
HAL Id: hal-01500328
https://hal.science/hal-01500328v1

Submitted on 25 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A parametric filtering algorithm for the graph
isomorphism problem

Sébastien Sorlin, Christine Solnon

To cite this version:
Sébastien Sorlin, Christine Solnon. A parametric filtering algorithm for the graph isomorphism prob-
lem. Constraints, 2008, 4, 13, pp.518-537. �10.1007/s10601-008-9044-1�. �hal-01500328�

https://hal.science/hal-01500328v1
https://hal.archives-ouvertes.fr

A parametri �ltering algorithm for the graph isomorphismproblemSébastien Sorlin, Christine SolnonLIRIS, CNRS UMR 5205, bât. Nautibus, University of Lyon I43 Bd du 11 novembre, 69622 Villeurbanne edex, Frane{sebastien.sorlin,hristine.solnon}�liris.nrs.frFebruary 15, 2008AbstratWe introdue a new �ltering algorithm, alled IDL(d)-�ltering, for a global onstraint dediated tothe graph isomorphism problem �the goal of whih is to deide if two given graphs have an identialstruture. The basi idea of IDL(d)-�ltering is to label every vertex with respet to its relationshipswith other verties around it in the graph, and to use these labels to �lter domains by removing valuesthat have di�erent labels. IDL(d)-�ltering is parameterized by a positive integer value d whih givesa limit on the distane between a vertex to be labelled and the set of verties onsidered to buildits label. We experimentally ompare di�erent instantiations of IDL(d)-�ltering with state-of-the-artdediated algorithms and show that IDL(d)-�ltering is more e�ient on regular sparse graphs andompetitive on other kinds of graphs.1 IntrodutionGraphs are widely used in real-life appliations to model strutured objets, e.g., moleules, images, ornetworks. In many of these appliations, one has to ompare graphs to deide if their strutures areidential. This problem is known as the Graph Isomorphism Problem (GIP). This problem an also beused to detet symmetries into onstraint satisfation problems [Pug05, ZDD06℄.More formally, a graph is de�ned by a ouple (V, E) suh that V is a �nite set of verties and E ⊆ V ×Vis a set of edges. Two graphs G = (V, E) and G′ = (V ′, E′) are isomorphi if there exists a bijetivefuntion f : V → V ′ suh that for every pair of verties (u, v) ∈ V × V , we have (u, v) ∈ E if and only if
(f(u), f(v)) ∈ E′. We shall say that f is an isomorphism funtion. The GIP onsists in deiding if twogiven graphs are isomorphi.There exist many dediated algorithms for solving GIPs suh as, e.g., [Ull76, MK81, CFSV04, DLSM04℄.These algorithms are often very e�ient (even though their worst ase time omplexities are exponential).However, suh dediated algorithms annot be used to solve more spei� problems, suh as isomorphismproblems with additional onstraints, or larger problems that inlude graph isomorphism subproblems.An attrative alternative to these dediated algorithms is to use Constraint Programming (CP), whihprovides a generi framework for solving any kind of Constraint Satisfation Problems (CSPs). Indeed,GIPs an be transformed into CSPs in a very straightforward way [MG79℄, so that one an use generionstraint solvers to solve them. However, when transforming a GIP into a CSP, the global semanti ofthe problem is lost and deomposed into a set of binary onstraints. As a onsequene, using CP to solveGIPs may be less e�ient than using dediated algorithms whih have a global view of the problem.1

Motivations. In order to allow onstraint solvers to solve GIPs more e�iently without loosing CP's�exibility, we have introdued in [SS04℄ a global onstraint dediated to GIPs and a �rst �ltering algo-rithm, alled Label-�ltering. In [SS07℄, we have proposed another �ltering algorithm, alled ILL-�ltering.Both ILL-�ltering and Label-�ltering are based on the omputation of a so alled �isomorphi-onsistent�labelling, i.e., a labelling of the graph verties suh that two verties whih have di�erent labels annotbe mathed by an isomorphism funtion. However, to ompute the label of a vertex u, ILL-�ltering onlyonsiders the diret neighborhood of u whereas Label-�ltering onsiders all verties of the graph. Also,ILL-�ltering iteratively strengthens labels until a �x-point is reahed whereas Label-�ltering only iteratesone the strengthening proedure.We introdue in this artile a new parametri �ltering algorithm, alled IDL(d)-�ltering, whih is alsobased on the omputation of an isomorphi-onsistent labelling. The label of a vertex u is omputed byonsidering all verties that are at most at distane d from u, where d is a parameter. IDL(d)-�lteringis a generalization of ILL-�ltering �whih orresponds to IDL(1)-�ltering� and Label-�ltering �whihorresponds to the �rst two iterations of IDL(∞)-�ltering.Outline of the paper. Setion 2 gives an overview of existing approahes for solving the graph iso-morphism problem, inluding CP approahes. Setion 3 introdues a labelling proedure based on aninvariant distane property. Setion 4 shows how to use this distane-based labelling to de�ne IDL(d)-�ltering. Setion 5 illustrates IDL(d)-�ltering on a graph isomorphism problem instane for d = 1 and
d =∞. Setion 6 experimentally ompares di�erent instantiations of IDL(d)-�ltering with state-of-the-artapproahes.2 Existing approahes for solving graph isomorphism problems2.1 Complexity of the graph isomorphism problemThe theoretial omplexity of the GIP is not exatly stated: the problem is in NP but it has not beenshown to be in P nor to be NP -omplete [For96℄ and its own omplexity lass, isomorphism-omplete,has been de�ned. However, when adding some topologial restritions on graphs (e.g., planar graphs[HW74℄, trees [AHU74℄ or bounded valene graphs [Luk82℄) this problem beomes solvable in polynomialtime.2.2 Dediated algorithmsTo solve a GIP, one has to �nd a one to one mapping between the verties of the two graphs. The searhspae omposed of all possible mappings may be explored in a �Branh and Cut� way: at eah node ofthe searh tree, some graph properties (suh as edge distribution or vertex neighborhood) an be usedto prune the searh spae [CFSV04, Ull76℄. This kind of approah is rather e�ient and an be used tosolve GIPs up to a thousand or so verties very quikly (in less than one seond). In [SD76℄, Shmidt etal. propose suh an algorithm that prunes the searh tree by using a distane matrix.MKay [MK81℄ proposes another approah, whih has been originally designed to detet graph auto-morphisms, i.e., non trivial isomorphisms between a graph and itself. The main idea is to ompute aanonial representation of a graph suh that two graphs have the same representation if and only if theyare isomorphi. This anonial representation is an ordered partition of the verties suh that all vertieswithin a same part are equivalent (with respet to an isomorphism funtion). This partition is omputed,starting from an initial partition that groups all verties into a same part, by iteratively applying anordered set of vertex invariants to split parts. This approah is implemented in Nauty whih is, to ourknowledge, the most e�ient solver for the graph isomorphism problem in the general ase: Nauty is2

