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Modelling Evolution of Regulatory Networksin Arti�ial BateriaY. Sanhez-Dehesaa,c, D. Parsonsa, J.M. Peñab, and G. Beslon1,a,c
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c Institut Rh�ne-Alpin des Systèmes Complexes (IXXI), Lyon, FraneAbstrat. Studying the evolutive and adaptative mehanisms of prokaryotes is a ompli-ated task. As these mehanisms annot be easily studied �in vivo�, it is neessary to onsiderother methods. We have therefore developed the RAevol model, a model designed to studythe evolution of bateria and their adaptation to the environment. Our model simulates theevolution of a population of arti�ial bateria in a hanging environment, providing us withan insight into the strategies that digital organisms develop to adapt to new onditions.In this paper we desribe the priniples and arhiteture of the model, fousing on themehanisms of the regulatory networks of arti�ial organisms. Experiments were ondutedon populations of arti�ial bateria under onditions of stress. We study the ways in whihorganisms adapt to environmental hanges and examine the strategies they adopt. An anal-ysis of these adaptation strategies is presented and a brief overview was proposed onerningthe patterns and topologial harateristis of the evolved regulatory networks.Key words: evolution, regulatory networks, modelling, motifs, adaptation mehanismsAMS subjet lassi�ation: 9204, 92D10, 92D15
1 IntrodutionProkaryote organisms are very diverse, living in di�erent environments and developing vari-ous abilities. Bateria are found in every eosystem � some being olonized only by miro-organisms � illustrating the impressive adaptation apabilities of prokaryotes. They an be1Corresponding author. Email: guillaume.beslon�liris.nrs.fr27Article available at http://www.mmnp-journal.org or http://dx.doi.org/10.1051/mmnp:2008054
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Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networksfound, for example, surviving anaerobially in aid elements, in symbiosis with other or-ganisms (e.g., Buhnera aphidiola, whih lives in symbiosis with aphids, providing essentialamino aids for their host), or even in the human intestine where Esherihia oli favorsdigestion and absorption of nutrients.Bateria are good examples of organism adaptation. They are able to reat to variationsin their environment at di�erent levels: bateria strains an adapt to major environmentalhanges by a darwinian evolutionary proess and individual bateria an adapt to short-termhanges in their environment. To ahieve this kind of adaptation at di�erent levels, bateriahave developed a large repertoire of strategies that may themselves be optimized dependingon the harateristis of the environment: stability, periodiity, stohastiity, ompetition. . .Although a lot of di�erent strategies (e.g. evolution, regulation, bet-hedging, adaptivemutation, gene ampli�ation, Baldwin e�et) have been identi�ed and are relatively wellharaterized individually, we only have a very partial insight into how they ombine withone another: in an idealized environment, one an identify the optimal strategy and math-ematially �nd the optimal parameters. However real environments are far from ideal andthere will generally be a wide range of viable adaptation strategies, ombining e.g., regu-lation and evolution, evolution and bet-hedging, regulation and gene ampli�ation or anyombination of these. For instane, if the environment hanges slowly, bateria may haveenough time to mutate and darwinian evolution an be su�ient to adapt to new onditions.But, they may not be able to onserve omplex regulation strategies sine mutations quiklydegrade regulation mehanisms when these are inative [14℄. Now, if the environment variesa little faster, evolution an be less e�ient than regulation, provided that bateria are ableto sense their environment at an aeptable ost and that environmental hanges show someregularities (e.g., swithes between two di�erent energy soures as in the well-known laoperon). On the ontrary, rare but unpreditable events put organisms under stress and areknown to promote spei� adaptive strategies suh as the development of mutator strains[44℄. All these di�erent strategies imply plastiity at di�erent levels: geneti, metaboli,physiologi, phenotypi, all of whih are involved in omplex interations.These adaptation mehanisms help bateria to adapt to hanging environments. Howevereah has its own tempo, ranging from slow (i.e., darwinian strategy) to fast (i.e. stohastiperturbations leading to phenotypi variability). In the middle, geneti regulation enables afast dynami adaptation, enabling ells to reat to hemial signals. Regulation is the mainmehanism to provide adaptive behavior at a metaboli level. However, regulation never atsalone, it is obviously ombined with evolution: geneti variations, gene dupliation, gene lossor hromosomal alterations [19℄ onstitute a vast repertoire of variations that an be used bya baterial strain to adapt to its environment, but that an also provide bateria individualswith tools to develop more omplex adaptation mehanisms. In spei� onditions evolutiongives rise to regulatory systems that enable fast adaptation to rapidly hanging environments.In the ase of the la operon, regulation enables the organism to save energy when several foodsoures are available. It is supposed that regulation is a result of adaptation to hangingenvironments. Yet, it an be shown that suh a system an be very sensitive to hangesin the environment onditions: Dekel [14℄ has shown that only a few hundred generations28



Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networksare neessary for E. oli to drastially hange its la operon behavior when plaed in newonditions. At the other end of the time sale, the la operon is known to have a stohastibehavior [11, 17℄ and it an be shown that stohastiity of transription interats with theregulatory ativity of the operon, delaying the operon swith [23℄. Thus, while regulationativity has long been supposed to be independent of slow evolutionary hanges or faststohasti variations, it is beoming more and more lear that the interations of all theseadaptation strategies must be studied to fully understand their behavior [22℄.It is still a matter of debate in what kind of situation/environment evolution promotes theemergene of regulatory proesses and how regulation interats with the evolutionary proessitself. Hypotheses annot be easily studied on real living systems. Although experimentalevolution is possible with miro-organisms [16℄, traking hanges in genomes, regulatorynetworks and even phenotypes is almost impossible in �in vivo� tests. An alternative is touse digital organisms to study the geneti bases of adaptation �in silio� [2℄. In suh arti�ialmodels, organisms (i.e., omputational data strutures) are plaed in a syntheti environmentthat provides them with resoures. In this environment the organisms reprodue, mutateand ompete for the resoures, thus resulting in darwinian evolution. Sine the organismsas well as the environment are arti�ially de�ned they an both be perfetly and ompletelydesribed [38℄. Suh models have already shown their usefulness in studying evolution ofrobustness [47℄ or in identifying indiret mutational pressure that regulates genome size [29℄.Yet, sine most of these models fous on mutational adaptation, they annot be used tostudy omplex interations between the di�erent adaptation mehanisms.The de�nition of a suitable model to desribe this biologial proess would be useful totakle many open questions in the literature of this domain: How do organisms adapt toenvironmental hanges? What is the origin of regulatory networks? Why do regulatory net-works appear during evolution? How do networks evolve over time? Studying the inlusionof new nodes in already existing regulatory networks and studying the development of newregulatory networks ould help to answer some of these questions and provide us with abetter understanding of network evolution.Geneti networks appear to be highly organized: they are modular [21℄, sale-free [7℄ andsome motifs are overrepresented [4℄. Yet, the preise origin of these strutures is not fullyunderstood. In partiular, it is quite di�ult to distinguish between seletive origin (thestruture of the network is seleted beause it ensures a orret funtion in the organism'senvironment), mutational origin (the mutational proess tends to favor some strutures, asin the preferential attahment model [7℄) and indiret seletive origin (the network strutureis seleted beause it is robust to mutation or, on the opposite, highly adaptable). It hasbeen shown that in some spei� onditions, modular strutures an be seleted in evolvednetworks [20, 25℄. Here again, modelling is an essential tool to takle suh questions.Struture and dynamis of regulatory networks are at the heart of systems biology. Therapid development of this �eld has been followed by the development of a very ative mod-elling ativity of suh networks. As far as evolution of regulatory networks is onerned, thework has been foused on the question of topology evolution [25, 26, 49℄, evolution of networkrobustness [3, 12, 42℄ and evolution of arti�ial funtions [5, 6, 18, 32℄. Most of these papers29



Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networksdeal with diret evolution of geneti networks (i.e., in the model the network struture isdiretly modi�ed by the geneti operators � mutations, rossing-over and rearrangements) orseletion of the individuals on the basis of the network properties (e.g., seletion of a spei�topology or seletion of a spei� regulation dynami).Additionally, many studies have been onduted to understand evolution of regulatorynetworks from a bioinformati perspetive. Phylogeneti studies and sequene omparisonprovide a quite preise view of the fores that shape bateria genomes and in�uenes theevolution of their regulatory networks [35℄. Thanks to these studies, it is now learer thatlarge genomi events suh as genomi rearrangement, horizontal gene transfer (HGT) [19, 31℄or gene dupliation play a key role in the evolution of networks [45℄ and that the topologyof the network is for a large part indiretly shaped by the mutational dynami [13℄.All these approahes fous on a spei� fore that shape the network topology (e.g.,mutational dynami, seletion for funtion, seletion for robustness - either mutational orfuntional robustness, ...). However, in a real biologial regulation network, all these foresare at work simultaneously and the network topology results from a ompromise between allthe onstraints a network and an organism must fae. These onstraints themselves dependon the environmental properties: in a stati environment, seletion for funtional robustnessis important while in a randomly (but slowly) evolving environment, the mutational dynamiand/or evolvability property may be ruial for the organism. Thus, to better understandhow the environment modulates the emergene of spei� network properties, an integratedmodel is needed in whih the appearane of di�erent network topologies during the evolutiondepends on the dynamial properties of the environment. Moreover, this model shouldrespet the main lines of organisms' evolution. Organisms should own a geneti sequenethat allows a large variety of mutational events, a omplex genotype-to-phenotype mappingthat inludes a proteome level and enables the evolution of a geneti network inside theorganism. Thus, it should be strati�ed from a genomi level (the sequene being diretlymodi�ed by mutational events while all other organization levels are only indiretly modi�eddepending on the e�et of the random mutations) to a phenotype level (the phenotypelevel being the only one subjet to seletion while the other organization levels are onlyindiretly seleted depending on their in�uene on the phenotype). The proteome levelmust respet the ore properties of regulatory networks' evolution: the regulation networkis neither diretly mutated nor diretly seleted. The nodes of the networks are the proteinsof the organism but the links result from a omplex interation between the organismsproteins and its genomi sequene: eah protein may or may not interat with the sequeneat spei� loations, modifying the transriptional ativity of a promoter and, onsequently,the transription rate of one or many genes. Eah gene is then transribed at a spei�rate that depends on the intrinsi properties of its promoter and on the in�uene of theregulation network (inluding ativation, inhibition and self-regulation - see below). Theprotein onentration is then governed by the transription rate and by a degradation term.Moreover, the whole transription/translation proess is highly stohasti and it is nowreognized that stohastiity in�uenes the fate of organisms [17℄.Following these priniples, we have developed the �Regulatory Arti�ial Evolution� model30



Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networks(RAevol). In this model, arti�ial �digital� bateria evolve in a variable environment. Alongtheir evolution, these bateria aquire genes and evolve a omplex genome, a omplex regula-tion network and an adapted phenotype. On an evolutionary time sale, the best individualsare those whih evolve the best mehanisms to fae environmental variations. We are thenable to understand whih of these mehanisms are e�ient depending on the environmentalonditions. In this paper, we �rst desribe the general priniple of regulation in prokaryotesand we expose the mehanisms that onstitute the ore of our model (Setion 2). Then wepreisely desribe the RAevol model (Setion 3), fousing on the regulation properties. Fi-nally we present a simple arti�ial evolution experiment that illustrates the main propertiesof the model (Setion 4) and disuss evolutionary senarii that may be tested with RAevol.2 Priniples of Geneti Regulation in ProkaryotesThe priniples of transription regulation were desribed in the 60's by Jaob and Monod [24℄.Experimenting with Esherihia oli, they showed that the transription rate of a spei�geneti sequene depends on at least three fators: its promoter, whih is the initial bindingsequene of the RNA polymerase, regulation sites (either ativators or inhibitors) wheresome spei� proteins an bind, thereafter in�uening the transription proess, and externalfators suh as the onentration of RNA polymerase in the ell. Note that these priniplesannot be onsidered universal: in eukaryoti organisms, the regulation of transriptionativity depends on many di�erent mehanisms, inluding hromatin dynamis.Contrary to eukaryotes, in whih promoters are generally inative in the absene oftransription fators (initiation omplexes are neessary for the transription to start and a�naked� promoter will be essentially inative), prokaryoti promoters and RNA polymerasean diretly interat with one another. In the absene of regulatory elements, a promoterwill have an inherent ativity that mainly depends on its quality. When a promoter has aprimary sequene very similar to the onsensus sequene, RNA-polymerase an easily bindto it. The initiation of transription will then regularly our and the intrinsi transriptionlevel will be high (possibly at a maximum level if the promoter has a very good a�nity withthe polymerase). In this ase, the transription rate will only depend on extrinsi fators suhas the RNA polymerase onentration and quality or the transription elongation speed).If the promoter a�nity to the RNA polymerase is weak, transription will only rarelybe initiated. The quality of the promoter thus determines the transriptional ground tran-sription level β (or �basal transription level�, �gure 1(a)) [43℄. Thus, in the absene ofspei� regulatory sequenes, genes are transribed at a rate that mainly depends on theirpromoter strength, maximum transription rate being bounded by global fators suh as thepolymerase properties and onentration.The transription level an be modi�ed by the ation of regulatory proteins. These pro-teins modify the transription levels, enhaning or inhibiting gene transription. In prokary-otes, this proess is mainly used to ontrol energy onsumption in order to maintain a goodbalane between food availability and energy, and to adapt to environmental hanges.In prokaryotes, inhibition or repression of transription ours when a regulatory protein31



Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networksinhibits the initiation of transription or the elongation of the transript (i.e., repressorproteins). Ativation of transription ours when a protein promotes transription initiation[48℄. When a promoter is ativated, its ativity an only rise up to a maximum transriptionlevel (meaning that intrinsially e�ient promoters an only be marginally enhaned).Transription fators (ativation and repression proteins) at by binding to spei� re-gions of the DNA that are near the promoter of the protein they regulate. Repressor proteinsbind to a region alled operator (also alled inhibitory region) generally situated downstreamfrom the promoter region. When bound there, a repressor may prevent RNA polymerasefrom binding or blok its displaement along the DNA thus disturbing RNA elongation (�g-ure 1(b)). Ativator proteins target ativator-binding sites are usually loated upstreamof the promoter region. They promote RNA-polymerase binding, thus enhaning proteinprodution (�gure 1()).
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Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networkswhih several genes share their promoter and regulatory regions is alled an operon beauseall genes are under the ontrol of a single operator (�gure 2).
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Figure 2: Overview of an operon strutureThe best known regulation system is probably the Latose (la) Operon whih ontrolsthe latose-gluose metabolism in Esherihia oli. When Monod experimented with thee�ets of ombining sugars as arbon soures for E. oli, he found that if gluose and latoseare provided to the baterium, it �rst metabolizes gluose and the olony grows fast. Whengluose is depleted, the bateria stop growing. After a short period (lag-phase), bateriastart onsuming latose and the olony grows again. Jaob and Monod later showed thatthis adaptive behavior omes from a gene regulation mehanism.In E. oli, the latose metabolism is ontrolled by an enzyme, the β-galatosidase protein,that breaks down latose into two simple sugars (galatose and gluose) and by a permeaseprotein that transports latose from the environment to the ell. The former protein alsoonverts part of the latose into allolatose.The β-galatosidase protein is enoded by the LaZ gene and the permease by the LaYgene. Both genes are grouped on an operon struture, the la operon, and are under thein�uene of the same promoter and the same operator. In fat the la operon ontains a thirdgene, LaA, that enodes for a β-galatosidase transaetylase. A fourth gene, LaI, that isnot on the same operon, ompletes the system by oding for a repressor of the la operon.The repressor protein is able to bind to the la operator, preventing the transription of theoperon (�gure 3). However, when latose is present in the ell, it interats with the repressorprotein, and hanges its onformation, preventing it from binding to the la operon. When,the operon is no longer repressed LaY and LaZ an be transribed. Due to the permease,latose onentration thus inreases, while β-galatosidase is produed and degrades latose.The LaI ontrol is an example of negative ontrol. However, it is not su�ient to explainthe whole behavior of the la operon. In partiular, negative ontrol annot explain why,in presene of both gluose and latose, the operon is not transribed. Indeed, the operonis also ontrolled by a positive loop: the onentration of gluose is sensed by the ell via asignaling moleule, AMP; the more gluose in the environment, the lower the onentrationof AMP. AMP binds to an induer of the operon, the CAP protein, that itself binds onthe DNA upstream from the la promoter. Then, the la operon is transribed if and onlyif latose is present in the environment and gluose is not (or no longer) present in theenvironment2.2A lots of seondary mehanisms have been disovered. They slightly modify the behavior of the laoperon but the two main regulation loops are the negative loop due to LaI and the positive loop due toAMP binding on CAP (�gure 3). 33
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P2 binds to its own operator, it inhibits its own prodution.The nature of the transription network makes its evolution di�ult to understand. Sinethe links represent omplex interations between proteins and spei� geneti sequenes,they annot be modi�ed independently: when a geneti sequene varies (e.g., due to pointmutation), it perturbs all the interations between itself and the proteins suseptible to bindto it. Consequently, the in�uene of the mutations on the network dynamis is a omplexproess where links are modi�ed olletively. That is why the evolutionary dynamis ofregulation networks annot be fully desribed by models in whih mutations at at a linklevel (i.e., by adding/deleting single links or hanging the weights one by one).3 Regulation in Arti�ial Evolution, the RAevol ModelThe RAevol model (from Regulatory Aevol Model) is an extension of the �Arti�ial Evolu-tion� (Aevol) model, developed previously in our team to study robustness and evolvabilityin organisms [27, 28, 29, 30℄. In previous studies, it has been used to demonstrate howindividuals adapt their evolutionary strategy to the rate of mutational events. When or-ganisms have low mutation rates, they aumulate non-oding sequenes. On the ontrary,high mutation rates lead to ompat genomes with few and short non-oding sequenes.Furthermore, when mutation rates are very high, organisms annot maintain a large numberof genes. Thus, they have to adapt their genome struture to be more robust even thoughthis impairs their apaity to adapt. The Aevol model is well suited for our study beause it34
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Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networksWe argue that Avida's arti�ial hemistry is in fat too straightforward to study theevolution of regulation networks. In Avida, the genome and the metabolism are struturallyequivalent. There is no real transriptional proess and any mutation on the geneti sequenehas a diret impat on the organism's metabolism. Avida's hemistry is in fat loser to anRNA-World than a DNA-World (obviously, there is no transription regulation in RNA-Worlds). Other arti�ial hemistry frameworks have been proposed and used in digitalevolution experiments [10, 21℄. However, none of them are able to desribe the omplexinterations between the genome, the proteome and the phenotype that are mandatory todesign an integrated model of geneti networks evolution.In Aevol (and RAevol), the arti�ial hemistry is based on a mathematial desriptionof organism metabolism. Eah organism is an abstrat, virtual entity, represented as amathematial funtion, y = F (x), where x ∈ Ω represents a spei� metaboli funtion and
y ∈ [0, 1] is the e�ay of the organism for this funtion (more preisely y is the degree ofpossibility for the organism to perform this funtion, see below). Therefore, in our digitalworld, Ω represents the abstrat set of metaboli funtions that an be performed by theorganisms. To keep the model simple, Ω is a one-dimensional spae, i.e., an interval (atually,in all our experiments, Ω = [0, 1]). This means that, in Aevol and RAevol, a metabolifuntion is desribed as a real number and that all metaboli funtions are topologiallyorganized in Ω meaning that there is a sort of �proximity� (similarity) between metabolifuntions. This mathematial desription was inspired by fuzzy logi and the theory ofpossibility [51℄. Following the theory of possibility, F is a possibility distribution: the spae
Ω an be seen as the set of metaboli funtions that the individual an ahieve, and F as thedegree of possibility with whih a spei� funtion x is ahievable by the organisms (a zeropossibility meaning that this funtion will not be performed while a degree 1 means thatit will atually be performed). F is formed from the sum of all the metaboli subfuntionsaomplished by the protein, by using operators provided by fuzzy logi theory, where eahsubfuntion is desribed as a fuzzy set.Fuzzy logi provides a set of boolean operators that enables us to ombine the di�erentmetaboli funtions within an organism (desribed as fuzzy sets) and to ompute the resultingmetabolism. Our metaboli hemistry must be omplemented with a DNA/RNA translationproess. DNA and RNA are sequenes that do not diretly ontribute to the metabolism butan be transribed and translated into metaboli elements. In our model, the DNA/RNAhemistry is based on binary sequenes: DNA is a binary double-strand irular sequeneand RNA sequenes are desribed as linear binary sequenes.Most evolutionary models are based upon two-level desription of organisms: given aspei� phenotype, one has to �nd an appropriate geneti desription and then the genetioperators that an manipulate the genome. In Aevol/RAevol, we introdued a third de-sription level: the proteome. In the model, proteins are the knot that tie all the elementstogether: genes are sequenes that are to be translated into proteins, phenotypes result fromproteins interations, proteins are the nodes of the regulation network, et. These inter-ations our at di�erent levels of desription, whih implies that proteins will need to bedesribed at these di�erent levels (�gure 5): 36



Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networks
• From a geneti point of view, a protein an be desribed as a linear sequene (i.e.primary sequene) translated from a gene thanks to a geneti ode;
• From a metaboli point of view, proteins ontribute to the phenotype of the organism.Eah protein is desribed as an elementary possibility distribution f in Ω whose pa-rameters are dedued from the protein's primary sequene thanks to a funtional ode.In turn, the intensity of the protein's metaboli ativity depends on its onentrationin the organism.
• From a regulatory point of view, proteins may interat with some spei� loations onthe genome (namely enhaners and operators), thus modifying the transription levelof genes. A third ode will be used to ompute the a�nity of a given protein with agiven regulatory region (regulatory ode).We onsider that the ativity of a protein depends both on its intrinsi apability (i.e.on its primary sequene) and on its onentration in the ell. The onentration is diretlymodulated by the transription ativity (i.e., by the number of mRNA). Consequently, aell an modulate its protein prodution either by gene dupliation/deletion or by generegulation.

