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Effective high-temperature estimates

for intermittent maps

Benoît R. Kloeckner ∗

April 3, 2017

Using quantitative perturbation theory for linear operators, we prove spec-
tral gap for transfer operators of various families of intermittent maps with al-
most constant potentials (“high-temperature” regime). Hölder and bounded
p-variation potentials are treated, in each case under a suitable assumption
on the map, but the method should apply more generally. It is notably
proved that for any Pommeau-Manneville map, any potential with Lispchitz
constant less than 0.0014 has a transfer operator acting on Lip([0, 1]) with a
spectral gap; and that for any onto unimodal map, any potential with total
variation less than 0.0069 has a transfer operator acting on BV([0, 1]) with
a spectral gap. We also prove under quite general hypotheses that the clas-
sical definition of spectral gap coincides with the formally stronger one used
in [GKLMF15], allowing all results there to be applied under the high tem-
perature bounds proved here: analyticity of pressure and equilibrium states,
central limit theorem, etc.

1 Introduction

The thermodynamical formalism, which provides a deep understanding of invariant mea-
sures of some topological dynamical systems, is by now quite well understood in the
uniformly hyperbolic setting with sufficiently regular potentials. However, the non-
uniformly hyperbolic setting presents many challenges and is under a lot of scrutiny.
Here we shall restrict to “intermittent” maps, which are expanding in certain zones but
have a neutral fixed point or even a contracting behavior in other regions.

For some intermittent maps such as the Pommeau-Manneville family, on the one
hand the absolutely continuous measure only exhibits polynomial decay of correlation
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[Hu04, Sar02], but on the other hand Ruelle-Perron-Frobenius1 measures of potentials
with sufficiently small Hölder or Ck norm (“high-temperature regime”) have exponential
decay of correlation, following from a spectral gap for their transfer operator [CV13].

In view of this diversity of behavior, it is desirable to better understand where lies the
frontier between this two regimes, polynomial versus exponential decay of correlations.
As a small step in this direction, we shall prove completely explicit lower bounds on the
size of the high-temperature regime. These bounds are certainly far from being sharp
for most single map we consider, but they are uniform over rather large families of maps.

The idea is simply to use spectral theory of perturbed linear operators: one only has
to prove spectral gap for a constant potential, which is usually easy, and then conclude
by stability of the spectral gap property. The important additional point is that we use
here an effective perturbation theory, leading to effective bounds. The present approach
also has the advantage of simplicity (see the proofs of Theorems 3.3 and 4.2).

Transfer operators. Recall that given a finite-to-one dynamical system T : Ω → Ω
and a potential ϕ : Ω → R in a suitable Banach algebra of functions X (Ω), one defines a
transfer operator LT,ϕ which is a bounded linear operator from X (Ω) to itself, mapping
f to the sum (or average) of eϕf along inverse images under T . When T is k-to-one for
some k ∈ N we shall take the “average” point of view and set

LT,ϕf(x) =
1

k

∑

y∈T−1(x)

eϕ(y)f(y).

More generally, we will consider the case when there is some probability transition kernel
M = (mx)x∈Ω (i.e. for all x ∈ Ωmx is a probability measure) such thatmx is concentrated
on T−1(x) (sometimes up to some “negligible” set, see Remark 1.1 below) and set

LM,ϕf(x) =

∫

Ω

eϕ(y)f(y) dmx(y).

The above k-to-one case is included in this framework by setting mx = 1
k

∑

y∈T−1(x) δy.
The subscripts M and T will most often be kept implicit or interchanged depending on
the focus we want to choose, and it should be clear from the context what the implicit
object is.

The dual L∗
ϕ of Lϕ preserves the set of finite positive measures, and under suitable

assumptions Lϕ can be shown to have a maximal eigenvalue λϕ, a unique positive eigen-
function hϕ and L∗

ϕ to have a unique positive eigenprobability νϕ. They can then be used
to construct a T -invariant positive measure dµϕ = hϕ dνϕ (the normalization of hϕ be-
ing taken to ensure µϕ is a probability) which we shall call the Ruelle-Perron-Frobenius
(RPF) measure of the potential ϕ.

The transfer operator is thus an important tool in the study of invariant measures,
and its spectral property are crucial. In particular, if LT,ϕ has a spectral gap below λϕ

1The term Gibbs measure is often used, including in some of my previous works, but conflicts with
many related but subtly different concepts.
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one easily obtains an exponential decay of correlations:
∣

∣

∣

∫

f ◦ T n · g dµϕ −
(

∫

f dµϕ

)(

∫

g dµϕ

)

∣

∣

∣
= O(e−an) ∀f, g ∈ X (Ω)

which means that if X is a random point drawn according to µϕ, for any sufficiently
regular f, g the number g(X) is “almost independent” from f(T n(X)) when n is large.
This kind of properties have countless application in the study of ergodic properties of
T , and it is thus desirable to know when a spectral gap occur.

Remark 1.1. The invariance of µϕ is proved as follows. For all f ∈ X (Ω) (where
X (Ω) is assumed to contain enough functions to approximate uniformly all continuous
functions) it holds:
∫

f dT∗(µϕ) =

∫

f ◦T ·hϕdνϕ =

∫

f ◦T ·hϕd
( 1

λϕ
L∗
ϕνϕ

)

=
1

λϕ

∫

Lϕ

(

f ◦T ·hϕ
)

dνϕ (1)

where

Lϕ(f ◦ T · hϕ)(x) =

∫

eϕ(y)f(T (y))hϕ(y) dmx(y) = f(x)

∫

eϕ(y)hϕ(y) dmx(y)

the last equality using that mx is concentrated on T−1(x). But to plug this into (1), we
only need this for νϕ-almost all x. Then we get

∫

f dT∗(µϕ) =
1

λϕ

∫

f Lϕ(hϕ) dνϕ =

∫

f dµϕ.

