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Abstract. The analysis of dynamic networks has received a lot of atten-
tion in recent years, thanks to the greater availability of suitable datasets.
One way to analyse such dataset is to study temporal motifs in link
streams , i.e. sequences of links for which we can assume causality. In
this article, we study the relationship between temporal motifs and com-
munities, another important topic of complex networks. Through exper-
iments on several real-world networks, with synthetic and ground truth
community partitions, we identify motifs that are overrepresented at the
frontier –or inside of– communities.

1 Introduction

Communication networks represent human interactions that happen at certain
times. The properties of these networks are often studied in order to have a
better understanding of human dynamics [2,8].

The basic building blocks of networks are called motifs, small structures that
appear multiple times in the network. This concept was originally formulated
for static networks [12] and has been extended for temporal networks [19]. In
the case of communication networks, these motifs are an indication of the nature
of the communication [18]. For instance, a set of messages in a back-and-forth
pattern between two individuals is probably a conversation.

It is a common assumption that the nature of the relationship of two indi-
viduals define the nature of the communities that they share [1]. If the motifs
characterise the relationships between individuals, they may be related to the
community structure.

The existing definitions of motifs describe messages that are received and sent
in a short time-frame. Such motifs do not include causally-linked interactions
that happen outside of the time-frame. These interactions could be due to an
individual that is not active on the network at that time, and therefore unaware
of the messages received.

In this paper, we first propose an adaptation of the definition of a motif
that takes into account users’ activity periods. We then study experimentally
the frequency of motifs inside and outside communities in order to test the
hypothesis that temporal motifs are linked to the community structure.



2 Related work

Zhao et al. [19] defined temporal motifs. They measured the frequency of the
different motifs and characterised them by their shape (ping pong, star, chain).
Kovanen et al. [10] extended the definition of motifs in order to take into account
the order of communications. For instance, their definition differentiates a ”AB-
BA-AB” motif from a ”AB-AB-BA” motif, which the previous definition does
not.

Zhang et al. [18] considered the relative frequency of some 3-events motifs
when increasing the time window. They observed that the dominant 3-event
motifs were related to the dominant 4-event motifs in the 6 datasets that were
used.

In order to decide of their significance, the frequency of the motifs in the
dataset is often compared with null models [19,16]. These models describe a
network that is identical to the data, except for one feature that is randomised.
This methodology is used to evaluate the influence of the randomised feature on
the measurements.

Zhao et al. [19] compared their results to the time-mixing model, a null
model where all timestamps of the dataset are randomised. They observed that
the time-mixing model created mainly isolated entries, which is an important dif-
ference with empirical observations. However, the time-mixing model deletes the
phenomenon of burst in the activity of individuals, on top of deleting causality
effects.

Tabourier et al. [16] presented a null model that conserves this feature, the
correlation-mixing model. As for the time-mixing model, all source and desti-
nations are kept and timestamps are randomised. However, this randomisation
is carried out over the messages that were emitted by the same individual, and
not over all messages. It implies that temporal features such as the burstiness of
communications is conserved, but not the causal link between messages.

Several works have been done on the question of detecting communities on
dynamic networks [4]. However, these approaches focus on slowly evolving net-
works, in which edges are persistent along time (relations, for instance friendship
or colleague relation). On the contrary, this work focuses on networks which have
a much faster temporality than communities, i.e interactions are short-lived (for
instance messages, calls between friends or colleagues). We therefore assume a
fixed community structure, and observe interactions over this structure.

3 Adapting motifs for communication networks

In this section, we will introduce a variation on motifs that take into account
the activity periods of individuals. We call this variation an a-motif.

We model the communication network as links streams G = (V,E). A link
stream is composed of a set V of nodes and a set E ⊂ V ×V ×R+ of timestamped
links between nodes. We note that multiple links may exist between the same
pair of nodes.



A temporal motif describes the structure of a sequence of communications.
Formally, a temporal motif is an equivalence class of a communication graph [19],
that is defined as follows on link streams :

Definition 1 (communication graph). A communication graph on a win-
dow of size W ∈ R+ is a link stream G = (V,E) such that ∀(ui, vi, ti) ∈ E,
∃(uj , vj , tj) ∈ E that respects (ui, vi, ti) 6= (uj , vj , tj), {ui, vi} ∩ {uj , vj} 6= ∅ and
0 < |ti − tj | < W .