omparable to �Branh and Cut� methods but Nauty is often the quikest for large graphs [FSV01℄. In[DLSM04℄, Darga et al. propose a similar algorithm alled Sauy whih is speialized for sparse graphs(with very low edge densities) and whih is faster than Nauty on this kind of graphs. Puget [Pug05℄proposes another algorithm for the graph automorphism problem whih is even faster on sparse graphs.Finally, MKay has reently proposed an adaptation of Nauty alled Sparetest dediated to sparse graphs(the ode has been sent to us in a personal ommuniation).All these dediated algorithms an e�iently solve GIPs in pratie, even though their worst ase om-plexities are exponential. However, they are not suited for solving more spei� problems, suh as GIPswith additional onstraints. In partiular, verties and edges may be assoiated with labels that har-aterize them, and one may be interested in looking for isomorphism funtions that satisfy additionalonstraints on these labels. This is the ase, e.g., in [Rég95℄ where graphs are used to represent moleules,or in omputer aided design (CAD) appliations where graphs are used to represent design objets [CS03℄.2.3 Constraint ProgrammingConstraint Programming (CP) is an attrative alternative to dediated approahes: it provides high levellanguages to delaratively model Constraint Satisfation Problems (CSPs); these CSPs are solved in ageneri way by embedded onstraint solvers [Tsa93, LO00, ILO00, HSD92℄. A CSP is de�ned by a triple
(X, D, C) suh that
• X is a �nite set of variables,
• D is a funtion whih maps every variable xi ∈ X to its domain D(xi), i.e., the �nite set of valuesthat may be assigned to xi,
• C is a set of onstraints, i.e., relations between some variables whih restrit the set of values thatan be assigned simultaneously to these variables. Constraints involving two variables are alledbinary onstraints; we shall denote C(xi, xj) the binary onstraint holding between the two variables

xi and xj , and we shall de�ne this onstraint by the set of ouples (vi, vj) ∈ D(xi) × D(xj) thatsatisfy the onstraint.Solving a CSP (X, D, C) involves �nding a omplete assignment, whih assigns a value vi ∈ D(xi) toevery variable xi ∈ X , suh that all onstraints in C are satis�ed.Graph isomorphism problems may be formulated as CSPs in a very straightforward way [GJ79, Rég95℄.Given two graphs G = (V, E) and G′ = (V ′, E′), one may de�ne the CSP (X, D, C) suh that
• a variable xu is assoiated with eah vertex u ∈ V , i.e., X = {xu | u ∈ V },
• the domain of eah variable xu is the set of verties of G′ that have the same number of adjaentverties as u, i.e.,

D(xu) = {u′ ∈ V ′ | #{(u, v) ∈ E} = #{(u′, v′) ∈ E′} }

• there is a binary onstraint between every pair of di�erent variables (xu, xv) ∈ X ×X , denoted by
Cedge(xu, xv). This onstraint expresses the fat that the two verties of G′ that are assigned to xuand xv must be onneted by an edge in G′ if and only if u and v are onneted by an edge in G,i.e., if (u, v) ∈ E, Cedge(xu, xv) = E′otherwise Cedge(xu, xv) = {(u′, v′) ∈ V ′ × V ′ | u′ 6= v′ and (u′, v′) 6∈ E′}One a GIP has been formulated as a CSP, one an use CP to solve it in a generi way. Within thisframework, additional onstraints, suh as onstraints on vertex and edge labels, may be expressed veryeasily. 3

2.4 Global onstraint for the graph isomorphism problemThe CSP formulation desribed in 2.3 deomposes the global semanti of the GIP into a set of binaryedge onstraints. Eah of these edge onstraints expresses the neessity either to preserve or to forbidan edge in a loal way. As a onsequene, using CP to solve GIPs is often less e�ient than using adediated algorithm.To improve the solution proess of CSPs assoiated with GIPs, one may add an allDi� global onstraint,in order to onstrain all variables to be assigned to di�erent verties [Rég95℄. This onstraint is redundantas eah binary edge onstraint only ontains ouples of di�erent verties, so it is not possible to assignthe same value to two di�erent variables. This global onstraint allows a onstraint solver to prune thesearh spae more e�iently, and therefore to solve GIPs quiker.However, even with an allDi� global onstraint, CP is still not ompetitive with dediated algorithmsbeause most of the global semanti of the problem is still lost. Hene, we have introdued in [SS04℄ aglobal onstraint for the graph isomorphism problem.Syntatially, this onstraint is de�ned by the relation gip(V, E, V ′, E′, L) where
• V and V ′ are two sets of values suh that #V = #V ′,
• E ⊆ V × V is a set of pairs of values from V ,
• E′ ⊆ V ′ × V ′ is a set of pairs of values from V ′,
• L is a set of ouples whih assoiates a di�erent variable of the CSP to eah di�erent value of V ,i.e., L is a set of #V ouples of the form (xu, u) where xu is a variable of the CSP and u is a valueof V , and suh that for any pair of di�erent ouples (xu, u) and (xv, v) of L, xu 6= xv and u 6= v.Semantially, the global onstraint gip(V, E, V ′, E′, L) is onsistent if and only if there exists an isomor-phism funtion f : V → V ′ suh that for eah ouple (xu, u) ∈ L there exists a value u′ ∈ D(xu) so that

u′ = f(u).This global onstraint is not semantially global [BH03℄ as it an be represented by a semantiallyequivalent set of binary onstraints as desribed previously. However, the gip onstraint allows us toexploit the global semanti of GIPs to solve them more e�iently.3 Theoretial frameworkWe show in this setion how to build a distane-based labelling whih will be used in the next setionto de�ne a �ltering algorithm for the gip global onstraint. The main idea is to label every vertex withrespet to distane relationships with other verties of the graph. This labelling is isomorphi-onsistent,i.e., two verties that have di�erent labels annot be mathed by an isomorphism funtion. Hene, thislabelling an be used to �lter domains by removing verties whih have di�erent labels. Labels are builtiteratively: starting from an empty label, eah label is extended by onsidering labels of verties withina given distane d. This labelling extension, alled relabelling, is iterated until a �x-point is reahed.The distane d is a parameter of the relabelling proedure. When it is set to 1, labels are iterativelyextended by onsidering labels of neighbors in a very similar way to the partition re�nement proedureof Nauty. When the distane d is set to a value larger than 1, one obtains a stronger labelling than thepartition re�nement of Nauty.In this setion, we �rst show that distanes are preserved by isomorphism funtions. Then, we introduelabellings and relabellings. Finally, we de�ne a distane-based relabelling. We assume gip(V, E, V ′, E′, L)to be the underlying graph isomorphism onstraint to propagate, and we de�ne Verties = V ∪ V ′ and4

