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We investigate experimentally the statistical properties of bedload transport induced by
a steady, uniform and laminar flow. We focus chiefly on lateral transport. The analysis
is restricted to experiments where the flow-induced shear stress is just above the thresh-
old for sediment transport. We find that, in this regime, the concentration of moving
particles is low enough to neglect interactions between themselves. We can therefore
represent bedload as a thin layer of independent walkers travelling over the bed surface.
In addition to their downstream motion, the particles show significant fluctuations of
their cross-stream velocity, likely due to the roughness of the underlying sediment bed.
This causes particles to disperse laterally. Based on thousands of individual trajecto-
ries, we show that this lateral spreading is the manifestation of a random walk. The
experiments are entirely consistent with Fickian diffusion.

I. INTRODUCTION

When a fluid runs over a granular bed, it applies a shear stress on the superficial layer of grains.
If the stress exceeds a threshold, some grains are entrained by the flow. Their displacement then
deforms the bed, and the resulting interaction between flow and sediment transport generates
a beautiful variety of river shapes and coastal morphologies1–4. Understanding this process
requires a sound theory of bedload transport.

At moderate shear stress, the particles move by a combination of rolling, sliding, and bouncing,
while gravity maintains them close to the bed surface. The layer of entrained grains, referred to
as “bedload layer”, is only a few grain-diameters thick. Due to this confinement, and contrary
to transport in suspension, shear stress is the primary control on bedload transport. As it
increases, bedload transport intensifies5–14.

Laboratory observations reveal that the bedload layer continuously exchanges particles with
the sediment bed9,12,13,15,16. According to the “erosion-deposition model”, initially established
for viscous flows15,17 and later extended to turbulent flows16, the equilibration of this exchange
sets the surface concentration n of the bedload layer (n is the number of moving particles
per unit bed area). This theory proved versatile enough to describe the formation of various
bedforms17–19 and the transport of mixed grain sizes20.

The erosion-deposition model treats the bedload layer as a uniform reservoir of independent
particles. Accordingly, the bedload flux qx simply reads

qx = Vx n , (1)

where Vx is the average particle velocity. This statistical interpretation proves reasonable over
a broad range of shear stress15,16,21. At high shear stress, however, the bedload layer becomes
denser and moving particles interact with each other. The momentum exchange between grains
then plays a significant role22,23, and the erosion-deposition model breaks down.

A series of recent papers provide insight on higher-order moments of the velocity distribu-
tion, paving the way for a thorough statistical theory of bedload transport24–26. In particular,
the dispersion of the streamwise particle velocity around the mean Vx generates longitudi-
nal dispersion27. In addition, several authors have observed that, as bedload particles move
downstream, their cross-stream velocity fluctuates around zero, with a symmetric exponential
distribution15,16,25. By itself, this observation suggests that the convective motion embodied
in equation (1) is accompanied by particle diffusion. To our knowledge, the diffusion of bed-
load particles across the flow direction has never been investigated. The present paper aims
at quantifying this phenomenon, by tracking the trajectories of bedload particles in a laminar
laboratory channel.
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FIG. 1. Experimental laminar channel. Water and sediments are introduced at constant rate from the
left end. The video camera records the trajectories of bedload particles through the water surface. The
channel is 1 m-long and its width is W = 3 cm. Its slope in the x -direction is about S ∼ 0.007 − 0.016.

When interactions between moving particles are negligible, the macroscopic transport is sim-
ply the superposition of independent trajectories, making its statistical analysis straightforward.
We expect this assumption to hold in the low concentration limit (nd2s � 1, where ds is the
grain size), that is, when the shear stress hardly suffices to transport a few particles. Fortu-
nately, a low concentration also simplifies particle tracking. Therefore, the experiments and the
theory presented here are restricted to near-threshold conditions. We believe this is typical of
many natural systems, since alluvial rivers often maintain their bed just above the threshold of
motion28–30.

II. TRANSPORT NEAR THRESHOLD

A. Experimental set-up

A straight channel (length 1 m, width W = 3 cm, figure 1) is filled with plastic sediments
(density ρs = 1520 ± 50 g/L, diameter ds = 344 ± 90 µm). The grains are irregularly shaped,
with sharp angles (Guyblast type II, grade 30–40, Guyson).

