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Introduction

Communication networks represent human interactions that happen at certain times. The properties of these networks are often studied in order to have a better understanding of human dynamics [START_REF] Barabasi | The origin of bursts and heavy tails in human dynamics[END_REF][START_REF] Karsai | Small but slow world: How network topology and burstiness slow down spreading[END_REF].

The basic building blocks of networks are called motifs, small structures that appear multiple times in the network. This concept was originally formulated for static networks [START_REF] Milo | Network Motifs: Simple Building Blocks of Complex Networks[END_REF] and has been extended for temporal networks [START_REF] Zhao | Communication motifs: a tool to characterize social communications[END_REF]. In the case of communication networks, these motifs are an indication of the nature of the communication [START_REF] Zhang | Human Interactive Patterns in Temporal Networks[END_REF]. For instance, a set of messages in a back-and-forth pattern between two individuals is probably a conversation.

It is a common assumption that the nature of the relationship of two individuals define the nature of the communities that they share [START_REF] Ahn | Link communities reveal multiscale complexity in networks[END_REF]. If the motifs characterise the relationships between individuals, they may be related to the community structure.

The existing definitions of motifs describe messages that are received and sent in a short time-frame. Such motifs do not include causally-linked interactions that happen outside of the time-frame. These interactions could be due to an individual that is not active on the network at that time, and therefore unaware of the messages received.

In this paper, we first propose an adaptation of the definition of a motif that takes into account users' activity periods. We then study experimentally the frequency of motifs inside and outside communities in order to test the hypothesis that temporal motifs are linked to the community structure.

Zhao et al. [START_REF] Zhao | Communication motifs: a tool to characterize social communications[END_REF] defined temporal motifs. They measured the frequency of the different motifs and characterised them by their shape (ping pong, star, chain). Kovanen et al. [START_REF] Kovanen | Temporal motifs. In Temporal Networks, Understanding Complex Systems[END_REF] extended the definition of motifs in order to take into account the order of communications. For instance, their definition differentiates a "AB-BA-AB" motif from a "AB-AB-BA" motif, which the previous definition does not.

Zhang et al. [START_REF] Zhang | Human Interactive Patterns in Temporal Networks[END_REF] considered the relative frequency of some 3-events motifs when increasing the time window. They observed that the dominant 3-event motifs were related to the dominant 4-event motifs in the 6 datasets that were used.

In order to decide of their significance, the frequency of the motifs in the dataset is often compared with null models [START_REF] Zhao | Communication motifs: a tool to characterize social communications[END_REF][START_REF] Tabourier | How to detect causality effects on large dynamical communication networks: a case study[END_REF]. These models describe a network that is identical to the data, except for one feature that is randomised. This methodology is used to evaluate the influence of the randomised feature on the measurements.

Zhao et al. [START_REF] Zhao | Communication motifs: a tool to characterize social communications[END_REF] compared their results to the time-mixing model, a null model where all timestamps of the dataset are randomised. They observed that the time-mixing model created mainly isolated entries, which is an important difference with empirical observations. However, the time-mixing model deletes the phenomenon of burst in the activity of individuals, on top of deleting causality effects.

Tabourier et al. [START_REF] Tabourier | How to detect causality effects on large dynamical communication networks: a case study[END_REF] presented a null model that conserves this feature, the correlation-mixing model. As for the time-mixing model, all source and destinations are kept and timestamps are randomised. However, this randomisation is carried out over the messages that were emitted by the same individual, and not over all messages. It implies that temporal features such as the burstiness of communications is conserved, but not the causal link between messages.

Several works have been done on the question of detecting communities on dynamic networks [START_REF] Cazabet | Dynamic community detection[END_REF]. However, these approaches focus on slowly evolving networks, in which edges are persistent along time (relations, for instance friendship or colleague relation). On the contrary, this work focuses on networks which have a much faster temporality than communities, i.e interactions are short-lived (for instance messages, calls between friends or colleagues). We therefore assume a fixed community structure, and observe interactions over this structure.

Adapting motifs for communication networks

In this section, we will introduce a variation on motifs that take into account the activity periods of individuals. We call this variation an a-motif.

We model the communication network as links streams G = (V, E). A link stream is composed of a set V of nodes and a set E ⊂ V ×V ×R + of timestamped links between nodes. We note that multiple links may exist between the same pair of nodes.

