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Abstract We characterize a system consisting of a two-mode waveguide cou-
pled to a single-mode microring resonator possibly presenting a nonlinear re-
sponse of Kerr type. By using the scattering parameter formalism extended
to the multimode domain, we show that in the linear regime and for an ide-
ally transparent medium, each resonance of the system can be exploited to
perform complete even-to-odd (respectively, odd-to-even) modal conversion.
Moreover, when the Kerr nonlinearity is effective, the microring enables a
power-dependent modal switching mediated by phase bistability. Thanks to
its mode-processing capabilities, this configuration is suitable to find appli-
cation as a functional building-block in mode-division multiplexing (MDM)
photonic integrated circuits.

Keywords Mode Division Multiplexing · Optical Networks on Chip
(ONoCs) · Silicon photonics · Scattering parameters · Nonlinear resonators ·
Bistability

1 Introduction

A deep research effort is currently carried out by academic and industrial lab-
oratories toward the integration on a same technological substrate of both
microelectronic and photonic devices. In fact, as energy issues affect progres-
sively the scalability of high-performance multi-core microprocessor architec-
tures, the implementation of optical links (Optical Network-on-Chip - ONoC)
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between computational cores is foreseen as a possible way to reduce the over-
all microprocessor power consumption while increasing at the same time the
transmission bandwidth and data throughput (see [9], [1], [16] and references
therein). The large majority of ONoCs solutions proposed in the literature
rely for their operation on wavelength-division Multiplexing (WDM). WDM
channels are easily routed, switched and multiplexed by means of functional de-
vices, such as microring resonators [12], [17], [10] or Mach-Zehnder interferom-
eters [23], [22], which are relatively easy to integrate on silicon photonic chips.
The on-chip exploitation of WDM-based communication strategies implies the
availability of silicon-compatible laser sources, eventually multi-wavelength.
Although some recent remarkable fabrications have confirmed the technolog-
ical feasibility of silicon photonic transceivers including III-V bonded laser
sources [27], the integration of active cavities on silicon remains a challenging
task, with the existing technological solutions providing contrasting perfor-
mance in terms of available optical power, electric-to-optical power conversion
efficiency and footprint. To reduce the number of sources or, in a comple-
mentary way, to optimize the use of the available ones, a possible solution
relies on the exploitation of a further dimension inherent to optical communi-
cations, namely the modal order [11]. In mode-division multiplexing (MDM)
techniques, communication channels are allocated on the same wavelength to
the various propagation modes of a multi-mode waveguide. Therefore, used in
conjunction with WDM, MDM can potentially increase the aggregate commu-
nication bandwidth of an optical link [7] and add a further degree of freedom
for the design of on-chip integrated optical systems.
The implementation of a complete MDM on-chip interconnection system re-
quires the definition of a full range of new functional building-blocks able to se-
lectively process optical signals with respect to the spatial (modal) dimension.
Such functional blocks may include add-drop mode multiplexers [5] [24], mode-
selective routers [18] and mode-exchangers. These last, in particular, play a
key role as they can enable transparent reconfigurability of the transmission
paths within the mode-multiplexed network. Different possible schemes en-
abling mode-exchange have been recently experimentally demonstrated in lit-
erature [19], [26]. In this work we specifically focus on a configuration consisting
of a two-mode waveguide coupled to a single-mode resonator eventually pre-
senting a nonlinear response of the Kerr type. Here, the mode-conversion func-
tionality relies on the presence of the side-coupled resonator that, by breaking
the invariance of the system, allows a power exchange between the even and
odd modes of the two-mode waveguide, which would otherwise be orthogo-
nal. Moreover, the possible presence of a nonlinear cubic (Kerr) response in
the microring entails a dependence of the mode-conversion effect on the sig-
nal power through a bistable dynamic [4], [14], [6], [15]. A compact analytical
expression for the transfer function of this configuration, providing also a full
insight on its nonlinear behavior, is derived by observing that a multimode
propagation can be interpreted as a coupling problem between single-mode
fields. By exploiting this consideration, the scattering-parameter formalism,
typically adopted for the dimensioning of single-mode devices and circuits,
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Fig. 1 Schematic representation of the system under investigation, consisting of a two-
mode waveguide (WG) and a single-mode racetrack microring resonator (MRR) of total
perimeter L, which are evanescent coupled over a distance d.