Edges = E ∪E′. We assume without loss of generality that V ∩V ′ = ∅ and that eah graph is onneted.We restrit our attention to non direted graphs. The extension of our work to direted graphs is disussedin 7.3.1 Distane-based invariant propertyDe�nition. A path between two verties u and v is a sequene <v0, v1, v2, ..., vk> of verties suh that
v0 =u, vk =v and for all i ∈ [1, k], (vi−1, vi) ∈ Edges. The length of a path is the number of its edges.De�nition. The distane between two verties u and v, denoted by δ(u, v), is the length of the shortestpath between u and v.De�nition. The diameter of a graph G is the largest distane between two verties of G.Our �ltering proedure for the graph isomorphism problem is based on the following theorem whih showsthat distanes are preserved by isomorphism funtions.Theorem 1. Given a bijetive funtion f : V → V ′, the two following properties are equivalent:1. f is an isomorphism funtion, i.e., f is suh that ∀(u, v) ∈ V × V, (u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′ ;2. ∀(u, v) ∈ V × V, δ(u, v) = δ(f(u), f(v)).Proof. (1) ⇒ (2): if f is an isomorphism funtion, then (u, v) is an edge of G i� (f(u), f(v)) is anedge of G′ so that < v1, v2, ..., vn > is a path in G i� < f(v1), f(v2), ..., f(vn) > is a path in G′, andtherefore < v1, v2, ..., vn > is a shortest path in G i� < f(v1), f(v2), ..., f(vn) > is a shortest path in G′,and property (2) holds.
(2)⇒ (1): For any pair of verties (u, v) ∈ V × V , if (u, v) is an edge of G, then < u, v > is the shortestpath between u and v so that δ(u, v) = 1, and therefore δ(f(u), f(v)) = 1, so that (f(u), f(v)) is an edgeof G′ (and vie versa).3.2 Isomorphi-onsistent labelling and relabellingBefore de�ning a labelling proedure based on Theorem 1, we introdue in this setion some de�nitionsabout labellings and relabellings.De�nition. A labelling is a funtion denoted by α that assoiates a label α(v) to every vertex v ∈Verties. This label does not depend on vertex names but only on relations de�ned by edges between v andother verties. We note image(α) the set of labels returned by α, i.e., image(α) = {α(v) | v ∈ Verties}.De�nition. A labelling α is isomorphi-onsistent if for every isomorphism funtion f between (V, E)and (V ′, E′), verties mathed by f have idential labels, i.e., ∀v ∈ V, α(v) = α(f(v)).

5

Figure 1: De�nition of a gip(V, E, V ′, E′, L) onstraint instane suh that
V = {A, B, C, D, E, F, G, H, I, J} and V ′ = {A′, B′, C′, D′, E′, F ′, G′, H ′, I ′, J ′},
L = {(xA, A), (xB , B), (xC , C), (xD, D), (xE , E), (xF , F), (xG, G), (xH , H), (xI , I), (xJ , J)},
E and E′ are de�ned as graphially displayed above.Example 1. Let us onsider the gip onstraint instane of Figure 1 and let us de�ne the labelling αdegwhih labels eah vertex by its degree, i.e.,

∀v ∈ Verties, αdeg(v) = #{u ∈ V | (u, v) ∈ Edges}We have αdeg(A) = αdeg(D) = αdeg(F) = αdeg(H) = 4 and αdeg(B) = αdeg(C) = αdeg(E) = αdeg(G) =
αdeg(I) = αdeg(J) = 3. This labelling is isomorphi-onsistent as isomorphism funtions only mathverties that have a same number of adjaent verties.An isomorphi-onsistent labelling may be used to �lter domains: the domain of every variable xuassoiated with a vertex u may be redued to the set of verties that have the same label as u. Our goalis to build an isomorphi-onsistent labelling that �lters domains as muh as possible, i.e., that assoiatesas muh as possible di�erent labels to verties that annot be mathed.De�nition. A labelling α1 is at least as strong as a labelling α2 if

∀(u, v) ∈ V × V ′, α2(u) 6= α2(v)⇒ α1(u) 6= α1(v)To strengthen a labelling, we propose to iteratively apply a relabelling funtion.De�nition. A relabelling is a funtion denoted by β that, given a labelling α, returns a new labellingnoted β[α].De�nition. A relabelling β is isomorphi-onsistent if for any isomorphi-onsistent labelling α, β[α]is also an isomorphi-onsistent labelling.Relabellings may be de�ned with respet to labels of adjaent verties; as several verties may have thesame label, we introdue the following notation for multisets.De�nition. A multiset is a bag whih may ontain several ourrenes of a same value. Given anunderlying set S, we note ak the fat that a value a ∈ S ours k times in a multiset m.Example 2. Given the set S = {a, b, c, d}, m = {{a, a, b, d, d, d}} = {{a2, b1, d3}} is the multiset thatontains two ourrenes of a, one ourrene of b and three ourrenes of d.6

Example 3. Let us de�ne the relabelling βadj that relabels every vertex by the multiset omposed ofthe labels of its neighbors, i.e.,
∀v ∈ Verties, βadj[α](v) = {{lk | l ∈ image(α), k = #{u ∈ Verties, (v, u) ∈ Edges, l = α(u)}, k > 0}}This relabelling βadj is isomorphi-onsistent beause two verties an be assoiated by an isomorphismfuntion only if their neighbors an. If we onsider the labelling αdeg of Example 1 and the gip onstraintinstane of Figure 1, we have

βadj [αdeg](A) = βadj[αdeg](D) = βadj[αdeg](F) = βH [αdeg] = {{32, 42}}

βadj[αdeg](B) = βadj[αdeg](C) = {{31, 42}}

βadj[αdeg](E) = βadj [αdeg](G) = βadj[αdeg](I) = βJ [αdeg] = {{32, 41}}De�nition. A relabelling β is strengthening if for any labelling α, β[α] is at least as strong as α.A very simple way to ensure that a relabelling β is strengthening is to de�ne β in suh a way that, foreah vertex v ∈ Verties, β[α](v) is pre�xed by α(v).An isomorphi-onsistent relabelling funtion β an be used to iteratively de�ne new isomorphi-onsistentlabelling funtions: starting from an elementary isomorphi-onsistent labelling funtion α, β an beiteratively applied, thus de�ning a sequene of labellings. We note βi[α] the labelling obtained by iteratingthe relabelling β i times, starting from α. More preisely, we de�ne:
β0[α] = α

βi[α] = β[βi−1[α]], ∀i ≥ 13.3 Relabelling funtion based on distanesTheorem 1 shows that graph isomorphism funtions preserve distanes. This property an be used tode�ne a relabelling funtion βd. Basially, the idea is to extend the label of a vertex u by the labels ofother verties within a distane d from u. As several verties may have a same label, this extension is amultiset.De�nition. Given a vertex v, a distane d ≥ 0 and a labelling funtion α, we note ∆(v, d, α) themultiset omposed of labels of verties at distane d from v. More formally,
∆(v, d, α) = {{lk | l ∈ image(α), k = #{u ∈ Verties | δ(u, v) = d, α(u) = l}, k ≥ 1}}Example 4. Let us onsider the gip global onstraint instane of Figure 1 and the labelling funtion

