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We study generation of non-local correlations by atomic interactions in a pair of bi-modal Bose-
Einstein Condensates in state-dependent potentials including spatial dynamics. The wave-functions
of the four components are described by combining a Fock state expansion with a time-dependent
Hartree-Fock Ansatz, so that both the spatial dynamics and the local and non-local quantum corre-
lations are accounted for. We find that despite the spatial dynamics, our protocole generates enough
non-local entanglement to perform an EPR steering experiment with two spatially separated con-
densates of a few thousands of atoms.

PACS numbers: 03.75.Gg, 03.65.Ud, 03.75.Mn, 42.50.Dv

Introduction

The non-local and non-deterministic nature of quan-
tum mechanics is a subject of experimental investiga-
tion since a few decades. The most significant result in
this direction was the violation of the so-called Bell in-
equalities with entangled pairs of photon [1]. With all
loopholes now filled in [2], this experiment ruled out the
possibility that the phenomena described by quantum
mechanics could by explained by an underlying local de-
terministic “hidden variable” theory. More recently, the
observation of non-local entanglement between macro-
scopic massive objects has emerged as a new objective.
This result would be an important step in further ruling
out local realism, and in pushing back the boundary of
observation of quantum effects in the macroscopic world.
Experimentally, this is a challenging objective for two
reasons: (i) large systems decohere usually faster than
individual systems and therefore retain their non-local
entanglement only for a short amount of time, (ii) many-
body systems have a complex internal dynamics which is
likely to affect their non-local entanglement.

Cold atoms experiments provide a promising platform
to tackle these limitations and observe non-local entan-
glement between reasonably large objects [3]. They pro-
vide experimentalists with clean isolated systems where
the impact of decoherence can be fought more efficiently
than in other many-body systems ; in particular, the
dominant decoherence effect, atomic losses, can be made
very weak for a careful choice of the atomic states and
can be accurately evaluated theoretically [4]. At low tem-
peratures, one can prepare a system of bosonic atoms
into a few macroscopically occupied modes, a situation
which enables a natural generalization of the bipartite
system imagined in a Bell-experiment to a macroscopic
system. Finally, the van der Walls interactions between
the atoms are a powerful source of entanglement creation,
able to produce highly entangled many-body states at
short times, when the decoherence effects are limited.

The correlations between the particles in a condensate
of weakly-interacting bosons have recently been shown to
be strong enough [5] to allow in principle for a violation of
multipartite Bell inequality [6]. However a proper viola-
tion would require to perform measurements on each pair
separately, which is experimentally challenging. Instead,
it was recently proposed [7, 8] to violate a weaker form
of non-locality usually referred to as “EPR steering”, by
reference to the seminal article [9] which introduced the
EPR paradox. In an EPR situation, the measurements
done by Alice on her half of an entangled non-local quan-
tum state are shown to apparently “steer” Bob’s second
half of the state, eventually leading to a violation of the
Heisenberg uncertainty relation which Bob’s observables
should satisfy if the quantum state were purely local,
the so-called “EPR inequality” [10, 11]. Such an experi-
ment shows that the non-deterministic nature of Quan-
tum Mechanics (in particular the Heisenberg uncertainty
relation) is incompatible with locality, thus ruling out all
hidden-variable theories locally compatible with Quan-
tum Mechanics.

Already a violation of an EPR inequality [11] was ob-
tained in a condensate of weakly-interacting bosons us-
ing state-changing collisions to create entangled subsys-
tems of a few atoms [12]. An alternative route relying
on light-matter interaction to create entanglement was
explored in Ref.[13] and could be used in an EPR ex-
periment. Here we consider the entanglement scheme
proposed by Refs.[14] and [15] where two Bose-Einstein
condensates a and b of atoms in a superposition of two
internal states 0 and 1 are entangled via atomic interac-
tions after a state-dependent transport (see Fig.1). As
it was shown in Refs.[14] and [15], this scheme allows to
generate a variety of entangled states by unitary evolu-

tion with the Hamiltonian χabŜ
a
z Ŝ

b
z, where Ŝ

a(b)
z are the

z components of collective spins of the two Bose-Einstein
condensates a and b. At remarquable times of the or-
der of π/χab, one observes sharp dips in the entangle-
ment entropy, associated with the formation of non-local
macroscopic superpositions of coherent spin states which



2

evoke the two-qubit Bell-state but in a N -body system.
This Hamiltonian was recently realized with microwave
cavities bridged by a superconducting artificial atom and
used to generate entangled Schrödinger cat states of the
electromagnetic field [16]. The EPR correlations which
are the focus of the present article appear on the other
hand at much shorter times 1/N ≪ χabt ≪ 1/

√
N [14].

While no striking features appear in the entanglement
entropy and phase space representation of the state at
these times, the non-local correlations are large enough
to violate an EPR steering inequality [11] and the state,
which can be seen as a non-local equivalent of a spin-
squeezed state, is much more robust against decoherence.
Using atomic interactions, spin-squeezed states have been
already obtained in clouds whose size can reach a few
thousand atoms [17–19], and experiments along the same
lines to demonstrate non-local entanglement could be en-
visaged.