A temporal motif describes the structure of a sequence of communications. Formally, a temporal motif is an equivalence class of a communication graph [START_REF] Zhao | Communication motifs: a tool to characterize social communications[END_REF], that is defined as follows on link streams :

Definition 1 (communication graph). A communication graph on a win- dow of size W ∈ R + is a link stream G = (V, E) such that ∀(u i , v i , t i ) ∈ E, ∃(u j , v j , t j ) ∈ E that respects (u i , v i , t i ) = (u j , v j , t j ), {u i , v i } ∩ {u j , v j } = ∅ and 0 < |t i -t j | < W .
Two communication graphs belong to the same equivalence class (i.e. motif) if the corresponding weighted graphs (a link is weighted by the number of communications) are isomorphic. Kovanen et al. [START_REF] Kovanen | Temporal motifs. In Temporal Networks, Understanding Complex Systems[END_REF] extend this equivalence relationship by taking into account the order of the links in the communication graphs. We call a communication graph that belong to such an equivalence class an instance of a motif.

This paper focuses on communication networks such as e-mails or answers in an online forum. In such networks, the individual receiving a message is not always aware of the message at the time of reception. Typically, receiving an e-mail does not mean that it is acknowledged. In that case, the causal link between two communications may not be directly related to the reaction time. We define the a-motif (for activity motifs) in order to take that phenomenon into account.

We first split the messages emitted by the individuals into activity periods. These periods are time intervals when an individual emits messages in a short burst.

Definition 2 (µ-activity period). For each node v ∈ V in a link stream G = (V, E), we note E v the set of messages emitted by v and med(v ∈ V ) the median of the time elapsed between two consecutive messages emitted by v. We also note t((u, v, x) ∈ E) = x the date of an edge. A µ-activity period of an

individual v ∈ V is a time interval [a; b] during which v emitted a set of messages M (a, b) = {e ∈ E v | a ≤ t(e) ≤ b}
, that respects the following properties :

-∃e 1 ∈ M (a, b), t(e 1 ) = a and ∃e 2 ∈ M (a, b), t(e 2 ) = b and -∀e 1 ∈ M (a, b), t(e 1 ) = b ⇒ ∃e 2 ∈ M (a, b), 0 < t(e 2 ) -t(e 1 ) ≤ µ • med(v) and -∀e ∈ E v , t(e) < a ⇒ t(e) < a-µ•med(v) and t(e) > b ⇒ t(e) > b+µ•med(v).
We then define the a-motifs as equivalence classes of activity graphs, formed as follows. If an edge (u 1 , v 1 , t 1 ) belongs to an activity graph, the edge (u 2 , v 2 , t 2 ) may also belong in that graph if t 1 < t 2 and :

u 1 = u 2 and t 1 and t 2 belong to the same activity period of u 1 . There might be a causal link between two messages emitted by an individual in the same activity period. v 1 = u 2 and t 2 belong in the next activity period of u 2 that happens after t 1 . If t 1 is inside an activity period of u 2 , then t 2 must belong to the same activity period. There might be a causal link between a message received and the next messages sent by the recipient during his/her next activity period.

We use the equivalence function introduced in Kovanen et al. [START_REF] Kovanen | Temporal motifs. In Temporal Networks, Understanding Complex Systems[END_REF] to define the a-motifs as equivalence classes of activity graphs. The detection of a-motifs instances is illustrated Fig. 1. For complexity reasons, we restrict our study to size 3 a-motifs, i.e. those that are made of three edges. This size is chosen as a compromise between the computation time needed for the detection of instances and the complexity of the structures that are observed.

:
We identify the motifs by letters that correspond to the nodes that are involved in the motif. For instance, the motifs illustrated Fig. ?? are, from left to right, "AB-BA", "AB-AB", "AB-AC" and "AB-BC". Some size 3 a-motifs are geometrically similar, such as "AB-AC-BC" and "AB-AC-CB", or "AB-BC-CB" and "AB-BA-BC". In order to reduce the number of observations, we focus on four motifs that have been identified as important in the associated literature [START_REF] Zhao | Communication motifs: a tool to characterize social communications[END_REF][START_REF] Tabourier | How to detect causality effects on large dynamical communication networks: a case study[END_REF][START_REF] Zhang | Human Interactive Patterns in Temporal Networks[END_REF] and a fifth that we identified as interesting. Those are : the star "AB-AC-AD", the ping-pong "AB-BA-AB", the triangle "AB-BC-CA" and the chain "AB-BC-CD". We add the spam "AB-AB-AB" to that list because of its direct possible interpretation. Those motifs are illustrated Fig. 2.

AB-AB-AB

AB-AC-AD AB-BA-AB AB-BC-CA AB-BC-CD There may be activity periods including dozens of messages while others include only a few. If an activity period of a node v is made of k edges and if v received l messages before that period, then k • l instances of size 2 a-motifs are created. The impact of a message on a-motifs frequency is therefore dependent of the size of the activity periods of the receiver.

