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FEffective high-temperature estimates
for intermattent maps

Benoit R. Kloeckner *

September 11, 2017

Using quantitative perturbation theory for linear operators, we prove spec-
tral gap for transfer operators of various families of intermittent maps with al-
most constant potentials (“high-temperature” regime). Holder and bounded
p-variation potentials are treated, in each case under a suitable assumption
on the map, but the method should apply more generally. It is notably
proved that for any Pommeau-Manneville map, any potential with Lispchitz
constant less than 0.0014 has a transfer operator acting on Lip([0, 1]) with
a spectral gap; and that for any 2-to-1 unimodal map, any potential with
total variation less than 0.0069 has a transfer operator acting on BV([0, 1])
with a spectral gap. We also prove under quite general hypotheses that the
classical definition of spectral gap coincides with the formally stronger one
used in [GKLME15], allowing all results there to be applied under the high
temperature bounds proved here: analyticity of pressure and equilibrium
states, central limit theorem, etc.

1 Introduction

The thermodynamical formalism, which provides a deep understanding of invariant mea-
sures of some topological dynamical systems, is by now quite well understood in the
uniformly hyperbolic setting with sufficiently regular potentials. However, the non-
uniformly hyperbolic setting presents many challenges and is under a lot of scrutiny.
Here we shall restrict to “intermittent” maps, which are expanding in certain zones but
have a neutral fixed point or even a contracting behavior in other regions.

For some intermittent maps such as the Pommeau-Manneville family, on the one
hand the absolutely continuous measure only exhibits polynomial decay of correlation
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[Hu04, Sar02], but on the other hand Ruelle-Perron-Frobenius' measures of potentials
with sufficiently small Hélder or C* norm (“high-temperature regime”) have exponential
decay of correlation, following from a spectral gap for their transfer operator [CV13].

In view of this diversity of behavior, it is desirable to better understand where lies the
frontier between this two regimes, polynomial versus exponential decay of correlations.
As a small step in this direction, we shall prove completely explicit lower bounds on the
size of the high-temperature regime. These bounds are certainly far from being sharp
for most single map we consider, but they are uniform over rather large families of maps.

The idea is simply to use spectral theory of perturbed linear operators: one only has
to prove spectral gap for a constant potential, which is usually easy, and then conclude
by stability of the spectral gap property. The important additional point is that we use
here an effective perturbation theory, leading to effective bounds. The present approach
also has the advantage of simplicity (see the proofs of Theorems 3.3 and 4.2).

Transfer operators. Recall that given a finite-to-one dynamical system 7' : Q — €,
where {2 is a metric space, and a potential ¢ :  — R in a suitable Banach algebra of
functions X'(€2), one defines a transfer operator Ly, which is a bounded linear operator
from X () to itself, mapping f to the sum (or average) of e?f along inverse images
under 7. When T is k-to-one for some k € N we shall take the “average” point of view

and set
1

Lrgf(z) =1 > V().

y€T~1(x)

More generally, we will consider the case when there is some probability transition kernel
M = (my).cq (i-e. forallz € Q m, is a probability measure) such that m, is concentrated
on T~ !(z) (sometimes up to some “negligible” set, see Remark 1.1 below) and set

Lo f () = /Q e#0) £ () dm,(y).

The above k-to-one case is included in this framework by setting m, = %EyeT_l @) dy.
The subscripts M and T will most often be kept implicit or interchanged depending on
the focus we want to choose, and it should be clear from the context what the implicit
object is.

The dual L7, of L, preserves the set of finite positive measures, and under suitable
assumptions L, can be shown to have a maximal eigenvalue A, a unique positive eigen-
function h, and L, to have a unique positive eigenprobability v,. They can then be used
to construct a T-invariant positive measure dp, = h, dv, (the normalization of h, be-
ing taken to ensure f, is a probability) which we shall call the Ruelle-Perron-Frobenius
(RPF) measure of the potential ¢.

The transfer operator is thus an important tool in the study of invariant measures,
and its spectral property are crucial. In particular, if Ly, has a spectral gap below A,

!The term Gibbs measure is often used, including in some of my previous works, but conflicts with
many related but subtly different concepts.



one easily obtains an exponential decay of correlations:

‘/foT”gdu@—(/fduw)(/gduga)

which means that if X is a random point drawn according to f.,, for any sufficiently
regular f, g the number g(X) is “almost independent” from f(7™(X)) when n is large.
This kind of properties have countless application in the study of ergodic properties of
T, and it is thus desirable to know when a spectral gap occur.

= 0(e™™) Vf, g€ X(Q)

Remark 1.1. The invariance of p, is proved as follows. For all f € X() (where
X () is assumed to contain enough functions to approximate uniformly all continuous
functions) it holds:

/de*(M¢):/foT-h¢du¢:/foT-hwd<A—tL;y¢) :Aiw/%(foT-hw)dyw (1)

where
Lo(foT - hy)(x) = / e?W f(T(y))hy(y) dmz(y) = f(x) / e#Why(y) dm,(y)

the last equality using that m, is concentrated on T~!(z). But to plug this into (1), we
only need this for v,-almost all x. Then we get

[ 1t =5 [ ruaman = [ .