can be extended to also model multi-mode configurations. The article is orga-
nized as follows: In Section (2) the system configuration is presented, together
with the definition of the relevant governing parameters. In Section (3), the
formal equivalence between a two-mode waveguide and a system of two cou-
pled single-mode waveguide is outlined. In Section (4) the interaction zone
between the two-mode waveguide and the microring resonator is described in
terms of a ternary single-mode directional coupler. In Section (5) the modal
transfer function of the entire system is established in a compact matrix form.
Finally, in Section (6), the investigation is extended to the nonlinear domain
by introducing a Kerr response in the microring resonator. Conclusions and
perspectives are drawn at the end.

2 System layout and governing parameters

The system under investigation consists of a two-mode waveguide (WG), cou-
pled to a single-mode racetrack microring resonator (MRR) of total perimeter
L, as depicted in Fig. 1. Evanescent coupling between the two-mode waveguide
and the single-mode microring takes place along an interaction zone of total
length d. For the sake of clarity, we limit the discussion to a single eigenstate
of polarization, either TE or TM, so that each mode can be represented by an
associated scalar value. The time dependence is taken as exp(+iωt) and z is
the direction of propagation in the straight waveguide. The two-mode waveg-
uide is dimensioned to guide a fundamental mode with even symmetry and
a first-order mode with odd symmetry, both characterized by their respective
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propagation constants βeven and βodd, with βeven > βodd. We consider here a
device designed to perform on-chip optical signal processing on a CMOS com-
patible platform, therefore we identify the even and odd modes as the TE0

and the TE1 modes of a multi-mode silicon on insulator (SOI) waveguide.
In order to derive for this system an analytical input-output relation under
the form of a scattering (Jones-like) matrix, we exploit the equivalence that
can be established between a two-mode waveguide and a set of two coupled
single-mode waveguides [2], as will be detailed in the next section.

3 Equivalence between a two-mode waveguide and a symmetric

single-mode coupler

In the framework of coupled-mode theory (CMT) [25], [20], the periodic power
exchange that takes place in a symmetric coupler between two single-mode
waveguides separated by a distance g, such as the one schematized in Fig. 2(A),
can be interpreted as a pattern resulting from the simultaneous propagation
of the even and odd super-modes of the structure. The common propaga-
tion constant β of the two single-mode waveguides, and their mutual coupling
strength χ, can be related to the propagation constant βeven, and βodd of the
two super-modes by the following exact relations:

β =
βeven + βodd

2
, (1)

χ =
βeven − βodd

2
. (2)

In the limiting case of a vanishing gap (g = 0), the even and odd super-modes
of the coupler progressively converge toward the fundamental (even-symmetry)
and first order (odd-symmetry) modes of a two-mode waveguide, as illustrated
in Fig. 2(B). This allows us to say that a two-mode waveguide can also be
thought of as a system of two tightly coupled single-mode waveguides, in which
the gap distance has collapsed to zero [2]. Moreover, from the knowledge of
the propagation constants of the even and odd modes (the TE0 and TE1 ones
in the SOI case), and by exploiting Eqs. (1) and (2), it is straightforward to
establish an equivalent description for the two-mode waveguide involving only
two single-mode structures, as will be detailed in the subsequent sections.