The relevance of this relaxation comes from examples such as the Pommeau-Manneville
family (Tq)q>0 below, which are not strictly speaking k-to-one; see Example 3.2.

Intermittent maps. It is known in a broad generality that if T is uniformly expanding
(or hyperbolic) and ϕ is Hölder, then there is a spectral gap for the transfer operator
acting on Hölder functions. Investigations have thus turned toward non-uniformly ex-
panding maps (or less regular potentials); one particular class of such maps often plays
the role of test case: the Pommeau-Manneville family

Tq : [0, 1] → [0, 1]

x 7→

{

x(1 + (2x)q) if x ∈ [0, 1
2
)

2x− 1 if x ∈ [1
2
, 1]

where q ∈ (0,+∞) is a parameter quantifying the tangency to identity at the neutral
point 0.2 This type of maps is sometime called “intermittent”, since the dynamics is close
to the dynamics of a uniformly expanding map until the orbit gets close to the neutral
fixed point: then the orbit takes a long time to go away from the fixed point.

Let us state a specialized version of our first main result (we obtain below similar
bounds for all α-Hölder potential, and for more general maps, possibly acting on higher-
dimensional spaces).

2Variants acting on the circle, which can then be made C1 with derivative of the form 1 + O(xq) at
the fixed point 0 might be preferred by some readers, and this makes no difference in our result.

3



Theorem 1.2. For any q > 0 and any potential ϕ ∈ Lip(Ω) such that Lip(ϕ) ≤ 0.0014,
the transfer operator LTq,ϕ has a spectral gap when acting on Lip(Ω).

The independence to q in the case of the Pommeau-Manneville family was already
known (see the dependencies of εφ in [CV13]), and comes from the fact that they exhibit
a backward average contraction rate uniformly bounded by the presence of a strictly
contracting branch. Note that for any value of the Lipschitz constant less than 0.0014
the method provides an explicit lower bound for the size of the spectral gap.

Another important class of maps is the class of unimodal interval maps. We shall
consider only maps with an (almost) constant number of inverse images, and thus restrict
to unimodal maps which are 2-to-1 (counted with multiplicity).

For this class, the bounded (p-)variation class of regularity will prove extremely effi-
cient. There, the derivative plays little role, since bounded p-variation is “insensitive to
stretching”. We instead rely on its “extensiveness” (total variation is no more than the
sum of variations over tiles of a tiling of the phase space) to deduce a general result from
which we extract this simply stated version.

Theorem 1.3. Let T : [a, b] → [a, b] be a continuous interval map which is increasing
from a subinterval [a, c] onto [a, b] and decreasing from [c, b] onto [a, b]. For all potential
ϕ ∈ BV([a, b]) such that

BV(ϕ) ≤ 0.0069

the transfer operator LT,ϕ has a spectral gap when acting on the space of bounded varia-
tion functions.

The main appeal of this result is that there is no contraction assumption. As be-
fore, we get a more general result, valid for p-BV potentials, which include in particular
1/p-Hölder functions. It follows that we get a spectral gap for Hölder potential without
any contraction assumption (and on a larger ball). The catch is that the spectral gap
is in the p-BV norm; if ϕ, f are 1/p-Hölder with µϕ(f) = 0 and ‖ϕ‖BVp

small enough,
then ‖Ln

ϕ(f)‖BVp
decays to zero exponentially fast (in particular the same holds for its

uniform norm), but its Hölder norm could be arbitrarily large. However this is a rather
small price to pay since many applications of spectral gap (e.g. exponential decay of
correlations) do not rely so much on the norm, but more on the nature of the potentials
one is allowed to consider.

To conclude this article, in Section 5 we prove that for transfer operators, having
a spectral gap in the sense used in [Klo17b] (which is a common definition which we
also use here) is equivalent to the seemingly stronger condition used in [GKLMF15] (see
Section 2.4). In particular, under the assumptions of Theorem 1.2 or 1.3 we can apply
the results of [GKLMF15]: there is an analytic dependency of pressure and µϕ on ϕ,
the RPF measures in the high-temperature regime (in particular, the maximal entropy
measure) satisfy a Central Limit Theorem, etc.

As further applications of spectral gap, let us mention limit theorems: in the setting
of Theorems 1.2 and 1.3, if X0 is a random variable with law µϕ, Xk+1 := T (Xk) and
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ψ is an observable in the corresponding functional space (α-Hölder or p-BV), then the
random process with “hidden deterministic dependency” (ψ(Xk))k≥0 satisfy a Law of
Large Numbers, quantified by concentration inequalities, and the Central Limit Theo-
rem, quantified by Berry-Esséen bounds. The proofs can be found for example in [HH01],
or in [Klo17a] in a completely effective version (i.e. explicit non-asymptotic constants
are obtained).

2 Banach spaces and Wasserstein metric

In this section we give the functional analytic set up in which we shall work.

2.1 Hölder norms

The Hölder classes are among the most usual regularity classes considered for potentials.
For any α ∈ (0, 1], one defines the α-Hölder constant of a function f : Ω → R as the
number

Holα(f) := sup
x 6=y∈Ω

|f(x)− f(y)|

d(x, y)α
.

A function is α-Hölder if its α-Hölder constant is finite, and the set of such function
form a Banach space when endowed with the usual Hölder norm. We prefer to assume
Ω to be bounded and use the slightly modified norm

‖f‖Holα := ‖f‖∞ + (diamΩ)α Holα(f)

which thanks to the (diamΩ)α factor is more homogeneous: the two terms have the
same physical dimension (they are to be expressed in the same physical unit as f), and
the norm is invariant if one rescales the distance by a constant. This homogeneity will
be slightly more natural and effective in the computations later on.

