regulation of trans
riptiona
tivity depends on many di�erent me
hanisms, in
luding 
hromatin dynami
s.Contrary to eukaryotes, in whi
h promoters are generally ina
tive in the absen
e oftrans
ription fa
tors (initiation 
omplexes are ne
essary for the trans
ription to start and a�naked� promoter will be essentially ina
tive), prokaryoti
 promoters and RNA polymerase
an dire
tly intera
t with one another. In the absen
e of regulatory elements, a promoterwill have an inherent a
tivity that mainly depends on its quality. When a promoter has aprimary sequen
e very similar to the 
onsensus sequen
e, RNA-polymerase 
an easily bindto it. The initiation of trans
ription will then regularly o

ur and the intrinsi
 trans
riptionlevel will be high (possibly at a maximum level if the promoter has a very good a�nity withthe polymerase). In this 
ase, the trans
ription rate will only depend on extrinsi
 fa
tors su
has the RNA polymerase 
on
entration and quality or the trans
ription elongation speed).If the promoter a�nity to the RNA polymerase is weak, trans
ription will only rarelybe initiated. The quality of the promoter thus determines the trans
riptional ground tran-s
ription level β (or �basal trans
ription level�, �gure 1(a)) [43℄. Thus, in the absen
e ofspe
i�
 regulatory sequen
es, genes are trans
ribed at a rate that mainly depends on theirpromoter strength, maximum trans
ription rate being bounded by global fa
tors su
h as thepolymerase properties and 
on
entration.The trans
ription level 
an be modi�ed by the a
tion of regulatory proteins. These pro-teins modify the trans
ription levels, enhan
ing or inhibiting gene trans
ription. In prokary-otes, this pro
ess is mainly used to 
ontrol energy 
onsumption in order to maintain a goodbalan
e between food availability and energy, and to adapt to environmental 
hanges.In prokaryotes, inhibition or repression of trans
ription o

urs when a regulatory protein31



Y. San
hez-Dehesa et al. Modelling evolution of regulatory networksinhibits the initiation of trans
ription or the elongation of the trans
ript (i.e., repressorproteins). A
tivation of trans
ription o

urs when a protein promotes trans
ription initiation[48℄. When a promoter is a
tivated, its a
tivity 
an only rise up to a maximum trans
riptionlevel (meaning that intrinsi
ally e�
ient promoters 
an only be marginally enhan
ed).Trans
ription fa
tors (a
tivation and repression proteins) a
t by binding to spe
i�
 re-gions of the DNA that are near the promoter of the protein they regulate. Repressor proteinsbind to a region 
alled operator (also 
alled inhibitory region) generally situated downstreamfrom the promoter region. When bound there, a repressor may prevent RNA polymerasefrom binding or blo
k its displa
ement along the DNA thus disturbing RNA elongation (�g-ure 1(b)). A
tivator proteins target a
tivator-binding sites are usually lo
ated upstreamof the promoter region. They promote RNA-polymerase binding, thus enhan
ing proteinprodu
tion (�gure 1(
)).
enhancer operatorpromoter

DNA START STOP

terminator(a) When no proteins bind the regulatory regions the RNA tran-s
ription is done at ground level.
RNA Polymerase

enhancer operatorpromoter

DNA START STOP

terminator
transcript ion
translat ion(b) A regulatory protein has targeted the operator. It blo
ks thepolymerase displa
ement along DNA and prevents it from tran-s
ribing the gene. Thus this trans
ription fa
tor represses the pro-du
tion of the protein asso
iated with this gene.

RNA Polymerase

enhancer operatorpromoter

DNA START STOP

terminator
transcript ion
translat ion(
) A protein binds the enhan
er region, favoring the RNA-polymerase (top arrow) binding and trans
ription initiation. Sin
eno inhibitory protein bind the operator, the RNA-Polymerase 
antrans
ribe the gene more e�
iently, thus enhan
ing the proteinprodu
tion level.Figure 1: Trans
riptional states in prokaryotes.In prokaryotes, multiple genes often share a single promoter, its operator and its a
tivatorbinding sites. These genes are 
o-trans
ribed and therefore 
o-regulated. Su
h a sequen
e in32



Y. San
hez-Dehesa et al. Modelling evolution of regulatory networkswhi
h several genes share their promoter and regulatory regions is 
alled an operon be
auseall genes are under the 
ontrol of a single operator (�gure 2).
enhancer operator

START STOP START STOP

promoter terminator
transcript ion
translat ion

RNA PolymeraseDNA

Figure 2: Overview of an operon stru
tureThe best known regulation system is probably the La
tose (la
) Operon whi
h 
ontrolsthe la
tose-glu
ose metabolism in Es
heri
hia 
oli. When Monod experimented with thee�e
ts of 
ombining sugars as 
arbon sour
es for E. 
oli, he found that if glu
ose and la
toseare provided to the ba
terium, it �rst metabolizes glu
ose and the 
olony grows fast. Whenglu
ose is depleted, the ba
teria stop growing. After a short period (lag-phase), ba
teriastart 
onsuming la
tose and the 
olony grows again. Ja
ob and Monod later showed thatthis adaptive behavior 
omes from a gene regulation me
hanism.In E. 
oli, the la
tose metabolism is 
ontrolled by an enzyme, the β-gala
tosidase protein,that breaks down la
tose into two simple sugars (gala
tose and glu
ose) and by a permeaseprotein that transports la
tose from the environment to the 
ell. The former protein also
onverts part of the la
tose into allola
tose.The β-gala
tosidase protein is en
oded by the La
Z gene and the permease by the La
Ygene. Both genes are grouped on an operon stru
ture, the la
 operon, and are under thein�uen
e of the same promoter and the same operator. In fa
t the la
 operon 
ontains a thirdgene, La
A, that en
odes for a β-gala
tosidase transa
etylase. A fourth gene, La
I, that isnot on the same operon, 
ompletes the system by 
oding for a repressor of the la
 operon.The repressor protein is able to bind to the la
 operator, preventing the trans
ription of theoperon (�gure 3). However, when la
tose is present in the 
ell, it intera
ts with the repressorprotein, and 
hanges its 
onformation, preventing it from binding to the la
 operon. When,the operon is no longer repressed La
Y and La
Z 
an be trans
ribed. Due to the permease,la
tose 
on
entration thus in
reases, while β-gala
tosidase is produ
ed and degrades la
tose.The La
I 
ontrol is an example of negative 
ontrol. However, it is not su�
ient to explainthe whole behavior of the la
 operon. In parti
ular, negative 
ontrol 
annot explain why,in presen
e of both glu
ose and la
tose, the operon is not trans
ribed. Indeed, the operonis also 
ontrolled by a positive loop: the 
on
entration of glu
ose is sensed by the 
ell via asignaling mole
ule, 
AMP; the more glu
ose in the environment, the lower the 
on
entrationof 
AMP. 
AMP binds to an indu
er of the operon, the CAP protein, that itself binds onthe DNA upstream from the la
 promoter. Then, the la
 operon is trans
ribed if and onlyif la
tose is present in the environment and glu
ose is not (or no longer) present in theenvironment2.2A lots of se
ondary me
hanisms have been dis
overed. They slightly modify the behavior of the la
operon but the two main regulation loops are the negative loop due to La
I and the positive loop due to
AMP binding on CAP (�gure 3). 33
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LacZ LacY LacALac I

lac repressor

lac operatorCap Site

lac promoter

lacI promoter

LacZ LacY LacALac I

lac operatorCap Site

lac promoter

lacI promoter

allolactose

lac repressor

Terminator Terminator

Figure 3: The la
-operon example. When the La
I repressor is present (be
ause there isno la
tose in the 
ell), it binds to the operator of the la
-operon, repressing the produ
tionof proteins en
oded by La
Z (β-gala
tosidase), La
Y (permease) and La
A (β-gala
tosidasetransa
etylase). If la
tose is present, it is 
onverted into allola
tose. Allola
tose then bindsto La
I, preventing the La
I repressor from binding to the operator. When this o