However, fast transport of atomic clouds is likely to ex-
cite the spatial dynamics of the gas and one should check
whether any non-local entanglement remains visible un-
der these conditions. This is what we investigate in this
paper by performing realistic numerical simulations of
the intertwined spatial and entanglement dynamics. Our
approach, adapted from Refs.[20, 21], describes the state
of the system as a coherent superposition of states with a
fixed number of particles in a set of distinguishable modes
(four in our case) representing the condensates. In each
configuration, the wave functions evolve according to a
time-dependent variational principle. This formalism is
able to describe both the out-of-equilibrium dynamics of
the gas, even with important excitations of the spatial
eigenmodes, and the dynamics of entanglement between
the distinguishable modes. Using this powerful numerical
approach, we investigate the effect of spatial dynamics on
an EPR entanglement witness and provide experimental
parameters for which a significant violation of an EPR
inequality could be observed.

I. THE DYNAMICAL MODEL

A. Time-dependent description of a system of

multimode bosons

a. Multimodal decomposition We consider a gas of
bosonic atoms distributed in a number of modes of order
unity. In practice, we will apply our model to the EPR
situation of Ref.[14] using four modes. We imagine a
situation in which the atoms in different modes never
have the chance to exchange and can be considered as
belonging to distinguishable components, so that we can

expand the bosonic field operator ψ̂ in the form:

ψ̂(r) =
∑

α∈A

ψ̂α(r) (1)

where ψ̂α annihilates a boson in component α at site
r, and A is the set of distinguishable components. We

work with a space discretized into a cubic lattice of step
l. This prefigures the numerical implementation of the
model and removes any short-distance divergence. The
commutation relations of the field operator are given by:

[ψ̂α(r), ψ̂
†
α′(r

′)] =
δα,α′δr,r′

l3
(2)

We assume that the interactions between the atoms take
place in the low-energy dilute regime usual in cold atoms,
so that they can be represented by contact interactions.
We note gαα′ the coupling constant between one atom of
the component α and one of α′. The Hamiltonian of this
system reads:

Ĥ = l3
∑

r,α∈A

ψ̂†
α(r)

(

− ~
2

2m
∆r + Vα(r, t)

)

ψ̂α(r)

+ l3
∑

r

α,α′∈A

gαα′

2
ψ̂†
α(r)ψ̂

†
α′(r)ψ̂α(r)ψ̂α′(r) (3)

with the convention gα′α = gαα′ . Note that we allow
for a dependence of the external trapping potential Vα
not only on time but also on the mode α. This can be
realized experimentally with state-dependent potentials
[19].

b. Variational principle To describe the many-body
dynamics arising from the Hamiltonian (3) we rely on a
classical field theory based on the variational principle
[22]. We assume that for each distinguishable bosonic

field ψ̂α, there is one macroscopically populated single
particle mode φα to be determined. This wave function

depends on position r, time t and number of atoms ~N =
(Nα′)α′∈A in each mode

φα = φα( ~N, r, t), ~N = (Nα′)α′∈A (4)

We chose φα to be normalized to unity:

∀ ~N, ∀t, l3
∑

r

∣

∣

∣φα( ~N, r, t)
∣

∣

∣

2

= 1 (5)

Next, we introduce the operator which annihilates a bo-
son in the wave function φα:

âα( ~N, t) ≡ l3
∑

r

φ∗α(
~N, r, t)ψ̂α(r) (6)

This is a bosonic operator since [âα( ~N, t), â
†
α′( ~N, t)] =

δα,α′ . We use it to form the “Fock state” with Nα bosons
in the wave function φα:

|{Nα : φα( ~N, r, t)}〉 ≡
∏

α

(

â†α(
~N, t)

)Nα

(
∏

αNα!)
1/2

|vac〉 (7)

where |vac〉 is the vacuum of bosons, and we use the
short-hand notation

∑

α =
∑

α∈A,
∏

α =
∏

α∈A and
{Xα} = {Xα}α∈A. Note that on state (7), the field op-

erator ψ̂α(r) acts as φα( ~N, r, t)âα( ~N, t). This can be seen
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by completing φα into an orthonormal basis of the Hilbert
space of mode α and by expanding the field operator over
this basis.

We are now ready to apply the variational principle.
The action between the initial time ti and the final time
tf reads:

S ≡
∫ tf

ti

dt

{

i~

2

(

〈{Nα : φα( ~N, r, t)}|
d

dt
|{Nα : φα( ~N, r, t)}〉 − c.c.

)

− E( ~N, t)

}

(8)

The first term between curly brackets in (8) can be expressed as

〈{Nα : φα( ~N, r, t)}|
d

dt
|{Nα : φα( ~N, r, t)}〉 − c.c. = 2l3

∑

r,α

Nαφ
∗
α(
~N, r, t)

d

dt
φα( ~N, r, t) (9)

and the energy E( ~N, t) is given by

E( ~N, t) ≡ 〈{Nα : φα( ~N, r, t)}|Ĥ |{Nα : φα( ~N, r, t)}〉
= l3

∑

r,α

Nαφ
∗
α(
~N, r, t)hαφα( ~N, r, t)+l

3
∑

r,α

gαα
2
Nα(Nα−1)|φα( ~N, r, t)|4+l3

∑

r,α,α′ 6=α

gαα′

2
NαNα′ |φα( ~N, r, t)|2|φα′( ~N, r, t)|2

(10)

where we have defined

hα(r, t) = − ~
2

2m
∆r + Vα(r, t) (11)