αdeg of Example 1. We have
∆(A, 0, αdeg) = {{41}} (at distane 0 from A: there is 1 vertex (A) labelled by 4)
∆(A, 1, αdeg) = {{32, 42}} (at distane 1 from A: there are 2 verties (B and C) labelled by 3and 2 verties (D and F) labelled by 4)
∆(A, 2, αdeg) = {{33, 41}} (at distane 2 from A: there are 3 verties (E, G and J) labelled by 3and 1 vertex (H) labelled by 4)
∆(A, 3, αdeg) = {{31}} (at distane 3 from A: there is 1 vertex (I) labelled by 3)
∆(A, 4, αdeg) = ∅ (at distane 4 from A: there is no vertex)

7

De�nition. Given a labelling funtion α and a positive integer d, the relabelling funtion βd returns anew labelling funtion βd[α] whih labels eah vertex v by a set of d+1 multisets, suh that eah multisetontains the labels of verties at distane k from v (with k ∈ [0, d]), i.e.,
∀v ∈ V, βd[α](v) = {k : ∆(v, k, α) | k ∈ [0, d]}Example 5. Let us onsider the gip global onstraint instane of Figure 1 and the labelling funtion

αdeg of Example 1. We have
β1[αdeg](A) = {0 : {{41}}, 1 : {{32, 42}} }
β2[αdeg](A) = {0 : {{41}}, 1 : {{32, 42}}, 2 : {{33, 41}} }
β3[αdeg](A) = {0 : {{41}}, 1 : {{32, 42}}, 2 : {{33, 41}}, 3 : {{31}} }
βk[αdeg](A) = β3[αdeg](A), ∀k > 3In other words, β1[αdeg] extends αdeg by adding labels of neighbors; β2[αdeg] extends β1[αdeg] by addinglabels of verties at distane 2; and β3[αdeg] extends β2[αdeg] by adding labels of verties at distane 3.As the diameter of the graph is 3, βk[αdeg] = β3[αdeg] for every distane k greater than 3.The next two theorems show that βd is both strengthening and isomorphi-onsistent, and that the larger

d, the stronger βdTheorem 2. For every distane d ∈ N , the funtion βd is an isomorphi-onsistent relabelling.Proof. If α is an isomorphi-onsistent labelling, then, for eah isomorphism funtion f between G and
G′, ∀u ∈ V, α(u) = α(f(u)). Furthermore, as f is an isomorphism funtion and given theorem 1, ∀(u, v) ∈Verties2, δ(u, v) = δ(f(u), f(v)). As a onsequene, ∀u ∈ V, ∀l ∈ image(α), ∀j ∈ [0, #V], #{v|v ∈
V ∧ δ(u, v) = j ∧ α(v) = l} = #{v′|v′ ∈ V ′ ∧ δ(f(u), v′) = j ∧ α(v′) = l} (beause f is a bijetiveappliation). As a onsequene, ∀u ∈ V, βd[α](u) = βd[α](f(u)) and βd[α] is an isomorphi-onsistentlabelling funtion.Theorem 3. Given a labelling α and two integers k and l suh that 1 ≤ k < l, βl[α] is at least as strongas βk[α] whih is at least as strong as α.Proof. βl[α] is at least as strong as βk[α] beause, by de�nition, for every vertex v ∈ Verties, βl[α](v) =
βk[α](v) ∪ {i : ∆(v, i, α) | i ∈ [0, d]}. Therefore, βk[α](u) 6= βk[α](v)⇒ βl[α](u) 6= βl[α](v).
βk[α] is at least as strong as α beause for every vertex v ∈ Verties, 0 : {α(v)1} belongs to βk[α](v).Therefore, α(u) 6= α(v)⇒ βk[α](u) 6= βk[α](v).Finally, the relabelling βd an be iteratively applied, starting from an initial labelling α, thus de�ning asequene of labellings β0

d [α], β1
d[α], β2

d[α], As eah labelling βi
d[α] is at least as strong as βi−1

d [α], thissequene neessarily reahes a �x-point at some step k suh that every labelling βk+i
d [α] is equivalent to

βk
d [α]. The next theorem shows that this �x-point is reahed when at some step k the number of di�erentlabels is not inreased.Theorem 4. Given a distane d, an initial labelling α and a positive integer k, if

∀(u, v) ∈ Verties×Verties, βk
d [α](u) = βk

d [α](v)⇒ βk+1

d [α](u) = βk+1

d [α](v)then
∀j ≥ k, ∀(u, v) ∈ Verties×Verties, βk

d [α] = βk
d [α]⇒ β

j
d[α](u) = β

j
d[α](v)8

Proof. Given its de�nition, we an see that βd does not use the labels given by α themselves but onlyan equivalene relation between these labels. As a onsequene, when a relabelling of the verties doesnot hange the equivalene relation between the vertex labels, any further relabelling annot hange thisequivalene relation any more.Roughly speaking, theorem 4 shows that, when a step of the sequene βk
d does not inrease the numberof di�erent vertex labels, a �x-point is reahed and the relabelling proess an be stopped. Finally, asthe number of di�erent labels is bounded by #V , this �x-point is reahed in at most #V steps.4 Pratial framework4.1 IDL(d)-onsisteny and IDL(d)-�lteringWe now propose to use the distane-based relabelling βd to de�ne a new partial onsisteny �alledIterative Distane Label (IDL) onsisteny� and an assoiated �ltering algorithm for the gip onstraint.The relabelling βd is iterated starting from an initial labelling α. We �rst de�ne this initial labellingto be the labelling α∅ whih assoiates the same label ∅ to every vertex, i.e., for every vertex v ∈Verties, α∅(v) = ∅. We shall introdue other initial labellings in setion 4.2.De�nition. Given a distane d ≥ 1, a gip(V, E, V ′, E′, L) global onstraint is IDL(d)-onsistent if forevery value v in the domain of a variable assoiated by L to a vertex u, the verties u and v are assoiatedwith a same label by any labelling βk

d [α∅], i.e.,
∀(xu, u) ∈ L, ∀v ∈ D(xu), ∀k ≥ 0, βk

d [α∅](u) = βk
d [α∅](v)Algorithm 1 desribes a �ltering proedure that ensures IDL(d)-onsisteny. Starting from an initiallabelling β0 that assoiates the same label ∅ to every vertex (lines 1�2), this proedure iteratively omputes

βi from βi−1 (lines 5�12), renames the labels of βi (line 13) and �lters domains with respet to βi (lines14�15) until either a domain beomes empty �thus proving inonsisteny� or the number of labels hasnot inreased �thus reahing a �x-point.The time and spae omplexities of relabelling, renaming and �ltering are studied below. We de�ne
n = #Verties and p = #Edges.Computation of βi from βi−1 (lines 5�12). This step basially implies n breadth �rst searhesbounded by d: starting from every vertex v, we iteratively ompute the sets δk of verties at distane kfrom v, for eah distane k ∈ [1, d].The time omplexity of this step depends on the d parameter.
• In the worst ase, i.e., if d is greater than or equal to the diameter of the graph, it orresponds to

n full breadth �rst searhes so that it is in O(np).This omplexity ould be redued to O(n2) by memorizing, for every vertex v ∈ Verties and everydistane k ∈ [1, d] a list δk(v) of verties at distane k from v. However, experiments have shownus that this implementation atually spends more CPU time. The reason is that adjaeny listsare often already stored in the CPU ahe memory, so that aessing to the neighbors of a vertexis often very quikly done, whereas δk(v) lists are too big to stay in the ahe memory, so that theproessor often has to restore these lists from the RAM to its ahe, whih is more time onsuming.9