urs β-gala
tosidase enzyme is produ
ed and degrades the la
tose that enters the 
ell due to thepermease enzyme.At the genome level, all the regulation intera
tions 
ompose a 
omplex regulatory net-work. Ea
h network node represents both a gene and the protein it 
odes for; a link betweentwo nodes means the protein of one node has an in�uen
e on gene trans
ription of the othernode (�gure 4). Links 
an be either positive or negative. For example, in �gure 4 protein P3targets the enhan
ing region of protein P2, a
tivating its produ
tion. However, when protein
P2 binds to its own operator, it inhibits its own produ
tion.The nature of the trans
ription network makes its evolution di�
ult to understand. Sin
ethe links represent 
omplex intera
tions between proteins and spe
i�
 geneti
 sequen
es,they 
annot be modi�ed independently: when a geneti
 sequen
e varies (e.g., due to pointmutation), it perturbs all the intera
tions between itself and the proteins sus
eptible to bindto it. Consequently, the in�uen
e of the mutations on the network dynami
s is a 
omplexpro
ess where links are modi�ed 
olle
tively. That is why the evolutionary dynami
s ofregulation networks 
annot be fully des
ribed by models in whi
h mutations a
t at a linklevel (i.e., by adding/deleting single links or 
hanging the weights one by one).3 Regulation in Arti�
ial Evolution, the RAevol ModelThe RAevol model (from Regulatory Aevol Model) is an extension of the �Arti�
ial Evolu-tion� (Aevol) model, developed previously in our team to study robustness and evolvabilityin organisms [27, 28, 29, 30℄. In previous studies, it has been used to demonstrate howindividuals adapt their evolutionary strategy to the rate of mutational events. When or-ganisms have low mutation rates, they a

umulate non-
oding sequen
es. On the 
ontrary,high mutation rates lead to 
ompa
t genomes with few and short non-
oding sequen
es.Furthermore, when mutation rates are very high, organisms 
annot maintain a large numberof genes. Thus, they have to adapt their genome stru
ture to be more robust even thoughthis impairs their 
apa
ity to adapt. The Aevol model is well suited for our study be
ause it34
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T1 T2 T4

Genome

G2 G3G1RNA

P1 P2 P3

Fitness

Phenotype

RNA1

OE P OE POE P

P1 P2

P3

Regula tory  Network

Proteins

R1 R2-3 R4Figure 4: Organization of a regulatory network. A protein Pi 
an bind to a regulatory region(enhan
er or inhibitor site) Rj . There, it regulates the trans
ription of genes Gj in the Tjregion. In this example G2 and G3 form an operon that is 
ontrolled by the R2−3 region.Both genes are 
o-regulated. They are positively 
ontrolled by G2 and negatively 
ontrolledby G3.already 
ontains most of the elements needed to study evolution and individuals adaptation.In Aevol, the genome stru
ture is inspired by prokaryote DNA stru
ture: it is a 
ir
ulardouble-strand binary string that 
ontains a variable number of genes separated by non-
oding sequen
es. Ea
h gene is trans
ribed at a spe
i�
 rate that depends on the quality ofits promoter. Contrary to most arti�
ial evolution models, fun
tion of genes do not dependon their position on the geneti
 sequen
e. Hen
e, mutations (in
luding point mutations andgenomi
 rearrangements) 
an 
hange the geneti
 sequen
e as well as the genome stru
ture(e.g., number of genes, operon stru
ture, ...). Finally, the geneti
 sequen
e is translated intoa set of proteins that intera
t with one another to produ
e a phenotype (that 
an be moreor less adapted to its environment).Although it does not in
lude any regulatory pro
ess, Aevol in
ludes all the organiza-tion levels needed to design an integrated model of geneti
 regulation. Its behavior is well
hara
terized and it has been shown to be 
onsistent with ba
terial evolution.3.1 Stru
ture of the RAevol arti�
ial organismsWhen designing a model, there is a trade-o� between model 
orre
tness (regarding the bio-logi
al obje
ts it aims to des
ribe) and simpli
ity. In the 
ase of digital geneti
s, a 
ompletedes
ription of prokaryoti
 bio
hemistry is impossible. Instead, we will de�ne an abstra
t,arti�
ial, bio
hemi
al framework (an �arti�
ial 
hemistry� [15℄) to be used by the digitalorganisms to perform metaboli
 fun
tions. In arti�
ial evolution, the most popular arti�
ial
hemistry framework derives from geneti
 programming. It was proposed by T. Ray in theTierra program [39℄ and extended by C. Adami who developed the Avida digital evolutionenvironment [1, 37℄. In Avida, organisms' genomes are 
omputer programs written in asimpli�ed assembly language. The 
omputation of organism metabolisms is then straight-forward: the assembly language is �simply� exe
uted on a virtual 
omputer with a sharedmemory. 35
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hez-Dehesa et al. Modelling evolution of regulatory networksWe argue that Avida's arti�
ial 
hemistry is in fa
t too straightforward to study theevolution of regulation networks. In Avida, the genome and the metabolism are stru
turallyequivalent. There is no real trans
riptional pro
ess and any mutation on the geneti
 sequen
ehas a dire
t impa
t on the organism's metabolism. Avida's 
hemistry is in fa
t 
loser to anRNA-World than a DNA-World (obviously, there is no trans
ription regulation in RNA-Worlds). Other arti�
ial 
hemistry frameworks have been proposed and used in digitalevolution experiments [10, 21℄. However, none of them are able to des
ribe the 
omplexintera
tions between the genome, the proteome and the phenotype that are mandatory todesign an integrated model of geneti
 networks evolution.In Aevol (and RAevol), the arti�
ial 
hemistry is based on a mathemati
al des
riptionof organism metabolism. Ea
h organism is an abstra
t, virtual entity, represented as amathemati
al fun
tion, y = F (x), where x ∈ Ω represents a spe
i�
 metaboli
 fun
tion and
y ∈ [0, 1] is the e�
a
y of the organism for this fun
tion (more pre
isely y is the degree ofpossibility for the organism to perform this fun
tion, see below). Therefore, in our digitalworld, Ω represents the abstra
t set of metaboli
 fun
tions that 
an be performed by theorganisms. To keep the model simple, Ω is a one-dimensional spa
e, i.e., an interval (a
tually,in all our experiments, Ω = [0, 1]). This means that, in Aevol and RAevol, a metaboli
fun
tion is des
ribed as a real number and that all metaboli
 fun
tions are topologi
allyorganized in Ω meaning that there is a sort of �proximity� (similarity) between metaboli
fun
tions. This mathemati
al des
ription was inspired by fuzzy logi
 and the theory ofpossibility [51℄. Following the theory of possibility, F is a possibility distribution: the spa
e
Ω 
an be seen as the set of metaboli
 fun
tions that the individual 
an a
hieve, and F as thedegree of possibility with whi
h a spe
i�
 fun
tion x is a
hievable by the organisms (a zeropossibility meaning that this fun
tion will not be performed while a degree 1 means thatit will a
tually be performed). F is formed from the sum of all the metaboli
 subfun
tionsa

omplished by the protein, by using operators provided by fuzzy logi
 theory, where ea
hsubfun
tion is des
ribed as a fuzzy set.Fuzzy logi
 provides a set of boolean operators that enables us to 
ombine the di�erentmetaboli
 fun
tions within an organism (des
ribed as fuzzy sets) and to 
ompute the resultingmetabolism. Our metaboli
 
hemistry must be 
omplemented with a DNA/RNA translationpro
ess. DNA and RNA are sequen
es that do not dire
tly 
ontribute to the metabolism but
an be trans
ribed and translated into metaboli
 elements. In our model, the DNA/RNA
hemistry is based on binary sequen
es: DNA is a binary double-strand 
ir
ular sequen
eand RNA sequen
es are des
ribed as linear binary sequen
es.Most evolutionary models are based upon two-level des
ription of organisms: given aspe
i�
 phenotype, one has to �nd an appropriate geneti
 des
ription and then the geneti
operators that 
an manipulate the genome. In Aevol/RAevol, we introdu
ed a third de-s
ription level: the proteome. In the model, proteins are the knot that tie all the elementstogether: genes are sequen
es that are to be translated into proteins, phenotypes result fromproteins intera
tions, proteins are the nodes of the regulation network, et
. These inter-a
tions o

ur at di�erent levels of des
ription, whi
h implies that proteins will need to bedes
ribed at these di�erent levels (�gure 5): 36
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hez-Dehesa et al. Modelling evolution of regulatory networks
• From a geneti
 point of view, a protein 
an be des
ribed as a linear sequen
e (i.e.primary sequen
e) translated from a gene thanks to a geneti
 
ode;
• From a metaboli
 point of view, proteins 
ontribute to the phenotype of the organism.Ea
h protein is des
ribed as an elementary possibility distribution f in Ω whose pa-rameters are dedu
ed from the protein's primary sequen
e thanks to a fun
tional 
ode.In turn, the intensity of the protein's metaboli
 a
tivity depends on its 
on
entrationin the organism.
• From a regulatory point of view, proteins may intera
t with some spe
i�
 lo
ations onthe genome (namely enhan
ers and operators), thus modifying the trans
ription levelof genes. A third 
ode will be used to 
ompute the a�nity of a given protein with agiven regulatory region (regulatory 
ode).We 
onsider that the a
tivity of a protein depends both on its intrinsi
 
apability (i.e.on its primary sequen
e) and on its 
on
entration in the 
ell. The 
on
entration is dire
tlymodulated by the trans
ription a
tivity (i.e., by the number of mRNA). Consequently, a
ell 
an modulate its protein produ
tion either by gene dupli
ation/deletion or by generegulation.