The extremalisation of the action,

∀r, ∀t, δS/δφ∗α( ~N, r, t) = 0, combined with Eqs.(9)
and (10) leads to the equation of evolution of φα, also
know as the “time-dependent Gross-Pitaevskii equation”:

i~
dφα( ~N, r, t)

dt
=



hα(r, t) + gαα(Nα − 1)
∣

∣

∣φα( ~N, r, t)
∣

∣

∣

2

+
∑

α′ 6=α

gαα′Nα′

∣

∣

∣φα′ ( ~N, r, t)
∣

∣

∣

2



φα( ~N, r, t) (12)

c. Accumulated phase of a Fock state We now want
to describe the evolution of the quantum state describing
the gas. We imagine that initially this state coincides
with a Fock state:

|ψ(0)〉 = |{Nα : φα( ~N, r, 0)}〉 (13)

Without approximations, it is difficult to follow the evo-
lution of this state because the wave functions φα are not
the exact eigenmodes of the Hamiltonian (3), therefore
the state after an evolution time t is no longer a Fock
state. We overcome this difficulty by assuming that the
coupling to the modes orthogonal to φα remains weak
all along the evolution. This is justified as long as the
dynamics does not create a significant depletion in the

condensates. Under this assumption, the state at time t
can be approximated by an Hartree-Fock Ansatz:

e−iĤt/~|ψ(0)〉 ≃ e−iA( ~N,t)|{Nα : φα( ~N, r, t)}〉 (14)
where the accumulated phase A( ~N, t) is self-consistently
defined by

e−iA( ~N,t) =

〈{Nα : φα( ~N, r, t)}|e−iĤt/~|{Nα : φα( ~N, r, 0)}〉 (15)

Deriving this relation with respect to time we obtain its
equation of motion

~
dA( ~N, t)

dt
= −l3

∑

r,α

gαα
2
Nα(Nα − 1)

∣

∣

∣φα( ~N, r, t)
∣

∣

∣

4

− l3
∑

r,α,α′ 6=α

gαα′

2
NαNα′

∣

∣

∣φα( ~N, r, t)
∣

∣

∣

2 ∣
∣

∣φα′( ~N, r, t)
∣

∣

∣

2

(16)
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FIG. 1: (Color online) Sequence allowing to entangle conden-
sate a (left well) and b (right well) via controlled collisional
interaction in state dependent trapping potentials. The inter-
action phase, where the correlations are created, is depicted
in the central panel.

which completes our description of the dynamics of the
gas.

B. EPR experiment with two bimodal condensates

a. Coherent superposition of Fock states We now
place ourselves in the experimental situation of Ref.[14]
(represented in Fig.1) where two initially uncorrelated
Bose-Einstein condensates of atoms in their internal
ground state denoted 0 are prepared in a double well
potential in an initial wave function φa0(r, t = 0) for the
a (or left) well and φb0(r, t = 0) for the b (or right) well.
In this study, we assume that the number of particles is
fixed to Na in the a well and to Nb in the b well. In
each well, an electromagnetic pulse brings the atoms in
a superposition of two internal states noted 0 and 1. We
assume that the four distinguishable components thus
formed

α = σ, ǫ with σ = a, b and ǫ = 0, 1 (17)

will remain so during the entire evolution. This is the
case in the scheme proposed in Fig.1. Just after the
pulses which prepares a coherent superposition of inter-
nal states 0 and 1 in each well, the state is a-b-factorized
and can be written in the compact form:

|Ψ(0)〉=
∏

σ=a,b

(Cσ,0âσ,0(0)
† + Cσ,1âσ,1(0)

†)Nσ

(Nσ!)1/2
|vac〉 (18)

=
∑

~N∈N

(

Na!Nb!
∏

αNα!

)1/2
∏

α

CNα

α |{Nα : φα(r, 0)}〉(19)

where the coefficients Cα depend on the strength and on
the phase of the pulses (for two π/2-pulses, ∀α, Cα =

1/
√
2) and the atom number conservation in each well

constrains the vector ~N = (Nα)α∈A to belong to the
subset of N4:

N = { ~N ∈ N
4, Na,0 +Na,1 = Na, andNb,0 +Nb,1 = Nb}

(20)

The operators â†σ,0(0) and â†σ,1(0) create atoms in the

same wave functions φσ0(r, t = 0) = φσ1(r, t = 0), which

do not depend on the population ~N ∈ N , hence the
omission of this variable in the list of arguments. The
decomposition (19) suggests a two-fold naive procedure
to compute the state |Ψ(t)〉 of the gas at time t:

1. we compute the evolved wave function φα( ~N, r, t)

for each mode α and for all vectors ~N such that the
prefactor (Na!Nb!/

∏

αNα!)
1/2∏

α C
Nα

α is signifi-
cantly non-zero. In the case of π/2-pulses this pref-

actor is maximal for ~̄N = (Na/2, Na/2, Nb/2, Nb/2)
and decreases around this maximum with a typical

width Na,0 −Na/2 = O(N
1/2
a ) and Nb,0 −Nb/2 =

O(N
1/2
b ). With this procedure, a typical number

of order O(N
1/2
a N

1/2
b ) of wave functions must be

computed and evolved.