Genome

Function Phenotype

RNA

functional
code

Regulatory Code

Protein

Primary

Regulatory

Metabolic

genetic
code

Regulat ion

Transcription
Translat ionFigure 5: Overview of all the protein roles in the model. Proteins play di�erent rolesdepending on the elements they interat with. They are translated from the genome (atuallyfrom mRNA); they an regulate mRNA transription in addition to ontributing to thephenotype.In the next setion, we will arefully desribe the model following the translation proessthat goes from the genotype to the phenotype (setion 3.2). Sine the translation proess isnot stritly linear, we will then desribe more preisely the regulation model (setion 3.3).Finally, we will desribe the global population level in whih seletion and ompetition willatually take plae (setion 3.4).3.2 From genotype to phenotype in RAevolThe genome is oded as a double-brand binary string, inspired from the bateria's genome.The �rst step in genotype-phenotype mapping is genome deoding. The genome sequene37



Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networksis parsed to identify promoters and genes. One genes are loated they will be transribedand translated to ompute the organism's phenotype.3.2.1 Transription: From DNA to mRNABoth strands of the binary genome are parsed to �nd the promoter-terminator strutures.A onsensus sequene was de�ned and a genome sub-sequene is onsidered as a promoterwhen its Hamming distane d from the onsensus is less than or equal to the maximumdistane dmax. In all our experiments, we used 0101011001110010010110 (22 bases pairs) asa onsensus sequene and �xed dmax = 4. The ground transription state β ∈ [0, 1] (setion 2)of the promoter depends on the similarity between the promoter and the onsensus sequene(equation 3.1).
β = 1 −

d

dmax + 1
(3.1)Note that in the model, all onentrations and rates are given in arbitrary unities. Here,the transription rate is onsidered to be bound by extrinsi fators suh as the onentrationand e�ieny of the RNA polymerase. The maximum transription value is the same for allpromoters.The transription level is modulated by all the protein-genome interations that takeplae in the regulatory regions (�gure 6). In the model we onsider two separate regulationsite of 20 nuleotides. The enhaner region (respetively the operator) is situated immedi-ately upstream (resp. downstream) of the promoter. If a protein is able to bind to one ofthese two regions, it modi�es the transription level of the promoter. Therefore, the atualtransription rate sp (t) of a promoter depends on its ground state β, on its regulators ativ-ity Eip (ativation of the promoter p by the ith protein) and Iip (inhibition of the promoter pby the ith protein3) and on their onentration ci (t) at time t. For example, if a transriptionfator binds to an enhaner region, it stimulates the prodution of the assoiated protein(for a omplete desription of the regulation model see setion 3.3).Terminator signals are modeled on the stem-loop struture of bateria ρ-independentterminators. Here any sequene of the form abcd∗∗∗ d̄c̄b̄ā is onsidered as a potential termi-nator (where a, b, c and d are binary nuleotides and ā, b̄, c̄ and d̄ are there omplementarybases. ∗ ∗ ∗ denotes any three nuleotides long sequene). Hene, the transription is pro-essed downstream from the end of the promoter to the �rst stem-loop struture found onthe sequene. The resulting sequene (mRNA) is an oriented single-strand binary sequene.Notie that a single DNA sequene an be translated several times on the same strand or onthe two omplementary strands.3In the remainder of the paper, we will use indi�erently si (t), Eij and Iij to denote the transription rate(resp. ativation and inhibition ativity) of promoters and genes. Indeed, we onsider that the transriptionof a gene is only governed by its promoter.
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Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networks3.2.2 Translation: From mRNA to protein primary sequeneOne an mRNA has been omputed, it is parsed to searh for oding regions. Eah odingregion is then translated into a protein aording to an arti�ial geneti ode that asso-iates DNA odons with amino-aids (AA). In the model, there are six amino-aids (seesetion 3.2.3) so we need eight odons to ode for both these AA and the START/STOPodons (there is no redundany in our geneti ode). The translation proess is straight-forward: the initiation signals are �rst loalized on the mRNA (the initiation signal is themotif 011011 ∗ ∗ ∗ 000, where 011011 represents a Shine-Dalgarno-Like sequene and 000 isthe start odon4).From the start odon, the protein sequene is extrated three nuleotides by threenuleotides (i.e., odon by odon) until the termination signal (stop odon) is found on thesame reading frame. Eah odon is then translated into the assoiated amino-aid (table 1).A given mRNA sequene an ontain several initiation signals, thus forming an operonstruture. One single sequene an in fat ode for various genes (and proteins) if severalinitiation signals are found on di�erent reading frames (genes an also overlap due to thetransription of both strands).3.2.3 �Folding�: from primary sequene to metaboli ativityIn this model, a protein ontributes to phenotype by its metaboli ativity. The metaboliativity is represented as a possibility distribution f : Ω → ℜ+ with a standard shape (here
f is a pieewise-linear funtion � atually an isoseles triangle, �gure 6). Hene, it an befully desribed by three parameters:

• The position of the triangle on the metaboli axis (i.e., its mean m ∈ [0, 1]). Thisrepresents the main protein proess;
• The height h ∈ [−1, 1] of the triangle. This determines the maximal possibility degreeof the protein (i.e., its ativity for its main proess). Proteins an either ativate(h > 0) or inhibit metaboli funtions (h < 0). The possibility degree of the metaboliontribution is given by |h|;
• The half-width w ∈ [0, wmax] of the triangle. This represents the set of metaboliproess the protein an ontribute to. This parameter expresses the protein pleiotropy(i.e., its ability to ahieve di�erent � but related � metaboli proesses).The protein ontributes to the set of biologial funtions ranging from m− w to m + w,with a maximal e�ieny degree h for the funtion m. The parameters of the protein are4Although the preision of the model may seem exessive (e.g., Shine-Dalgarno sequene) one has to bearin mind that the model must respet some relative probabilities. Here, the Shine-Dalgarno sequene is usedto redue the probability of initiating the translation proess (regarding the probability of �nding a stopodon). Similarly, in setion 3.2.1, the omplex struture of terminator sequenes was used to ensure thatterminators are relatively frequent but that no short motifs are exluded from mRNA sequenes.39



Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networksdiretly omputed from the primary sequene of the protein. One the primary sequene isobtained from the mRNA sequene, three subsequenes of odons are extrated aordingto the metaboli funtion of eah amino-aid (table 1). Eah subsequene is then onvertedinto a binary sequene that an be deoded into an integer value (we use the gray odeto avoid Hamming-li�s di�ulties). Finally, the three parameters are normalized in theappropriate range depending on the length of the binary sequene, to get the �nal m, wand h values. Note that a protein an have no metaboli ativity if its w or h valuesare null (degenerated protein). However, this does not mean that it has no in�uene onthe phenotype: a degenerated protein an still have a regulatory in�uene on the genetinetwork. Codon 000 001 010 011 100 101 110 111Translation funtion start stop - - - - - -Amino-Aid - - w0 w1 m0 m1 h0 h1Metaboli funtion - - W W M M H HValue - - 0 1 0 1 0 1Table 1: Geneti ode in Aevol/RAevol model.Figure 6 summarizes the overall transription-translation-folding proess. In this exam-ple, the mRNA sequene is 100111011101111011010. It is translated into the m0h1w1m1h1w1w0amino-aid sequene. The three parameters are then given by the three subsequenes 01 (Msubsequene, length 2), 110 (W subsequene, length 3) and 11 (H subsequene, length 2).Interpreting theses binary sequenes with the Gray ode we obtain three integer values (1,
3 and 2). Then, these values are onverted into real values aording to the length of theirbinary sequene (1

3
, 3

7
and 2

3
) and normalized. Finally we get m = 0.33 (m is normalizedbetween 0 and 1), w ≃ 0.02 (w is normalized between 0 and wmax = 1

30
) and h = 0.33 (h isnormalized between −1 and 1).3.2.4 Biohemistry: from moleules to phenotypeWhen a protein i is translated from the geneti sequene, its parameters mi and wi arediretly issued from its primary sequene. However, at a time t, the atual e�ieny Hi (t)of a protein i depends on its intrinsi e�ieny hi modulated by its onentration ci (t) inthe organism (see setion 3.3 for the omputation of protein onentrations): the higher theonentration, the higher the metaboli ativity. This is simply done by using the proteinonentration as a saling fator for the metaboli fuzzy set of the protein (Hi (t) = |hi|·ci (t)).Then, the atual possibility set to be used for phenotype omputation is an isoseles triangleof mean mi, half-width wi and height Hi (t).To ompute the phenotype of an organism (i.e. the degree of possibility F (x) with whihit performs eah funtion x ∈ Ω) we must ombine the individual ations of eah protein.Eah protein is represented by a possibility distribution fi (), that an either ahieve a set40
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Figure 6: Overview of the transription-translation-folding proess. One the promoter andthe terminator are loated, boundaries of genes (start and stop sequenes) are identi�edand the gene is translated into a protein primary sequene. Three subsequenes are thenextrated from the primary sequene and deoded to ompute the three parameter valuesthat determine the metaboli ontribution of the protein. Notie that the exat ativity levelof the protein (H) depends both on its intrinsi ativity (h) and on its onentration (c).of metaboli proesses (hi > 0) or inhibit them (hi < 0). The global funtional abilitiesof an organism are the funtions that are ativated by at least one protein while not beinginhibited by at least one other protein. More formally, we an use boolean operators toompute the phenotype. First of all we ompute the ativated funtions FA and then theinhibited funtions FI . The ativated funtions FA are the funtions ativated by protein 1(fA1
) OR by protein 2 (fA2