We denote by Holα(Ω) the space of α-Hölder functions, which is in fact a Banach
algebra, i.e. ‖fg‖Holα ≤ ‖f‖Holα‖g‖Holα .

Indeed, for all f, g ∈ Holα(Ω) it holds ‖fg‖∞ ≤ ‖f‖∞‖g‖∞ and for all x, y ∈ Ω:

|f(x)g(x)− f(y)g(y)| ≤ |f(x)g(x)− f(x)g(y)|+ |f(x)g(y)− f(y)g(y)|

≤ ‖f‖∞Holα(g)d(x, y)
α +Holα(f)d(x, y)

α‖g‖∞

Holα(fg) ≤ ‖f‖∞Holα(g) + Holα(f)‖g‖∞.

2.2 Wasserstein metric

The 1-Wasserstein metric is defined on the set P(Ω) of Borel probability measures on Ω
by

W1(µ, ν) = inf
π∈Γ(µ,ν)

∫

Ω×Ω

d(x, y) dπ(x, y)
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where Γ(µ, ν) is the set of measures on Ω × Ω whose marginals are µ and ν. Elements
of Γ(µ, ν) are called transport plans or couplings from µ to ν For any α ∈ (0, 1], d(·, ·)α

is also a metric and the corresponding Wasserstein metric is denoted by Wα.
We will only use a few basic properties: Wα is indeed a metric; the infimum in its

definition is always attained by some transport plan, then called optimal and generally
not unique; the topology induced by Wα is the weak-∗ topology as soon as Ω is compact.
The Kantorovich duality enables a reformulation of Wα as

Wα(µ, ν) = sup
f

∣

∣

∣

∫

f dµ−

∫

f dν
∣

∣

∣

where the supremum is on all functions f : Ω → R such that Holα(f) = 1.
General references on Transport Theory and the Wasserstein distance are [Vil03] and

[Gig11]

2.3 Bounded p-variation norms

When Ω is an interval or the circle, we can consider function of bounded variation
or generalizations with great efficiency. For the sake of notational simplicity we shall
only consider intervals here, but the case of circle is handled very similarly. Higher-
dimensional analogues also exist, but are less elementary and have different properties
(in particular they are no longer “insensitive to stretching”).

Assume Ω ⊂ R is an interval, fix p ∈ [1,∞) and let f : Ω → R. An increasing
sequence x0 < x1 < · · · < xn of elements of Ω is called a partition and denoted by x.
The p-variation of f along the partition x is defined by

vp(f, x) :=
(

n
∑

j=1

|f(xj)− f(xj−1)|
p
)

1

p

and the total p-variation of f is defined by

BVp(f) := sup
x

vp(f, x)

where the supremum is taken over all partitions of Ω. If this number is finite, f is said
to be of bounded p-variation.

When p = 1, this is the usual total variation, but p > 1 is interesting because it allows
for much more irregular potentials. Many α-Hölder functions (α < 1) are not of bounded
variation, but when Ω is bounded all α-Hölder functions are of bounded p-variation for
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all p ≥ 1/α. Indeed for pα = 1 we have

vp(f, x) =
(

n
∑

j=1

|f(xj)− f(xj−1)|
p
)

1

p

≤ Holα(f)
(

n
∑

j=1

|xj − xj−1|
αp
)

1

p

≤ Holα(f)
(

n
∑

j=1

xj − xj−1

)
1

p

≤ Holα(f)(diamΩ)α

for all partition x. For larger p, simply use that when Ω is bounded, α-Hölder functions
are also β-Hölder for all β < α.

We endow the space BVp(Ω) of functions of bounded p-variation with the norm

‖f‖BVp
:= ‖f‖∞ + BVp(f).

It is more usual to replace in the above definition the supremum norm by an integral
norm, but:

• we don’t want to give such a special role to Lebesgue measure in our context,

• the two definitions yield equivalent norms,

• the above choice norm makes BVp(Ω) a Banach algebra (the proof is pretty much
the same as for the Hölder norm).

Two important interlaced differences between the bounded variation and Hölder classes
of regularity are that:

• Hölder is intensive while BV is extensive, i.e. if one partitions Ω into two intervals
I1, I2, then sum of the total variation of f on I1 and I2 is not greater than the total
variation of f over Ω (it can be lesser if f has a jump precisely at the interface
between the two intervals),

• the Hölder constant is diminished when one stretches the space, i.e. if a map Y is
θ-contracting, then Holα(f ◦Y ) ≤ θαHolα(f), while BV is insensitive to stretching.

This is to be kept in mind to understand the difference in the assumptions of our main
results in these two cases.

2.4 Positive eigendata and spectral gap

Let us now precise the notion of spectral gap, which appears under slightly different
wordings in the literature. We consider a bounded linear operator L acting on a Banach
space X . The operator norm is denoted, as the norm on X , by ‖·‖.
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Definition 2.1. We say that an operator L has positive eigendata if it has a positive
eigenvalue λ and a positive, bounded away from 0 eigenfunction h ∈ X for this eigen-
value.

Let us phrase three notions of spectral gap; the first two are classical and easily seen
to be equivalent, and the third one is used in [GKLMF15] and, under some general
hypotheses, will be proved to be equivalent to the other two in Section 5. We assume L
has an eigenvalue λ > 0 with eigenvector u0, and spectral gap is to be understood with
respect to λ.

(SG1) There is a complement G to 〈u0〉 in X (i.e. G is a closed subspace and 〈u0〉⊕G =
X ) which is stable under the action of L, and there exist numbers C > 0, δ ∈ (0, 1)
such that

‖Ln
|G‖ ≤ Cλn(1− δ)n.