As water flows above the 3 cm-thick granular layer, superficial grains are entrained towards
the outlet, while their trajectory is recorded with a video camera. We introduce water and
grains at constant rate at the upstream end of the channel. The water discharge Qw and the
sediment discharge Qs are varied independently in the range 0.6−2.4 L/min and 0.07−4.4 g/min,
respectively. The sediment discharge is imposed by an industrial volumetric feeder using a spiral
helix (Gericke).

At the outlet, the sediment layer is held by a 3 cm slat over which water and sediments run
to exit the channel. Assuming that sediment transport is homogeneous across the channel, the
local particle flux reads

qx =
Qs
W
, (2)

where Qs is expressed in grains per second (s−1). After about one day, the experiment reaches
a steady state (the bed elevation does not evolve any more).

As the flow-induced shear stress increases, more grains are entrained and the sediment dis-
charge increases (figure 2). In most experimental set-ups, the shear stress is imposed and the
sediment flux varies accordingly16. Here we impose the sediment discharge and measure the
shear stress, once the experiment has reached its steady state. This method allows us to sustain
long experiments without recirculating the sediments15.

The flow is only a few millimeters deep, thus maintaining the Reynolds number Re =
Qw/(W ν) between 500 and 1 400 (where ν is the viscosity of water). The flow aspect ratio
remains larger than 10. The particle Reynolds number Res = u ds/ν is about 25 (u is the flow
velocity at the grain scale). Injecting dye in the channel indicates that the flow is laminar.
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FIG. 2. Imposed bedload flux qx as a function of the measured Shields parameter θ (blue dots). The
transport law (14) is fitted to the data (red line, qx = αVs θt (θ−θt)/d2s with α = 0.025 and θt = 0.125).
The particle tracking experiments are limited to the shaded area.

Assuming a Hagen-Poiseuille velocity profile, the shear stress τ reads31,32

τ = ρ (S g)
2/3

(
3Qw ν

W

)1/3

(3)

where ρ, S and g are the density of water, the bed slope, and the gravity acceleration respectively.
The slope varies between S = 0.008 and S = 0.0016. It is measured with respect to a plumb

line on pictures with a 0.3 mm/pixel resolution. Using equation(3), we evaluate the shear stress
with an accuracy of about 10 %.

B. Erosion and deposition

If the flow-induced stress is strong enough to overcome the weight of a bed particle, the latter
gets entrained as bedload. This is usually expressed in terms of the Shields parameter θ, that
is, the ratio of the shear stress to the weight of a grain5:

θ =
τ

(ρs − ρ) g ds
. (4)

Bedload transport starts when the Shields parameter crosses the threshold θt, and further in-
creases with shear stress (figure 2). According to equation (1), this increase results either from
faster particles, from a more concentrated bedload layer, or from any combination of the two.

To identify what primarily controls bedload near the threshold of motion, we now re-interpret
the erosion-deposition model in the neighborhood of the critical Shields parameter.

Let us first consider the entrainment of a particle initially at rest. The flow applies a viscous
drag fν on the particle, while the bed friction opposes the drag. When the particle gets entrained,
the viscous drag is proportional to the fluid velocity u with respect to the particle velocity Ve:

fν ∼ ρ ν d2s (u− Ve). (5)

About a grain diameter above the bed surface, the fluid velocity is proportional to the shear
rate, and consequently to the shear stress:

u ∼ ds
∂u

∂z
∼ ds

τ

ρν
∼ Vs θ (6)
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where z is the vertical coordinate and Vs = (ρs − ρ) g d2s/(18 ρ ν) is Stokes’s settling velocity
(for our particles, Vs ≈ 3.3 cm s−1). Here, this velocity appears only as a scale (as opposed to a
vertical velocity).

When the viscous drag overcomes the Coulomb friction on the bed, the bed particle gets
entrained. If the grain Reynolds number is low enough, we can neglect the particle inertia
during the entrainment process. The viscous drag then balances Coulomb’s friction, which
scales like the particle weight:

fν ∼ (ρs − ρ) g d3s (7)

Combined with relations (5) and (6), the above balance reads

Ve ∼ Vs (θ − θt) (8)

where θt is, at this point, an arbitrary dimensionless coefficient. Naturally, we identify it with the
threshold Shields parameter since the grain velocity vanishes when θ = θt. The above expression
results from the balance between viscous drag and gravity. It is therefore valid only as long as
the particle remains in contact with immobile particles, that is, during the entrainment process.