2. we evolve the phase factor A( ~N, t) using Eq.(16),

again for all the values of ~N which contribute sig-
nificantly to the superposition (19).

Doing so, we obtain the state

|Ψ(t)〉 =
∑

~N∈N

(

Na!Nb!
∏

αNα!

)1/2

e−iA( ~N,t)

×
∏

α

CNα

α

∣

∣

∣

{

Nα : φα( ~N, r, t)
}〉

(21)

Although analytically attractive, this naive procedure
seems difficult to implement numerically for large atom
numbers for two reasons: (i) it requires us to compute
and store a senselessly large number of wave functions
as soon as Na, Nb reach mesoscopic values and (ii) it
supposes that we calculate the phase factor A, which is
of order O(N) (see Eq.(16)), with an accuracy of order
O(1/N) as it will be clear in section I C. In that section,
we will explain how to overcome these difficulties with
the help of the modulus-phase approximation. Before
we do so, let us explain in the following paragraph how
a generalized EPR experiment can be performed in our
system of multimode bosons.

b. Collective spins and entanglement witness To
perform a generalized EPR experiment on our many-
body system, we need to define generalized conjugated
variables in each subsystem a and b. To this end, we
view each two-level atom as an effective spin and define
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the collective spins

Ŝσ
x ≡ 1

2
l3
∑

r

(

ψ̂†
σ0(r)ψ̂σ1(r) + ψ̂†

σ1(r)ψ̂σ0(r)
)

(22)

Ŝσ
y ≡ i

2
l3
∑

r

(

ψ̂†
σ0(r)ψ̂σ1(r)− ψ̂†

σ1(r)ψ̂σ0(r)
)

(23)

Ŝσ
z ≡ 1

2
l3
∑

r

(

ψ̂†
σ1(r)ψ̂σ1(r)− ψ̂†

σ0(r)ψ̂σ0(r)
)

(24)

which form a spin algebra in each well σ = a, b. The
average spins precess around the z direction at an angu-
lar frequency given by the chemical potential difference
between states 0 and 1. We get rid of this effect by un-
rotating the spin in the x, y plane

Ŝσ
xφ = cosφσŜ

σ
x + sinφσŜ

σ
y (25)

Ŝσ
yφ = − sinφσŜ

σ
x + cosφσŜ

σ
y (26)

where the rotation angle is defined from the average spin

tanφσ =
〈Ŝσ

y 〉
〈Ŝσ

x 〉
(27)

The interesting entanglement dynamics takes place in the
yφ, z plane. Because of the non-linearity of the interac-
tion term of the Hamiltonian (3), non-classical correla-

tions build up between the spin components Ŝa
yφ, Ŝa

z , Ŝb
yφ,

and Ŝb
z. The correlations within one well are responsible

for spin-squeezing ; they are not our focus in this arti-
cle. We are looking for the highest non local correlations
between components of the a and b wells. These are ob-
tained for some well chosen quadratures in each well

Ŝa
α = cosα Ŝa

yφ + sinα Ŝa
z (28)

Ŝb
β = cosβ Ŝb

yφ + sinβ Ŝb
z (29)

Our EPR entanglement witness [14, 23] is constructed
from these optimally correlated quadratures and their
conjugated ones

E2
EPR ≡

4
(

∆2Ŝa
α∆

2Ŝb
β − Covar2(Ŝa

α, Ŝ
b
β)
)(

∆2Ŝa
α+π/2∆

2Ŝb
β+π/2 − Covar2(Ŝa

α+π/2, Ŝ
b
β+π/2)

)

(

∆2Ŝa
α∆

2Ŝa
α+π/2

) ∣

∣

∣〈Ŝb
xφ〉
∣

∣

∣

2 (30)

When this quantity is below unity, it shows a violation
of the Heisenberg relation which Bob should expect if his
quantum state were local, namely:

∆2(Ŝb
β − Ŝb,inf

β )∆2(Ŝb
β+π/2 − Ŝb,inf

β+π/2) <
1

4

∣

∣

∣〈Ŝb
xφ〉
∣

∣

∣

2

(31)

where ∆2Ŝ is the variance of Ŝ and Ŝb,inf
β is the best guess

that Alice can do on the outcome of the measurement of
Ŝb
β , knowing the outcome of her measurement of Ŝa

α:

Ŝb,inf
β = 〈Ŝb

β〉+
Covar(Ŝa

α, Ŝ
b
β)

∆2Ŝa
α

(

Ŝa
α − 〈Ŝa

α〉
)

(32)

This is the so-called “steering” effect: the violation of
the Heisenberg inequality shows that Bob’s measurement
acts instantaneously and at a distance on the quantum
state of Alice. If one obtains a value of EEPR below
unity, one not only proves the entanglement between the
a and b subsystems but also rules out the possibility of
reconciling Quantum Mechanics (namely the Heisenberg
uncertainty principle) with local realism [11, 14]. How-
ever, EEPR < 1 does not prove that no hidden variable
theory can account for the results of the experiment, and
is therefore strictly weaker than the violation of a Bell
inequality.