Genome

Function Phenotype

RNA

functional
code

Regulatory Code

Protein

Primary

Regulatory

Metabolic

genetic
code

Regulat ion

Transcription
Translat ionFigure 5: Overview of all the protein roles in the model. Proteins play di�erent rolesdepending on the elements they intera
t with. They are translated from the genome (a
tuallyfrom mRNA); they 
an regulate mRNA trans
ription in addition to 
ontributing to thephenotype.In the next se
tion, we will 
arefully des
ribe the model following the translation pro
essthat goes from the genotype to the phenotype (se
tion 3.2). Sin
e the translation pro
ess isnot stri
tly linear, we will then des
ribe more pre
isely the regulation model (se
tion 3.3).Finally, we will des
ribe the global population level in whi
h sele
tion and 
ompetition willa
tually take pla
e (se
tion 3.4).3.2 From genotype to phenotype in RAevolThe genome is 
oded as a double-brand binary string, inspired from the ba
teria's genome.The �rst step in genotype-phenotype mapping is genome de
oding. The genome sequen
e37
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hez-Dehesa et al. Modelling evolution of regulatory networksis parsed to identify promoters and genes. On
e genes are lo
ated they will be trans
ribedand translated to 
ompute the organism's phenotype.3.2.1 Trans
ription: From DNA to mRNABoth strands of the binary genome are parsed to �nd the promoter-terminator stru
tures.A 
onsensus sequen
e was de�ned and a genome sub-sequen
e is 
onsidered as a promoterwhen its Hamming distan
e d from the 
onsensus is less than or equal to the maximumdistan
e dmax. In all our experiments, we used 0101011001110010010110 (22 bases pairs) asa 
onsensus sequen
e and �xed dmax = 4. The ground trans
ription state β ∈ [0, 1] (se
tion 2)of the promoter depends on the similarity between the promoter and the 
onsensus sequen
e(equation 3.1).
β = 1 −

d

dmax + 1
(3.1)Note that in the model, all 
on
entrations and rates are given in arbitrary unities. Here,the trans
ription rate is 
onsidered to be bound by extrinsi
 fa
tors su
h as the 
on
entrationand e�
ien
y of the RNA polymerase. The maximum trans
ription value is the same for allpromoters.The trans
ription level is modulated by all the protein-genome intera
tions that takepla
e in the regulatory regions (�gure 6). In the model we 
onsider two separate regulationsite of 20 nu
leotides. The enhan
er region (respe
tively the operator) is situated immedi-ately upstream (resp. downstream) of the promoter. If a protein is able to bind to one ofthese two regions, it modi�es the trans
ription level of the promoter. Therefore, the a
tualtrans
ription rate sp (t) of a promoter depends on its ground state β, on its regulators a
tiv-ity Eip (a
tivation of the promoter p by the ith protein) and Iip (inhibition of the promoter pby the ith protein3) and on their 
on
entration ci (t) at time t. For example, if a trans
riptionfa
tor binds to an enhan
er region, it stimulates the produ
tion of the asso
iated protein(for a 
omplete des
ription of the regulation model see se
tion 3.3).Terminator signals are modeled on the stem-loop stru
ture of ba
teria ρ-independentterminators. Here any sequen
e of the form abcd∗∗∗ d̄c̄b̄ā is 
onsidered as a potential termi-nator (where a, b, c and d are binary nu
leotides and ā, b̄, c̄ and d̄ are there 
omplementarybases. ∗ ∗ ∗ denotes any three nu
leotides long sequen
e). Hen
e, the trans
ription is pro-
essed downstream from the end of the promoter to the �rst stem-loop stru
ture found onthe sequen
e. The resulting sequen
e (mRNA) is an oriented single-strand binary sequen
e.Noti
e that a single DNA sequen
e 
an be translated several times on the same strand or onthe two 
omplementary strands.3In the remainder of the paper, we will use indi�erently si (t), Eij and Iij to denote the trans
ription rate(resp. a
tivation and inhibition a
tivity) of promoters and genes. Indeed, we 
onsider that the trans
riptionof a gene is only governed by its promoter.

38
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hez-Dehesa et al. Modelling evolution of regulatory networks3.2.2 Translation: From mRNA to protein primary sequen
eOn
e an mRNA has been 
omputed, it is parsed to sear
h for 
oding regions. Ea
h 
odingregion is then translated into a protein a

ording to an arti�
ial geneti
 
ode that asso-
iates DNA 
odons with amino-a
ids (AA). In the model, there are six amino-a
ids (seese
tion 3.2.3) so we need eight 
odons to 
ode for both these AA and the START/STOP
odons (there is no redundan
y in our geneti
 
ode). The translation pro
ess is straight-forward: the initiation signals are �rst lo
alized on the mRNA (the initiation signal is themotif 011011 ∗ ∗ ∗ 000, where 011011 represents a Shine-Dalgarno-Like sequen
e and 000 isthe start 
odon4).From the start 
odon, the protein sequen
e is extra
ted three nu
leotides by threenu
leotides (i.e., 
odon by 
odon) until the termination signal (stop 
odon) is found on thesame reading frame. Ea
h 
odon is then translated into the asso
iated amino-a
id (table 1).A given mRNA sequen
e 
an 
ontain several initiation signals, thus forming an operonstru
ture. One single sequen
e 
an in fa
t 
ode for various genes (and proteins) if severalinitiation signals are found on di�erent reading frames (genes 
an also overlap due to thetrans
ription of both strands).3.2.3 �Folding�: from primary sequen
e to metaboli
 a
tivityIn this model, a protein 
ontributes to phenotype by its metaboli
 a
tivity. The metaboli
a
tivity is represented as a possibility distribution f : Ω → ℜ+ with a standard shape (here
f is a pie
ewise-linear fun
tion � a
tually an isos
eles triangle, �gure 6). Hen
e, it 
an befully des
ribed by three parameters:

• The position of the triangle on the metaboli
 axis (i.e., its mean m ∈ [0, 1]). Thisrepresents the main protein pro
ess;
• The height h ∈ [−1, 1] of the triangle. This determines the maximal possibility degreeof the protein (i.e., its a
tivity for its main pro
ess). Proteins 
an either a
tivate(h > 0) or inhibit metaboli
 fun
tions (h < 0). The possibility degree of the metaboli

ontribution is given by |h|;
• The half-width w ∈ [0, wmax] of the triangle. This represents the set of metaboli
pro
ess the protein 
an 
ontribute to. This parameter expresses the protein pleiotropy(i.e., its ability to a
hieve di�erent � but related � metaboli
 pro
esses).The protein 
ontributes to the set of biologi
al fun
tions ranging from m− w to m + w,with a maximal e�
ien
y degree h for the fun
tion m. The parameters of the protein are4Although the pre
ision of the model may seem ex
essive (e.g., Shine-Dalgarno sequen
e) one has to bearin mind that the model must respe
t some relative probabilities. Here, the Shine-Dalgarno sequen
e is usedto redu
e the probability of initiating the translation pro
ess (regarding the probability of �nding a stop
odon). Similarly, in se
tion 3.2.1, the 
omplex stru
ture of terminator sequen
es was used to ensure thatterminators are relatively frequent but that no short motifs are ex
luded from mRNA sequen
es.39
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hez-Dehesa et al. Modelling evolution of regulatory networksdire
tly 
omputed from the primary sequen
e of the protein. On
e the primary sequen
e isobtained from the mRNA sequen
e, three subsequen
es of 
odons are extra
ted a

ordingto the metaboli
 fun
tion of ea
h amino-a
id (table 1). Ea
h subsequen
e is then 
onvertedinto a binary sequen
e that 
an be de
oded into an integer value (we use the gray 
odeto avoid Hamming-
li�s di�
ulties). Finally, the three parameters are normalized in theappropriate range depending on the length of the binary sequen
e, to get the �nal m, wand h values. Note that a protein 
an have no metaboli
 a
tivity if its w or h valuesare null (degenerated protein). However, this does not mean that it has no in�uen
e onthe phenotype: a degenerated protein 
an still have a regulatory in�uen
e on the geneti
network. Codon 000 001 010 011 100 101 110 111Translation fun
tion start stop - - - - - -Amino-A
id - - w0 w1 m0 m1 h0 h1Metaboli
 fun
tion - - W W M M H HValue - - 0 1 0 1 0 1Table 1: Geneti
 
ode in Aevol/RAevol model.Figure 6 summarizes the overall trans
ription-translation-folding pro
ess. In this exam-ple, the mRNA sequen
e is 100111011101111011010. It is translated into the m0h1w1m1h1w1w0amino-a
id sequen
e. The three parameters are then given by the three subsequen
es 01 (Msubsequen
e, length 2), 110 (W subsequen
e, length 3) and 11 (H subsequen
e, length 2).Interpreting theses binary sequen
es with the Gray 
ode we obtain three integer values (1,
3 and 2). Then, these values are 
onverted into real values a

ording to the length of theirbinary sequen
e (1

3
, 3

7
and 2

3
) and normalized. Finally we get m = 0.33 (m is normalizedbetween 0 and 1), w ≃ 0.02 (w is normalized between 0 and wmax = 1