A bed particle belongs to the bedload layer when it has escaped its neighbors, which takes a
characteristic time of about ds/Ve. We expect the average entrainment rate to be proportional
to the inverse of this time, and to the bed surface concentration 1/d2s :

ṅe ∼
Vs
d3s

(θ − θt) . (9)

Once it has joined the bedload layer, a particle travels, on average, at the velocity of the fluid.
Thus, after equation (6),

Vx ∼ Vs θ . (10)

At order zero in θ − θt, the velocity of bedload particles is therefore independent of the Shields
stress:

Vx ∼ Vs θt. (11)

As it travels downstream, a bedload particle bounces on the bed surface at a characteristic
frequency Vx/ds. Each time the particle hits the bed, it has a chance to get trapped. If the
trapping probability is uniform, the deposition rate is proportional to the density of moving
particles times the bouncing frequency:

ṅs ∼
n Vs
ds

. (12)

In steady state, the settling and erosion rate compensate each other (ṅe = ṅs). Thus, accord-
ing to equations (12) and (9), we find that the concentration of moving grains is proportional
to the shear stress in excess of the threshold:

n ∼ θ − θt
d2s

. (13)

Finally, after equation (1), the sediment transport rate at steady state reads

qx =
αVs θt
d2s

(θ − θt) , (14)

where α is a dimensionless parameter. This approximation proves valid over a broad range of
shear stress (figure 2). The linear extrapolation of our data yields a threshold Shields stress of
about 0.12, consistent with previous reports at similar particle Reynolds number5,15,33.

The above reasoning illustrates the nature of bedload transport near the threshold: the prop-
erties of the moving particles are virtually independent of the shear stress (their average velocity
is constant). The bedload layer is thus a collection of similar particles, and sediment transport
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FIG. 3. Surface concentration of moving particles nd2s as a function of the sediment discharge qx. This
data set corresponds to the shaded area of figure 2.

is the sum of individual particle movements. Consequently, the sediment flux increases in pro-
portion to the concentration of moving grains, as long as the latter remains small (nd2s � 1).
Our experiments support this interpretation (figure 3).

Measuring accurately the bottom shear stress in a channel is challenging. To the contrary,
computerized image processing allows us to count moving particles accurately. Moreover, the
concentration of moving particles varies by a factor of about four in our experiments, while the
Shields parameter varies by less than 10% (shaded area on figure 2). Finally, the flow is not
perfectly uniform across the channel, due to surface tension and viscous friction on the walls,
and the average Shields parameter might not represent adequately the local flow conditions.
Accordingly, we choose to characterize the state of our system by the concentration of moving
grains n, as measured by image processing. To vary this parameter, we change the sediment
input. The channel slope then adjusts to the sediment discharge.

III. PARTICLE MOTION

A. Velocity

We record the motion of bedload particles with a camera placed above the water surface (100
frames per second, 1024 × 256 pixels). To isolate individual particles, we dye about 0.5% of
the grains. The proportion of dyed particles is low enough to unambiguously identify a single
particle on successive pictures of the experiment, and thus to follow its trajectory (figure 4).
The center of mass of a particle is located with a precision of 50 µm on each picture (the particle
diameter corresponds to about 10 pixels).

A particle moves essentially downstream, with an intermittent pace. It alternates between
motion and rest, the succession of which is randomly distributed15,16,25,34–36 (figure 4). When
moving, a particle rolls, slides and sometimes gets lifted a few grain diameters above the bed
surface.

Although the velocity of moving particles varies significantly, we can unambiguously distin-
guish between the bedload layer and the immobile bed surface on successive pictures. More
specifically, we label a particle as “moving” if the standard deviation of its position over four
successive pictures is larger than 0.1 ds. This procedure allows us to separate actual motion
from the flickering caused by small surface waves.