C. Modulus-phase approximation

We now explain how to overcome the limitation men-
tioned in §I B.a by performing a linearization of the phase
of the wave functions around the central Fock state.

a. Modulus-phase decomposition of the wave func-
tions The modulus-phase approximation consists in a

linearization of φα( ~N) around its central and average

value for ~N = ~̄N , where ~̄N is the configuration that
has the greatest weight in the superposition (19). This
approximation further assumes that the variation of the
modulus of φα can be entirely neglected [20, 21]. It is
valid when Na, Nb are large enough such that the typi-
cal width of the distribution of Fock states in state (19)

(which is of order O(
√
N)) is small compared to the cen-

tral values N̄a,0, N̄b,0. We write the wave function φα for
~N such that Nα − N̄α = O(N1/2) in the form:

φα( ~N, r, t) ≃
∣

∣φ̄α(r, t)
∣

∣ eiθα( ~N,r,t) (33)

= φ̄α(r, t)e
i( ~N− ~̄N)·~∇θα( ~̄N,r,t)+O( 1

N )

where

φ̄α(r, t) ≡ φα(
~̄N, r, t) =

∣

∣φ̄α(r, t)
∣

∣ eiθα( ~̄N,r,t) (34)
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is the central wave function of the mode α, and the vector
~∇ gathers the derivatives with respect to the number of
atoms in each mode:

~∇ =

(

∂

∂Nα

∣

∣

∣

r,t,N
α′6=α

)

α∈A

(35)

Thanks to this approximation, we need only the central

wave functions φ̄α and the derivatives ~∇θα of the phases

in ~N = ~̄N to describe the state |Ψ(t)〉 of the gas. In

practice, we compute ~∇θα using, besides the central wave

function φ̄α, the slightly displaced wave functions φα(
~̄N+

~β) where ~β = (±βα)α∈A and βα ≪ N̄α. In the 4-mode
situation considered in (17), this means evolving a total

of only nine different Fock states, hence storing only 36
wave functions.

b. Simplification of the accumulated phase The ob-
jective of this section is to show how the computation
of the accumulated phase A can be avoided. In prac-
tice, rather than with the factor A directly, we deal with

differences of the kind A( ~N + ~β) − A( ~N), where ~β rep-
resents a displacement of order unity of the population
of each mode. We intend to show that this factor can be
reabsorbed by a product of wave function overlaps. The
quantity which appears naturally when one computes the
averages of the spin components (see below Sec. I D and
in particular Eqs.(40) and (46)) is the following combi-
nation:

Θ( ~N, ~β, t) = ~

(

A( ~N + ~β, t)−A( ~N, t)
)

− i~
∑

α

(

Nα +
βα − 1

2

)

ln

[

l3
∑

r

φ∗α(
~N + ~β, r, t)φα( ~N, r, t)

]

(36)

In contrast with A, the phase Θ has a small time deriva-
tive and is therefore easy to compute numerically. We
give the real part of this time-derivative in the modulus-
phase approximation:

Re
d

dt
Θ( ~N, ~β, t) = −l3

∑

r,α,α′ 6=α

gαα′

2
βα′ |φ̄α(r, t)|2|φ̄α′(r, t)|2

+O

(

1

N2

)

= O

(

1

N

)

(37)

To obtain this result, we use Eq.(16) to express the
time-derivative of the first term between parenthesis in
Eq.(36), and the Gross-Pitaevskii equation (12) to ex-
press the time-derivative of the second term. Note that,
consistently with the fact that we neglected the variations
of the modulus of φα, we neglect the imaginary part of
dΘ/dt which (like its real part) is of order O(1/N).

D. Quantum averages of field operators

We conclude this section by deriving a general formula
for the two-position densities of the quantum averages.

Let us write an arbitrary products of field operators taken
at different sites r et r

′ as:

Ŵ~γ,~γ′

~δ,~δ′

(r, r′) =
∏

α

(ψ̂†
α(r))

γα(ψ̂†
α(r

′))γ
′
α(ψ̂α(r))

δα(ψ̂α(r
′))δ

′
α

(38)

where the vectors ~γ, ~γ′, ~δ, ~δ′ ∈ N
4 are of order unity. For

the sake of readability, we shall use the short-hand nota-
tions

~δ+ = ~δ + ~δ′ and ~γ+ = ~γ + ~γ′ (39)
With the knowledge of 〈Ŵ (r, r′)〉 for all ~γ, ~γ′, ~δ, ~δ′ in
hand, all the spin averages needed to compute EEPR in
Eq.(30) can be reconstructed by integrating over r and
r
′ and doing simple linear combinations. We compute

the average value of Ŵ (r, r′) using the expansion (21) of
|Ψ(t)〉 over the Fock states:
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〈

Ŵ~γ, ~γ′,~δ,~δ′(r, r
′)
〉

=
∑

~N, ~N ′∈N

(

Na!
2Nb!

2

∏

α(Nα − δ+α )!(N ′
α − γ+α )!