30
) and h = 0.33 (h isnormalized between −1 and 1).3.2.4 Bio
hemistry: from mole
ules to phenotypeWhen a protein i is translated from the geneti
 sequen
e, its parameters mi and wi aredire
tly issued from its primary sequen
e. However, at a time t, the a
tual e�
ien
y Hi (t)of a protein i depends on its intrinsi
 e�
ien
y hi modulated by its 
on
entration ci (t) inthe organism (see se
tion 3.3 for the 
omputation of protein 
on
entrations): the higher the
on
entration, the higher the metaboli
 a
tivity. This is simply done by using the protein
on
entration as a s
aling fa
tor for the metaboli
 fuzzy set of the protein (Hi (t) = |hi|·ci (t)).Then, the a
tual possibility set to be used for phenotype 
omputation is an isos
eles triangleof mean mi, half-width wi and height Hi (t).To 
ompute the phenotype of an organism (i.e. the degree of possibility F (x) with whi
hit performs ea
h fun
tion x ∈ Ω) we must 
ombine the individual a
tions of ea
h protein.Ea
h protein is represented by a possibility distribution fi (), that 
an either a
hieve a set40
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Figure 6: Overview of the trans
ription-translation-folding pro
ess. On
e the promoter andthe terminator are lo
ated, boundaries of genes (start and stop sequen
es) are identi�edand the gene is translated into a protein primary sequen
e. Three subsequen
es are thenextra
ted from the primary sequen
e and de
oded to 
ompute the three parameter valuesthat determine the metaboli
 
ontribution of the protein. Noti
e that the exa
t a
tivity levelof the protein (H) depends both on its intrinsi
 a
tivity (h) and on its 
on
entration (c).of metaboli
 pro
esses (hi > 0) or inhibit them (hi < 0). The global fun
tional abilitiesof an organism are the fun
tions that are a
tivated by at least one protein while not beinginhibited by at least one other protein. More formally, we 
an use boolean operators to
ompute the phenotype. First of all we 
ompute the a
tivated fun
tions FA and then theinhibited fun
tions FI . The a
tivated fun
tions FA are the fun
tions a
tivated by protein 1(fA1
) OR by protein 2 (fA2

) OR . . .OR by protein n (fAn
). The inhibited fun
tions FI are
al
ulated following the same pro
edure as FA, by using the fun
tions inhibited by protein i(fIi

). Now the global fun
tional possibility distribution F is equal to the 
ombined possibilitydistributions of all the a
tivated fun
tions FA AND NOT the possibility distributions of allinhibited fun
tions FI [28℄. In terms of fuzzy sets, this leads to equation 3.2.
F = FA ∩ FI = (∪ifAi

) ∩
(

∪jfIj

) (3.2)where F (respe
t. FA, FI, fAi
and fIj

) is the fuzzy set 
orresponding to the possibilitydistribution F () (respe
t. FA(), FI(), fAi
() and fIj

()).To 
ombine proteins possibility distributions, we use the Lukasiewi
z fuzzy operators:






NOT : fA1
(x) = 1 − fA1

(x)OR : fA1∪A2
(x) = min (fA1

(x) + fA2
(x) , 1)AND : fA1∩A2

(x) = max (fA1
(x) + fA2

(x) − 1, 0)
(3.3)Note that in RAevol, the protein 
on
entration 
an 
hange over time. Thus, all the fuzzysets must be 
onsidered as dynami
 fun
tions f (t). However, in the experiments presentedin se
tion 4, the global phenotype is 
omputed only on
e, after a transient period.41
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hez-Dehesa et al. Modelling evolution of regulatory networks3.2.5 Struggle for life: from phenotype to �tnessOur interest in the phenotype of organisms is not the phenotype itself but its adaptation tothe environment. In Aevol/RAevol, the environment is modeled as a fuzzy set of fun
tionsthat are assumed to be useful in this e
osystem. We then de�ne a possibility distribution
E(x) that spe
i�es the optimal degree of possibility for ea
h biologi
al fun
tion (E(x) 
anvary over time, either at an evolutionary time s
ale or at an individual time s
ale). Then, weuse the gap g between this optimal fun
tion set and the individual phenotype as a measureof the organism's adaptation to its environment (equation 3.4 and �gure 7).

g =

∫

Ω

|E(x) − F (x)|dx =

∫ 1

0

|E(x) − F (x)|dx (3.4)As shown by �gure 7, this measure penalizes the under-realized fun
tions as well as theover-realized ones. On
e the gaps of all organisms in the population are 
al
ulated, we areable to 
ompute the organism's adaptation and �tness. The adaptation of an organism willthen be inversely proportional to the gap (the smaller the gap, the better the adaptation)and the �tness results from a 
ompetition with the other organisms in the population. InRAevol, the 
omputation in based on a rank-based sele
tion algorithm: the N organismsare ordered from the least adapted to the best. Then, the reprodu
tive probability Pi of anorganism is proportional to its rank ri in the list. Other sele
tion s
hemes are also availablein the model su
h as adaptation-proportionate sele
tion or dire
t exponential-rank-basedsele
tion (see [9, 27, 30℄ for details).
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Figure 7: Measure of an individual adaptation. Dashed 
urve: environmental distribution
E(x). Solid 
urve: phenotypi
 distribution F (resulting pro�le after 
ombining all proteins).Filled area: gap g.
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hez-Dehesa et al. Modelling evolution of regulatory networks3.3 The regulation me
hanism in RAevolThe main di�eren
e between Aevol and RAevol is the expli
it modelling of protein 
on
entra-tion and the modelling of an individual time distin
t from the evolutionary time. In RAevol,the proteins are expli
itely produ
ed at a given rate that depends on the regulation networkand degraded at a 
onstant rate. Their 
ontribution to the metabolism is modulated by their
on
entration in the 
ell (se
tion 3.2.4). So, the phenotype of the organisms is no longer a
onstant set of metaboli
 fun
tions (as it was in Aevol). Now it is a dynami
 set of fun
tionsthat 
an 
hange during the �life� of the individuals.3.3.1 Computation of proteins 
on
entrationIn RAevol the protein 
on
entration depends on three fa
tors: the promoter quality, thedegradation rate and the regulation a
tivity. The promoter quality gives the ground tran-s
ription state β (equation 3.1, se
tion 3.2.1). The degradation rate is 
onsidered 
onstantfor all the proteins (exponential de
ay). Now, the regulation a
tivity depends on all theproteins present in the organism, their 
on
entration and the intensity of their regulatorya
tivity on the operators and on the enhan
ers.So the protein 
on
entration ci(t) is governed by the following equation:
∂ci

∂t
= si(t) − φci(t) (3.5)where si(t) represents the trans
ription/translation rate of protein i at time t and φ thedegradation rate (assumed to be 
onstant in the model). The initial 
on
entration of aprotein is given by the promoter ground state: ci(0) = βi. We plan to use an initial state

ci(0) equal to the proteins' 
on
entration in the mother 
ell at the time it divides.As we have seen in Se
tion 2, the trans
ription pro
ess is regulated by trans
riptionfa
tors that 
an de
rease the trans
ription rate from the ground state to zero (inhibitors)or in
rease it up to a maximum value that depends on extrinsi
 fa
tors (mainly the RNApolymerase). Furthermore, the trans
ription fa
tors' a
tivity depends on their ability tobind to the DNA mole
ules at spe
i�
 lo
ations (enhan
ers and operators). In RAevol, thisregulation pro
ess is modeled in two steps: �rst, we list the regulation 
apa
ities of all theproteins on all the promoters (a
tivation and inhibition). This gives us the topology of theregulation network. Then, given the topology and the 
urrent 
on
entration of ea
h protein,we are able to 
ompute the regulation a
tivity exerted on ea
h node (i.e., on ea
h gene), andhen
e to dedu
e the trans
ription rate of ea
h protein.Here, we 
onsider the simpli�ed situation in whi
h the trans
ription fa
tors a
tivities arepurely additive. Therefore, at time t the global a
tivation exerted on the promoter5 i is given5For sake of simpli
ity, we 
onsider here the 
ase of a one-to-one asso
iation between promoters and genes.Thus, the promoter i is supposed to govern the trans
ription of the gene i. In the model � and in the reallife � the asso
iation is not one-to-one, e.g., in 
ase of operon stru
tures.
43
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hez-Dehesa et al. Modelling evolution of regulatory networksby:
Ai(t) =