(SG2) There exist two continuous linear operators P,R : X → X such that L = λP+R,
P is a rank one projection (dim ImP = 1 and P2 = P), PR = RP = 0, and there
exists numbers C > 0 and δ ∈ (0, 1) such that:

‖Rn‖ ≤ Cλn(1− δ)n.

The spectral gap assumption used in [GKLMF15] seems slightly more precise:

(SG3) The dual operator L∗ has an eigenmeasure ν ∈ P(Ω) for the eigenvalue λ, in
particular

∫

L(f) dν = λ

∫

f dν ∀f ∈ X

and there exist positive constants C > 0, δ ∈ (0, 1) such that for all n ∈ N and all
f ∈ X such that

∫

f dν = 0, we have

‖Ln(f)‖ ≤ Cλn(1− δ)n‖f‖.

In particular, (SG3) implies some identification between measures and linear forms on
X , and identifies the stable complement G.

In all three definitions, C is called the constant and δ the size of the spectral gap. In
the main Theorems below, we shall use the first definition; this only matters when we
are interested in the value of the constant, which may vary from a definition to another,
but the mere statement that there is a spectral gap will hold for all definitions, thanks
to Theorem 5.1.
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2.5 Quantitative perturbation Theory

Let us now state the main perturbative tool we will use. We consider L0 : X → X a
bounded linear operator of a Banach space X , with an eigenvalue λ0, eigenvector u0 and
eigenform φ0 (i.e. φ0 is an eigenvector of the dual operator L∗

0 for the same eigenvalue).

We assume a spectral gap, and consider the condition number τ0 :=
‖φ0‖‖u0‖
|φ0(u0)|

.

Theorem 2.2 (Corollary 2.12 of [Klo17b]). If λ0 = ‖L0‖ = 1 and L0 has spectral gap of
size δ0 and constant 1 (according to Definition (SG1)), then all L such that

‖L− L0‖ ≤
δ0(δ0 − δ)

6(1 + δ0 − δ)τ0‖π0‖

have a spectral gap of size δ below λL, with constant 1. In particular, all L such that

‖L− L0‖ <
δ20

6(1 + δ0)τ0‖π0‖

have some spectral gap, with constant 1.

Results of this flavor are quite old, see e.g.[Bau84], [DS88] and [Kat95]. However it is
hard to find explicit such explicit radius bounds written for spectral gaps, and not only
for having a simple isolated eigenvalue.

To apply this result, we will need to estimate the quantities δ0, τ0 and ‖π0‖. We will
first use the following lemma of Doeblin-Fortet/Lasota-Yorke type, which also appears
in [Klo17a] and that we reproduce with its proof for the sake of completeness.

Consider a normed space X (Ω) of (Borel measurable, bounded) functions Ω → R,
with norm ‖·‖ = ‖·‖∞ + V (·) where V is a semi-norm.

Lemma 2.3. Assume that for some constant D > 0, for all probability µ on Ω and for
all f ∈ X such that µ(f) = 0, ‖f‖∞ ≤ DV (f).

Let L0 ∈ B(X (Ω)) and assume that for some θ ∈ (0, 1) and all f ∈ X :

‖L0f‖∞ ≤ ‖f‖∞ and V (L0f) ≤ θV (f)

and having eigenvalue 1 with an eigenprobability µ0, i.e. L∗
0µ0 = µ0.

Then L0 has a spectral gap (for the eigenvalue 1, the contraction being on the stable
space ker µ0) with constant 1, of size

δ0 =
1− θ

1 +Dθ

Of course, the hypotheses of the Lemma also ensure that ‖L0‖ ≤ 1; and since we will
only consider operators of the form

L0f(x) =
1

k

k
∑

j=1

f(bj(x))

we will always have L01 = 1 and thus λ0 = ‖L0‖ = 1.
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Proof. Let f ∈ ker µ0; then ‖L0f‖∞ ≤ ‖f‖∞ and L0f ∈ ker µ0, so that ‖L0f‖∞ ≤
DV (L0f) ≤ DθV (f).

Denote by t ∈ [0, 1] the number such that ‖f‖∞ = t‖f‖ (and therefore V (f) =
(1 − t)‖f‖). The above two controls on ‖L0(f)‖∞ can then be written as ‖L0(f)‖∞ ≤
min

(

t, Dθ(1− t)
)

‖f‖ and using V (L0f) ≤ θV (f) again we get

‖L0(f)‖ ≤ min
(

t+ θ(1− t), (D + 1)θ(1− t)
)

‖f‖

‖(L0)| kerµ0
‖ ≤ max

t∈[0,1]
min

(

t+ θ(1− t), (D + 1)θ(1− t)
)

.

The maximum is reached when t+θ(1− t) = (D+1)θ(1− t), i.e. when t = Dθ/(1+Dθ),
at which point the value in the minimum is (D+1)θ/(Dθ+1) ∈ (0, 1). Therefore there
is a spectral gap with constant 1 and size 1− (D + 1)θ/(Dθ + 1), as claimed.

Lemma 2.4. Assume again that for some constant D > 0, for all probability µ on Ω
and for all f ∈ X such that µ(f) = 0, ‖f‖∞ ≤ DV (f).

If the semi-norm V is invariant under translation by a constant (i.e. V (f+c) = V (f)
for all f ∈ X (Ω) and all constant c), then all operators π ∈ B(X (Ω)) of the form
πf = f − µ(f) satisfy

‖π‖ ≤
2D + 2

D + 2
.

This lemma will apply below, as both Holα and BVp are invariant by translation by
a constant.