The relevance of this relaxation comes from examples such as the Pommeau-Manneville
family (77),~0 below, which are not strictly speaking k-to-one; see Example 3.2.

Intermittent maps. It is known in a broad generality that if 7" is uniformly expanding
(or hyperbolic) and ¢ is Holder, then there is a spectral gap for the transfer operator
acting on Holder functions. Investigations have thus turned toward non-uniformly ex-
panding maps (or less regular potentials); one particular class of such maps often plays
the role of test case: the Pommeau-Manneville family

T, :10,1] — [0, 1]

a) 1
R (1 + (22)7) %f:ce [0,3)
2z — 1 if z € [35,1]

where ¢ € (0,+00) is a parameter quantifying the tangency to identity at the neutral
point 0.2 This type of maps is sometime called “intermittent”, since the dynamics is close
to the dynamics of a uniformly expanding map until the orbit gets close to the neutral
fixed point: then the orbit takes a long time to go away from the fixed point.

Let us state a specialized version of our first main result (we obtain below similar
bounds for all a-Holder potential, and for more general maps, possibly acting on higher-
dimensional spaces).

ZVariants acting on the circle, which can then be made C! with derivative of the form 1+ O(z?) at
the fixed point 0 might be preferred by some readers, and this makes no difference in our result.



Theorem 1.2. For any ¢ > 0 and any potential ¢ € Lip(2) such that Lip(p) < 0.0014,
the transfer operator Ly, , has a spectral gap when acting on Lip(Q2).

The independence to ¢ in the case of the Pommeau-Manneville family was already
known (see the dependencies of €, in [CV13]), and comes from the fact that they exhibit
a backward average contraction rate uniformly bounded by the presence of a strictly
contracting branch. Note that for any value of the Lipschitz constant less than 0.0014
the method provides an explicit lower bound for the size of the spectral gap.

Another important class of maps is the class of unimodal interval maps. We shall
consider only maps with an (almost) constant number of inverse images, and thus restrict
to unimodal maps which are 2-to-1 (counted with multiplicity).

For this class, the bounded (p-)variation class of regularity will prove extremely ef-
ficient. There, the derivative plays little role, since bounded p-variation is “insensitive
to stretching”. We instead rely on its “extensiveness”’ (total variation is no more than
the sum of variations over tiles of a tiling of the phase space) to deduce a general result
from which we extract this simply stated version (we use BV([a, b]) to denote the space
of bounded variation function defined on [a, b], and BV(¢) to denote the total variation
of such a function ¢).

Theorem 1.3. Let T : [a,b] — [a,b] be a continuous interval map which is increasing
from a subinterval |a, c| onto [a,b] and decreasing from [c,b] onto [a,b]. For all potential
v € BV([a,b]) such that

BV () < 0.0069

the transfer operator L, has a spectral gap when acting on the space of bounded varia-
tion functions.

The main appeal of this result is that there is no contraction assumption. As be-
fore, we get a more general result, valid for p-BV potentials, which include in particular
1/p-Hélder functions. It follows that we get a spectral gap for Holder potential without
any contraction assumption (and on a larger ball). The catch is that the spectral gap
is in the p-BV norm; if ¢, f are 1/p-Holder with ju,(f) = 0 and [|¢[/gy, small enough,
then [|L7(f)|lBv, decays to zero exponentially fast (in particular the same holds for its
uniform norm), but its Holder norm could be arbitrarily large. However this is a rather
small price to pay since many applications of spectral gap (e.g. exponential decay of
correlations) do not rely so much on the norm, but more on the nature of the potentials
one is allowed to consider.

To conclude this article, in Section 5 we prove that for transfer operators, having
a spectral gap in the sense used in [Klo17b] (which is a common definition which we
also use here) is equivalent to the seemingly stronger condition used in [GKLMF15] (see
Section 2.4). In particular, under the assumptions of Theorem 1.2 or 1.3 we can apply
the results of [GKLME15]: there is an analytic dependency of pressure and p, on ¢,
the RPF measures in the high-temperature regime (in particular, the maximal entropy
measure) satisfy a Central Limit Theorem, etc.



As further applications of spectral gap, let us mention limit theorems: in the setting
of Theorems 1.2 and 1.3, if X, is a random variable with law 1, Xjy1 = T'(X}) and
1 is an observable in the corresponding functional space (a-Hélder or p-BV), then the
random process with “hidden deterministic dependency” (¢(Xy))r>o satisfy a Law of
Large Numbers, quantified by concentration inequalities, and the Central Limit Theo-
rem, quantified by Berry-Esséen bounds. The proofs can be found for example in [HHO1],
or in [Klo17a] in a completely effective version (i.e. explicit non-asymptotic constants
are obtained).

2 Banach spaces and Wasserstein metric

In this section we give the functional analytic set up in which we shall work. The phase
space ) will always be a metric space, and its metric will be denoted by d(-, -).