Two communication graphs belong to the same equivalence class (i.e. mo-
tif) if the corresponding weighted graphs (a link is weighted by the number of
communications) are isomorphic. Kovanen et al. [10] extend this equivalence re-
lationship by taking into account the order of the links in the communication
graphs. We call a communication graph that belong to such an equivalence class
an instance of a motif.

This paper focuses on communication networks such as e-mails or answers in an
online forum. In such networks, the individual receiving a message is not always
aware of the message at the time of reception. Typically, receiving an e-mail
does not mean that it is acknowledged. In that case, the causal link between two
communications may not be directly related to the reaction time. We define the
a-motif (for activity motifs) in order to take that phenomenon into account.

We first split the messages emitted by the individuals into activity periods.
These periods are time intervals when an individual emits messages in a short
burst.

Definition 2 (µ-activity period). For each node v ∈ V in a link stream
G = (V,E), we note Ev the set of messages emitted by v and med(v ∈ V )
the median of the time elapsed between two consecutive messages emitted by v.
We also note t((u, v, x) ∈ E) = x the date of an edge. A µ-activity period of an
individual v ∈ V is a time interval [a; b] during which v emitted a set of messages
M(a, b) = {e ∈ Ev | a ≤ t(e) ≤ b}, that respects the following properties :

– ∃e1 ∈M(a, b), t(e1) = a and ∃e2 ∈M(a, b), t(e2) = b and
– ∀e1 ∈ M(a, b), t(e1) 6= b ⇒ ∃e2 ∈ M(a, b), 0 < t(e2) − t(e1) ≤ µ ·med(v)

and
– ∀e ∈ Ev, t(e) < a⇒ t(e) < a−µ·med(v) and t(e) > b⇒ t(e) > b+µ·med(v).

We then define the a-motifs as equivalence classes of activity graphs, formed
as follows. If an edge (u1, v1, t1) belongs to an activity graph, the edge (u2, v2, t2)
may also belong in that graph if t1 < t2 and :

– u1 = u2 and t1 and t2 belong to the same activity period of u1. There might
be a causal link between two messages emitted by an individual in the same
activity period.

– v1 = u2 and t2 belong in the next activity period of u2 that happens after
t1. If t1 is inside an activity period of u2, then t2 must belong to the same
activity period. There might be a causal link between a message received and
the next messages sent by the recipient during his/her next activity period.



We use the equivalence function introduced in Kovanen et al. [10] to define
the a-motifs as equivalence classes of activity graphs. The detection of a-motifs
instances is illustrated Fig. 1.

: Activity period

t

: Edge that is incident to the node

Received messages

Emitted messages 
Δt > μ.med 

: Edges exist in the same activity graph

Fig. 1. For a node, the messages that are emitted are grouped into activity periods.
The set of incident edges forms activity graphs.

For complexity reasons, we restrict our study to size 3 a-motifs, i.e. those
that are made of three edges. This size is chosen as a compromise between the
computation time needed for the detection of instances and the complexity of
the structures that are observed.

We identify the motifs by letters that correspond to the nodes that are in-
volved in the motif. For instance, the motifs illustrated Fig. ?? are, from left to
right, ”AB-BA”, ”AB-AB”, ”AB-AC” and ”AB-BC”.

Some size 3 a-motifs are geometrically similar, such as ”AB-AC-BC” and
”AB-AC-CB”, or ”AB-BC-CB” and ”AB-BA-BC”. In order to reduce the num-
ber of observations, we focus on four motifs that have been identified as im-
portant in the associated literature [19,16,18] and a fifth that we identified as
interesting. Those are : the star ”AB-AC-AD”, the ping-pong ”AB-BA-AB”, the
triangle ”AB-BC-CA” and the chain ”AB-BC-CD”. We add the spam ”AB-AB-
AB” to that list because of its direct possible interpretation. Those motifs are
illustrated Fig. 2.

AB-AB-AB AB-AC-AD AB-BA-AB AB-BC-CA AB-BC-CD
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Fig. 2. The five studied motifs. Numbers indicate the order of the edges.



There may be activity periods including dozens of messages while others
include only a few. If an activity period of a node v is made of k edges and if v
received l messages before that period, then k · l instances of size 2 a-motifs are
created. The impact of a message on a-motifs frequency is therefore dependent
of the size of the activity periods of the receiver.

In this work, we consider that a message should not have more impact on the
results than another because of the size of activity periods. To that purpose, we
weight instances of a-motifs such that the weights of the set of instances that has
the original edge sum to one. That weight is computed in the following manner:
from an instance that has a weight w, if that instance is extended to generate k
instances of bigger size, each of these instances has a w/k weight.