For each experimental run, we record about 10 independent movies, each of them containing
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FIG. 4. (a) Particle trajectory seen through the water surface. (b) Streamwise position of the same
particle x/ds as a function of time. The final period of rest lasts more than two seconds, but was
truncated for readability.

about 5 000 frames. After separating moving particles from immobile ones, we obtain between
5 000 and 10 000 particle trajectories for each run. Since a particle flight typically lasts much
longer than the time between successive frames, we can measure the velocity distribution of
moving particles (figure 5). The particle streamwise velocity appears to be of the order of the
settling velocity Vs, and essentially positive, in accordance with equation (11).

We suspect that most negative values of the velocities are due to image processing errors.
Indeed, when an unmarked particle flows above an immobile marked particle, the latter appears
to move backwards. Such events represent less than 5 % of our data. We therefore believe that
they do not affect significantly our results.

Discarding the negative velocities, an exponential function approximates reasonably the dis-
tribution fx of streamwise velocity vx, in accordance with previous experiments involving glass
beads15 or sand16,25:

fx(vx) =
1

Vx
e−vx/Vx (15)

where Vx is the average particle velocity introduced in the mass balance equation (1). Close to
the threshold for sediment transport, we find that the average particle velocity does not depend
on the particle concentration (figure 6), with an average over all experiments of

Vx/Vs = 0.38 ± 0.03 . (16)

This value compares favorably with equation (11) and with prior findings15. Hereafter, we only
assume that the average particle velocity is well-defined and independent of n, without specifying
the shape of the distribution.
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FIG. 5. Velocity distribution of moving particles, computed from about 15 000 individual velocities
(Qw = 2.05 L/min and Qs = 0.06 g/min). The ticks indicate the average streamwise velocity and the
cross-stream velocity variance.

As bedload particles move downstream, their cross-stream velocity vy fluctuates around zero
(figure 5). The distribution of cross-stream velocities is symmetrical, with typical velocities
three times smaller than the streamwise velocity. The distribution, broader than a Gaussian,
resembles a symmetric exponential function,

fy(vy) =
1

Vy
e−2|vy|/Vy (17)

where Vy is the standard deviation of the cross-stream velocity. Again, this distribution is
consistent with previous experimental findings25. Like the streamwise velocity, the cross-stream
velocity does not depend on the concentration of moving particles (figure 6), and we find a
standard deviation of Vy/Vs = 0.12 ± 0.02 (average over all experiments).

B. Cross-stream spreading

As the grains are entrained by the flow, they also disperse stochastically in the cross-stream
direction (figure 7). On average, bedload particles do not move across the stream, but individual
trajectories drift away from the x axis due to fluctuations of the cross-stream velocity.

To quantify the spreading of bedload particles, we track the trajectories of a large number of
them (N ≈ 7 500), and compute the variance σ2

y of their position across the channel:

σ2
y(x) =

1

N

N∑
i=1

yi(x)2 (18)

where yi(x) is the trajectory of the i-th particle in the horizontal plane. The trajectories are
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shifted so that they all start from zero (yi(0) = 0). The variance σ2
y represents the average

spreading of a particle as a function of downstream distance, regardless of travel time.
We find that the variance increases linearly with the downstream distance (figure 7), which

defines a diffusion length `d such that

σ2
y = 2 `d x . (19)

For instance, `d = 9.5 ± 0.8µm in figure 7, that is, about 0.028 ds. Repeating the same pro-
cedure for all experimental runs, we observe that the diffusion length `d is independent of the
concentration of moving particles, within the range explored here (figure 8). On average over
all experiments, we find a diffusion length of

`d
ds

= 0.030 ± 0.004. (20)

This value is about ten times smaller than the diffusion length of a ball rolling down a slope
covered with fixed grains37. In our experiment, the fluid probably attenuates the bed influence
on moving particles.

C. Random walk

The linear dependence of the particle dispersion with respect to the travel distance evokes a
random walk. To elaborate on this analogy, let us represent the bedload particle as a walker
which takes a random step of length δy in the cross-stream direction each times it travels
downstream over a distance δx. A more physical picture, perhaps, is to consider that a moving
particle deflects off immobile particles as it travels downstream. Accordingly, we expect both
δx and δy to scale with the grain diameter.