Algorithm 1: IDL(d) Filtering proedureInput: a onstraint gip(V, E, V ′, E′, L),the domain D(xu) of every variable xu ourring in L,a distane d ≥ 1Output: �ltered domains D suh that gip(V, E, V ′, E′, L) is IDL(d)-onsistentforeah v ∈ Verties do1
β0(v)← ∅2

i← 13 repeat4 /* Computation of labelling βi from labelling βi−1 */foreah v ∈ Verties do5
δ0 ← {v}6 marked← {v}7 for k in 1..d and while δk−1 6= ∅ do8 /* Invariant: δk−1 = set of verties at distane k − 1 from v *//* and marked = set of verties at distane j ≤ k − 1 from v */

δk ← {u | ∃u′ ∈ δk−1, (u
′, u) ∈ Edges, u 6∈ marked}9 ompute the multiset mk whih ontains an ourrene of βi−1(u) for eah vertex u ∈ δk10 marked← marked ∪ δk11

βi(v)← {0 : {βi−1(v)} ∪ {k : mk | k ∈ 1..d}12 rename labels of βi13 /* Filtering with respet to the new labelling βi */foreah (xu, u) ∈ L do14
D(xu)← D(xu) ∩ {v ∈ Verties, βi(u) = βi(v)}15

i← i + 116 until ∃(xu, u) ∈ L, D(xu) = ∅ or #{βi−1(u), u ∈ Verties} = #{βi(u), u ∈ Verties} ;17
• In the best ase, i.e., if d = 1, one only has to ompute for eah vertex v the multiset m1 ontainingthe labels of the diret neighbors of v. In this ase, the time omplexity for omputing βi from βi−1is O(p).The spae omplexity of this step does not depend on d, as we do not memorize lists of verties at a givendistane. It is in O(n2) as there are n labels, and the size of eah label is bounded by n (remember thatlabels are renamed at eah iteration).Renaming step (line 13). This step is introdued in order to allow us to manage vertex labels inonstant time and memory. Indeed, at eah relabelling iteration, labels beome larger. However, one aneasily show that these labels an be renamed after eah relabelling step, provided that the equivalenerelation de�ned by labels is preserved by the renaming.To rename labels, they must be sorted. The size of eah label is bounded by n, and there are n labels.Therefore, sorting all labels is done in O(n2 · log n). We use a Hash table to ompare and rename vertexlabels. With suh a table, the time omplexity for renaming a sorted label is linear with respet to thesize of the label, i.e., in O(n), provided that the table is large enough to limit the number of ollisions.The spae omplexity of this step is in O(n2) as the Hash table has O(n) entries and the size of eahentry is in O(n).Filtering step (lines 12�13). This step is done in O(n2).10

Complexity of IDL(d)-�ltering. In the worst ase, the �x-point is reahed after O(n) iterations ofthe repeat until loop. Therefore, the time omplexity of IDL(d)-�ltering is O(n2(p + n log n)) if d isgreater or equal to the diameter of the graph; it is O(n3 log n) if d = 1. The spae omplexity is O(n2).4.2 Initial labellingAlgorithm 1 starts the relabelling proess from an initial labelling α∅ whih labels all verties with ∅so that every vertex of V may be mathed with every vertex of V ′. However, it may happen that thedomain of some variables assoiated with verties of V have been redued, either by the propagation ofother onstraints of the CSP, or when by a domain splitting during a branh and propagate searh.In this ase, the relabelling proess may be started from an initial labelling whih integrates as muh aspossible these domain redutions, i.e., suh that if a vertex u does not belong to the domain of a variable
xv, then u and v are assoiated with di�erent labels, thus indiating that it is not possible to math thesetwo verties. However, the initial labelling must not remove solutions, i.e., if a vertex u belongs to thedomain of a variable xv assoiated with a vertex v, then u and v must be assoiated with a same label.More formally, let us de�ne the bipartite graph Gcc = (Verties, Ecc) suh that Ecc = {(u, u′) ∈ V ×
V ′ | u′ ∈ D(xu)}. If two verties are onneted by a path in Gcc, then they must have the same label,otherwise they an have di�erent labels. Hene, the initial labelling may be built by omputing the setof onneted omponents of Gcc, and assigning the same label to all verties within a same onnetedomponent. The set of onneted omponents of Gcc may be omputed by a simple searh in O(#Ecc).Also, eah time the domain of a variable xu is redued to a singleton {v}, we an remove v from thedomains of all other variables and then relabel both u and v with a new label, di�erent from all otherlabels. In this ase, it is no longer neessary to iterate the relabelling proess on these two verties.5 Illustration of IDL(d)-�ltering for d =∞ and d = 1We now illustrate IDL(d)-�ltering on the gip global onstraint instane of Figure 1 for d =∞ and d = 1.As the two graphs are isomorphi, we only display labels omputed for verties of V . Also, for reasonsof spae, when several verties have a same label l, we group all these verties within a same set S anddenote by α(S) = l the fat that every vertex of the set S is labelled by l.5.1 Illustration of IDL(∞)-�lteringAt step 0, eah vertex is labelled by ∅:

α0({A, B, C, D, E, F, G, H, I, J}) = ∅After the �rst relabelling step, we have
β1

+∞[α∅]({A, D, F}) = { 0 : {{∅1}}, 1 : {{∅4}}, 2 : {{∅4}}, 3 : {{∅1}} } renamed to a

β1
+∞[α∅]({B, C, E, G, I}) = { 0 : {{∅1}}, 1 : {{∅3}}, 2 : {{∅4}}, 3 : {{∅2}} } renamed to b

β1
+∞[α∅]({H}) = { 0 : {{∅1}}, 1 : {{∅4}}, 2 : {{∅5}} } renamed to c

β1
+∞[α∅]({J}) = { 0 : {{∅1}}, 1 : {{∅3}}, 2 : {{∅3}}, 3 : {{∅3}} } renamed to dThe domain of xH is redued to {H ′} and the domain of xJ is redued to {J ′} so that H , H ′, J , and J ′are no longer relabelled. Then after the seond relabelling step, we have11

β2
+∞[α∅]({A}) = { 0 : {{a1}}, 1 : {{a2, b2}}, 2 : {{b2, c1, d1}}, 3 : {{b1}} }

β2
+∞[α∅]({B}) = { 0 : {{b1}}, 1 : {{a2, d1}}, 2 : {{a1, b2, c1}}, 3 : {{b2}} }

β2
+∞[α∅]({C}) = { 0 : {{b1}}, 1 : {{a2, b1}}, 2 : {{a1, b2, c1}}, 3 : {b1, d1}} }