∑

j

cj(t)AjI (3.6)where AjI represents the positive regulation a
tivity exerted by the protein j on the promoter
I (see next se
tion for the 
omputation of the individual regulation a
tivities). Similarly,the whole inhibition a
tivity is given by the sum of the individual inhibitions modulated bythe proteins 
on
entration:

Ii(t) =
∑

k

ck(t)IkI (3.7)Then, the trans
ription a
tivity is given by a Hill-like kineti
 [36℄ s
aled in order to respe
tthe basi
 prin
iples of prokaryoti
 trans
ription (see se
tion 2): without any regulators, thepromoter is trans
ribed at the ground state β. It 
an be up-regulated to a maximum level(that also depends on the strength of the promoter) and down-regulated to zero. The generalequation that des
ribes the trans
ription rate over time is de�ned as:
si(t) = βi ·

(

θn

Ii(t)n + θn

) (

1 +

(

1

βi

− βi

) (

Ai(t)
n

Ai(t)n + θn

)) (3.8)where n and θ are 
onstant 
oe�
ients that determine the shape of the Hill-fun
tion (insimulations presented in se
tion 4, we used: n = 4 and θ = 0.5).3.3.2 Computation of the binding propertiesThe me
hanisms that regulate gene expression in prokaryotes are very diverse and most ofthem are only slightly 
hara
terized. Therefore, a pre
ise modelling of regulation is beyondthe s
ope of a digital evolutionary model. In RAevol, we 
hose to des
ribe the regulationa
tivity in a simple way: as des
ribed in se
tion 2, in a �rst approximation one 
an 
onsiderthat the regulatory property of a trans
ription fa
tor depends on its ability to bind to theDNA at spe
i�
 lo
ations (binding sites). Moreover, the 
ontribution of the trans
riptionfa
tor to the promoter a
tivity is strongly dependent on the position of the binding siterelative to the promoter.In the model, ea
h promoter is surrounded by two binding sites of 20 base-pairs (i.e.,20 bits). The upstream site is the enhan
er and the downstream site is the operator. Ea
hprotein has a probability to bind a given site that depends on its a�nity with this site. Wewill obviously not be able to 
ompute or model a �real� protein-DNA a�nity; what we needis a pro
edure that (i) gives the 
apa
ity of any protein to bind to any sequen
e of 20 bits;(ii) is relatively independent of the metaboli
 
apa
ity of the protein (i.e. a protein 
anhave a regulatory a
tivity while having no metaboli
 a
tivity, two proteins with the samemetaboli
 a
tivity 
an have di�erent regulatory 
apa
ities, et
.), (iii) enables us to �x theprobability that any protein 
an work as a trans
ription fa
tor and (iv) is simple enough tobe 
omputed rapidly and therefore to be used in an evolutionary model6.6In a population of N organisms,having a mean number of genes of M and whose evolution is simulated44
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ompute the a�nity of a protein with a given binding site, we align the primaryprotein sequen
e with the binary sequen
e of the binding site. Sin
e the arti�
ial 
hemistry ofproteins and DNA are not 
ompatible (the �proteome� 
hemistry is based upon amino-a
ids �
w0, w1, h0, . . . � and metaboli
 fuzzy sets while the DNA 
hemistry is made of bit sequen
es),the alignments are evaluated thanks to an a�nity matrix (�gure 8). In this matrix, ea
h
ell represents the a�nity between a spe
i�
 animo-a
id and a regulatory subsequen
e of 4bases. Thus, given the size of the binding site, the a�nity will be the maximum alignmentvalue for all possible subsequen
es of �ve amino-a
ids in the protein primary sequen
e.For a given protein j and a given binding site I (of protein i), the k possible alignmentsof the amino-a
id sequen
e on the binding site are 
omputed (e.g. for a protein of length l,
k = l − 4). For ea
h alignment, we 
ompute the lo
al a�nity AjI [k] thanks to the a�nitymatrix (�gure 8). The protein a�nity with the enhan
er is then given by AjI = maxk AjI [k].

DNA

0100 1001 0011 0001 0110

enhancer

A0      H1     W1     H1     A1     W0     A1      

01001001110 .. . .0101011001110010010110

p r o m o t e r

. . .1101110001

Figure 8: A�nity 
al
ulation. In this example protein j is aligned on the enhan
er region ofpromoter I. The �rst lo
al a�nity AjI is 
omputed as the multipli
ation value of the tableentries 
orresponding to ea
h pair AA/subsequen
e. We 
an 
ompute AjI [1] ≃ 0.0000. Theprotein is then shifted leftwards to 
ompute AjI [2] ≃ 0.01998 and AjI [3] ≃ 0.00865. Then,the a�nity of the protein on this enhan
er site is given byAjI = maxk AjI [k] ≃ 0.0.01998.This value is to be reported in equation 3.6 to 
ompute the trans
ription rate of the promoter
i. Using this simple alignment pro
edure, we are able to de�ne the distribution of regulationby 
hoosing the values in the a�nity table. In our experiments, values in the a�nity tableare randomly 
hosen following a uniform law between 0 and 1, with the ex
eption of a�xed proportion of 
ells α that are �lled with null values. The parameter α enables us toin
rease the proportion of null regulation weights (�gure 9). Thus we are able to indire
tly�x the mean 
onne
tivity degree in our networks. Moreover, in RAevol, we a
tually use twodi�erent a�nity matri
es MA and MI . The former is used to 
ompute proteins' a�nitieswith enhan
er sites, the latter with operator sites. This allows RAevol users to set di�erentproportions between spontaneous a
tivation and inhibition; experimenters 
an use eitherduring T generations, the binding 
omputation pro
edure will be exe
utedN∗M∗T times. In the experimentspresented se
tion 4, N = 1000, M ≃ 40 and T > 20000.45
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al or di�erent matri
es depending on whether they want the spontaneous proportionof inhibitory links to be higher or lower than the proportion of a
tivation links or not.
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(b) Half-half matrixFigure 9: Distribution of regulatory links for random binding sites and random protein of21 Amino-A
ids. Left: distribution for a matrix �lled with uniform random values (α = 0).Right: distribution for a matrix with 50% of null values (α = 0.5).3.4 The Evolutionary Pro
essIn previous se
tions, we have pre
isely des
ribed the organisms in RAevol. These organismsare subje
ted to an evolutionary pro
ess. In a �xed population, organisms are evaluatedthanks to the sele
tion pro
edure (se
tion 3.2.5). Then, a biased random pro
ess is usedto determine whi
h of these organisms will reprodu
e. The reprodu
tion pro
ess is basedon DNA repli
ation. During this pro
ess the DNA 
an undergo repli
ation errors. Theseerrors (mutations) are governed by operators that are dire
tly inspired from prokaryoti
reprodu
tion. Genomes 
an undergo seven di�erent kinds of mutations: three of them beingpoint mutation, and four large 
hromosomi
 rearrangements.The three point mutations are the swit
h and the two InDels:Swit
h: A randomly 
hosen nu
leotide swit
hes from 0 to 1 or 1 to 0;Insertion: A random position is 
hosen in the genome and a small random sequen
e (1 to
6 bits) is inserted at this point;Deletion: A random position is 
hosen in the genome and a small sequen
e (1 to 6 bits) isdeleted at this point. 46
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hromosomi
 rearrangements are the following:Dupli
ation: Two positions are randomly sele
ted in the 
hromosome. The segment be-tween these two positions is 
opied and inserted at a third random position;Translo
ation: Two positions are randomly sele
ted in the 
hromosome. The segmentbetween these two positions is ex
ised and inserted at a third random position;Large deletion: Two positions are randomly sele
ted in the 
hromosome. The segmentbetween these two positions is deleted;Inversion: Two positions are randomly sele
ted in the 
hromosome. The segment betweenthese two positions is inverted (i.e., the sequen
es are 
onserved but they move fromone strand to the other).These mutations a�e
t the genome, and some of them 
hange the genome size (indels,insertions, deletion, dupli
ations and large deletions). Indire
tly, they 
an modify the reg-ulatory network topology by either dupli
ating/deleting genes or promoter regions. They
an modify the a�nities between trans
ription fa
tors and binding regions: when a muta-tion o