2.1 Holder norms

The Holder classes are among the most usual regularity classes considered for potentials.
For any a € (0, 1], one defines the a-Holder constant of a function f : Q@ — R as the

number
HOla(f) = sup ‘f(ﬂ?) B f<y>|
TH£YEN d(ﬂ? ) y)a
A function is a-Holder if its a-Holder constant is finite, and the set of such function
form a Banach space when endowed with the usual Hélder norm. We prefer to assume
) to be bounded and use the slightly modified norm

[ f{ttot := [I.flloo + (diam €2)* Hola(f)

which thanks to the (diam Q) factor is more homogeneous: the two terms have the
same physical dimension (they are to be expressed in the same physical unit as f), and
the norm is invariant if one rescales the distance by a constant. This homogeneity will
be slightly more natural and effective in the computations later on.

We denote by Hol,(€2) the space of a-Hélder functions, which is in fact a Banach

algebra, i.e. |[fgllaol, < [[f ot lglltoL.-
Indeed, for all f, g € Hol,(Q2) it holds || f¢llco < ||flloo]lg]lco and for all x,y € Q:

[f(x)g(x) — f(y)gy)| < |f(x)g(z) — f(2)g()| + [ f(x)g(y) — f(y)g(y)]
< [ flloo Holo(g)d(, y)* + Holo (f)d(z,4)*[|9loo
Holo(fg) < || flleo Hola(g) + Hola(f)[|g]lco-

2.2 Wasserstein metric

The 1-Wasserstein metric is defined on the set P(€2) of Borel probability measures on €
by

Wi(p,v) = inf /Qﬂd(:c,y) dm(z,y)

mel(u,v)



where T'(p, v) is the set of measures on Q x Q whose marginals are p and v. Elements
of T'(u, v) are called transport plans or couplings from p to v For any « € (0, 1], d(-, -)®
is also a metric and the corresponding Wasserstein metric is denoted by W,.

We will only use a few basic properties: W, is indeed a metric; the infimum in its
definition is always attained by some transport plan, then called optimal and generally
not unique; the topology induced by W, is the weak-* topology as soon as € is compact.
The Kantorovich duality enables a reformulation of W, as

Wa(uw)zﬂ}p}/f du—/f dV}

where the supremum is on all functions f : €2 — R such that Hol,(f) = 1.

General references on Transport Theory and the Wasserstein distance are [Vil03] and
[Gigl1]

2.3 Bounded p-variation norms

When ) is an interval or the circle, we can consider function of bounded variation
or generalizations with great efficiency. For the sake of notational simplicity we shall
only consider intervals here, but the case of circle is handled very similarly. Higher-
dimensional analogues also exist, but are less elementary and have different properties
(in particular they are no longer “insensitive to stretching”).

Assume Q0 C R is an interval, fix p € [1,00) and let f : Q@ — R. An increasing
sequence Ty < r1 < --- < x, of elements of () is called a partition and denoted by x.
The p-variation of f along the partition z is defined by

1

wlf.a) = (D15(ws) - fa)l)’

and the total p-variation of f is defined by
BV, (f) :=supv,(f,z)

where the supremum is taken over all partitions of 2. If this number is finite, f is said
to be of bounded p-variation.

When p = 1, this is the usual total variation, but p > 1 is interesting because it allows
for much more irregular potentials. Many a-Hélder functions (o < 1) are not of bounded
variation, but when {2 is bounded all a-Holder functions are of bounded p-variation for



all p > 1/a. Indeed for pa = 1 we have

1

w2 = (SIS) ~ Fla)p)’
< Hola(f)(ilxj )"

< H01a<f) ( i Ty — .ﬁl]j,1> %
< Hola(f)(di;m )

for all partition z. For larger p, simply use that when €2 is bounded, a-Hélder functions
are also S-Holder for all 8 < a.
We endow the space BV, (2) of functions of bounded p-variation with the norm

[f1[Bv, = [[fllsc +BVy(f).

It is more usual to replace in the above definition the supremum norm by an integral
norm, but:

e we don’t want to give such a special role to Lebesgue measure in our context,
e the two definitions yield equivalent norms,

e the above choice norm makes BV,(Q2) a Banach algebra (the proof is pretty much
the same as for the Hélder norm).

Two important interlaced differences between the bounded variation and Holder classes
of regularity are that:

e Holder is intensive while BV is extensive, i.e. if one partitions 2 into two intervals
I, I, then sum of the total variation of f on I and I, is not greater than the total
variation of f over Q (it can be lesser if f has a jump precisely at the interface
between the two intervals),

e the Holder constant is diminished when one stretches the space, i.e. if a map Y is
O-contracting, then Hol,(foY") < 6“Hol,(f), while BV is insensitive to stretching.

This is to be kept in mind to understand the difference in the assumptions of our main
results in these two cases.

2.4 Positive eigendata and spectral gap

Let us now precise the notion of spectral gap, which appears under slightly different
wordings in the literature. We consider a bounded linear operator L acting on a Banach
space X. The operator norm is denoted, as the norm on X, by |-|.