β2
+∞[α∅]({D}) = { 0 : {{a1}}, 1 : {{a1, b2, c1}}, 2 : {{b4}}, 3 : {{d1}} }

β2
+∞[α∅]({E}) = { 0 : {{b1}}, 1 : {{b2, c1}}, 2 : {{a3, b1}}, 3 : {{b1, d1}} }

β2
+∞[α∅]({F}) = { 0 : {{a1}}, 1 : {{a1, b1, c1, d1}}, 2 : {{a1, b3}}, 3 : {{b1}} }

β2
+∞[α∅]({G}) = { 0 : {{b1}}, 1 : {{a1, b2}}, 2 : {{a1, b1, c1, d1}}, 3 : {{a1, b1}} }

β2
+∞[α∅]({I}) = { 0 : {{b1}}, 1 : {{b1, c1, d1}}, 2 : {{a2, b2}}, 3 : {{a1, b1}} }Every vertex has a di�erent label so that the domain of every variable has been redued to a singletonand relabelling an be stopped.5.2 Illustration of IDL(1)-�lteringAt step 0, eah vertex is labelled by ∅:

α∅({A, B, C, D, E, F, G, H, I, J}) = ∅After the �rst relabelling step, we have
β1

1 [α∅]({A, D, F, H}) = { 0 : {{∅1}}, 1 : {{∅4}} } renamed to a

β1
1 [α∅]({B, C, E, G, I, J}) = { 0 : {{∅1}}, 1 : {{∅3}} } renamed to bAfter the seond relabelling step, we have
β2

1 [α∅]({A, D, F, H}) = { 0 : {{a1}}, 1 : {{a2, b2}} } renamed to c

β2
1 [α∅]({B, C}) = { 0 : {{b1}}, 1 : {{b1, a2}} } renamed to d

β2
1 [α∅]({E, G, I, J}) = { 0 : {{b1}}, 1 : {{a1, b2}} } renamed to eAfter the third relabelling step, we have
β3

1 [α∅]({A}) = { 0 : {{c1}}, 1 : {{c2, d2}} } renamed to f

β3
1 [α∅]({B, C}) = { 0 : {{d1}}, 1 : {{c2, e1}} } renamed to g

β3
1 [α∅]({D, F}) = { 0 : {{c1}}, 1 : {{c2, d1, e1}} } renamed to h

β3
1 [α∅]({E, J}) = { 0 : {{e1}}, 1 : {{c1, d1, e1}} } renamed to i

β3
1 [α∅]({G, I}) = { 0 : {{e1}}, 1 : {{c1, e2}} } renamed to j

β3
1 [α∅]({H}) = { 0 : {{c1}}, 1 : {{c2, e2}} } renamed to kThe domain of xA is redued to {A′} and the domain of xH is redued to {H ′} so that A, A′, H , and

H ′ are no longer relabelled. Then, after the fourth relabelling step, we have
β4

1 [α∅]({B, C}) = { 0 : {{g1}}, 1 : {{f1, h1, i1}} } renamed to l

β4
1 [α∅]({D}) = { 0 : {{h1}}, 1 : {{f1, g1, j1, k1}} } renamed to m

β4
1 [α∅]({E}) = { 0 : {{i1}}, 1 : {{g1, j1, k1}} } renamed to n

β4
1 [α∅]({F}) = { 0 : {{h1}}, 1 : {{f1, g1, i1, k1}} } renamed to o

β4
1 [α∅]({G}) = { 0 : {{j1}}, 1 : {{h1, i1, j1}} } renamed to p

β4
1 [α∅]({I}) = { 0 : {{j1}}, 1 : {{i1, j1, k1}} } renamed to q

β4
1 [α∅]({J}) = { 0 : {{i1}}, 1 : {{g1, h1, j1}} } renamed to rThe domains of all variables, exept xB and xC are redued to singletons so that only B, B′, C and C′are relabelled. After the �fth relabelling step, we have12

β5
1 [α∅]({B}) = { 0 : {{l1}}, 1 : {{f1, o1, r1}} }

β5
1 [α∅]({C}) = { 0 : {{l1}}, 1 : {{f1, m1, o1}} }The domain of every variable is redued to a singleton and relabelling an be stopped.5.3 DisussionOn this example, both IDL(1) and IDL(∞) redue all domains to singletons, but they perform a di�erentnumber of iterations: two for IDL(∞) and �ve for IDL(1). However, as pointed out in setion 4, theomplexity of one relabelling step of IDL(∞) is an order higher than the omplexity of one relabellingstep of IDL(1) (O(n · p) instead of O(p)).The label-�ltering introdued in [SS04℄ orresponds to the �rst two iterations of IDL(∞)-�ltering whereasthe ILL-�ltering introdued in [SS07℄ exatly orresponds to IDL(1)-�ltering. We have experimentallyompared these two �ltering algorithms in [SS07℄ and we have shown that both ILL-�ltering and Label-�ltering are nearly always able to redue all domains to singleton (for non automorphi graphs), but thatLabel-�ltering is an order slower than ILL-�ltering.6 Experimental resultsIn this setion, we ompare di�erent instantiations of IDL(d)-�ltering with state-of-the-art algorithms,i.e., Nauty, Sauy and Sparetest (an improved version of Nauty for sparse graphs whih has been sent tous by B. MKay in a personal ommuniation). We do not inlude tree searh based algorithms neitherCP approahes based on the CSP model introdued in 2.3 as they are not ompetitive.Nauty, Sauy and Sparetest have been designed for �nding automorphisms in a graph and ompatlygenerate the whole group of automorphisms. They an be used to solve the GIP as the ompat repre-sentation generated by these algorithms de�nes a signature suh that two graphs have the same signatureif and only if they are isomorphi. However, one should keep in mind that these algorithms atually solvea more di�ult problem than the GIP.IDL(d)-�ltering only ensures a partial onsisteny. Hene, IDL(d)-�ltering has been integrated within abranh and propagate tree searh. In this setion, IDL(d) refers to a branh and propagate tree searhwhih performs IDL(d)-�ltering at eah node of the searh.We only onsider feasible GIP instanes, suh that the two graphs are isomorphi, as non feasible instanesare usually more easily solved. For eah onsidered approah, we measure the CPU time spent to solvethe problem. We have onsidered three kinds of graphs: randomly generated graphs, sparse graphs withbounded degrees, and regular sparse graphs. We have also made experiments on graphs that are randomlygenerated using a power law distribution of degrees P (d = k) = k−λ: this distribution orresponds tosale-free networks whih model a wide range of real networks, suh as soial, Internet, or neural networks[Bar03℄. We obtained very similar results on these graphs so that we do not report these results in thispaper.All results have been obtained on a 1.6Ghz Pentium M with 512Mb of RAM.6.1 Results on randomly generated graphsWe have randomly generated graphs with a Nauty tool alled genrang. We have onsidered graphs withdi�erent sizes (from 1000 to 6500 verties), and graphs with di�erent edge densities (from 1% to 50%).13