)1/2

ei(A( ~N ′,t)−A( ~N,t))

×
∏

α

[

(C∗
α)

N ′
αCNα

α

(

φ∗α( ~N
′, r, t)

)γα
(

φ∗α( ~N
′, r′, t)

)γ′
α
(

φα( ~N, r, t)
)δα (

φα( ~N, r
′, t)
)δ′

α

]

×
〈(

N ′
α − γ+α : φα( ~N

′, r′′, t)
)

α

∣

∣

∣

(

Nα − δ+α : φα( ~N, r
′′, t)

)

α

〉

(40)

The scalar product appearing on the last line of (40) is non-zero if and only if ~N ′ = ~N +~γ+−~δ+ ; it can be computed
without difficulty:

〈(

Nα − δ+α : φα( ~N + ~γ+ − ~δ+, r, t)
)

α

∣

∣

∣

(

Nα − δ+α : φα( ~N, r, t)
)

α

〉

=
∏

α

[

l3
∑

r

φ∗α(
~N + ~γ+ − ~δ+, r, t)φα( ~N, r, t)

]Nα−δ+
α

(41)

We now use the modulus-phase approximation in order
to (i) compute the product of wave functions appearing
on the second line of (40) and to (ii) eliminate the phase

factor A( ~N + ~γ+ − ~δ+) − A( ~N) in favor of the quan-

tity Θ( ~N,~γ+ − ~δ+, t) defined in Eq.(36). We obtain the
slightly long but very general formula

〈

Ŵ~γ, ~γ′,~δ,~δ′(r, r
′)
〉

=
modulus-phase

∑

~N∈N

Na!Nb!
∏

α(Nα − δ+α )!

×
∏

α

[

|Cα|2Nα(C∗
α)

γ+
α
−δ+

α

(

φ̄∗α(r, t)
)γα

(

φ̄∗α(r
′, t)
)γ′

α
(

φ̄α(r, t)
)δα (

φ̄α(r
′, t)
)δ′

α

]

× e
i

(

~N− ~̄N
)

·~∇((~δ−~γ)·~θ(r,t)+(~δ′−~γ′)·~θ(r′,t))ei(~δ+−~γ+)·~∇(~γ·~θ(r,t)+~γ′·~θ(r′,t))

× exp

[

iΘ( ~N,~γ+ − ~δ+, t)

~
−
∑

α

δ+α + γ+α − 1

2
ln

(

l3
∑

r

φ∗α( ~N + ~γ+ − ~δ+, r, t)φ∗α( ~N, r, t)

)]

(42)

where ~θ = (θα)α∈A. In the numerical simulation, all
the relevant average values can be calculated from this
formula after a double summation over the spatial indices
r and r

′. This result generalizes and gives a compact form
to the equations of appendix B of Ref.[21].

II. NUMERICAL SIMULATION

A. Experimental and numerical sequence

The experiment we simulated is inspired by the situ-
ation available on an atom chip [19], and is depicted on
Fig.1. It is realized by the following sequence:

(i) We populate a double well potential with Na atoms
of Rubidium 87 in the hyperfine state |F = 1,mF = −1〉

in the many-body ground state of the a well and similarly
in the b well with Nb atoms. Different simulations were
performed varying the initial trap distance and the atom
number in the range Na = Nb = 100 to Na = Nb =
5000. Each well is composed of an isotropic harmonic
trap whose trapping frequency is fixed to

ω = 2π × 20Hz (43)

The system is cylindrically symmetric around the axis of
the two trap centers. We choose this axis as the z axis
of a cylindrical frame and write the spatial dependence
of the wave functions as φ(r) = φ(r, z).
(ii) A π/2-pulse drives the atoms in both wells into

a superposition of the two long-lived hyperfine states
|0〉 = |F = 1,mF = −1〉 and |1〉 = |F = 2,mF = 1〉.
The scattering lengths characterizing the interactions be-
tween these hyperfine states are known experimentally
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(a) Na = Nb = 100
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(b) Na = Nb = 500
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FIG. 2: (Color online) The EPR entanglement witness EEPR (top row) and the renormalized lengths of the two spins 2〈Ŝa
xφ〉/Na

and 2〈Ŝb
xφ〉/Nb (bottom row) are plotted as a function of the total evolution time t = 2tR + tint for (a) Na = Nb = 100 and

(b) Na = Nb = 500. The trap frequency is ω = 2π × 20Hz and the scattering lengths a00 = 100.4RB, a11 = 95.0RB and
a01 = 98.0RB in units of the Bohr radius. The initial separation between the traps is δzmax = 10a0 in unit of the oscillatory
length a0 =

√

~/mω and the ramping time is ωtR = 10. Symbols: result of numerical simulations of spatial dynamics in the
modulus-phase approximation (see Sec I C). In the top row, the blue crosses represent EEPR. In the bottom row, the blue

crosses and yellow squares are for 〈Ŝa
xφ〉 and 〈Ŝb

xφ〉 respectively. The solid lines are analytic predictions of EEPR and of the
spin lengths derived from a 4-mode model valid for a strictly adiabatic evolution (see text). The two (indistinguishable on the
figure) dash-dotted lines in the bottom row represents the normalized density overlap (Eq.(46)) of the wavefunctions φa0 and
φa1 on the one hand and of φb0 and φb1 on the other hand.