) OR . . .OR by protein n (fAn
). The inhibited funtions FI arealulated following the same proedure as FA, by using the funtions inhibited by protein i(fIi

). Now the global funtional possibility distribution F is equal to the ombined possibilitydistributions of all the ativated funtions FA AND NOT the possibility distributions of allinhibited funtions FI [28℄. In terms of fuzzy sets, this leads to equation 3.2.
F = FA ∩ FI = (∪ifAi

) ∩
(

∪jfIj

) (3.2)where F (respet. FA, FI, fAi
and fIj

) is the fuzzy set orresponding to the possibilitydistribution F () (respet. FA(), FI(), fAi
() and fIj

()).To ombine proteins possibility distributions, we use the Lukasiewiz fuzzy operators:






NOT : fA1
(x) = 1 − fA1

(x)OR : fA1∪A2
(x) = min (fA1

(x) + fA2
(x) , 1)AND : fA1∩A2

(x) = max (fA1
(x) + fA2

(x) − 1, 0)
(3.3)Note that in RAevol, the protein onentration an hange over time. Thus, all the fuzzysets must be onsidered as dynami funtions f (t). However, in the experiments presentedin setion 4, the global phenotype is omputed only one, after a transient period.41



Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networks3.2.5 Struggle for life: from phenotype to �tnessOur interest in the phenotype of organisms is not the phenotype itself but its adaptation tothe environment. In Aevol/RAevol, the environment is modeled as a fuzzy set of funtionsthat are assumed to be useful in this eosystem. We then de�ne a possibility distribution
E(x) that spei�es the optimal degree of possibility for eah biologial funtion (E(x) anvary over time, either at an evolutionary time sale or at an individual time sale). Then, weuse the gap g between this optimal funtion set and the individual phenotype as a measureof the organism's adaptation to its environment (equation 3.4 and �gure 7).

g =

∫

Ω

|E(x) − F (x)|dx =

∫ 1

0

|E(x) − F (x)|dx (3.4)As shown by �gure 7, this measure penalizes the under-realized funtions as well as theover-realized ones. One the gaps of all organisms in the population are alulated, we areable to ompute the organism's adaptation and �tness. The adaptation of an organism willthen be inversely proportional to the gap (the smaller the gap, the better the adaptation)and the �tness results from a ompetition with the other organisms in the population. InRAevol, the omputation in based on a rank-based seletion algorithm: the N organismsare ordered from the least adapted to the best. Then, the reprodutive probability Pi of anorganism is proportional to its rank ri in the list. Other seletion shemes are also availablein the model suh as adaptation-proportionate seletion or diret exponential-rank-basedseletion (see [9, 27, 30℄ for details).
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Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networks3.3 The regulation mehanism in RAevolThe main di�erene between Aevol and RAevol is the expliit modelling of protein onentra-tion and the modelling of an individual time distint from the evolutionary time. In RAevol,the proteins are expliitely produed at a given rate that depends on the regulation networkand degraded at a onstant rate. Their ontribution to the metabolism is modulated by theironentration in the ell (setion 3.2.4). So, the phenotype of the organisms is no longer aonstant set of metaboli funtions (as it was in Aevol). Now it is a dynami set of funtionsthat an hange during the �life� of the individuals.3.3.1 Computation of proteins onentrationIn RAevol the protein onentration depends on three fators: the promoter quality, thedegradation rate and the regulation ativity. The promoter quality gives the ground tran-sription state β (equation 3.1, setion 3.2.1). The degradation rate is onsidered onstantfor all the proteins (exponential deay). Now, the regulation ativity depends on all theproteins present in the organism, their onentration and the intensity of their regulatoryativity on the operators and on the enhaners.So the protein onentration ci(t) is governed by the following equation:
∂ci

∂t
= si(t) − φci(t) (3.5)where si(t) represents the transription/translation rate of protein i at time t and φ thedegradation rate (assumed to be onstant in the model). The initial onentration of aprotein is given by the promoter ground state: ci(0) = βi. We plan to use an initial state

ci(0) equal to the proteins' onentration in the mother ell at the time it divides.As we have seen in Setion 2, the transription proess is regulated by transriptionfators that an derease the transription rate from the ground state to zero (inhibitors)or inrease it up to a maximum value that depends on extrinsi fators (mainly the RNApolymerase). Furthermore, the transription fators' ativity depends on their ability tobind to the DNA moleules at spei� loations (enhaners and operators). In RAevol, thisregulation proess is modeled in two steps: �rst, we list the regulation apaities of all theproteins on all the promoters (ativation and inhibition). This gives us the topology of theregulation network. Then, given the topology and the urrent onentration of eah protein,we are able to ompute the regulation ativity exerted on eah node (i.e., on eah gene), andhene to dedue the transription rate of eah protein.Here, we onsider the simpli�ed situation in whih the transription fators ativities arepurely additive. Therefore, at time t the global ativation exerted on the promoter5 i is given5For sake of simpliity, we onsider here the ase of a one-to-one assoiation between promoters and genes.Thus, the promoter i is supposed to govern the transription of the gene i. In the model � and in the reallife � the assoiation is not one-to-one, e.g., in ase of operon strutures.
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Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networksby:
Ai(t) =

∑

j

cj(t)AjI (3.6)where AjI represents the positive regulation ativity exerted by the protein j on the promoter
I (see next setion for the omputation of the individual regulation ativities). Similarly,the whole inhibition ativity is given by the sum of the individual inhibitions modulated bythe proteins onentration:

Ii(t) =
∑

k

ck(t)IkI (3.7)Then, the transription ativity is given by a Hill-like kineti [36℄ saled in order to respetthe basi priniples of prokaryoti transription (see setion 2): without any regulators, thepromoter is transribed at the ground state β. It an be up-regulated to a maximum level(that also depends on the strength of the promoter) and down-regulated to zero. The generalequation that desribes the transription rate over time is de�ned as:
si(t) = βi ·

(

θn

Ii(t)n + θn

) (

1 +

(

1

βi

− βi

) (

Ai(t)
n

Ai(t)n + θn

)) (3.8)where n and θ are onstant oe�ients that determine the shape of the Hill-funtion (insimulations presented in setion 4, we used: n = 4 and θ = 0.5).3.3.2 Computation of the binding propertiesThe mehanisms that regulate gene expression in prokaryotes are very diverse and most ofthem are only slightly haraterized. Therefore, a preise modelling of regulation is beyondthe sope of a digital evolutionary model. In RAevol, we hose to desribe the regulationativity in a simple way: as desribed in setion 2, in a �rst approximation one an onsiderthat the regulatory property of a transription fator depends on its ability to bind to theDNA at spei� loations (binding sites). Moreover, the ontribution of the transriptionfator to the promoter ativity is strongly dependent on the position of the binding siterelative to the promoter.In the model, eah promoter is surrounded by two binding sites of 20 base-pairs (i.e.,20 bits). The upstream site is the enhaner and the downstream site is the operator. Eahprotein has a probability to bind a given site that depends on its a�nity with this site. Wewill obviously not be able to ompute or model a �real� protein-DNA a�nity; what we needis a proedure that (i) gives the apaity of any protein to bind to any sequene of 20 bits;(ii) is relatively independent of the metaboli apaity of the protein (i.e. a protein anhave a regulatory ativity while having no metaboli ativity, two proteins with the samemetaboli ativity an have di�erent regulatory apaities, et.), (iii) enables us to �x theprobability that any protein an work as a transription fator and (iv) is simple enough tobe omputed rapidly and therefore to be used in an evolutionary model6.6In a population of N organisms,having a mean number of genes of M and whose evolution is simulated44



Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networksTo ompute the a�nity of a protein with a given binding site, we align the primaryprotein sequene with the binary sequene of the binding site. Sine the arti�ial hemistry ofproteins and DNA are not ompatible (the �proteome� hemistry is based upon amino-aids �
w0, w1, h0, . . . � and metaboli fuzzy sets while the DNA hemistry is made of bit sequenes),the alignments are evaluated thanks to an a�nity matrix (�gure 8). In this matrix, eahell represents the a�nity between a spei� animo-aid and a regulatory subsequene of 4bases. Thus, given the size of the binding site, the a�nity will be the maximum alignmentvalue for all possible subsequenes of �ve amino-aids in the protein primary sequene.For a given protein j and a given binding site I (of protein i), the k possible alignmentsof the amino-aid sequene on the binding site are omputed (e.g. for a protein of length l,
k = l − 4). For eah alignment, we ompute the loal a�nity AjI [k] thanks to the a�nitymatrix (�gure 8). The protein a�nity with the enhaner is then given by AjI = maxk AjI [k].
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Figure 8: A�nity alulation. In this example protein j is aligned on the enhaner region ofpromoter I. The �rst loal a�nity AjI is omputed as the multipliation value of the tableentries orresponding to eah pair AA/subsequene. We an ompute AjI [1] ≃ 0.0000. Theprotein is then shifted leftwards to ompute AjI [2] ≃ 0.01998 and AjI [3] ≃ 0.00865. Then,the a�nity of the protein on this enhaner site is given byAjI = maxk AjI [k] ≃ 0.0.01998.This value is to be reported in equation 3.6 to ompute the transription rate of the promoter
i. Using this simple alignment proedure, we are able to de�ne the distribution of regulationby hoosing the values in the a�nity table. In our experiments, values in the a�nity tableare randomly hosen following a uniform law between 0 and 1, with the exeption of a�xed proportion of ells α that are �lled with null values. The parameter α enables us toinrease the proportion of null regulation weights (�gure 9). Thus we are able to indiretly�x the mean onnetivity degree in our networks. Moreover, in RAevol, we atually use twodi�erent a�nity matries MA and MI . The former is used to ompute proteins' a�nitieswith enhaner sites, the latter with operator sites. This allows RAevol users to set di�erentproportions between spontaneous ativation and inhibition; experimenters an use eitherduring T generations, the binding omputation proedure will be exeutedN∗M∗T times. In the experimentspresented setion 4, N = 1000, M ≃ 40 and T > 20000.45



Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networksidential or di�erent matries depending on whether they want the spontaneous proportionof inhibitory links to be higher or lower than the proportion of ativation links or not.
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(b) Half-half matrixFigure 9: Distribution of regulatory links for random binding sites and random protein of21 Amino-Aids. Left: distribution for a matrix �lled with uniform random values (α = 0).Right: distribution for a matrix with 50% of null values (α = 0.5).3.4 The Evolutionary ProessIn previous setions, we have preisely desribed the organisms in RAevol. These organismsare subjeted to an evolutionary proess. In a �xed population, organisms are evaluatedthanks to the seletion proedure (setion 3.2.5). Then, a biased random proess is usedto determine whih of these organisms will reprodue. The reprodution proess is basedon DNA repliation. During this proess the DNA an undergo repliation errors. Theseerrors (mutations) are governed by operators that are diretly inspired from prokaryotireprodution. Genomes an undergo seven di�erent kinds of mutations: three of them beingpoint mutation, and four large hromosomi rearrangements.The three point mutations are the swith and the two InDels:Swith: A randomly hosen nuleotide swithes from 0 to 1 or 1 to 0;Insertion: A random position is hosen in the genome and a small random sequene (1 to
6 bits) is inserted at this point;Deletion: A random position is hosen in the genome and a small sequene (1 to 6 bits) isdeleted at this point. 46



Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networksThe four hromosomi rearrangements are the following:Dupliation: Two positions are randomly seleted in the hromosome. The segment be-tween these two positions is opied and inserted at a third random position;Transloation: Two positions are randomly seleted in the hromosome. The segmentbetween these two positions is exised and inserted at a third random position;Large deletion: Two positions are randomly seleted in the hromosome. The segmentbetween these two positions is deleted;Inversion: Two positions are randomly seleted in the hromosome. The segment betweenthese two positions is inverted (i.e., the sequenes are onserved but they move fromone strand to the other).These mutations a�et the genome, and some of them hange the genome size (indels,insertions, deletion, dupliations and large deletions). Indiretly, they an modify the reg-ulatory network topology by either dupliating/deleting genes or promoter regions. Theyan modify the a�nities between transription fators and binding regions: when a muta-tion ours in the regulatory region of a promoter, the protein's a�nities with this regionan hange. Reiproally, when a gene undergoes a mutation, the primary sequene of theprotein it odes for may hange, thus a�eting one or both of the protein funtions: itsregulatory abilities and its metaboli ativity.4 RAevol in ation: Senario and resultsThe main interest of digital organisms is that they enable pratitioners to perform evolu-tionary experiments on whih they have very good ontrol [38, 2℄. To make proper use ofsuh models, one has to follow an experimental proedure in whih (i) a testing environmentis arefully designed, (ii) some parameters of either the environment or the organisms aremodi�ed, (iii) the experimenter lets the evolutionary proess run for many generations (typ-ially thousands of generations in digital evolution) while arefully gathering informationabout the evolutionary proess and (iv) the experimenter interprets the results as a funtionof the parametri di�erenes. Thus, although ompletely arti�ial, digital evolution is loserto experimental evolution than to mathematial evolutionary models suh as population ge-neti models. It thus makes it possible to test hypotheses that would be out of reah ofmathematial models beause they annot su�iently express the omplexity of the system.In this setion, we present a typial experiment with the RAevol model. We will �rstdetail the experimental setup and then ompare nine evolutionary experiments (three typesof organisms times three di�erent seeds for eah one). Finally, we desribe the struture ofone of the regulatory networks obtained at the end of the evolutionary proess.
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Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networks4.1 Experimental setupTo test the ability of RAevol organisms to develop an e�ient regulatory network, we de-signed a senario in whih, during their lives, the individuals must alternatively ahieve twodi�erent sets of metaboli funtions. In the �rst set, individuals have to perform three groupsof metaboli funtions, modeled as three lobes in the Ω spae (the exat distribution of pos-sibility of the environment, E1, is presented on �gure 7). When initialized the organismsphenotypes only depend on the basal level of their promoters. After a short transient period(10 simulation time steps), the regulatory networks are very likely to have hanged the pro-tein onentrations (see �gure 20(b)). It is only at this stage that the organisms are testedfor the �rst time. At time 10, the phenotype is ompared to E1, resulting in the �rst gap
g1. Then, the environmental referene is hanged (removal of the right lobe, environment
E2, �gure 10) and a signaling protein is sent to the organisms. This protein (whose sequeneis : h1w0h0m1w0h1m1h0) has no metaboli funtion (beause it ontains no w1 amino-aid)but is long enough to be able to bind to the DNA and hene have a regulatory ativity. Wethen wait for a seond transient period (10 steps) and the phenotype is ompared with E2,resulting in a seond gap value g2. The �tness of the organism is then omputed on thebasis of the mean gap value 1