urs in the regulatory region of a promoter, the protein's a�nities with this region
an 
hange. Re
ipro
ally, when a gene undergoes a mutation, the primary sequen
e of theprotein it 
odes for may 
hange, thus a�e
ting one or both of the protein fun
tions: itsregulatory abilities and its metaboli
 a
tivity.4 RAevol in a
tion: S
enario and resultsThe main interest of digital organisms is that they enable pra
titioners to perform evolu-tionary experiments on whi
h they have very good 
ontrol [38, 2℄. To make proper use ofsu
h models, one has to follow an experimental pro
edure in whi
h (i) a testing environmentis 
arefully designed, (ii) some parameters of either the environment or the organisms aremodi�ed, (iii) the experimenter lets the evolutionary pro
ess run for many generations (typ-i
ally thousands of generations in digital evolution) while 
arefully gathering informationabout the evolutionary pro
ess and (iv) the experimenter interprets the results as a fun
tionof the parametri
 di�eren
es. Thus, although 
ompletely arti�
ial, digital evolution is 
loserto experimental evolution than to mathemati
al evolutionary models su
h as population ge-neti
 models. It thus makes it possible to test hypotheses that would be out of rea
h ofmathemati
al models be
ause they 
annot su�
iently express the 
omplexity of the system.In this se
tion, we present a typi
al experiment with the RAevol model. We will �rstdetail the experimental setup and then 
ompare nine evolutionary experiments (three typesof organisms times three di�erent seeds for ea
h one). Finally, we des
ribe the stru
ture ofone of the regulatory networks obtained at the end of the evolutionary pro
ess.
47
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hez-Dehesa et al. Modelling evolution of regulatory networks4.1 Experimental setupTo test the ability of RAevol organisms to develop an e�
ient regulatory network, we de-signed a s
enario in whi
h, during their lives, the individuals must alternatively a
hieve twodi�erent sets of metaboli
 fun
tions. In the �rst set, individuals have to perform three groupsof metaboli
 fun
tions, modeled as three lobes in the Ω spa
e (the exa
t distribution of pos-sibility of the environment, E1, is presented on �gure 7). When initialized the organismsphenotypes only depend on the basal level of their promoters. After a short transient period(10 simulation time steps), the regulatory networks are very likely to have 
hanged the pro-tein 
on
entrations (see �gure 20(b)). It is only at this stage that the organisms are testedfor the �rst time. At time 10, the phenotype is 
ompared to E1, resulting in the �rst gap
g1. Then, the environmental referen
e is 
hanged (removal of the right lobe, environment
E2, �gure 10) and a signaling protein is sent to the organisms. This protein (whose sequen
eis : h1w0h0m1w0h1m1h0) has no metaboli
 fun
tion (be
ause it 
ontains no w1 amino-a
id)but is long enough to be able to bind to the DNA and hen
e have a regulatory a
tivity. Wethen wait for a se
ond transient period (10 steps) and the phenotype is 
ompared with E2,resulting in a se
ond gap value g2. The �tness of the organism is then 
omputed on thebasis of the mean gap value 1

2
(g1 + g2). Given the di�eren
e between E1 and E2, we 
anapproximate that, for an organism without regulation abilities (null 
ontext, see below),the minimum gap will be given by half of the di�eren
e between the two environmentaldistributions: gmin ≃ 0.011A

ording to this s
enario, organisms 
an develop di�erent strategies depending on theirability to tune their trans
ription levels. The simplest strategy would be to develop strongoperators with a high a�nity with the signaling protein. If they are asso
iated with thepromoters of the proteins in the right side of the metaboli
 spa
e (proteins with metaboli
fun
tions x ∈ Ω, where x is 
lose to 1), these operators 
an repress the trans
ription of theseproteins during the se
ond part of the organisms' �life�. A more elaborate strategy would beto develop a 
omplex regulation network, e.g., to a
tivate some proteins (possibly withoutany metaboli
 fun
tion) that will themselves inhibit others. Su
h a network 
ould a

eleratethe metabolism response to the signaling protein. Finally, if the organisms do not su

eedin developing a regulation network, they 
an stabilize on the mean value of the metaboli
pro
ess in order to minimize their metaboli
 error.We simulate the evolution of populations of 1000 organisms in this environment for25000 generations (organisms are initialized with random genomes of 5000 bp ea
h). Ea
hindividual dynami
 is simulated during 20 time steps in order to 
ompute g1 and g2. Then,the sele
tion pro
ess is used to determine whi
h organisms will reprodu
e and how manyo�springs they will have. New individuals will repla
e the old population, with the populationsize remaining 
onstant. During the mutational pro
ess, organisms undergo mutations witha �xed mutation rate of 10−5 mutations per base pair (in these experiments, the mutationrate is the same for all types of mutations in
luding point mutations and rearrangements).Finally, we tested three di�erent types of organisms 
hara
terized by their a�nity matrix M(the same for both a
tivation and inhibition):48
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Figure 10: Obje
tive fun
tions to rea
h during individuals life. In the �rst stages, threemetaboli
 fun
tions represented by the sum of three Gaussian fun
tions (one being negative).The arrival of an external protein into the 
ell must be taken into a

ount by the organismsto modify their behavior. The new obje
tive fun
tion is a set of two metaboli
 fun
tions,represented by the sum of two Gaussian fun
tions(one being negative).Null: these organisms are used as a referen
e to test the e�e
t of the regulation pro
ess.In the null organisms, the a�nity matrix M is �lled with null values (α = 1. So, thenull organisms are not able to regulate their trans
ription a
tivity (i.e., the genes arealways trans
ribed at their basal levels).Full: in the full 
ontext, the a�nity matrix is initialized with random values in [0, 1](uniform sampling with α = 0). The resulting distribution of regulatory links is shownon �gure 9(a).Half-Half: in this 
ontext, the a�nity matrix values are 
omputed in the same way asin the previous one ex
ept that half of the entries are �lled with a null value (α = 0.5).Thus, the a�nity values are generally lower than in the se
ond 
ontext and a largerproportion of protein/binding sites pairs have a null a�nity (�gure 9(b)).For ea
h one of these 
ontexts, we performed three di�erent simulations using three dif-ferent seeds. Indeed, sin
e the evolutionary pro
ess is mainly governed by random events,every experiment must be 
ondu
ted several times in order to distinguish between the re-produ
ible e�e
t of sele
tion (either dire
t or indire
t) and the e�e
t of drift and 
ontingentevents.4.2 Evolutionary pro
ess unfoldingDuring the 25000 generations of a simulation, the organisms progressively a
quire genes thatenable them to enhan
e their metaboli
 performan
es (�gures 11(a) and 11(b)). Duringthe �rst generations, organisms a
quire �essential genes�, i.e., genes with a large metaboli

ontribution, and hen
e, the gap g of the organisms qui
kly de
reases. Then, organisms49
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ontinue to in
rease their performan
es but at a lower speed. During this se
ond phase,organisms adapt to their environment either by a
quiring new genes (�gure 11(b)) or byoptimizing the metaboli
 
ontribution of the existing ones. The optimization of the metaboli

ontribution of existing proteins implies an in
rease in the average gene length. Indeed asa protein's 
ontribution results from the normalization of the values given by its primarysequen
e, a greater level of pre
ision 
an only be a
hieved by an in
rease in the length ofthis sequen
e: in the model protein parameters, m, w and h, need longer sequen
es to bemore pre
ise (see trans
ription pro
ess in Se
tion 3.2.3). It is worth noting that, in RAevol,as in Aevol, genes are a
quired thanks to a dupli
ation-divergen
e pro
ess [27, 29℄.
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(b) Number of genesFigure 11: Adaptation values for the best individual for the three 
ontexts (three seeds forea
h 
ontext). Adaptation value is the gap between the obje
tive fun
tion and the metaboli
fun
tion a
hieved by organisms (i.e. the reverse of �tness).4.2.1 Evolution of the geneti
 stru
tureThe only di�eren
e between the types of organisms tested in our experiments is the pro-portion α of non-null values of the a�nity matrix, whi
h ranges from zero (null 
ontext)to 1 (full 
ontext). Analysis of di�erent genomi
 