The first two definitions of a spectral gap will make sense for a general Banach space
X, but the third one will need X to be a space of function, which we therefore assume
from now on. This immediately provides us with an additional structure: the cone of
positive functions.

Definition 2.1. We say that an operator L has positive eigendata if it has a positive
eigenvalue A\ and a positive, bounded away from 0 eigenfunction h € X for this eigen-
value.

Let us phrase three notions of spectral gap; the first two are classical and easily seen
to be equivalent, and the third one is used in [GKLMF15] and, under some general
hypotheses, will be proved to be equivalent to the other two in Section 5. We assume L
has an eigenvalue A > 0 with eigenvector wug, and spectral gap is to be understood with
respect to A.

(SG1) There is a complement G to (ug) in X' (i.e. G is a closed subspace and (ug) &G =
X') which is stable under the action of L, and there exist numbers C' > 0, 6 € (0, 1)
such that

L]l < CA"(1 = 6)".

(SG2) There exist two continuous linear operators P,R : X — X such that L = AP+R,
P is a rank one projection (dimImP = 1 and P? = P), PR = RP = 0, and there
exists numbers C' > 0 and 0 € (0, 1) such that:

IR < CA"(1— 6"

The spectral gap assumption used in [GKLME15] seems slightly more precise:

(SG3) The dual operator L* has an eigenmeasure v € P(£2) for the eigenvalue A, in
particular

/L(f)du:)\/fdy Vfex

and there exist positive constants C' > 0, 6 € (0, 1) such that for all n € N and all
f € X such that [ f dv =0, we have

IL* (A < CAM (1 = 6)"[|f]]-

In particular, (SG3) implies some identification between measures and linear forms on
X, and identifies the stable complement G.

In all three definitions, C is called the constant and § the size of the spectral gap. In
the main Theorems below, we shall use the first definition; this only matters when we
are interested in the value of the constant, which may vary from a definition to another,
but the mere statement that there is a spectral gap will hold for all definitions, thanks
to Theorem 5.1.



2.5 Quantitative perturbation Theory

Let us now state the main perturbative tool we will use. We consider L; : X — X a
bounded linear operator of a Banach space X', with an eigenvalue A\, eigenvector uy and
eigenform ¢q (i.e. ¢g is an eigenvector of the dual operator L for the same eigenvalue).
We assume a spectral gap, and consider the condition number 7y := % We denote
by 7y the projection on ker ¢y along the direction (ug).

Theorem 2.2 (Corollary 2.12 of [Klo17h]). If Ao = ||Lo|| = 1 and Ly has spectral gap of
size 0g and constant 1 (according to Definition (SG1)), then all L such that

< do(do — 9)
6(1 + 09 — &) 7ol|mol|
have a spectral gap of size 0 below Ay, with constant 1. In particular, all L such that
5%
(1 + do)7ol|mol|

IL = Lo

I~ Loll <

have some spectral gap, with constant 1.

Results of this flavor are quite old, see e.g.[Bau84|, [DS88] and [Kat95]. However it is
hard to find explicit such explicit radius bounds written for spectral gaps, and not only
for having a simple isolated eigenvalue.

To apply this result, we will need to estimate the quantities dy, 79 and ||m|. We will
first use the following lemma of Doeblin-Fortet /Lasota-Yorke type, which also appears
in [Klo17a] and that we reproduce with its proof for the sake of completeness.

Consider a normed space X (€2) of (Borel measurable, bounded) functions Q@ — R,
with norm ||| = ||||cc + V() where V is a semi-norm.

Lemma 2.3. Assume that for some constant D > 0, for all probability . on 2 and for
all f € X such that u(f) =0, || fllec < DV (f).
Let Ly € B(X(R)) and assume that for some 6 € (0,1) and all f € X:

Lo flloe < 1flloc  and  V(Lof) < 6V(f)

and having eigenvalue 1 with an eigenprobability pu, i.e. Lipo = po.
Then Lo has a spectral gap (for the eigenvalue 1, the contraction being on the stable
space ker pg ) with constant 1, of size

1-4
1+ D6

Of course, the hypotheses of the Lemma also ensure that ||Ly|| < 1; and since we will
only consider operators of the form

9o

el e

Lof (@) = 1 > S (@)

we will always have Lyl =1 and thus \g = ||Lo|| = 1.



Proof. Let f € ker ug; then ||[Loflloc < ||fllo and Lof € ker po, so that ||Lof]s
DV(Lof) < DOV(f).

Denote by t € [0,1] the number such that ||f||.c = t||f|| (and therefore V(f)
(1 =1)[|f]]). The above two controls on ||Lo(f)||s can then be written as ||Lo(f)||oo
min (¢, DG(1 —t))|| f|| and using V(Lo f) < 0V (f) again we get

IN

IA I

Lo (A < min (£ +0(1 =), (D +1)0(1 — 1)) || f]
I (Lo) ker o] < max min (¢ + 6(1 — ¢), (D + 1)0(1 — t)).
€10,
The maximum is reached when t+6(1—t) = (D+1)0(1—t), i.e. whent = D0/(1+ D0),
at which point the value in the minimum is (D +1)8/(D68+ 1) € (0, 1). Therefore there
is a spectral gap with constant 1 and size 1 — (D + 1)8/(D6 + 1), as claimed. O

Lemma 2.4. Assume again that for some constant D > 0, for all probability p on
and for all f € X such that u(f) =0, || fllec < DV(f).