 0.001

 0.01

 0.1

 1

 1000 2000 3000 4000 5000 6000 7000

T
im

e
in

 s
ec

on
ds

 (
lo

gs
ca

le
)

Number of vertices of the graphs

Edge density of 1%

IDL(1)
Nauty

 0.01

 0.1

 1

 10

 1000 2000 3000 4000 5000 6000 7000

T
im

e
in

 s
ec

on
ds

 (
lo

gs
ca

le
)

Number of vertices of the graphs

Edge density of 10%

IDL(1)
NautyFigure 2: Run time w.r.t. the number of verties for two di�erent edge densities: 1% (top) and 10%(bottom). Average results on 100 graphs for eah size of graphs and edge density.We �rst ompare the best two approahes for these graphs, i.e., Nauty and IDL(1), and then disussperformanes of other approahes, i.e., IDL(k), Sauy, and Sparetest.Comparison of Nauty and IDL(1). Figure 2 ompares Nauty and IDL(1) when varying the numberof verties from 1000 to 6500 to study sale-up properties, for two di�erent edge densities: 1% and 10%.It shows that, IDL(1) is better than Nauty when the edge density is 1%, whereas Nauty is better thanIDL(1) when the edge density is 10%.Figure 3 ompares Nauty and IDL(1) on graphs having 1000 verties, when varying the edge density from1% to 50% (we do not report experimental results on graphs with higher densities as, in this ase, onehas better onsider omplementary graphs). It shows that IDL(1) is slightly better than Nauty on lowdensity graphs, but that Nauty learly beomes better than IDL(1) when inreasing the density. Finally,when the density is 50%, Nauty is twie as fast as IDL(1).Note that run time di�erenes between Nauty and IDL(1) mainly ome from data strutures and imple-mentation issues as both approahes are based on a very similar iterative relabelling based on labels ofdiret neighbors.Comparison of di�erent instantiations of IDL(d). On all these instanes, IDL(1)-�ltering is strongenough to always redue all domains to singletons so it is never neessary to develop a searh tree.The average number of relabelling steps performed by IDL(1) before reahing the �x-point depends onthe number of verties of the graphs: the larger the size of the graphs, the lower the number of relabellingsteps. For example, the average number of relabelling steps is 3.4 (resp. 2.9 and 2.1) on graphs with 20014

Figure 3: Run time w.r.t. edge density for graphs having 1000 verties. Average results on 100 graphsfor eah edge density. Note the log sale on the y-axis.(resp. 400 and 600) verties; for graphs with more than 800 verties, the number of relabelling steps isalways equal to 2.Hene, on these graphs, inreasing the value of the d parameter inreases CPU-times so that IDL(d) with
d > 1 is not ompetitive with IDL(1).Comparison with Sauy and Sparetest. Sauy and Sparetest have been designed to handle sparsegraphs with very low edge densities. Hene, on this �rst set of randomly generated graphs they are notompetitive with Nauty and IDL(1).6.2 Sparse graphs with bounded degrees

Figure 4: Run time w.r.t. the number of verties on sparse graphs with degrees bounded between 3 and8.We now onsider sparse graphs suh that vertex degrees are bounded between 3 and 8. The densityof these graphs is equal to 1% for graphs with 1000 verties and 0.1% for graphs with 10000 verties.On these sparse graphs, Nauty is not ompetitive with Sauy and Sparetest (even when using the bestinvariant for this kind of graphs, i.e., twopaths). For example, on graphs with 2000 verties, Nauty ismore than 4 times as slow as other approahes; on graphs with 3000 verties, it is more than 10 times asslow. 15

Figure 5: Results for regular graphs for two di�erent vertex degrees: 3 (top) and 4 (bottom).Comparison of Sauy, Sparetest, and IDL(1). Figure 4 shows that on these graphs Sparetest andIDL(1) have very similar performanes, whereas Sauy is better. The di�erene between Sauy and bothSparetest and IDL(1) inreases when onsidering larger (and sparser) graphs so that for graphs with10000 verties (the edge density of whih is 0.1%), Sauy is more than twie as fast.Comparison of di�erent instantiations of IDL(d). Like for randomly generated graphs, IDL(1)-�ltering is strong enough to redue all domains to singletons so that it is never neessary to develop asearh tree. Hene, on these graphs, inreasing the value of the d parameter inreases CPU-times so thatIDL(d) with d > 1 is not ompetitive with IDL(1).6.3 Results on regular sparse graphsWe now ompare approahes on regular sparse graphs, i.e., graphs suh that all verties have the samedegree. We have onsidered two degree values, i.e., 3 and 4, and we have generated regular graphs whihhave from 1000 to 15000 verties.Performanes of Nauty, Sauy, and IDL(1). Both Nauty and Sauy are not ompetitive to solvethese regular graphs beause all verties have the same number of neighbors. For example, Nauty (resp.Sauy) spends more than one seond (resp. more than three seonds) to solve instanes with 1000 vertiesand a degree of 3.On these instanes, IDL(1) behaves like Nauty and Sauy: eah vertex has exatly the same number ofneighbors so that IDL(1)-�ltering is not able to redue any domain without developing a searh tree.16

Comparison of Sparetest with IDL(d). The basi version of Sparetest is not ompetitive for solvingregular graphs. However, an option of Sparetest an be used to add a vertex invariant whih improvesits performanes on regular graphs. The idea is to start the iterative vertex partition re�nement from aninitial partition whih groups together all verties that have the same number of verties at a distanesmaller or equal to a given parameter k (this roughly orresponds to applying one the relabelling βk,but then iteratively applying the relabelling β1). When solving regular sparse graphs with Sparetest, thebest results are obtained with k = 2 and k = 3 (options "-k2" and "-k3").Figure 5 ompares the two variants of Sparetest, with k = 2 and k = 3, with IDL(2) and IDL(3) onregular graphs. It shows us that when the degree of the verties is set to 3, the best results are obtainedby IDL(3) (results obtained by IDL(2) are not displayed beause they are not ompetitive); when it is setto 4, the best results are obtained by IDL(2). We have also performed experiments with regular graphswith higher degrees than 4, and note very similar results to those obtained when degree=4, i.e., IDL(2)is the best performing approah on these graphs.7 ConlusionWe have introdued IDL(d)-�ltering, a new parametri �ltering algorithm dediated to the graph isomor-phism problem. The d parameter determines the strength of the �ltering: the larger d, the stronger the�ltering.When d = 1, this algorithm basially follows the same partition re�nement proedure as the one intro-dued in Nauty and used in Sauy and Sparetest, whih are improved versions of Nauty's dediated tosparse graphs. Experimental results have shown us that IDL(1) exhibits nie properties with respet toedge density variations:
• on dense graphs, the best performing approah is Nauty; on these graphs, IDL(1) is ompetitivewith Nauty, even though it is slower on the densest graphs, whereas neither Sauy nor Sparetestare ompetitive;
• on sparse graphs, the best performing approahes are Sauy and Sparetest; on these graphs, IDL(1)is ompetitive with Sauy and Sparetest, even though it is slower on the sparsest graphs, whereasNauty is not ompetitive.On randomly generated graphs, where the verties have di�erent degrees, IDL(1)-�ltering is strong enoughto redue all domains to singletons. Therefore, on these graphs, using stronger �lterings, suh as IDL(2)or IDL(3), only inreases CPU time.However, on regular graphs, approahes using �lterings based on the diret neighborhood of verties�suh as IDL(1), Nauty, or Sauy� are not e�ient as all verties have the same degree. On theseinstanes, using stronger �lterings, suh as IDL(2) or IDL(3), atually improves the solution proess.IDL(d)-�ltering has been de�ned for non direted graphs. However, it ould be easily extended todireted graphs. A �rst possibility is to exploit the fat that two direted graphs are isomorphi only iftheir non-direted ounterparts also are isomorphi. However, this may lead to poor quality �lterings asedge orientations are not taken into aount. Another possibility to extend our work to direted graphsonsists in adapting the βd relabelling funtion to take into aount edge orientations. For example, the