within an accuracy of about 0.5% [24, 25], and depend
on the external magnetic field [26]. The results presented
in this article are for the values

a00 = 100.4RB a11 = 95.0RB a01 = 98.0RB (44)

in units of the Bohr radius RB ≃ 52.918× 10−12 m [30] .
(iii) The trapping potential of atoms in state |0〉 is dis-

placed by a distance exactly equal to the initial separa-
tion between the two wells using a ramp of fixed duration
ωtR = 10. In order to minimize the creation of spatial

excitations, the ramp should be slow in the beginning
and in the end, when the atomic clouds are being mixed
or demixed, and faster in between. This is achieved by
varying the displacement δz of the trapping potential of
state 1 using an hyperbolic tangent function of time

δz(t)

δzmax
=

th(4t/tR − 2)− th(−2)

th(2)− th(−2)
(45)

where δzmax is the initial separation between the two
wells and tR is the duration of the ramp.
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(iv) After the end of the ramp, component 0 of the a
well interacts with component 1 of the b well during an
adjustable interaction time tint.
(v) Components 0 are ramped back to their initial po-

sitions using the ramp (45) backwards.
(vi) Averages and correlations between spin compo-

nents are computed from Eq.(42).
(vii) The minimal value of EEPR is found by numer-

ically optimizing over the angles α and β (see Eqs.(28)
and (29)).

The main free parameters of this experiment are the
initial spatial separation δzmax between the two wells and
the ramping time tR. The separation δzmax should be
large enough to prevent any overlap between the two
wells, initially and after ramping back, thus ensuring the
spatial separation required for the EPR experiment. The
ramping time tR should be long to avoid too violent ex-
citations of the spatial dynamics of the clouds, which
would degrade the creation of EPR correlations. There
is also an upper bound on tR: during the ramp, corre-
lations build up between intrawell spin components (e.g.

between Ŝa
yφ and Ŝa

z ) like in a spin-squeezing experiment

[21] ; these correlations are unfavorable for our purpose
because they are a source of uncertainty for non local
observables such as Ŝa

yφŜ
b
z.

B. Discussion of the results

As a first example, in Fig.2 we test the effect of spatial
dynamics on EPR correlations by considering a relatively
fast transport of the atomic clouds with δzmax = 10a0
in unit of the oscillatory length a0 =

√

~/mω and
the ramping time ωtR = 10, and two atom numbers
Na = Nb = 100 and Na = Nb = 500. The results of
the numerical simulation for EEPR and for the renormal-
ized spin length 〈Ŝσ

xφ〉 including spatial dynamics in the
modulus-phase approximation are given by symbols re-
spectively in the top and bottom row of Figs.2 and 3. In
addition, we show the normalized density overlap

Oσ0,σ1 =

∫

d3r|φσ0|2|φσ1|2
√

∫

d3r|φσ0|4
∫

d3r|φσ1|4
(46)

between wavefunctions φσ0 and φσ1, as dash-dotted lines
in the bottom row. Each point is obtained by a numerical
simulation corresponding to a different interaction time,
always including the initial phase in which the potentials
are displaced and the final one in which they are ramped
back to the initial position before the measurement. We
compare these results to an analytical 4-mode model rep-
resented in solid-line ; this model assumes that the whole
evolution (the π/2-pulse and the onward and backward
ramps) is adiabatic so that the 4 wave functions remain
in their instantaneous ground state at all time. With
this assumption, the system can be mapped onto a 4-
mode model whose non-linearity parameters χa, χb and
χab, coefficients respectively of (Ŝa

z )
2, (Ŝb

z)
2 and −Ŝa

z Ŝ
b
z

in the 4-mode Hamiltonian [14], are time-dependent and
given by

χσ(t) =
1

2

(

∂

∂Nσ0
− ∂

∂Nσ1

)

(µσ0 − µσ1), σ = a, b (47)

χab(t) =
1

2

(

∂µb1

∂Na0
+
∂µa0

∂Nb1

)

(48)

where µα is the ground state chemical potential of mode
α. In practice, for the values (44) of the scattering
lengths, we have χa ≃ χb ≡ χ. In the formulas of Ap-
pendix B of Ref.[14], valid for a purely stationary 4-mode

model, we perform the substitutions χt→
∫ t

0
χ(t′)dt′ and

χabt→
∫ t

0
χab(t

′)dt′, where t = 2tR+ tint is the total evo-
lution time. The optimized EPR entanglement witness
obtained through this approach is shown on the top row
of Fig.2 in solid line.

The analytical 4-mode model captures well the general
trend of variation of EEPR and of the renormalized spin
length 〈Ŝσ

xφ〉. EEPR reaches a minimum for an optimal

time [14], which is the result of a competition between the
simultaneous creation of local and non-local correlations
and the loss of coherence. Notice that this minimum is
lower for 500 atoms (EEPR ≃ 0.65) than for 100 (EEPR ≃
0.85) (see also [14]), indicating that the EPR inequality
is violated more strongly for larger atom number.