In this work, we consider that a message should not have more impact on the results than another because of the size of activity periods. To that purpose, we weight instances of a-motifs such that the weights of the set of instances that has the original edge sum to one. That weight is computed in the following manner: from an instance that has a weight w, if that instance is extended to generate k instances of bigger size, each of these instances has a w/k weight.

For instance, if an edge creates k 1 instances of size two, each of them has weight 1/k 1 . If the first of these instances generates k 2 instances of size three, each of them has weight 1/(k 1 • k 2 ). If the second of these instances generates k 2 instances of size three, each of them has a 1/(k 1 • k 2 ) weight, and so on. Each measure that is presented in following experiments is weighted accordingly.

Experiments

In this section, we present our study of the properties of a-motifs.

These experiments were implemented in Python. They were run in parallel on 40 AMD Opteron CPUs (2.6 GHz). Due to the size of the dataset and the number of null-model instances, the full run takes about a day.

Datasets

In order to carry out our experiments, we collected a dataset that includes messages between individuals and three ground-truth community partitions. This dataset is original since, to the best of our knowledge, no openly available dataset features both types of data.

Caen University dataset We obtained metadata for all emails transferring through servers of Caen University, France, for a period of three months. Available information include source, destination and timestamp. Individuals in this network are students and employees of the university.

Three kinds of partitions can be extracted from available data:

-For researchers, we know the research laboratory they belong to.

-For students and researchers, we also know their CNU section (CNU stands for Universities National Council), which indicates to which scientific field they belong to. -For all users, we know to which administrative entity they belong to, typically their school.

This dataset includes 45 research laboratories, 146 CNU sections and 57 administrative entities.

The network has the following properties:

-It contains 7 688 665 messages sent between 210 085 addresses.

-168 507 messages sent between 918 addresses with a research laboratory.

-378 721 messages sent between 17 275 addresses with a CNU section.

-1 275 662 messages sent between 26 177 addresses with a administrative entity.

We created three link streams, one for each partition, that includes only nodes corresponding to individuals present in the corresponding partition, and that includes communication between these nodes.

Other datasets

Name n m nodes edges Enron [START_REF] Klimt | Introducing the enron corpus[END_REF] 86978 1134990 employees e-mails Facebook [START_REF] Viswanath | On the evolution of user interaction in facebook[END_REF] 45813 855542 users wall posts UC Irvine [START_REF] Opsahl | Clustering in weighted networks[END_REF] 1899 59835 students messages Radoslaw [START_REF] Michalski | Matching Organizational Structure and Social Network Extracted from Email Communication[END_REF] 167 82876 employees e-mails Debian [START_REF] Gaumont | Analysis of the temporal and structural features of threads in a mailing-list[END_REF] 34648 316569 users answers Digg [START_REF] Choudhury | Social synchrony: Predicting mimicry of user actions in online social media[END_REF] 30360 86203 users answers Linux Kernel Mailing List (LKML)3 26885 1028233 users answers Slashdot [START_REF] Gmez | Statistical analysis of the social network and discussion threads in slashdot[END_REF] 51083 139789 users answers Table 1

. Konect's networks

Besides the Caen university dataset, we analysed a set of communication networks available on the Konect4 website (see Table 1). After filtering out self loops and nodes with no links, we considered them as link streams.

Because these datasets do not have a known ground truth partition, we used Louvain [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF] and Infomap [START_REF] Rosvall | Maps of random walks on complex networks reveal community structure[END_REF] community detection algorithms on the aggregated network to generate two reference partitions. The aggregated network contains an edge between a pair of nodes if there is at least one interaction at any point in time between these two nodes in the link stream. Since the results on the partitions of both algorithms are similar, we will only present the results on the partitions obtained with the Louvain algorithm.

Comparing with the correlation-mixing model

For each measure on the motifs, we compare the value on the original graph and the same value on graphs generated by the correlation-mixing model. We consider statistically significant differences to be a consequence of causality, as described by Tabourier et al. [START_REF] Tabourier | How to detect causality effects on large dynamical communication networks: a case study[END_REF].

In practice, we observe that these measures are normally distributed. In such a case, we can use the "66-95-99.7 rule" [START_REF] Pukelsheim | The three sigma rule[END_REF], that states that about 66% of normally distributed values are within one standard deviation of the mean, about 95% of them are within two standard deviations and about 99.7% of them are within three standard deviations. Therefore, a value that is further from the mean than three times the standard deviation would have less than 0.3% chance to be generated by the normal distribution. For each measure s on the data, we obtain the average µ s and the standard deviation σ s of s on the graphs generated by the null model. We then evaluate the difference between the data and the null model using the z-score:

z-score(s) = s -µ s σ s (1) 
If the z-score is more than three in absolute value, we conclude that the null model does not explain the value of the measure in the data. Since we use the correlation-mixing model, a significant difference would be caused by the removal of the correlation between messages in the null model.