Proof. The proof proceeds as the previous one. We consider f ∈ X (Ω) and let t ∈ [0, 1]
be such that ‖f‖∞ = t‖f‖ and V (f) = (1− t)‖f‖. On the one hand we have V (πf) =
V (f) = (1− t)‖f‖, and on the other hand we have both

‖πf‖∞ ≤ 2‖f‖∞ and ‖πf‖∞ ≤ DV (f),

the first inequality being a simple triangle inequality, while the second follows from an
hypothesis since µ(πf) = 0. Then we get ‖πf‖ ≤ min(1 + t, (D + 1)(1 − t))‖f‖ and
therefore

‖π‖ ≤ max
t∈[0,1]

min(1 + t, (D + 1)(1− t)).

The maximum is reached at t = D/(D + 2), from which the result follows.

3 Hölder potentials and maps that are backward

contracting on average

Let (Ω, d) be a metric space which we assume to be of finite diameter.

Definition 3.1. We say that a map T : Ω → Ω is of class H(α, θ) where α ∈ (0, 1] and
θ ∈ (0, 1) if there exist an integer k ≥ 2 and “inverse branches” (bj)1≤j≤k such that:
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i. each bj is a (Borel) measurable map Ω → Ω,

ii. for all x except possibly countably many, T−1(x) = {b1(x), b2(x), . . . , bk(x)},

iii. T is backward θ-contracting on average with respect to the metric dα:

∀y, z ∈ Ω : ∃σ ∈ Sk,
1

k

k
∑

j=1

d(bj(y), bσ(j)(z))
α ≤ θd(y, z)α.

If T is of class H(α, θ), for each α-Hölder potential we define a transfer operator by

Lϕf(x) =
1

k

k
∑

j=1

eϕ(bj (x))f(bj(x))

i.e. we consider the backward random walk M = ( 1
k

∑

j δbj(x))x.

The permutation σ is meant to account for the fact that one may not be able to
define inverse branches globally in a continuous fashion (hence the choice to define them
globally but only as measurable maps). The second condition is not strictly necessary
for our main Theorem to hold, but it ensures that as soon as the RPF measures are
atomless, they are indeed T -invariant (see Remark 1.1).

Example 3.2. Let us consider three variations on the doubling map that only differ in
the details that led us to the definition above:

Dc : R/Z → R/Z

x 7→ 2x mod 1

Dt : [0, 1] → [0, 1] Di : [0, 1] → [0, 1]

x 7→

{

2x if x ∈ [0, 1
2
]

2− 2x if x ∈ [1
2
, 1]

x 7→

{

2x if x ∈ [0, 1
2
)

2x− 1 if x ∈ [1
2
, 1]

For each of them, let us define inverse branches showing that they these three maps are
of class H(1, 1

2
) (and thus H(α, 1

2α
) for all α ∈ (0, 1]). For x ∈ R/Z, denote by {x} its

representative in [0, 1). Then we take:

• for Dc: b1 = x 7→ {x}/2 mod 1 and b2 = x 7→ {x}/2+1/2 mod 1. Both branches
have one discontinuity point at 0, while D−1

c (x) = {b1(x), b2(x)} for all x,

• for Dt: b1 = x 7→ x/2 and b2 = x 7→ 1 − x/2. Then both branches are continuous
and D−1

t (x) = {b1(x), b2(x)} for all x, but Dt is not 2-to-one since b1(1) = b2(1),

• for Di: b1 = x 7→ x/2 and b2 = x 7→ x/2+1/2. Then both branches are continuous
but D−1

i = {b1(x), b2(x)} only holds for x 6= 1, since Di(b1(1)) = Di(1/2) = 0.

Our first main result is the following.
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Theorem 3.3. Let T be a map of class H(α, θ) acting on a space Ω of finite diameter.
For all α-Hölder potentials ϕ such that

Holα(ϕ) ≤
2

3(diamΩ)α
log

(

1 +
(1− θ)2

16(1 + θ)

)

the transfer operator Lϕ has a spectral gap (with constant 1).

Proof. We consider the transfer operator L0 associated to the null potential, i.e.

L0f(x) =
1

k

k
∑

j=1

f(bj(x))

which under the above assumption acts continuously on Holα(Ω): indeed ‖L0f‖∞ ≤
‖f‖∞ and for all x, y ∈ Ω and some permutation σ depending on x and y we have:

∣

∣L0f(x)− L0f(y)
∣

∣ ≤
1

k

k
∑

j=1

∣

∣f(bj(x))− f(bσ(j)(y))
∣

∣

≤ Holα(f) ·
1

k

k
∑

j=1

d(bj(x), bσ(j)(y))
α

≤ θHolα(f)d(x, y)
α

so that Holα(L0f) ≤ θHolα(f). It follows that ‖L0‖Holα ≤ 1.
The same computation shows that the dual operator L∗

0, which acts on probability
measures over Ω since L01 = 1, is a θ-contraction in the metric Wα:

Wα(L
∗
0µ,L

∗
0ν) = sup

Holα(f)=1

∣

∣

∣

∫

L0f dµ−

∫

L0f dν
∣

∣

∣

≤ sup
Holα(f)=1

Hol(L0f)Wα(µ, ν)

≤ θWα(µ, ν).

Since the Wasserstein metric is complete, this ensures that there is exactly one proba-
bility measure which is invariant by L∗

0, which we denote by µ0.
Let us show that we can use Lemma 2.3: if µ is any probability measure and f ∈

Holα(Ω) satisfies µ(f) = 0, then f being continuous it must vanish at some point x ∈ Ω.
Then for all y ∈ Ω we have f(y) ≤ (diamΩ)α Holα(f). It follows that we can apply
Lemmas 2.3 and 2.4 with D = 1, so that L0 has a spectral gap of size (1 − θ)/(1 + θ)
with constant 1 and ‖π0‖ ≤ 4

3
.

We shall apply Theorem 2.2. First observe that Lϕ = L0(e
ϕ·) so that, using the

Banach Algebra property, we get

‖Lϕ − L0‖Holα = ‖L0((e
ϕ − 1)·)‖Holα ≤ ‖

∞
∑

j=1

1

j!
ϕj‖Holα ≤

∞
∑

j=1

1

j!
‖ϕ‖jHolα

= e‖ϕ‖ − 1.