On top of this trend, a strong spatial dynamics is vis-
ible: at low atom number, the dynamics is dominated
by regular oscillations of the centers-of-mass of the wave
functions in the first excited mode of the harmonic trap.
This is mostly an ideal gas behavior, caused by the finite
ramping time; the weak interactions manifest themselves
in the synchronization of the oscillations of φa0 and φb1,
caused by the weak coupling between them (see Supple-
mentary Material). This dynamics is responsible for the

regular drops in the spin length 〈Ŝσ
xφ〉 visible on Fig.2.(a)

with a frequency that matches the trap frequency. Re-
mark that the spin length is close to its maximal value
only when the density overlap is close to one. How-
ever, the converse is not true because perfectly overlap-
ping wavefunctions may still be dephased. Ultimately,
the dips of the spin length causes the regular peaks in
the EPR entanglement witness. At large atom number
Na = Nb = 500 (Fig.2.(b)) the spatial dynamics is both
damped and rendered more chaotic by the stronger in-
teractions, and the generation of non-local correlations is
faster.

We found that the results are improved by reducing
the initial distance between the two traps. This increases
the ratio between the interaction time and the total time
and minimizes the excitation of spatial dynamics. We
show an example for δzmax = 6a0 and Na = Nb = 500
in Fig.3 where the minimum value of EEPR ≃ 0.54 is
reached at t ≃ 0.17 s. The corresponding plot for 〈Ŝσ

xφ〉 is
shown in the lower panel of Fig.3. A slight improvement
(EEPR ≃ 0.45 at t ≃ 0.16 s) is obtained when increasing
the number of atoms to Na = Nb = 5000 but the spatial
dynamics is more strongly excited.
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To complete our investigation, we have evaluated the
total loss rate in the interaction configuration (mid-
dle row in Fig.1) using stationary wave functions for
Na = Nb = 500, scattering lengths and trap frequen-
cies as in Fig.2, and the loss rate constants [27] κ11 =
81 × 10−21 m3 s−1, κ01 = 15 × 10−21 m3 s−1 for two-
body losses and κ000 = 5.4×10−42 m6 s−1 for three-body
losses. We find that about 7 particles are lost on average
in 0.2 s due to two-body losses, while three-body losses
are negligible. If we add one-body losses corresponding
to a lifetime of 1 min, we obtain a total lost fraction
Nlost/(Na +Nb) of about 10−2 at 0.2 s. In analogy with
what happens for spin-squeezing, where the losses are
negligible as long as the lost fraction is much smaller than
the squeezing parameter ξ2 (see Eq.(21) in Ref.[28]), we
expect that the effect of losses should not significantly
affect the predicted value of EEPR for the considered pa-
rameters. We come to a similar conclusion for larger
atom numbers Na = Nb = 5000 where we estimate a lost
fraction of 2×10−2 at the optimal time for EPR steering
t ≃ 0.16 s.

Our results show that an EPR steering experiment can
be performed using interactions in Bose-Einstein conden-
sates in state-dependent potential even accounting for the
spatial dynamics. This completes our previous study [14]
which was limited to stationary modes.

Conclusion

We studied a system of Bose-Einstein Condensates
in 4 distinguishable components entangled by collective
transport in state-dependent potentials. Far beyond a
simple 4-mode approach, we worked out a realistic de-
scription of the spatial structure of the system where both
the spatial excitations and the entanglement between the
distinguishable components are accounted for. From the
methodological point of view, we generalized the two-

component spatial dynamical model of Refs.[20, 21] to a
many-component system, and we worked out a general
formula to compute all the relevant correlations. Our
compact formulation makes our theory an easily adapt-
able tool to study the effect of spatial dynamics on en-
tanglement, and provides the experimentalists with a nu-
merical recipe to benchmark their results.

Based on this description, we performed a set of nu-
merical simulations to investigate the effects of spatial
dynamics, and in particular of the excitations created by
the collective transport of atomic clouds, on the non-local
correlations which we expect in our system. We observed
that strong excitations of the spatial modes were created,
whose behavior became more chaotic as the number of
atoms increased. However, despite these excitations, the
non-local correlations remain strong enough to perform
an EPR steering experiment. If the parameters, and in
particular of the collective transport, are properly ad-
justed, our EPR entanglement witness can reach below
the critical value of 1, and down to EEPR = 0.54 for 500
atoms in each well and 0.45 for 5000. The lowest values
of our entanglement witness were reached at relatively
short times, of the order of 0.2 s. This is longer than the
times (≈ 15 ms) at which spin squeezing was observed
with Bose Einstein condensates [19] but remains within
reach of cold atomic experiments [29].
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FIG. 3: (Color online) The EPR entanglement witness EEPR

(top) and the renormalized lengths of the two spins 2〈Ŝa
xφ〉/Na

and 2〈Ŝb
xφ〉/Nb (bottom) are plotted as a function of the total

evolution time t = 2tR + tint for Na = Nb = 500. The other
simulation parameters are the same as in Fig.2 except for
a smaller initial separation between the traps δzmax = 6a0.
Symbols: result of numerical simulations of spatial dynam-
ics in the modulus-phase approximation (see Sec I C). In the
top pannel, the blue crosses represent EEPR. In the bottom
pannel, the blue crosses and yellow squares are for 〈Ŝa

xφ〉 and

〈Ŝb
xφ〉 respectively. The solid lines are from an analytic 4-

mode model valid for a strictly adiabatic evolution (see text).
The two (indistinguishable on the figure) dash-dotted lines
in the bottom row represents the normalized density overlap
(Eq.(46)) of the wavefunctions φa0 and φa1 on the one hand
and of φb0 and φb1 on the other hand.