β1 relabelling funtion an be adapted by omputing separately the multiset of suessor labels and themultiset of predeessor labels.IDL(d)-�ltering is based on isomorphi-onsistent labellings and relabellings, that exploit distane-basedinvariant properties. This idea has been extended to the subgraph isomorphism problem in [ZDS+07℄: likein IDL(1)-�ltering, nodes are labelled by some invariant property, and labels are iteratively extended by17

onsidering labels of adjaent nodes; however, in the ase of subgraph isomorphism, label ompatibilitiesare expressed with respet to a partial order instead of an equivalene relation.Referenes[AHU74℄ Alfred V. Aho, John E. Hoproft, and Je�rey D. Ullman. The design and analysis of omputeralgorithms. Addison Wesley, 1974.[Bar03℄ Albert-Laszlo Barabasi. Linked: How Everything Is Conneted to Everything Else and WhatIt Means. Plume, 2003.[BH03℄ Christian Bessière and Pasal Van Hentenryk. To be or not to be... a global onstraint.CP'03, Kinsale, Ireland, pages 789�794, 2003.[CFSV04℄ Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub)graphisomorphism algorithm for mathing large graphs. IEEE Transations on Pattern Analysisand Mahine Intelligene, 26(10):1367�1372, 2004.[CS03℄ Pierre-Antoine Champin and Christine Solnon. Measuring the similarity of labeled graphs. In5th International Conferene on Case-Based Reasoning (ICCBR 2003), volume Leture Notesin Arti�ial Intelligene Nu. 2689 - Springer-Verlag, pages 80�95, 2003.[DLSM04℄ Paul T. Darga, Mark H. Li�ton, Karem A. Sakallah, and Igor L. Markov. Exploiting struturein symmetry detetion for nf. DAC, pages 530�554, 2004.[For96℄ Sott Fortin. The graph isomorphism problem. Tehnial report, Dept of Computing Siene,Univ. Alberta, Edmonton, Alberta, Canada, 1996.[FSV01℄ Pasquale Foggia, Carlo Sansone, and Mario Vento. A performane omparison of �ve algo-rithms for graph isomorphism. In 3rd IAPR-TC15 Workshop on Graph-based Representationsin Pattern Reognition, pages 188�199. Cuen, 2001.[GJ79℄ Mihael R. Garey and David S. Johnson. Computers and Intratability : A Guide to TheTheory of NP-Completness. W.H. Freeman, San Franiso, 1979.[HSD92℄ Pasal Van Hentenryk, Helmut Simonis, and Mehmet Dinbas. Constraint satisfation usingonstraint logi programming. Arti�ial Intelligene, 58(1-3):113�159, 1992.[HW74℄ John E. Hoproft and Jin-Kue Wong. Linear time algorithm for isomorphism of planar graphs.
6th Annu. ACM Symp. theory of Comput., pages 172�184, 1974.[ILO00℄ ILOG,S.A. ILOG Solver 5.0 User's Manual and Referene Manual. 2000.[LO00℄ François Laburthe and OCRE. CHOCO: implementing a CP kernel. In Pro. of the CP'2000workshop on tehniques for implementing onstraint programming systems, Singapore, 2000.[Luk82℄ Eugene M. Luks. Isomorphism of graphs of bounded valene an be tested in polynomial time.Journal of Computer System Siene, pages 42�65, 1982.[MG79℄ James J. MGregor. Relational onsisteny algorithms and their appliations in �nding sub-graph and graph isomorphisms. Information Siene, 19:229�250, 1979.[MK81℄ Brendan D. MKay. Pratial graph isomorphism. Congressus Numerantium, 30:45�87, 1981.[Pug05℄ Jean-François Puget. Automati detetion of variable and value symmetries. In Priniplesand Pratie of Constraint Programming - CP 2005, volume 3709, pages 475�489, 2005.18

[Rég95℄ Jean-Charles Régin. Développement d'Outils Algorithmiques pour l'Intelligene Arti�ielle.Appliation à la Chimie Organique. PhD thesis, Univ. Montpellier II, 1995.[SD76℄ Douglas Shmidt and Larry Dru�el. A fast baktraking algorithm to test direted graphsfor isomorphism using distane matries. Journal of the ACM (JACM), 23(3):433�445, July1976.[SS04℄ Sébastien Sorlin and Christine Solnon. A global onstraint for graph isomorphism problems.In the 6th International Conferene on Integration of AI and OR Tehniques in ConstraintProgramming for Combinatorial Optimisation Problems (CP-AI-OR 2004), pages 287�301.Springer-Verlag, Avril 2004.[SS07℄ Sébastien Sorlin and Christine Solnon. A new �ltering algorithm for the graph isomorphismproblem, April 2007. Contribution to the hapter "Constraint Propagation and Implementa-tion" of the book "Trends in Constraint Programming" edited by Frédéri Benhamou, Naren-dra Jussien and Barry O'Sullivan, pages 103-107, ISTE Publisher.[Tsa93℄ Edward Tsang. Foundations of Constraint Satisfation. Aademi Press, 1993.[Ull76℄ Je�rey D. Ullman. An algorithm for subgraph isomorphism. Journal of the Assoiation ofComputing Mahinery, 23(1):31�42, 1976.[ZDD06℄ Stéphane Zampelli, Yves Deville, and Pierre Dupont. Elimination des symétries pourl'appariement de graphes. In Laurent Henoque, editor, JFPC'06, Deuxièmes Journées Fran-ophones de Programmation par Contraintes, pages 357�367, 2006.[ZDS+07℄ S. Zampelli, Y. Deville, C. Solnon, S. Sorlin, and P. Dupont. Filtering for subgraph isomor-phism. In Priniples and Pratie of Constraint Programming (CP'2007), number 4741 inLNCS, pages 728�742. Springer, 2007.

19