2
(g1 + g2). Given the di�erene between E1 and E2, we anapproximate that, for an organism without regulation abilities (null ontext, see below),the minimum gap will be given by half of the di�erene between the two environmentaldistributions: gmin ≃ 0.011Aording to this senario, organisms an develop di�erent strategies depending on theirability to tune their transription levels. The simplest strategy would be to develop strongoperators with a high a�nity with the signaling protein. If they are assoiated with thepromoters of the proteins in the right side of the metaboli spae (proteins with metabolifuntions x ∈ Ω, where x is lose to 1), these operators an repress the transription of theseproteins during the seond part of the organisms' �life�. A more elaborate strategy would beto develop a omplex regulation network, e.g., to ativate some proteins (possibly withoutany metaboli funtion) that will themselves inhibit others. Suh a network ould aeleratethe metabolism response to the signaling protein. Finally, if the organisms do not sueedin developing a regulation network, they an stabilize on the mean value of the metaboliproess in order to minimize their metaboli error.We simulate the evolution of populations of 1000 organisms in this environment for25000 generations (organisms are initialized with random genomes of 5000 bp eah). Eahindividual dynami is simulated during 20 time steps in order to ompute g1 and g2. Then,the seletion proess is used to determine whih organisms will reprodue and how manyo�springs they will have. New individuals will replae the old population, with the populationsize remaining onstant. During the mutational proess, organisms undergo mutations witha �xed mutation rate of 10−5 mutations per base pair (in these experiments, the mutationrate is the same for all types of mutations inluding point mutations and rearrangements).Finally, we tested three di�erent types of organisms haraterized by their a�nity matrix M(the same for both ativation and inhibition):48
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Figure 10: Objetive funtions to reah during individuals life. In the �rst stages, threemetaboli funtions represented by the sum of three Gaussian funtions (one being negative).The arrival of an external protein into the ell must be taken into aount by the organismsto modify their behavior. The new objetive funtion is a set of two metaboli funtions,represented by the sum of two Gaussian funtions(one being negative).Null: these organisms are used as a referene to test the e�et of the regulation proess.In the null organisms, the a�nity matrix M is �lled with null values (α = 1. So, thenull organisms are not able to regulate their transription ativity (i.e., the genes arealways transribed at their basal levels).Full: in the full ontext, the a�nity matrix is initialized with random values in [0, 1](uniform sampling with α = 0). The resulting distribution of regulatory links is shownon �gure 9(a).Half-Half: in this ontext, the a�nity matrix values are omputed in the same way asin the previous one exept that half of the entries are �lled with a null value (α = 0.5).Thus, the a�nity values are generally lower than in the seond ontext and a largerproportion of protein/binding sites pairs have a null a�nity (�gure 9(b)).For eah one of these ontexts, we performed three di�erent simulations using three dif-ferent seeds. Indeed, sine the evolutionary proess is mainly governed by random events,every experiment must be onduted several times in order to distinguish between the re-produible e�et of seletion (either diret or indiret) and the e�et of drift and ontingentevents.4.2 Evolutionary proess unfoldingDuring the 25000 generations of a simulation, the organisms progressively aquire genes thatenable them to enhane their metaboli performanes (�gures 11(a) and 11(b)). Duringthe �rst generations, organisms aquire �essential genes�, i.e., genes with a large metaboliontribution, and hene, the gap g of the organisms quikly dereases. Then, organisms49



Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networksontinue to inrease their performanes but at a lower speed. During this seond phase,organisms adapt to their environment either by aquiring new genes (�gure 11(b)) or byoptimizing the metaboli ontribution of the existing ones. The optimization of the metaboliontribution of existing proteins implies an inrease in the average gene length. Indeed asa protein's ontribution results from the normalization of the values given by its primarysequene, a greater level of preision an only be ahieved by an inrease in the length ofthis sequene: in the model protein parameters, m, w and h, need longer sequenes to bemore preise (see transription proess in Setion 3.2.3). It is worth noting that, in RAevol,as in Aevol, genes are aquired thanks to a dupliation-divergene proess [27, 29℄.
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(b) Number of genesFigure 11: Adaptation values for the best individual for the three ontexts (three seeds foreah ontext). Adaptation value is the gap between the objetive funtion and the metabolifuntion ahieved by organisms (i.e. the reverse of �tness).4.2.1 Evolution of the geneti strutureThe only di�erene between the types of organisms tested in our experiments is the pro-portion α of non-null values of the a�nity matrix, whih ranges from zero (null ontext)to 1 (full ontext). Analysis of di�erent genomi harateristis (genome size, number ofgenes, mean gene length) and the main phenotype parameter (the gap) learly shows thatthe density of the a�nity matrix has a strong in�uene on the ourse of evolution. Sur-prisingly, the worst organisms are not the null ones (i.e., organisms that are not able to50



Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networksregulate their gene transription) but the full ones (�gure 11(a)). This an be easily un-derstood when looking at the evolution of the geneti struture (�gure 11(b)): in the fullontext, the genomes ontain fewer genes than in the two other ontexts. In a previousexperiment onduted with a simpli�ed version of the model, we have already shown that,in the full ontext, the individuals have a poor evolvability due to the over-onnetivity ofthe regulation network [40, 41℄. The high density of the a�nity matrix results in a highlyonneted regulation network (�gure 9(a)). Any perturbation of a protein and/or bindingsite has a high impat on the organism's phenotype (beause it systematially a�ets sev-eral genes). Moreover the metabolism and the geneti network are strongly linked, makingthe equilibrium between them very unstable and thus lowering the organisms' evolvability.It is worth noting that this e�et would not be visible in lassial evolutionary models ofregulation networks beause, in these models, the mutations at diretly on the regulatorylinks allowing the organisms to remain evolvable by providing them with the possibility tomodify the regulatory links independently of one another.When looking at the genome size we annot onlude that the density of the a�nitymatrix in�uenes the genome size (�gure 12(a)). However, if we ompare the number of genesand the mean size of the genes in the di�erent ontexts we an see that full organisms areless ompat, having more non-oding regions (�gure 12()). Using the Aevol model it hasbeen previously shown that these parameters diretly depend on the mutational robustnessof the organisms [30, 29℄. Therefore, we now need to test the robustness of the evolvedorganisms by arti�ial mutagenesis experiments7.While the full organisms are the worst ones, the best ones are not the null ones but thehalf-half ones. It seems that the mid-density of the a�nity matrix gives the regulatorynetwork the ability to evolve in a relatively independent way. While in the two other ontexts(full and null) the number of regulatory links is either null or diretly determined by thenumber of genes (roughly equal to the square of the number of genes), whih means thegene network is either fully onneted or not onneted at all, in the half-half ontext theregulatory network is only partially onneted. This provides a greater degree of freedom forthe organisms to evolve their regulatory network. Figure 13 shows that, in the half-halfontext, the number of links evolves ontinuously while, in the full ontext, it undergoeslong stationary phases, resulting in long period of stasis in the organism's �tness.As we an see in �gure 12(d), the number of non-metaboli proteins inreases over time.These proteins annot ahieve metaboli funtions but they are able to develop regulatorytasks: they an bind to regulatory regions and modify the transription of assoiated proteins.They an be onsidered as transription fators (TF). Note that TFs mainly appear in thehalf-half ontext. The aquisition of transription fators is one of the signs that indiatethe reation of a omplex regulatory network.7In these experiments, an organism is submitted to a repeated mutagenesis proess in order to measurethe �tness loss.
51
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(d) Number of transription fators (TF, i.e. non-metaboli genes)Figure 12: Evolution of the genome struture for the best individual of the population. Thenon oding regions are onsidered as the genomi sequenes between a terminator and thenext promoter.4.2.2 Evolution of the regulation networkFigures 13, 14, 15 and 16 present a global overview of the evolution of the geneti network.While �gure 13 shows that links are regularly added to the network (mainly thanks to a52