12



Then, since 1 is the eigenfunction of L0 and µ0 is a probability measure, we have τ0 = 1.
Also observe that adding a constant to ϕ simply multiply Lϕ by a scalar, not changing
its spectral gap. Let ϕ ∈ Holα(Ω) be a potential such that for some constant c it holds

‖ϕ− c‖Holα ≤ log
(

1 +

(

1−θ
1+θ

)2

6 · 4
3
(1 + 1−θ

1+θ
)

)

= log
(

1 +
(1− θ)2

16(1 + θ)

)

;

Theorem 2.2 then implies that the transfer operator Lϕ = L0(e
ϕ·) has a spectral gap

with constant 1.
To conclude, we only have to observe that taking c = (supϕ+ inf ϕ)/2, we must have

‖ϕ− c‖∞ ≤ 1
2
(diamΩ)αHolα(ϕ) and thus ‖ϕ− c‖Holα ≤ 3

2
(diamΩ)αHolα(ϕ).

Remark 3.4. If we only want to know that there is some neighborhood of the line
of constant potentials where the transfer operator has a spectral gap, without effective
estimates, then we only need to prove a spectral gap for L0 and dispense from the last
half of the above proof.

Proof of Theorem 1.2. In the case of the Pommeau-Maneville family, we have diamΩ =
1 and a contraction θ = 1

2
+ 1

21+α in Wα (one of the branch is 1/2 contracting in the
Euclidean metric, the other one is 1-contracting). For α = 1, we obtain θ = 3/4 and
observe

2

3
log

(

1 +
(1/4)2

16× (7/4)

)

≥ 0.0014.

4 Potentials with bounded p-variation

For BV potentials and their relatives, we need much less geometric assumptions.

Definition 4.1. We say that a map T of a compact interval Ω ⊂ R is of class V if there
are k maps b1, . . . , bk : Ω → Ω such that

i. each bj is monotonic from Ω to an interval Ij ⊂ Ω,

ii. for all x except possibly countably many, T−1(x) = {b1(x), b2(x), . . . , bk(x)},

iii. the Ij have disjoint interior.

As an example, any unimodular map whose restriction to both its monotonicity in-
tervals is onto is of class V , irrespective of its derivative and of the behavior of its
post-critical orbit.

Here again we use the definition of the transfer operators using the inverse branches:

Lϕf(x) =
1

k

k
∑

j=1

eϕ(bj(y)f(bj(x)),

13



keeping in mind that RPF measures are as expected T -invariant as soon as they are
atomless.

Theorem 4.2. If T is of class V , any potential ϕ ∈ BVp(Ω) such that

BVp(ϕ) ≤
2

3
log

(

1 +
(k

1

p − 1)2

16k
1

p (k
1

p + 1)

)

gives the transfer operator Lϕ acting on BVp(Ω) a spectral gap.

Remark that this condition becomes less stringent with large k; as k → ∞ the bound
goes to the limit 2

3
log(1 + 1/16) ≈ 0.04. Meanwhile, for p = 1 and k = 2 we get the

bound 2
3
log(1 + 1/96) ≥ 0.0069. In particular Theorem 1.3 follows immediately.

Proof. As above, we only need to consider the zero potential, whose corresponding
transfer operator is again denoted by L0. Given f ∈ BVp(Ω) it is again clear that
‖L0f‖∞ ≤ ‖f‖∞; the core of the argument is then to prove that

BVp(L0f) ≤
1

k
1

p

BVp(f). (2)

This is easily achieved thanks to the “extensiveness” of the total p-variation: if x = (x0 <
x1 < · · · < xn) is any partition of Ω, then

b1(x0) < . . . b1(xn) < b2(x0) < . . . b2(xn) < · · · < bk(x0) < · · · < bk(xn)

is a partition of Ω, in the case when bj are all increasing and their images are in increasing
order. In any other case, we only have to permute the bj and change the order of each
subsequence bj(x0), . . . , bj(xn) to obtain a partition, which we denote by

y = (y0 < · · · < yk(n+1)−1).

Then using Minkowski’s inequality and concavity of x 7→ x
1

p we have:

vp(L0f, x) =
1

k

(

n
∑

j=1

∣

∣

∣

k
∑

i=1

f(bi(xj))− f(bi(xj−1))
∣

∣

∣

p) 1

p

≤
1

k

k
∑

i=1

(

n
∑

j=1

∣

∣

∣
f(bi(xj))− f(bi(xj−1))

∣

∣

∣

p) 1

p

≤
(1

k

n
∑

j=1

k
∑

i=1

∣

∣f(bi(xj))− f(bi(xj−1))
∣

∣

p
)

1

p

≤
1

k
1

p

vp(f, y) ≤
1

k
1

p

BVp(f).

By taking the upper bound over x, we obtain (2).
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To apply Lemma 2.3, observe that a p-BV function f such that
∫

f dµ = 0 for some
probability measure µ must be non-negative at some point and non-positive at some
point, so that ‖f‖∞ ≤ BVp(f). The existence of an eigenprobability is ensured by the
compactness of Ω and the fact that L∗

0 preserves the set of probability measures. We

obtain that L0 a spectral gap of size (k
1

p − 1)/(k
1

p + 1) with constant 1. Since BVp(Ω)
is uniformly dense in the space of continuous functions, it follows that there is in fact a
unique probability measure fixed by L∗

0.
The same computation as in the proof of theorem 3.3 shows that for all ϕ ∈ BVp(Ω),

if there is a constant c such that

‖ϕ− c‖BVp
≤ log

(

1 +
(k

1

p − 1)2

16k
1

p (k
1

p + 1)

)

then the transfer operator Lϕ has a spectral gap. Taking c = (supϕ + inf ϕ)/2, we get
as before ‖ϕ− c‖BVp

≤ 3
2
BVp(ϕ) so that a sufficient condition to have a spectral gap is

BVp(ϕ) ≤
2

3
log

(

1 +
(k

1

p − 1)2

24k
1

p (k
1

p + 1)

)

.