If the semi-norm V' is invariant under translation by a constant (i.e. V(f+c) =V (f)
for all f € X(Q) and all constant c), then all operators m € B(X(S2)) of the form
mf = f—ulf) satisfy
2D +2
D+2°

Il <

This lemma will apply below, as both Hol, and BV, are invariant by translation by
a constant.

Proof. The proof proceeds as the previous one. We consider f € X'(Q2) and let ¢ € [0, 1]
be such that || f|l. = ]| f]| and V(f) = (1 —¢)||f||. On the one hand we have V(7 f) =
V(f)=(1—=1)||f]|, and on the other hand we have both

17 flloe < 2[[fllec and [[7f]lec < DV(F),

the first inequality being a simple triangle inequality, while the second follows from an
hypothesis since pu(mf) = 0. Then we get ||7f|| < min(l + ¢, (D + 1)(1 —t))||f]| and
therefore
|7|| < max min(1 +¢, (D + 1)(1 —1)).
te[0,1]

The maximum is reached at t = D/(D + 2), from which the result follows. O

3 Holder potentials and maps that are backward
contracting on average

Let (£2,d) be a metric space which we assume to be of finite diameter.

Definition 3.1. We say that a map 7" : Q — Q is of class H(«, 6) where a € (0, 1] and
6 € (0,1) if there exist an integer £ > 2 and “inverse branches” (b;)1<;j<x such that:

10



i. each b; is a (Borel) measurable map 2 — €,
ii. for all z except possibly countably many, T (x) = {by(z), ba(x), ..., bx(z)},

1i. T is backward 6-contracting on average with respect to the metric d*:

Yy, 2 € Q: 30 € &,

?v|>—‘

k
Z (2))* < 0d(y, 2)".
If T is of class H(a,#0), for each a-Holder potential we define a transfer operator by

i D f(b;())

i.e. we consider the backward random walk M = (% Zj Ob; () )

wl»—‘

The permutation ¢ is meant to account for the fact that one may not be able to
define inverse branches globally in a continuous fashion (hence the choice to define them
globally but only as measurable maps). The second condition is not strictly necessary
for our main Theorem to hold, but it ensures that as soon as the RPF measures are
atomless, they are indeed T-invariant (see Remark 1.1).

Example 3.2. Let us consider three variations on the doubling map that only differ in
the details that led us to the definition above:

D.:R/Z — R/Z
z+— 2x mod 1

D, :[0,1] — [0,1] D; :[0,1] — [0,1]
2 if z €0, 3] 27 if 2 €10,3)
T — . 1 T— . 1
2-2z ifxelz1] 20 —1 ifxel3,1]

For each of them, let us define inverse branches showing that they these three maps are
of class H(1, 2) (and thus H(a, 55) for all @ € (0,1]). For z € R/Z, denote by {z} its
representative in [0,1). Then we take:

o for D.: by =2 — {2}/2 mod 1 and by = x — {x}/2+1/2 mod 1. Both branches
have one discontinuity point at 0, while D! (x) = {b; (), ba(x)} for all z,

e for Dy: by = x+ x/2 and by = x +— 1 — /2. Then both branches are continuous
and D; (z) = {b1(x), by(x)} for all z, but D, is not 2-to-one since by (1) = by(1),

e for D;: by = x +— x/2 and by = x +— x/2+41/2. Then both branches are continuous
but D; ' = {b1(z), by(z)} only holds for x # 1, since D;(by(1)) = D;(1/2) = 0.

Our first main result is the following.

11



Theorem 3.3. Let T be a map of class H(«, 0) acting on a space ) of finite diameter.
For all a-Holder potentials ¢ such that

Hol,(¢) <

S S(dam ) %8 (1 e )>

16(1+60
the transfer operator Ly, has a spectral gap (with constant 1).

Proof. We consider the transfer operator L associated to the null potential, i.e.

which under the above assumption acts continuously on Hol,(£2): indeed ||Lof||e0 <
| flls and for all z,y € Q and some permutation ¢ depending on x and y we have:

Z = (oo ()]

?vl*—‘

Lof(x

wlr—‘

|Lof(z) = Lof(y

| =
M-

< Hola(f) - d(b;(), ba() (y))*

Ly~

so that Hol,(Lof) < 6 Hol,(f). It follows that ||Lo||go, < 1.
The same computation shows that the dual operator Lj, which acts on probability
measures over () since Lol = 1, is a f-contraction in the metric W,:
Wo (Lju, Lgy) = sup

/ Lof dyu — / Lof dv
Hola (f)=1

< sup  Hol(Lof)Wu(u,v)
Hola (f)=1

< OWeo(p, v).