The walker’s trajectory is a sum of successive steps, the variance of which reads

σ2
y =

δ2y
δx
x (21)
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FIG. 7. (a) Particle trajectories in the horizontal plane (same experimental run as Figure 5). The
trajectories have been translated to collapse their origin. Empty dots indicate rest. The aspect ratio
is exaggerated in the cross-stream direction. (b) Cross-stream variance of the particle position σ2

y as a
function of the streamwise position x (Qw = 2.05 L/min and Qs = 0.06 g/min).

where x is the downstream distance from the starting point. We can identify the above relation
with equation (19), which provides an interpretation for the diffusion length:

`d =
δ2y

2 δx
. (22)

The random walk analogy is meaningful only if we can define an average step length (that is,
a decorrelation length). Since the particle velocity has well-defined averages in both directions
(section III A), we simply need to ascertain the existence of a decorrelation time. To do so,
we compute the autocorrelation function of the cross-stream velocity. Averaging over a large
number of trajectories, we find that the autocorrelation decays exponentially with time (figure 9).
This decay defines a decorrelation time tc, which can be averaged over all experimental runs:

tc Vs
ds

= 1.0 ± 0.1 . (23)

After equation 16, we find tc ≈ 0.38 ds/Vx, which is about the time to pass an immobile grain at
velocity Vx. Equivalently, the decorrelation distance tc Vx compares with ds, and consequently
compares to the bed roughness.

To be consistent with the random walk analogy, we expect the downstream and cross-stream
step lengths to satisfy

δx ≈ Vx tc , δy ≈ Vy tc . (24)
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Accordingly, using equation (22), we obtain an independent measurement of the diffusion length:

`d =
V 2
y tc

2Vx
. (25)

Replacing the average velocities with their experimental values, we find `d/ds = 0.02 ± 0.01, in
reasonable accord with equation (20).

The step length of the random walk is about the size of a particle: δx ≈ 0.4 ds, which is much
shorter than a typical particle flight (figure 4). Thus, the velocity decorrelation that causes
dispersion occurs many times before the particle settles down, probably due to the roughness of
the bed surface.

IV. DISCUSSION AND CONCLUSION

The experiments presented here, based on particle tracking, supports the erosion-deposition
model of bedload transport, at least near the threshold Shields parameter. In addition we
observe that, at first order, the statistical properties of the moving particles do not depend on
their concentration n. We thus propose the following interpretation of bedload transport near
threshold.

The moving particles constitute a thin layer travelling downstream at constant velocity. In
steady state, this layer exchanges particles with the underlying sediment bed while maintaining
its concentration n. As a result of the bed roughness, or of the associated flow perturbation,
bedload particles disperse sideways as they progress downstream, like a ball rolling down a
bumpy surface.

An inevitable attribute of any collection of random walkers is diffusion. Therefore, a cross-
stream gradient of the bedload particles density induces a Fickian flux of particles towards the
less populated areas. As long as the particles do not interact with each other, the diffusion flux
is proportional to the concentration gradient:

qy = −D ∂n

∂y
(26)

where D is the diffusion coefficient associated to bedload transport. Based on our experiments,
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we expect it to read

D = `d Vx =
V 2
y tc

2
≈ 0.03Vs ds . (27)

Since the streamwise flux of sediment qx is the product of the particles velocity with their
concentration, an equivalent expression of the diffusive flux is

qy = −`d
∂qx
∂y

, (28)

which might prove more practical than equation (27).
To measure directly this diffusive flux, one needs to produce a cross-stream gradient of bedload

transport. For instance, a ring channel could generate a stronger shear near the outer wall15,
and thus induce a concentration gradient. If the findings of the present paper are confirmed,
cross-stream diffusion will very likely be found in natural systems, where cross-stream gradients
of bedload are ubiquitous.

The continual exchange of particles between the beload layer and the immobile bed plays no
role in the above reasoning since, on average, a new particle is entrained for each deposited
particle. The fate of individual particles, on the contrary, depends crucially on this transfer.
The longer a particle remains part of the bedload layer, the faster it travels downstream. The
random nature of erosion and deposition thus disperse the bedload particles along the flow
direction. This is the subject of present research38.
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