Experimental properties of a-motifs

We start by studying the differences between motifs and a-motifs. In order to have enough messages during activity periods, we take µ = 2. Indeed, µ = 1 implies that half of edges finish an activity period since half of the edges are separated by more than the inter-edge time median. In the datasets, µ = 1 implies that these periods include a small amount of edges.

Zhao et al. [START_REF] Zhao | Communication motifs: a tool to characterize social communications[END_REF] observed that star and chain motifs are the most common ones. Analysis of the corresponding a-motifs on our datasets confirm this observation in average (Fig. 3), despite a few exceptions for some datasets. Overall, the chain motif represents 16% of all motifs, stars represent 6%, while ping-pong comes third at 3%.

We also study the z-score of the frequency of each motif Fig. 4. We can observe significant tendencies at least for 4 of the 5 studied motifs: in most networks, stars and chains are less common in observed data than in the null model, while spam and ping-pong are more common.

In [START_REF] Tabourier | How to detect causality effects on large dynamical communication networks: a case study[END_REF], a similar analysis was conduced on a phone call dataset, only for stars and chains. While their conclusion for stars was the same than ours, their conclusion for chains was the opposite. This difference might be due to the difference in nature of datasets, or to a difference in the method of analysis: they segmented time using fixed temporal windows, while we used activity periods.

A-motifs and communities

In this section, we study the relation between a-motifs and communities. In particular, we are interested to know if some a-motifs are more common inside or in-between communities. We define the normalised internal weights of a-motifs of type m as:

w norm in (m) = w in (m)
m ∈M w in (m ) with w in (m) the sum of weights of a-motifs of type m that have at least an edge inside a community. We similarly define the normalised external weights.

We now compute a normalised cross-community score for a-motifs of type m: We observe that three a-motifs have negative scores in most datasets: spams, ping-pong and triangles. This means that, comparatively to others, these amotifs tend to occur more inside communities than outside.

The two other a-motifs (star and chain) have less clear tendencies, but seem to occur slightly more often in-between communities.

It is nevertheless important to note that there are notable exceptions to these tendencies, in particular the Caen CNU dataset for spam and chains, or a divergent result for triangles on Digg. z-score of ccscore As previously, we compute the z-score of the ccscore in order to evaluate how significant are the tendencies (see Fig. 6). We observe that most values are significantly higher than those in the null-model, therefore that ccscores observed in the dataset are higher than those in the null model. We conclude that studied a-motifs appear more frequently between communities with respect to the the null-model.

Discussion

In previous sections, we have observed that some a-motifs are more likely to occur inside or outside communities, and that these patterns are significant. As a consequence, we propose that a-motifs could be used, given a temporal network dataset, to distinguish internal and external edges. Identifying such edges could be used to later identify communities.

Another observation is that a-motifs occurring more frequently inside communities seem to be different in nature from those occurring outside. On one hand, inter-community edges are marked by patterns of diffusion of information, including various, different actors: chains and stars. On the other hand, motifs observed inside communities are characterised by an information travelling inside a same set of actors, either several times the same pair of actors (spam, ping-pong), or a cycle coming back to its origin (triangle).

Finally, it is interesting to observe that results are coherent between datasets with ground truth communities (Caen-university) and those in which topological communities have been discovered using the Louvain algorithm. It implies that observed temporal properties are characteristics of structural communities.

Conclusion

In this paper, we present an alternate definition of temporal motifs that takes into account the activity periods in communication networks. We measure a large difference of the frequency of these motifs between the empirical data and a null model that ignores causality. This result suggests that our definition captures causally-linked communications.

We also studied the relationship between temporal motifs and community structure. We observed that the conversational motifs such as spam, ping-pong and triangle are generally more frequent inside communities than outside. The star motif, on the other hand, appears more frequently outside communities. The comparison with the null model shows that causally-linked motifs happen frequently outside communities.

These results open the way for future works: on the one hand, it could be possible to detect communities in link streams based on the frequency of a-motifs, taking advantage of our observations. On the other hand, a more detailed analysis of the nature of interactions occurring inside a-motifs could help us to understand better why some of them occur more often inside or outside communities, hence improving the global understanding of the structure of communications.
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 1 Fig.1. For a node, the messages that are emitted are grouped into activity periods. The set of incident edges forms activity graphs.
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 2 Fig. 2. The five studied motifs. Numbers indicate the order of the edges.
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 3 Fig. 3. a-motif frequencies for different networks.
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 4 Fig. 4. z-score of a-motif frequency for different networks. Scores above 3 in absolute value are considered significant. Values beyond 20 are truncated.
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Fig. 6 .

 6 Fig. 6. z-score of ccscores
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