hara
teristi
s (genome size, number ofgenes, mean gene length) and the main phenotype parameter (the gap) 
learly shows thatthe density of the a�nity matrix has a strong in�uen
e on the 
ourse of evolution. Sur-prisingly, the worst organisms are not the null ones (i.e., organisms that are not able to50
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hez-Dehesa et al. Modelling evolution of regulatory networksregulate their gene trans
ription) but the full ones (�gure 11(a)). This 
an be easily un-derstood when looking at the evolution of the geneti
 stru
ture (�gure 11(b)): in the full
ontext, the genomes 
ontain fewer genes than in the two other 
ontexts. In a previousexperiment 
ondu
ted with a simpli�ed version of the model, we have already shown that,in the full 
ontext, the individuals have a poor evolvability due to the over-
onne
tivity ofthe regulation network [40, 41℄. The high density of the a�nity matrix results in a highly
onne
ted regulation network (�gure 9(a)). Any perturbation of a protein and/or bindingsite has a high impa
t on the organism's phenotype (be
ause it systemati
ally a�e
ts sev-eral genes). Moreover the metabolism and the geneti
 network are strongly linked, makingthe equilibrium between them very unstable and thus lowering the organisms' evolvability.It is worth noting that this e�e
t would not be visible in 
lassi
al evolutionary models ofregulation networks be
ause, in these models, the mutations a
t dire
tly on the regulatorylinks allowing the organisms to remain evolvable by providing them with the possibility tomodify the regulatory links independently of one another.When looking at the genome size we 
annot 
on
lude that the density of the a�nitymatrix in�uen
es the genome size (�gure 12(a)). However, if we 
ompare the number of genesand the mean size of the genes in the di�erent 
ontexts we 
an see that full organisms areless 
ompa
t, having more non-
oding regions (�gure 12(
)). Using the Aevol model it hasbeen previously shown that these parameters dire
tly depend on the mutational robustnessof the organisms [30, 29℄. Therefore, we now need to test the robustness of the evolvedorganisms by arti�
ial mutagenesis experiments7.While the full organisms are the worst ones, the best ones are not the null ones but thehalf-half ones. It seems that the mid-density of the a�nity matrix gives the regulatorynetwork the ability to evolve in a relatively independent way. While in the two other 
ontexts(full and null) the number of regulatory links is either null or dire
tly determined by thenumber of genes (roughly equal to the square of the number of genes), whi
h means thegene network is either fully 
onne
ted or not 
onne
ted at all, in the half-half 
ontext theregulatory network is only partially 
onne
ted. This provides a greater degree of freedom forthe organisms to evolve their regulatory network. Figure 13 shows that, in the half-half
ontext, the number of links evolves 
ontinuously while, in the full 
ontext, it undergoeslong stationary phases, resulting in long period of stasis in the organism's �tness.As we 
an see in �gure 12(d), the number of non-metaboli
 proteins in
reases over time.These proteins 
annot a
hieve metaboli
 fun
tions but they are able to develop regulatorytasks: they 
an bind to regulatory regions and modify the trans
ription of asso
iated proteins.They 
an be 
onsidered as trans
ription fa
tors (TF). Note that TFs mainly appear in thehalf-half 
ontext. The a
quisition of trans
ription fa
tors is one of the signs that indi
atethe 
reation of a 
omplex regulatory network.7In these experiments, an organism is submitted to a repeated mutagenesis pro
ess in order to measurethe �tness loss.
51
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(d) Number of trans
ription fa
tors (TF, i.e. non-metaboli
 genes)Figure 12: Evolution of the genome stru
ture for the best individual of the population. Thenon 
oding regions are 
onsidered as the genomi
 sequen
es between a terminator and thenext promoter.4.2.2 Evolution of the regulation networkFigures 13, 14, 15 and 16 present a global overview of the evolution of the geneti
 network.While �gure 13 shows that links are regularly added to the network (mainly thanks to a52
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ation divergen
e pro
ess), either the mean link weight (�gure 14) or the linkweight histograms (�gures 15 and 16) are mainly stable. Moreover, in the 
ase of fullorganisms, the link histograms are 
lose to random distributions (�gure 15 left 
olumns),showing that, in su
h 
onditions, the link weights are mainly 
ontingent. In the 
ase ofhalf-half organisms, distributions are biased toward null values (�gure 16), with a fewstrong links.
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(b) number of inhibitory links for the best indi-vidualFigure 13: Number of a
tivation and repression links in the regulatory network for the bestindividual at ea
h generation for all the simulations.The organization of the regulation network appears more 
learly when one looks at theintera
tions between the signaling protein and the rest of the network (�gures 17 and 18).Both histograms (either a
tivation of inhibition) are 
learly di�erent from the random ones:for the full 
ontext, the signaling protein has a strong inhibitory in�uen
e over manynodes in the network (�gure 17, bottom line) while having only a little a
tivation in�uen
e.This shows that, in the full 
ontext, the evolution has mainly sele
ted dire
t in�uen
e ofthe signaling protein over the network. This is 
onsistent with the previous results: sin
ethe network is only very slightly evolvable, the organisms were not able to develop a systeminvolving the internal dynami
 of the network to regulate their phenotype. The only solutionis to use the external signal dire
tly in order to regulate the trans
ription (even though the�tness 
urves show that this regulation is not very e�
ient, �gure11(a)).On the 
ontrary, in the half-half 
ontext, the signaling protein is only lo
ally 
onne
tedto the network (�gure 18). Therefore, the geneti
 network must transmit its in�uen
e towardall the proteins whose trans
ription rate needs to be modi�ed during the organism's lifespan.53
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(b) average weight of the inhibitory linksFigure 14: Average weight of a
tivation and repression links in the regulatory network of thebest individual at ea
h generation for all the simulations.This is probably the reason why, in this 
ontext, the networks are 
omposed of a largernumber of enhan
ers than inhibitory links. Figure 11(a) shows that the result is indeed verye�
ient sin
e half-half organisms have the smallest gap, hen
e the best �tness.These results indi
ate that, in the full 
ontext, organisms have only developed a verysimple (and almost ine�
ient) regulatory network. On the 
ontrary, half-half organismsseem to develop a 
omplex network. Nevertheless these histograms are not su�
ient tounderstand the me
hanisms of these 
omplex networks, and so we will need to study theirproperties more pre
isely. To do so, we studied the �nal regulatory network of the bestindividual for the best simulation in order to see how it is stru
tured. Results are presentedin the next se
tion.4.3 Analysis of a parti
ular networkAfter 25000 generations, the half-half 
ontext presents a very e�
ient behavior: the gapvalue of the best individual is 0.0069 (whereas, without any regulation, the best possible gapis ≃ 0.011). It has a long genome (∼ 10100 base pairs) with 51 genes (10 of them beingtrans
ription fa
tors) and has developed a 
omplex regulation network (�gure 19).Network dynami
s have very good performan
e, as we 
an see in �gure 20(a): a few timesteps are enough to inhibit the subset of metaboli
 fun
tions and to stabilize its behavior.In �gure 20(b) we 
an see that after the arrival of the external signal, it only takes a fewtime steps to inhibit protein produ
tion and stabilize the network.54
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(f) Distribution at generation25000Figure 15: Distribution of intera
tions in the geneti
 networks in the full 
ontext (meanvalue for the three seeds). Top: A
tivators. Bottom: Inhibitory links. The �rst 
olumnpresents the distribution obtained for random binding sites and random proteins of 21 amino-a
ids.This network is highly 
onne
ted: 47% of the links are a
tive (791 a
tive links vs 1688possible links) � either positive (486 links, 56%) or negative (406 links, 44%)8. However, alarge amount of these 
onne
tions are still weak (data not shown) although some very a
tivelinks have appeared in the network (mainly negative ones). In this experiment, the organismshave to adapt their metabolism when a signaling protein is introdu
ed in the �
ell�. Thisprotein 
an in�uen
e the trans
ription rate of genes either dire
tly (by binding to one of itspromoter's regulatory regions) or indire
tly (by involving other intermediate regulators, i.e.trans
ription fa
tors, in a 
omplex regulation pro
ess). Indeed the regulation network does8Note that the total number of links is not equal to the sum of enhan
er links and inhibitory links. Ifa protein binds to both the operator and the enhan
ing region of a single promoter, we only 
ount oneregulatory link. 55
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(f) Distribution at generation25000Figure 16: Distribution of intera
tions in the geneti
 networks in the half-half 
ontext(mean value for the three seeds). Top: A
tivation. Bottom: Inhibition. The �rst 
olumnpresents the distribution obtained for random binding sites and random proteins of 21 amino-a
ids.not need to be 
omplex in order to be e�
ient.In order to better understand the behavior of the regulation network, it is interesting toanalyze the motifs that have emerged in the network [4, 26℄. Table 2 shows the proportionof auto-regulation motifs in the evolved network. Clearly, the network has a
quired morePositive Auto-Regulation (PAR) loops than Negative Auto-Regulation (NAR) ones. Yet, ithas been demonstrated that Positive Auto Regulation slows down response time, de
reasesstability and in
reases variability [8℄. Thus PAR 
an be positively sele
ted. However thepredominan
e of PAR may also be an indire
t e�e
t of the slightly higher proportion ofenhan
er links. Further analysis is therefore needed to distinguish these two hypotheses(sele
tive hypothesis vs. neutral hypotheses) from ea
h other.56
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(f) Distribution at generation25000Figure 17: Distribution of the in�uen
e of the signaling protein over the nodes of the geneti
networks in the full 
ontext (mean value for the three seeds). Top: A
tivation. Bottom:Inhibition. The �rst 
olumn presents the distribution obtained for random binding sites..(PAR) (NAR) Isolated8 3 40Table 2: Number of auto-regulation motifs in the network at generation 25000Looking at two gene motifs (table 3), we 
an see the overrepresentation of NegativeFeedba
k Loops. As dis
ussed above for Auto-Regulation loops, this 
an be either a sele
tivee�e
t or a neutral e�e
t. We now have to de
ipher between these two hypothesis.Finally, when studying the regulatory network (�gure 19), we have been surprised to�nd a
tivation links from the signaling protein to a few nodes in the network. In fa
t57
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(f) Distribution at generation25000Figure 18: Distribution of the in�uen
e of the signaling protein over the nodes of the geneti
networks in the half-half 
ontext (mean value for the three seeds). Top: A
tivation.Bottom: Inhibition. The �rst 
olumn presents the distribution obtained for random bindingsites. Positive Negative Positive/ A
tivation Inhibition Feedba
k Feedba
k Feedba
kLoop Loop Loop620 303 227 38 64 23Table 3: Number of binary motifs in the evolved network at generation 25000when looking more pre
isely at the external protein links (Figure 21(a)) one 
an see that thesignaling protein a
tivates genes 1 and 22 and that protein 22 also inhibits gene 1. The whole58
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PajekFigure 19: Regulatory Network of the best individual (half-half 
ontext). This image wasgenerated with Pajek (Program for Large Network Analysis and visualization developed atFa
ulty of So
ial S
ien
es, Ljubljana). Inhibitory links are represented by dashed lines.stru
ture thus 
onstitutes an in
oherent Feed Forward Loop of type-1 (it is said in
oherentbe
ause one side of the loop a
tivates gene 1 while the other side inhibits it). This kind ofloop has been well 
hara
terized in ba
terial regulators (as found in E. 
oli) and it 
an 
arryout a response a