Ko

< @ Hol,(f)d(

Since the Wasserstein metric is complete, this ensures that there is exactly one proba-
bility measure which is invariant by L;, which we denote by 1.

Let us show that we can use Lemma 2.3: if p is any probability measure and f €
Hol, () satisfies u(f) = 0, then f being continuous it must vanish at some point = € 2.
Then for all y € 2 we have f(y) < (diam)*Hol,(f). It follows that we can apply
Lemmas 2.3 and 2.4 with D = 1, so that Ly has a spectral gap of size (1 —8)/(1+ 6)
with constant 1 and ||mo[| < 3.

We shall apply Theorem 2.2. First observe that L, = Lo(e¥-) so that, using the
Banach Algebra property, we get

[e.9]

T = Lollmor, = [Lo((e” = 1)) lor, < 1D FPJHH% < Z] e, = elelete —1.
j=17"

7j=1

12



Then, since 1 is the eigenfunction of Ly and p is a probability measure, we have 75 = 1.
Also observe that adding a constant to ¢ simply multiply L, by a scalar, not changing
its spectral gap. Let ¢ € Hol,(2) be a potential such that for some constant ¢ it holds

o el < lo (1+GT—3)2>:10 (1+M)
% Hol, < log 6'%(1+i_g) & 16(1+6)

Theorem 2.2 then implies that the transfer operator L, = Lo(e¥-) has a spectral gap
with constant 1.

To conclude, we only have to observe that taking ¢ = (sup ¢ +inf ¢)/2, we must have
o — clloo < 2(diam ©2)* Hol, () and thus ||¢ — ¢|lpor, < 3(diam Q) Hol, ().

?

0

Remark 3.4. If we only want to know that there is some neighborhood of the line
of constant potentials where the transfer operator has a spectral gap, without effective
estimates, then we only need to prove a spectral gap for Ly and dispense from the last
half of the above proof.

Proof of Theorem 1.2. In the case of the Pommeau-Maneville family, we have diam (2 =
1 and a contraction 6 = % + 2&@ in W, (one of the branch is 1/2 contracting in the

Euclidean metric, the other one is 1-contracting). For a = 1, we obtain § = 3/4 and
observe
2 (1/4)*

“log (1 4+ —22_y > 0.0014.
glog (1+ 35 (7/4)) =

4 Potentials with bounded p-variation

For BV potentials and their relatives, we need much less geometric assumptions.

Definition 4.1. We say that a map 7" of a compact interval {2 C R is of class V' if there
are k maps by, ..., b, : Q — € such that

i. each b; is monotonic from 2 to an interval I; C Q,
ii. for all z except possibly countably many, T!(z) = {bi(x), ba(z), ..., be(7)},
i1 the I; have disjoint interior.

As an example, any unimodular map whose restriction to both its monotonicity in-
tervals is onto is of class V, irrespective of its derivative and of the behavior of its
post-critical orbit.

Here again we use the definition of the transfer operators using the inverse branches:

| =

Lof(e) = 3 3200 (by(a)),



keeping in mind that RPF measures are as expected T-invariant as soon as they are
atomless.

Theorem 4.2. If T is of class V, any potential ¢ € BV,(2) such that
1
2 kv —1)2
BV, () < 7 log (1 + %)
3 16k7 (kv +1)
gives the transfer operator L, acting on BV, (Q) a spectral gap.

Remark that this condition becomes less stringent with large k; as k — oo the bound
goes to the limit %log(l + 1/16) ~ 0.04. Meanwhile, for p = 1 and k& = 2 we get the
bound 2 log(1 +1/96) > 0.0069. In particular Theorem 1.3 follows immediately.

Proof. As above, we only need to consider the zero potential, whose corresponding
transfer operator is again denoted by Lo. Given f € BV,(Q) it is again clear that
|Loflloo < ||f]loo; the core of the argument is then to prove that

BV, (Lof) < ki BV, (/). 2)

P

This is easily achieved thanks to the “extensiveness” of the total p-variation: if x = (g <
x1 < -+- < x,)is any partition of {2, then

bi(xg) < ...b1(x,) < bo(mg) < ...bo(my) < -+ <bp(xg) < -+ < by(zp)

is a partition of €2, in the case when b; are all increasing and their images are in increasing
order. In any other case, we only have to permute the b; and change the order of each
subsequence b;(zo), ..., bj(x,) to obtain a partition, which we denote by

y= (Yo < -+ < yk(nJrl)fl)-

Then using Minkowski’s inequality and concavity of x — 2% we have:

vp(Lof, z) = 2<Z’Zf (7)) (le))pf

Tk
< (33032 1 uta) — FOutaa)
< (/1) € = BV, ()
/{ZP kp

By taking the upper bound over z, we obtain (2).
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To apply Lemma 2.3, observe that a p-BV function f such that | f du = 0 for some
probability measure p must be non-negative at some point and non-positive at some
point, so that || f||.c < BV,(f). The existence of an eigenprobability is ensured by the
compactness of () and the fact that L§ preserves the set of probability measures. We
obtain that Ly a spectral gap of size (l{;% - 1)/(k% + 1) with constant 1. Since BV, (Q)
is uniformly dense in the space of continuous functions, it follows that there is in fact a
unique probability measure fixed by Lg.