5 Three shades of spectral gaps

In this Section we show several possible definitions of spectral gap are equivalent. This
will enable us to ensure that the spectral gaps proved above actually match the needed
assumption in [GKLMF15].

5.1 Hypotheses on the function space

We fix a compact metric space Ω and space of functions X (Ω) endowed with a norm ‖·‖.
As in [GKLMF15], we shall first assume the following hypothesis.

(H1) X (Ω) is a Banach algebra of Borel-measurable, bounded functions Ω → R, which
includes all constant functions, whose norm dominates the uniform norm (for some
constant A it holds ‖f‖ ≥ A‖f‖∞) and such that for all positive, bounded away
from zero function f ∈ X (Ω), the function log f also lies in X (Ω).

The last condition of log stability could be lifted up to changing the formulation of
Theorem 5.1 below (replacing J ∈ X by eϕ where ϕ ∈ X ). The measurability of elements
of X and the domination condition ‖·‖ ≥ A‖·‖∞ ensure every finite measure on Ω can
be seen as a continuous linear form, i.e we have a natural map C0(Ω)∗ → X (Ω)∗. We
will also assume the following:
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(H1’) If a finite measure µ on Ω is such that
∫

f dµ > 0 for all positive, bounded away
from 0 function f ∈ X (Ω), then µ must be a positive measure. Moreover the set
of finite positive measures is closed in X (Ω)∗ (by which we mean that the natural
map C0(Ω)∗ → X (Ω)∗ has closed image).

This assumption means that X (Ω) is large enough to detect positivity of measures, and
not to have too exotic linear forms which can be approximated by positive measures. This
notably avoids trivial cases such as X (Ω) = {constants}. To ensures one can identify
finite measures with elements of X (Ω)∗, we would need to ensure that the natural map
C0(Ω)∗ → X (Ω)∗ is injective. We will dispense from this, but by abuse still say that
a form φ ∈ X (Ω)∗ “is a finite (positive) measure” whenever it is the image of a finite
(positive) measure by the natural maps, irrespective of the uniqueness of this measure.

We will prove at the end of the Section that Holα(Ω) and BVp([a, b]) satisfy both
hypotheses.

We only consider bounded linear operator X (Ω) → X (Ω) and, from now on, use X as
a shorthand for X (Ω).

Theorem 5.1. Assume X satisfies hypotheses (H1) and (H1’) and let L be an operator
of the form

Lf(x) =

∫

Ω

J(y)f(y) dmx(y)

for some positive function J ∈ X and transition kernel (mx)x∈Ω. Assume L has positive
eigendata λ, h. Then the three definitions (SG1), (SG2) and (SG3) are equivalent for L
(with the same gap size δ, but possibly different constants C).

Much of what follows is either classical or of classical flavor, but Theorem 5.1 seems
not obvious enough for us to dispense from a proof.

Proof. Since (SG1) is well-known to be equivalent to (SG2) and (SG3) clearly implies
(SG1) under our hypotheses (simply take G = kerµ), the part of Theorem 5.1 that needs
a proof is that (SG1) implies (SG3). Assume L satisfies (SG1).

We have a dual operator L∗ acting on X ∗ by

L∗φ(u) := φ(Lu) whenever φ ∈ X and u ∈ X .

Since L preserves G, the dual operator L∗ preserves the line G⊥ := {φ ∈ X ∗ | ker φ ⊃
G}. It thus has an eigenvector φ0 (which up to a multiplicative constant encodes the
projection on 〈u〉 along G). Now for all u = au0 + g ∈ X where g ∈ G, we have

L∗φ0(u) = φ0(L(au0 + g)) = λaφ0(u0) + φ0(L(g)).

Since φ0 is orthogonal to G, φ0(L(g)) = 0 and φ0(u) = φ0(au0+ g) = aφ0(u0). It follows
that L∗φ0 = λφ0, i.e. L∗ has the same eigenvalue λ as L.
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Similarly, L∗ must preserve the hyperplane u⊥0 := {φ ∈ X ∗ | φ(u0) = 0}. Moreover,
for all φ ∈ u⊥0 and all u = au0 + g ∈ X with g ∈ G, we have

L∗nφ(u) = aλnφ(u0) + φ(Lng) = φ(Lng)

|L∗nφ(u)| ≤ |φ|Cλn(1− δ)n|g|

≤ |φ|Cλn(1− δ)nD|u|

where D is the operator norm of the projection X → G along u0. It follows that L∗ has
the same spectral gap δ as L. In particular, λ is a simple isolated eigenvalue of L∗. By
pretty much the same computation, we see that for all φ ∈ X ∗ and all u ∈ X , writing
u = au0 + g its decomposition along 〈u〉 ⊕G, we have

( 1

λn
L∗n

)

φ(au0 + g) → aφ(u0).

Now, to apply this in our context we will want φ0 to be a measure, even if X ∗ is larger
than the space of measures (which often happens since X usually is quite smaller than
the space of continuous functions). We will also need that φ0 be a positive measure,
let us thus use the additional structure of X as a space of real functions. We say that
P ⊂ X is a cone if it is stable under multiplication by all positive scalar. We say it is
a positive cone if it is a cone, is open in the subspace it generates, and P ∩ (−P ) = ∅.
The openness assumption is to be noted: it is really used below, and somewhat restricts
the scope of application of this method (e.g. in the space of L1 real functions, the subset
of positive functions is not open but generates the whole space).