eleration in dynami
al fun
tions [34℄.Protein 22 
an be 
onsidered as a trans
ription fa
tor be
ause it doesn't have anymetaboli
 a
tivity (the parameters of the protein are: m = 0.28, w = 0.00 and h = −0.11).The protein is weakly regulated (enhan
ed by protein 14 and the external signal; inhibitedby protein 31). It also enhan
es the a
tivation of 6 proteins and it inhibits �ve proteins,
onstituting a Single Input Modules (SIM) motif [4℄ (�gure 21(a)). The ar
hite
ture formedby the external protein, protein 22 and proteins in the SIM motif has been found by Corderoas the forerunner of FFL motifs avalan
he [13℄.Nodes 1 and 22 seem to a
t as sensory signal nodes. Protein 22, in parti
ular, hasmainly output links. It transmits the external signal (triggered by the external protein) toa subset of the other proteins. Protein 1 is a sour
e of enhan
ing links but it only re
eivesinhibitory in�uen
es. Even if this protein is enhan
ed by the external protein, it will bequi
kly repressed by in
oming inhibitory links so its in�uen
e as an enhan
er will be limited.This behavior 
an be seen in �gure 21(b): when the external signal arrives to the 
ell, protein
1 is strongly enhan
ed but only a few steps later it is repressed, rea
hing to a steady statewith a slightly higher 
on
entration than before the arrival of the external signal.59
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on
entra-tions during the individual's life (the dashedline 
orresponds to the arrival of the externalsignalFigure 20: Kineti
 behavior of regulatory network. Best individual at generation 25000These �rst experiments show that the RAevol model is able to produ
e �viable� regulationnetworks. However they also show that the high 
onne
tivity of the evolved regulationnetworks makes them very di�
ult to analyze. Hen
e, and as we are now aware of thein�uen
e of the a�nity matrix on the 
onne
tivity of the resulting network, we 
an use theseparameters to obtain more sparsely 
onne
ted networks.The evolutionary design of regulatory networks opens a lot of experimental dire
tions.We are highly interested in investigating the mutational robustness of the networks: inRAevol, the mutational pro
ess is biologi
ally realisti
 (i.e., mutations a
t at the genomi
level rather than the regulatory level). Therefore, this model is parti
ularly appropriate tobetter understand the 
omplex relationship between the robustness of the organisms and thestru
ture of their regulation networks.Alternatively, we plan to extend the model by introdu
ing sto
hasti
ity in the trans
rip-tion pro
ess as well as sto
hasti
ity in the environment. We are parti
ularly interested inthe topology of the regulatory network: sin
e the presen
e of Negative Auto-Regulation 
anredu
e 
ell-
ell variations, it 
an prevent the regulation network transmitting the sto
hasti
-ity from the trans
ription pro
ess to the organism phenotype. On the 
ontrary, variability
an be enhan
ed by the 
reation of Positive Auto-Regulation (PAR) motifs [50℄. Thus, weexpe
t the number of PAR/NAR motifs to depend on the sto
hasti
ity of the environment:in highly sto
hasti
 environments, PAR should be positively sele
ted for the phenotype tobe sto
hasti
 too (bet-hedging). On the 
ontrary, in a stable environment, NAR should bepositively sele
ted in order to redu
e the e�e
ts of sto
hasti
 trans
ription.60
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(a) S
hemati
 view of the subnetwork a
tivatedby the external protein. Nodes drawn with dashedlines are trans
ription fa
tors
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(b) Con
entration of the external protein and ofproteins 1 and 22. These three proteins all together
reate an In
oherent FFL motif [34℄Figure 21: Overview of the enhan
ing in�uen
es of external protein on the elements of thenetwork5 Open Issues and Future WorkRAevol is an integrated evolutionary model that provides experimenters with an insight tothe 
omplex adaptation me
hanisms that prokaryoti
 organisms 
an adopt to fa
e 
hangingenvironments. It models the main features of the evolution and regulation of prokaryotes(although obviously in a very simpli�ed way). In parti
ular, it respe
ts the di�erent levels oforganization of ba
terial organisms as well as the intera
tion between those levels. When usedto simulate the evolution of ba
teria in a simple periodi
 and syn
hronized environment itproved to be a very valuable tool. Indeed the organisms not only developed simple strategiesto regulate their metabolism but were also 
apable of building 
omplex networks that allowedthem to rea
t e�
iently to external events. However further investigation are needed to
on�rm these results. The behavior of the model itself also needs to be studied 
arefully: inthis paper we showed that the mean 
onne
tivity of the regulation network of an individualhas a strong in�uen
e on its evolutionary fate. We are now looking forward to 
ondu
tingexperiments with more sparsely 
onne
ted networks (introdu
ing more null values into thea�nity matrix) in order to obtain biologi
ally more plausible networks.In the experiments presented here, the 
onditions our organisms had to fa
e were quitesimple. We now plan to test our model in more 
omplex situations, in parti
ular with non-syn
hronized environments where the optimal phenotype will vary in a more 
omplex way.We suppose that, in su
h 
onditions, the organisms will develop more sophisti
ated regula-61
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hez-Dehesa et al. Modelling evolution of regulatory networkstory networks, whi
h would allow us to 
ondu
t a more in-depth study into the trans
riptionmotifs. In this paper we analyzed the �rst and se
ond degree motifs but 
ould go no furtherbe
ause of the high 
onne
tivity of the network. So, less 
onne
ted networks would allow usto study the emergen
e of third degree motifs, FFLs, SIMs, . . .We will also analyze the topologi
al 
hara
teristi
s of the networks: will they be s
ale-free[7℄? will they adopt small-world [46℄ stru
ture? Or will they have di�erent 
hara
teristi
sdepending on the spe
i�
 features of the environment?An open question is the relationship between the regulation network and the mutationalrobustness of the organisms. Does the regulation network enhan
e or redu
e the organisms'robustness? Our �rsts results suggest the latter but it 
learly needs more investigation.A possible experiment would be to 
ompare regulation networks evolved under di�erentmutational 
onstraints (e.g., di�erent mutation rates).Regarding the development of the RAevol model, our next step will be to introdu
esto
hasti
ity in the trans
ription pro
ess and in the environment. From the work of Kusseland Leibler [33℄, we know that phenotypi
 noise may be sele
ted in variable environments.Yet, it is an open question whether the regulation network will adopt a di�erent stru
turedepending on the ne
essity to amplify (or to redu
e) the intrinsi
 trans
ription noise in orderto adapt the phenotypi
 noise to the environmental 
onditions.A
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