For instance, if an edge creates k1 instances of size two, each of them has
weight 1/k1. If the first of these instances generates k2 instances of size three,
each of them has weight 1/(k1 · k2). If the second of these instances generates k′2
instances of size three, each of them has a 1/(k1 · k′2) weight, and so on. Each
measure that is presented in following experiments is weighted accordingly.

4 Experiments

In this section, we present our study of the properties of a-motifs.

These experiments were implemented in Python. They were run in parallel
on 40 AMD Opteron CPUs (2.6 GHz). Due to the size of the dataset and the
number of null-model instances, the full run takes about a day.

4.1 Datasets

In order to carry out our experiments, we collected a dataset that includes mes-
sages between individuals and three ground-truth community partitions. This
dataset is original since, to the best of our knowledge, no openly available dataset
features both types of data.

Caen University dataset We obtained metadata for all emails transferring
through servers of Caen University, France, for a period of three months. Avail-
able information include source, destination and timestamp. Individuals in this
network are students and employees of the university.

Three kinds of partitions can be extracted from available data:

– For researchers, we know the research laboratory they belong to.

– For students and researchers, we also know their CNU section (CNU stands
for Universities National Council), which indicates to which scientific field
they belong to.

– For all users, we know to which administrative entity they belong to,
typically their school.



This dataset includes 45 research laboratories, 146 CNU sections and
57 administrative entities.

The network has the following properties:

– It contains 7 688 665 messages sent between 210 085 addresses.
– 168 507 messages sent between 918 addresses with a research laboratory.
– 378 721 messages sent between 17 275 addresses with a CNU section.
– 1 275 662 messages sent between 26 177 addresses with a administrative

entity.

We created three link streams, one for each partition, that includes only
nodes corresponding to individuals present in the corresponding partition, and
that includes communication between these nodes.

Other datasets

Name n m nodes edges

Enron [9] 86978 1134990 employees e-mails

Facebook [17] 45813 855542 users wall posts

UC Irvine [13] 1899 59835 students messages

Radoslaw [11] 167 82876 employees e-mails

Debian [6] 34648 316569 users answers

Digg [5] 30360 86203 users answers

Linux Kernel Mailing List (LKML)3 26885 1028233 users answers

Slashdot [7] 51083 139789 users answers
Table 1. Konect’s networks

Besides the Caen university dataset, we analysed a set of communication
networks available on the Konect4 website (see Table 1). After filtering out self
loops and nodes with no links, we considered them as link streams.

Because these datasets do not have a known ground truth partition, we used
Louvain [3] and Infomap [15] community detection algorithms on the aggregated
network to generate two reference partitions. The aggregated network contains
an edge between a pair of nodes if there is at least one interaction at any point
in time between these two nodes in the link stream. Since the results on the
partitions of both algorithms are similar, we will only present the results on the
partitions obtained with the Louvain algorithm.

4.2 Comparing with the correlation-mixing model

For each measure on the motifs, we compare the value on the original graph
and the same value on graphs generated by the correlation-mixing model. We

3 http://konect.uni-koblenz.de/networks/lkml-reply
4 http://konect.uni-koblenz.de

http://konect.uni-koblenz.de/networks/lkml-reply


consider statistically significant differences to be a consequence of causality, as
described by Tabourier et al. [16].

In practice, we observe that these measures are normally distributed. In such
a case, we can use the “66-95-99.7 rule” [14], that states that about 66% of
normally distributed values are within one standard deviation of the mean, about
95% of them are within two standard deviations and about 99.7% of them are
within three standard deviations. Therefore, a value that is further from the
mean than three times the standard deviation would have less than 0.3% chance
to be generated by the normal distribution. For each measure s on the data, we
obtain the average µs and the standard deviation σs of s on the graphs generated
by the null model. We then evaluate the difference between the data and the
null model using the z-score:

z-score(s) =
s− µs

σs
(1)

If the z-score is more than three in absolute value, we conclude that the
null model does not explain the value of the measure in the data. Since we use
the correlation-mixing model, a significant difference would be caused by the
removal of the correlation between messages in the null model.

4.3 Experimental properties of a-motifs

We start by studying the differences between motifs and a-motifs. In order to
have enough messages during activity periods, we take µ = 2. Indeed, µ = 1
implies that half of edges finish an activity period since half of the edges are
separated by more than the inter-edge time median. In the datasets, µ = 1
implies that these periods include a small amount of edges.