Any positive cone has a dual P ∗ := {φ ∈ X ∗ | ∀u ∈ P, φ(u) > 0} which is a cone of
X ∗ (but we do not claim it to be a positive cone) whose closure is, as soon as P ∗ is not
empty, P ∗ = {φ ∈ X ∗ | ∀u ∈ P, φ(u) ≥ 0}.

Lemma 5.2. If P is a positive cone of X which is preserved by L, then P ∗ is preserved
by L∗. If additionally u0 ∈ P , then G∩P = ∅ and up to multiplying it by −1, φ0 ∈ P ∗.

If additionally Y ⊂ X ∗ is a subspace preserved by L∗ such that P ∗ ∩Y is closed in X ∗

then either Y ⊂ u⊥0 or φ0 ∈ P ∗ ∩ Y.

Proof. Let φ ∈ P ∗ and u ∈ P . Then L∗φ(u) = φ(Lu); since Lu ∈ P this is a positive
number. Thus L∗φ ∈ P ∗, and L∗ preserves P ∗.

Assume now u0 ∈ P . If there exist some g ∈ G ∩ P , then since P is open in the
space it generates there is some a < 0 such that au0 + g ∈ P . Then for all n we have
λ−nLn(au0 + g) ∈ P , which converges to au0 ∈ −P . But that would give an element of
P ∩ −P , which is excluded by the definition. Thus G ∩ P = ∅.

Next we need to prove that choosing well the dual eigenvector, for all u ∈ P it
holds φ0(u) > 0. By construction, up to a multiplicative constant we can assume that
φ0(au0 + g) = a for all a ∈ R and g ∈ G. If u = au0 + g is in P , then a < 0 is excluded
as otherwise au0 = lim λ−nLnu would be an element of P ∩ −P ; and a = 0 is excluded
by G ∩ P = ∅. Therefore a > 0 and φ0 ∈ P ∗.

Last, assume there exists φ ∈ Y \ u⊥0 and write φ = bφ0 + ψ where ψ ∈ u⊥0 . Then
( 1

λn
L∗n

)

φ = bφ0 +
( 1

λn
L∗n

)

ψ → bφ0.
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Since P ∗ ∩ Y is closed and b is nonzero (as φ /∈ u⊥0 ), we conclude that φ0 ∈ Y . We
already know it is in P ∗, finishing the proof.

Let us now finish the proof of Theorem 5.1: we consider the set P consisting in all
positive functions Ω → R in X which are bounded away from 0. It is a cone, and since
the norm dominates the uniform norm it is open in X . An element of P ∩ (−P ) would
be a non-negative and positive function, thus P is a positive cone. The dual cone P ∗ is
the set of continuous linear forms of X which are positive on all elements of P ; denoting
by Y the subspace of X ∗ consisting of finite measures, assumption (H1’) ensures that
P ∗ ∩ Y is closed in X ∗. The form of L ensures that Y is preserved by L∗. It is not true
that Y ⊂ h⊥, therefore Lemma 5.2 ensures that L∗ has an eigenvector in P ∗ ∩ Y , which
by (H1’) must be a positive measure. It is not zero since φ0(u0) 6= 0, and up to proper
scaling we can make it a probability measure. Then it is easily checked that G must be
the kernel of this eigenprobability, and (SG3) holds.

Proposition 5.3. Let Ω be a compact metric space and X be a Banach space of functions
Ω → R satisfying (H1). If X is dense (for the uniform norm) in the space C0(Ω) of
continuous functions, then X also satisfies (H1’).

Proof. We prove a slight strengthening of the first property. Let µ be a finite measure
on Ω such that for all f ∈ X bounded away from 0, µ(f) :=

∫

f dµ ≥ 0 and let g be
any continuous positive function. Let fn ∈ X be such that ‖g − fn‖∞ → 0; since µ is
finite, it follows that µ(fn) → µ(g). By compactness inf g > 0 thus for n large enough,
fn is bounded away from 0 and µ(fn) ≥ 0. It follows that µ(g) ≥ 0, and µ is a positive
measure.

Now let (µn)n∈N be a sequence of finite positive measures, and assume there is a
continuous linear form φ ∈ X ∗ such that ‖µn − φ‖∗ → 0 (where µn are identified with
elements of X ∗ and ‖·‖∗ is the dual norm on X ∗). We have to prove that φ is a finite
positive measure.

First, limµn(1) = φ(1) ∈ R ensures that the total mass of µn is bounded by some
M > 0, uniformly in n, i.e. for all bounded measurable f (in particular, f ∈ X ) it holds
|µn(f)| ≤ M‖f‖∞ (positivity of the µn is crucial here).

Consider any non-zero f ∈ X . There exist an n ∈ N such that ‖µn−φ‖
∗ ≤ ‖f‖∞/‖f‖,

and then

|φ(f)| ≤ |φ(f)− µn(f)|+ |µn(f)|

≤ (1 +M)‖f‖∞

so that φ is continuous in ‖·‖∗∞ norm on X . It then admits an extension µ ∈ C0(Ω)∗,
which by the Riesz representation theorem is a finite measure. Since µn(f) → µ(f) for
all f ∈ X and the µn are positive, we have µ(f) ≥ 0 for all non-negative f ∈ X . In
particular we can apply the strengthened first property proved above to deduce that µ
is positive. In other words, φ identifies with a finite positive measure, as needed.

It follows easily (using that log is locally Lipschitz and that Holα(Ω) is uniformly
dense in the space of continuous fonctions [Geo67]):
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Corollary 5.4. For all compact metric space Ω, the Banach space Holα(Ω) satisfies
(H1) and (H1’).

For all bounded interval I ⊂ R, the space BVp(I) satisfies (H1) and (H1’).
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