Y. Sanhez-Dehesa et al. Modelling evolution of regulatory networksgene dupliation divergene proess), either the mean link weight (�gure 14) or the linkweight histograms (�gures 15 and 16) are mainly stable. Moreover, in the ase of fullorganisms, the link histograms are lose to random distributions (�gure 15 left olumns),showing that, in suh onditions, the link weights are mainly ontingent. In the ase ofhalf-half organisms, distributions are biased toward null values (�gure 16), with a fewstrong links.
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(b) number of inhibitory links for the best indi-vidualFigure 13: Number of ativation and repression links in the regulatory network for the bestindividual at eah generation for all the simulations.The organization of the regulation network appears more learly when one looks at theinterations between the signaling protein and the rest of the network (�gures 17 and 18).Both histograms (either ativation of inhibition) are learly di�erent from the random ones:for the full ontext, the signaling protein has a strong inhibitory in�uene over manynodes in the network (�gure 17, bottom line) while having only a little ativation in�uene.This shows that, in the full ontext, the evolution has mainly seleted diret in�uene ofthe signaling protein over the network. This is onsistent with the previous results: sinethe network is only very slightly evolvable, the organisms were not able to develop a systeminvolving the internal dynami of the network to regulate their phenotype. The only solutionis to use the external signal diretly in order to regulate the transription (even though the�tness urves show that this regulation is not very e�ient, �gure11(a)).On the ontrary, in the half-half ontext, the signaling protein is only loally onnetedto the network (�gure 18). Therefore, the geneti network must transmit its in�uene towardall the proteins whose transription rate needs to be modi�ed during the organism's lifespan.53
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(b) average weight of the inhibitory linksFigure 14: Average weight of ativation and repression links in the regulatory network of thebest individual at eah generation for all the simulations.This is probably the reason why, in this ontext, the networks are omposed of a largernumber of enhaners than inhibitory links. Figure 11(a) shows that the result is indeed verye�ient sine half-half organisms have the smallest gap, hene the best �tness.These results indiate that, in the full ontext, organisms have only developed a verysimple (and almost ine�ient) regulatory network. On the ontrary, half-half organismsseem to develop a omplex network. Nevertheless these histograms are not su�ient tounderstand the mehanisms of these omplex networks, and so we will need to study theirproperties more preisely. To do so, we studied the �nal regulatory network of the bestindividual for the best simulation in order to see how it is strutured. Results are presentedin the next setion.4.3 Analysis of a partiular networkAfter 25000 generations, the half-half ontext presents a very e�ient behavior: the gapvalue of the best individual is 0.0069 (whereas, without any regulation, the best possible gapis ≃ 0.011). It has a long genome (∼ 10100 base pairs) with 51 genes (10 of them beingtransription fators) and has developed a omplex regulation network (�gure 19).Network dynamis have very good performane, as we an see in �gure 20(a): a few timesteps are enough to inhibit the subset of metaboli funtions and to stabilize its behavior.In �gure 20(b) we an see that after the arrival of the external signal, it only takes a fewtime steps to inhibit protein prodution and stabilize the network.54
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(f) Distribution at generation25000Figure 15: Distribution of interations in the geneti networks in the full ontext (meanvalue for the three seeds). Top: Ativators. Bottom: Inhibitory links. The �rst olumnpresents the distribution obtained for random binding sites and random proteins of 21 amino-aids.This network is highly onneted: 47% of the links are ative (791 ative links vs 1688possible links) � either positive (486 links, 56%) or negative (406 links, 44%)8. However, alarge amount of these onnetions are still weak (data not shown) although some very ativelinks have appeared in the network (mainly negative ones). In this experiment, the organismshave to adapt their metabolism when a signaling protein is introdued in the �ell�. Thisprotein an in�uene the transription rate of genes either diretly (by binding to one of itspromoter's regulatory regions) or indiretly (by involving other intermediate regulators, i.e.transription fators, in a omplex regulation proess). Indeed the regulation network does8Note that the total number of links is not equal to the sum of enhaner links and inhibitory links. Ifa protein binds to both the operator and the enhaning region of a single promoter, we only ount oneregulatory link. 55
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(f) Distribution at generation25000Figure 16: Distribution of interations in the geneti networks in the half-half ontext(mean value for the three seeds). Top: Ativation. Bottom: Inhibition. The �rst olumnpresents the distribution obtained for random binding sites and random proteins of 21 amino-aids.not need to be omplex in order to be e�ient.In order to better understand the behavior of the regulation network, it is interesting toanalyze the motifs that have emerged in the network [4, 26℄. Table 2 shows the proportionof auto-regulation motifs in the evolved network. Clearly, the network has aquired morePositive Auto-Regulation (PAR) loops than Negative Auto-Regulation (NAR) ones. Yet, ithas been demonstrated that Positive Auto Regulation slows down response time, dereasesstability and inreases variability [8℄. Thus PAR an be positively seleted. However thepredominane of PAR may also be an indiret e�et of the slightly higher proportion ofenhaner links. Further analysis is therefore needed to distinguish these two hypotheses(seletive hypothesis vs. neutral hypotheses) from eah other.56
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(f) Distribution at generation25000Figure 17: Distribution of the in�uene of the signaling protein over the nodes of the genetinetworks in the full ontext (mean value for the three seeds). Top: Ativation. Bottom:Inhibition. The �rst olumn presents the distribution obtained for random binding sites..(PAR) (NAR) Isolated8 3 40Table 2: Number of auto-regulation motifs in the network at generation 25000Looking at two gene motifs (table 3), we an see the overrepresentation of NegativeFeedbak Loops. As disussed above for Auto-Regulation loops, this an be either a seletivee�et or a neutral e�et. We now have to deipher between these two hypothesis.Finally, when studying the regulatory network (�gure 19), we have been surprised to�nd ativation links from the signaling protein to a few nodes in the network. In fat57
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(f) Distribution at generation25000Figure 18: Distribution of the in�uene of the signaling protein over the nodes of the genetinetworks in the half-half ontext (mean value for the three seeds). Top: Ativation.Bottom: Inhibition. The �rst olumn presents the distribution obtained for random bindingsites. Positive Negative Positive/ Ativation Inhibition Feedbak Feedbak FeedbakLoop Loop Loop620 303 227 38 64 23Table 3: Number of binary motifs in the evolved network at generation 25000when looking more preisely at the external protein links (Figure 21(a)) one an see that thesignaling protein ativates genes 1 and 22 and that protein 22 also inhibits gene 1. The whole58
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(a) Shemati view of the subnetwork ativatedby the external protein. Nodes drawn with dashedlines are transription fators
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(b) Conentration of the external protein and ofproteins 1 and 22. These three proteins all togetherreate an Inoherent FFL motif [34℄Figure 21: Overview of the enhaning in�uenes of external protein on the elements of thenetwork5 Open Issues and Future WorkRAevol is an integrated evolutionary model that provides experimenters with an insight tothe omplex adaptation mehanisms that prokaryoti organisms an adopt to fae hangingenvironments. It models the main features of the evolution and regulation of prokaryotes(although obviously in a very simpli�ed way). In partiular, it respets the di�erent levels oforganization of baterial organisms as well as the interation between those levels. When usedto simulate the evolution of bateria in a simple periodi and synhronized environment itproved to be a very valuable tool. Indeed the organisms not only developed simple strategiesto regulate their metabolism but were also apable of building omplex networks that allowedthem to reat e�iently to external events. However further investigation are needed toon�rm these results. The behavior of the model itself also needs to be studied arefully: inthis paper we showed that the mean onnetivity of the regulation network of an individualhas a strong in�uene on its evolutionary fate. We are now looking forward to ondutingexperiments with more sparsely onneted networks (introduing more null values into thea�nity matrix) in order to obtain biologially more plausible networks.In the experiments presented here, the onditions our organisms had to fae were quitesimple. We now plan to test our model in more omplex situations, in partiular with non-synhronized environments where the optimal phenotype will vary in a more omplex way.We suppose that, in suh onditions, the organisms will develop more sophistiated regula-61
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