Zhao et al. [19] observed that star and chain motifs are the most common
ones. Analysis of the corresponding a-motifs on our datasets confirm this obser-
vation in average (Fig. 3), despite a few exceptions for some datasets. Overall,
the chain motif represents 16% of all motifs, stars represent 6%, while ping-pong
comes third at 3%.

We also study the z-score of the frequency of each motif Fig.4. We can observe
significant tendencies at least for 4 of the 5 studied motifs: in most networks,
stars and chains are less common in observed data than in the null model, while
spam and ping-pong are more common.

In [16], a similar analysis was conduced on a phone call dataset, only for
stars and chains. While their conclusion for stars was the same than ours, their
conclusion for chains was the opposite. This difference might be due to the
difference in nature of datasets, or to a difference in the method of analysis: they
segmented time using fixed temporal windows, while we used activity periods.

4.4 A-motifs and communities

In this section, we study the relation between a-motifs and communities. In
particular, we are interested to know if some a-motifs are more common inside
or in-between communities.



Fig. 3. a-motif frequencies for different networks.

Fig. 4. z-score of a-motif frequency for different networks. Scores above 3 in absolute
value are considered significant. Values beyond 20 are truncated.



We define the normalised internal weights of a-motifs of type m as:

wnorm
in (m) =

win(m)∑
m′∈M win(m′)

with win(m) the sum of weights of a-motifs of type m that have at least an edge
inside a community. We similarly define the normalised external weights.

We now compute a normalised cross-community score for a-motifs of type m:

ccscore(m) =
wnorm

ext (m)− wnorm
in (m)

max(wnorm
ext (m), wnorm

in (m))

Fig. 5. Ratio between external and internal proportions of a-motifs

Interpretation of ccscore This score can vary between -1 and 1, with positive
score indicating a higher relative prevalence of cross-community instances, while
negative values indicate a-motifs more commonly found inside communities. Re-
sults are presented Fig. 5.

We observe that three a-motifs have negative scores in most datasets: spams,
ping-pong and triangles. This means that, comparatively to others, these a-
motifs tend to occur more inside communities than outside.

The two other a-motifs (star and chain) have less clear tendencies, but seem
to occur slightly more often in-between communities.



It is nevertheless important to note that there are notable exceptions to
these tendencies, in particular the Caen CNU dataset for spam and chains, or a
divergent result for triangles on Digg.

Fig. 6. z-score of ccscores

z-score of ccscore As previously, we compute the z-score of the ccscore in
order to evaluate how significant are the tendencies (see Fig. 6). We observe
that most values are significantly higher than those in the null-model, therefore
that ccscores observed in the dataset are higher than those in the null model.
We conclude that studied a-motifs appear more frequently between communities
with respect to the the null-model.

4.5 Discussion

In previous sections, we have observed that some a-motifs are more likely to
occur inside or outside communities, and that these patterns are significant. As
a consequence, we propose that a-motifs could be used, given a temporal network
dataset, to distinguish internal and external edges. Identifying such edges could
be used to later identify communities.

Another observation is that a-motifs occurring more frequently inside com-
munities seem to be different in nature from those occurring outside. On one



hand, inter-community edges are marked by patterns of diffusion of information,
including various, different actors: chains and stars. On the other hand, motifs
observed inside communities are characterised by an information travelling in-
side a same set of actors, either several times the same pair of actors (spam,
ping-pong), or a cycle coming back to its origin (triangle).

Finally, it is interesting to observe that results are coherent between datasets
with ground truth communities (Caen-university) and those in which topological
communities have been discovered using the Louvain algorithm. It implies that
observed temporal properties are characteristics of structural communities.

5 Conclusion

In this paper, we present an alternate definition of temporal motifs that takes
into account the activity periods in communication networks. We measure a large
difference of the frequency of these motifs between the empirical data and a null
model that ignores causality. This result suggests that our definition captures
causally-linked communications.

We also studied the relationship between temporal motifs and community
structure. We observed that the conversational motifs such as spam, ping-pong
and triangle are generally more frequent inside communities than outside. The
star motif, on the other hand, appears more frequently outside communities.
The comparison with the null model shows that causally-linked motifs happen
frequently outside communities.

These results open the way for future works: on the one hand, it could be
possible to detect communities in link streams based on the frequency of a-motifs,
taking advantage of our observations. On the other hand, a more detailed analysis
of the nature of interactions occurring inside a-motifs could help us to understand
better why some of them occur more often inside or outside communities, hence
improving the global understanding of the structure of communications.
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