The same computation as in the proof of theorem 3.3 shows that for all ¢ € BV,(Q),
if there is a constant ¢ such that

(k» —1)?
16k» (k7 + 1)

)

lp = cllpy, <log (1+

then the transfer operator L, has a spectral gap. Taking ¢ = (sup ¢ + inf ) /2, we get
as before || — ¢||pv, < 2BV, () so that a sufficient condition to have a spectral gap is

(k7 —1)? )

2
BV (@)S—log(H T
: 3 24kv (kv + 1)

5 Three shades of spectral gaps

In this Section we show several possible definitions of spectral gap are equivalent. This
will enable us to ensure that the spectral gaps proved above actually match the needed
assumption in |[GKLMF15].

5.1 Hypotheses on the function space

We fix a compact metric space €2 and space of functions X (2) endowed with a norm ||-||.
As in [GKLMF15], we shall first assume the following hypothesis.

(H1) X(Q) is a Banach algebra of Borel-measurable, bounded functions € — R, which
includes all constant functions, whose norm dominates the uniform norm (for some
constant A it holds ||f|| > Al f|l-c) and such that for all positive, bounded away
from zero function f € X(£2), the function log f also lies in A'(2).

The last condition of log stability could be lifted up to changing the formulation of
Theorem 5.1 below (replacing J € X’ by e? where ¢ € X'). The measurability of elements
of X and the domination condition ||-|| > A||-||s ensure every finite measure on €2 can
be seen as a continuous linear form, i.e we have a natural map C°(Q)* — X (Q)*. We
will also assume the following:

15



(H1’) If a finite measure p on 2 is such that [ fdu > 0 for all positive, bounded away
from 0 function f € X(2), then p must be a positive measure. Moreover the set

of finite positive measures is closed in X'(2)* (by which we mean that the natural
map C°(Q)* — X (Q)* has closed image).

This assumption means that X'(2) is large enough to detect positivity of measures, and
not to have too exotic linear forms which can be approximated by positive measures. This
notably avoids trivial cases such as X(Q2) = {constants}. To ensures one can identify
finite measures with elements of X'(£2)*, we would need to ensure that the natural map
C'(Q)* — X(Q)* is injective. We will dispense from this, but by abuse still say that
a form ¢ € X(Q)* “is a finite (positive) measure” whenever it is the image of a finite
(positive) measure by the natural maps, irrespective of the uniqueness of this measure.

We will prove at the end of the Section that Hol,(€2) and BV,([a,b]) satisfy both
hypotheses.

We only consider bounded linear operator X'(2) — X'(€2) and, from now on, use X" as
a shorthand for X'(Q2).

Theorem 5.1. Assume X satisfies hypotheses (H1) and (H1’) and let L be an operator
of the form

Lf(x) = / () () dma(y)

for some positive function J € X and transition kernel (my)zecq. Assume L has positive
eigendata A, h. Then the three definitions (SG1), (SG2) and (SG3) are equivalent for L
(with the same gap size §, but possibly different constants C').

Much of what follows is either classical or of classical flavor, but Theorem 5.1 seems
not obvious enough for us to dispense from a proof, and we need some slightly non-
standard version of common concepts (e.g. we will use cones that are not needed to be
convex, but are open). Note that we work with real Banach spaces; the above definitions
of a spectral gap, e.g. (SG1), are nonetheless well-known to be equivalent to the complex
spectrum to be contained in Dyi_g U {A}, where D, is the closed disk in the complex
plane, centered at 0 and of radius r.

Proof. Since (SG1) is well-known to be equivalent to (SG2) and (SG3) clearly implies
(SG1) under our hypotheses (simply take G = ker u), the part of Theorem 5.1 that needs
a proof is that (SG1) implies (SG3). Assume L satisfies (SG1).

The dual operator L* acting on X* by L*¢(u) := ¢(Lu) preserves the line G+ := {¢ €
X* | ker ¢ D G} and thus has an eigenvector ¢, which up to a multiplicative constant
encodes the projection on (u) along G; moreover ¢, has the same eigenvalue A as .

Similarly, L* must preserve the hyperplane ug = {¢ € X* | ¢(ug) = 0} and one
checks easily (SG1) for L*, with uy in the role of G and the same spectral gap §. In
particular, X is a simple isolated eigenvalue of L*. Moreover for all € X* and all u € X,
writing u = aug + g its decomposition along (u) @ G, we have

(Rt = oo 417
— ap(ugp)
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Now, to apply this in our context we will want ¢y to be a measure, even if X* is larger
than the space of measures (which often happens since X usually is quite smaller than
the space of continuous functions). We will also need that ¢g be a positive measure,
let us thus use the additional structure of A as a space of real functions. We say that
P C X is a cone if it is stable under multiplication by all positive scalar. We say it is
a positive cone if it is a cone, is open in the subspace it generates, and PN (—P) = @.
The openness assumption is to be noted: it is really used below, and somewhat restricts
the scope of application of this method (e.g. in the space of L! real functions, the subset
of positive functions is not open but generates the whole space).

Any positive cone has a dual P* := {¢ € X* | Vu € P,¢(u) > 0} which is a cone of
X* (but we do not claim it to be a positive cone) whose closure is, as soon as P* is not
empty, P* = {¢ € X* | Vu € P, ¢(u) > 0}.

Lemma 5.2. If P is a positive cone of X which is preserved by L, then P* s preserved
by L*. If additionally ug € P, then GNP = & and up to multiplying it by —1, ¢y € P*.

If additionally Y C X* is a subspace preserved by L* such that P*NY is closed in X'*
then either Y C uol or ¢g € P*NY.

Proof. Let ¢ € P* and u € P. Then L*¢(u) = ¢(Lu); since Lu € P this is a positive
number. Thus L*¢ € P*, and L* preserves P*.

Assume now uy € P. If there exist some g € G N P, then since P is open in the
space it generates there is some a < 0 such that aug + g € P. Then for all n we have
A"L™(aug + g) € P, which converges to aug € —P. But that would give an element of
P N —P, which is excluded by the definition. Thus GNP = @.

Next we need to prove that choosing well the dual eigenvector, for all u € P it
holds ¢g(u) > 0. By construction, up to a multiplicative constant we can assume that
¢olaug +g) =aforall a € Rand g € G. If u = aup + g is in P, then a < 0 is excluded
as otherwise aug = lim A~"L"u would be an element of P N —P; and a = 0 is excluded
by GNP = @. Therefore a > 0 and ¢y € P*.

Last, assume there exists ¢ € Y \ ug and write ¢ = bgg + ¢ where 1 € ug. Then

1 1
(1) 0 = boo + (1) = boo.
Since P* N Y is closed and b is nonzero (as ¢ ¢ ug), we conclude that ¢y € Y. We
already know it is in P*, finishing the proof. O

Let us now finish the proof of Theorem 5.1: we consider the set P consisting in all
positive functions 2 — R in X which are bounded away from 0. It is a cone, and since
the norm dominates the uniform norm it is open in X. An element of P N (—P) would
be a non-negative and positive function, thus P is a positive cone. The dual cone P* is
the set of continuous linear forms of X which are positive on all elements of P; denoting
by Y the subspace of X'* consisting of finite measures, assumption (H1’) ensures that
P*N Y is closed in X*. The form of L, ensures that ) is preserved by L*. It is not true
that J) C h', therefore Lemma 5.2 ensures that L* has an eigenvector in P* N'Y, which
by (H1’) must be a positive measure. It is not zero since ¢o(ug) # 0, and up to proper
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scaling we can make it a probability measure. Then it is easily checked that G must be
the kernel of this eigenprobability, and (SG3) holds. O

Proposition 5.3. Let Q) be a compact metric space and X be a Banach space of functions
Q — R satisfying (H1). If X is dense (for the uniform norm) in the space C°(Q) of
continuous functions, then X also satisfies (H1).

Proof. We prove a slight strengthening of the first property. Let p be a finite measure
on (2 such that for all f € X bounded away from 0, u(f) := [ f dp > 0 and let g be
any continuous positive function. Let f, € X be such that ||g — f.||cc — 0; since p is
finite, it follows that u(f,) — w(g). By compactness inf g > 0 thus for n large enough,
fn is bounded away from 0 and p(f,) > 0. It follows that u(g) > 0, and u is a positive
measure.

Now let (pn)nen be a sequence of finite positive measures, and assume there is a
continuous linear form ¢ € X* such that ||u, — ¢||* — 0 (where p, are identified with
elements of X* and ||-||* is the dual norm on A*). We have to prove that ¢ is a finite
positive measure.

First, lim u, (1) = ¢(1) € R ensures that the total mass of p, is bounded by some
M > 0, uniformly in n, i.e. for all bounded measurable f (in particular, f € X') it holds
|t ()] < M|| flloo (positivity of the pu, is crucial here).

Consider any non-zero f € X. There exist an n € N such that ||, — o[ < || fllo/Ifl,
and then

[ < [o(f) = b ()] + ()]
<1+ M)Hf”oo

so that ¢ is continuous in ||-|[*, norm on X. It then admits an extension u € C°(Q)*,
which by the Riesz representation theorem is a finite measure. Since g, (f) — wu(f) for
all f € X and the p, are positive, we have u(f) > 0 for all non-negative f € X. In
particular we can apply the strengthened first property proved above to deduce that u
is positive. In other words, ¢ identifies with a finite positive measure, as needed. O

It follows easily (using that log is locally Lipschitz and that Hol,(£2) is uniformly
dense in the space of continuous fonctions [Geo67]):

Corollary 5.4. For all compact metric space ), the Banach space Hol,(Q)) satisfies
(H1) and (H1’).
For all bounded interval I C R, the space BV, (I) satisfies (H1) and (H1’).
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