4 Scattering matrix model of the coupling section

By exploiting the formal equivalence outlined in the previous section, the cou-
pling zone between ring and two-mode waveguide of the initial configuration,
as depicted in Fig. 3(A), can be substituted with an asymmetric ternary cou-
pler between three single-mode waveguides, as represented in Fig. 3(B). In
this equivalent framework, WG1 is the waveguide belonging to the microring
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Fig. 2 The even (blue) and odd (red) supermodes of a symmetric coupler between two
single-mode waveguides (A) characterized by the same propagation constant β and ex-
changing power with a coupling coefficient χ, converge towards the even and odd modes of
a two-mode waveguide (B) as the gap g progressively vanishes. Conversely, any two mode
waveguide can therefore be interpreted as a symmetric single-mode coupler with g = 0.

resonator, while WG2 and WG3 are the two new single-mode waveguides re-
sulting from the decomposition of the original two-mode section.
According to Eqs. (1) and (2), the common propagation constant of both WG2

and WG3 is β = (βeven + βodd) /2 and their mutual coupling coefficient is
χb = (βeven − βodd) /2, βeven and βodd being the propagation constants of the
even and odd modes of the initial two-mode waveguide, respectively. More-
over, for the sake of simplicity, we assume perfect phase matching between
the microring and the decomposed single-mode waveguides, so WG1 shares
the same propagation constant β. The interaction between the microring res-
onator (WG1) and WG2 is accounted for by a second coupling coefficient χa.
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We further assume that coupling takes place only between neighboring waveg-
uides (i.e. no direct coupling between WG1 and WG3)

1.
We define F1, F2 and F3 as the waves propagating in the three waveguides,
with:

F1(0) = a1 (3a)

F2(0) = a2 (3b)

F3(0) = a3, (3c)

and

F1(d) = b4 (4a)

F2(d) = b5 (4b)

F3(d) = b6, (4c)

so that an (respectively bn) represents the complex amplitude of the wave
entering into (respectively coming out of) the n-th port of the ternary coupler
of length d. The propagation of Fn waves within the ternary coupler (assuming
the WG1 ring waveguide to be open) obeys the following matrix equation:

i
∂

∂z





F1

F2

F3



 =





β χa 0
χa β χb

0 χb β









F1

F2

F3



 . (5)

It is more convenient to work in the framework of the slowly-varying envelopes
An, with Fn = An exp(−iβz) and to define two new parameters χ =

√

χ2
a + χ2

b

and α, such as:

χa = χ sin (α) (6a)

χb = χ cos (α) . (6b)

Since the coupling strength between the microring and the two-mode waveg-
uide is weaker than the coupling strength between the two propagating modes
inside the two-mode waveguide (in the even-odd supermodes framework), we
can assume χa ≤ χb with α ∈ [0, π/4]. Eq. (5) can be rewritten under the
following form:

i
∂

∂z





A1

A2

A3



 = χ





0 sinα 0
sinα 0 cosα
0 cosα 0









A1

A2

A3



 (7)

Taking Eq. (7) as a starting point, we follow a standard diagonalization pro-
cedure of the operator to derive its eigenvalues and eigenvectors. After some

1 By means of simple analytical evaluations made on slab waveguides, one can quickly
verify the validity of this assumption, as long asWG1 remains reasonably far from the system
made by WG2 +WG3. In fact, given the transverse power distribution of the modes in this
configuration, the overlap integral between WG1 and WG3 (which is roughly proportional
to the coupling constant) appears to be vanishingly smaller than the one between WG1 and
WG2.
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Fig. 3 The initial configuration of the system (A) is described by the even and odd mode
amplitudes at the input (aeven, aodd) and output (beven, bodd) ports. After substitution of
the two-mode waveguide with an equivalent coupler between two single-mode ones, the in-
teraction zone highlighted by the green-dotted rectangle is modelled as a ternary directional
coupler between three single-mode waveguides (WG1,WG2 and WG3) which share the
same propagation constant β. Coupling is supposed to take place only between neighboring
waveguides with strength χa between WG1 and WG2 and strength χb between WG2 and
WG3.
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calculations, we obtain eventually the following scattering matrix represen-
tation, which relates the complex field amplitudes an and bn of the ternary
coupler on the initial (z = 0) and final (z = d) sections, respectively:





b4
b5
b6



 = e−iβd





ρ −i κ X
−i κ τ −i κ′

X −i κ′ ρ′









a1
a2
a3



 , (8)

where we define the following parameters:

θ = χd, (9a)

ρ = sin2α cos θ + cos2α, (9b)

κ = sinα sin θ, (9c)

X = sinα cosα (cos θ − 1), (9d)

τ = cos θ, (9e)

ρ′ = cos2α cos θ + sin2α, (9f)

κ′ = cosα sin θ, (9g)

Beside this, it can also be checked that 1 − ρ = ρ′ − τ = sin2α (1 − cos θ),
which will be useful in the calculations of Section 5.
It must be observed that an equivalent matrix expression for the coupler could
have been derived starting from a different basis set, namely the one explicitly
dealing with even and odd mode amplitudes in the two-mode waveguide. How-
ever, our reference system made of single mode waveguides makes the ternary
coupler simpler to model, as detailed in Appendix (A) .

5 Modal transfer function of the system

By operating a substitution of the two-mode waveguide with its equivalent
single-mode representation, we have derived the scattering matrix (8) which
describes the mode-amplitude evolution within the ternary coupler, assuming
the WG1 waveguide to be open. A matrix expression accounting also for the
presence of the microring (WG1 closed on itself) can be derived by observing
that:

a1 = b4γe
−iβ(L−d), (10)

where γ is the propagation loss factor over the distance (L− d).
By introducing Eq. (10) in Eq. (8), we obtain the following (2× 2) matrix
expression:

(

b5
b6

)

=

(

A −i B
−i B C

)(

a2
a3

)

, (11)
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which links directly the (a1, a2) and (b5, b6) mode amplitudes. The elements
in 11 are:

A = e−iβd

(

τ − κ2 γe−iβL

1− ρ γe−iβL

)

, (12a)

B = e−iβd

(

κ′ + κX
γe−iβL

1− ρ γe−iβL

)

, (12b)

C = e−iβd

(

ρ′ +X2 γe−iβL

1− ρ γe−iβL

)

. (12c)

For the sake of clarity, we stress again that Eq. (11) relates the field amplitude
on the z = 0 and z = d sections of the ternary coupler, when WG1 is closed
on itself (closed loop) in the framework where the two-mode waveguide is
interpreted as a system of two tightly coupled single-mode waveguides. In
order to switch back to the initial even-odd mode amplitude representation,
the following rotation matrices can be straightforwardly applied to Eq. (11):

(

beven
bodd

)

=

√
2

2

(

1 1
−1 1

)(

b5
b6

)

, (13a)

(

a2
a3

)

=

√
2

2

(

1 −1
1 1

)(

aeven
aodd

)

, (13b)

leading to the matrix expression:
(

beven
bodd

)

= [J]

(

aeven
aodd

)

=
1

2

(

A+ C − 2i B −A+ C
−A+ C A+ C + 2i B

)(

aeven
aodd

)

,

(14)
which relates the even/odd mode amplitudes between the z = 0 and z = d
sections of the device. The explicit form for the elements of [J ] reads as:

J11 =
e−iβd

2

(

ρ′ + τ − 2i κ′ +
γe−iβL

D
(X − i κ)2

)

, (15a)

J12 = J21 =
e−iβd

2

(

ρ′ − τ +
γe−iβL

D
(X2 + κ2)

)

, (15b)

J22 =
e−iβd

2

(

ρ′ + τ + 2i κ′ +
γe−iβL

D
(X + i κ)

2

)

, (15c)

where D = 1 − ρ γe−iβL is a common denominator factor characterizing the
microring. As the elements of the matrix J depend on the spectral parameter
β, the degree of mode mixing produced by the system depends intrinsically on
the working wavelength. In the specific case of a transparent microring (γ = 1)
and for wavelengths corresponding to one of the resonances of the microring
[exp(−iβL) = 1], since D = 1− ρ the elements of J reduce to:

J11 = J22 = 0, (16a)

J12 = J21 = e−iβd. (16b)
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The matrix J has therefore an anti-diagonal structure, thus enabling a com-
plete even-odd (odd-even) cross-coupling between the modes as they transit
through the system. More explicitly, an even (odd) mode incident on the in-
put port (section z = 0) is transmitted to the output port (section z = d) as
an odd (even) one. Conversely, on the anti-resonance wavelengths, for which
[exp(−iβL) = −1], the vanishing terms of the matrix J are the anti-diagonal
ones (J12 = J21 = 0) and any incident modal state is transmitted unchanged
as a result of the diagonal shape of J . In Fig. (4) are presented the evo-
lutions of the beven (thick blue line) and bodd (thin red line) output mode
amplitudes calculated directly through Eq. (14) as a function of the param-
eter βL in the range [−3π, 3π] in the case of a pure even mode excitation
on the input port (aeven = 1, aodd = 0). As expected, on each of the micror-
ing resonances [where (βL = 2qπ), with q integer], the even mode power
on the input port is completely converted to the odd mode on the output
port (bodd = 1) while on the anti-resonances [where (βL = (2q + 1)π)] no
conversion takes place. Moreover, between resonance and anti-resonance con-
ditions, an intermediate degree of mode mixing is achievable. We also observe
that, following the assumption of a transparent media, the total power carried
by even and odd modes is conserved through the passage within the system
(|aeven|2 + |aodd|2 = |beven|2 + |bodd|2 = const), the only change concerns the
modal repartition.
In view of the forthcoming nonlinear modelling, it is useful to derive a closed
expression for the field amplitude b4 inside the resonator as a function of the
mode amplitudes a2 and a3:

b4 = e−iβd

(−i κ a2 +X a3
1− ρ γe−iβL

)

, (17)

or, alternatively, as a function of the even/odd input mode amplitudes:

b4 = aeven

√
2

2
e−iβd

(

X − i κ

1− ρ γe−iβL

)

+ aodd

√
2

2
e−iβd

(

X + i κ

1− ρ γe−iβL

)

, (18)

The power carried by the system depends on the possible coherence between
the even and odd modes. If these are mutually incoherent, then the internal
power is reduced to the mere sum of the even and odd contributions. Moreover,
as a result of the phase quadrature between factors X and iκ, both even and
odd modes are equally coupled into the ring.

6 Nonlinear regime

6.1 Phase bistability and mode conversion

In the previous sections of this work, we have derived a matrix expression
relating the amplitudes of the even/odd modes at the input-output ports of the
device and we have shown that, under particular conditions, this system can
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Fig. 5 Investigated configuration in the nonlinear Kerr domain; the coupling zone of length
d is supposed to be linear.

act as an ideal mode converter. We now extend our discussion by considering
a microring resonator presenting a nonlinear response of the Kerr type, as
schematically shown in Fig. 5. We assume (i) the nonlinear zone perfectly
matched at both ends, so that the whole system remains unidirectional and
(ii) that the coupling zone of length d is still linear. For the sake of clarity, we
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consider a strictly even input mode on the left port of the device (aodd = 0),
and a purely loss-less microring (γ = 1).
The Kerr medium introduces an additional nonlinear phase shift which is
proportional to the field power |b4|2 circulating in the microring. It is useful
to introduce the reduced (dimensionless) quantity:

Yint =
|b4|2

PNORM

, (19)

normalized with respect to a term PNORM chosen in such a way that the
total internal phase shift ϕ in the microring (comprehensive of both linear and
nonlinear contributions) could be expressed as:

ϕ = ϕlin + 2π Yint. (20)

By defining Ye = |aeven|2 /PNORM as the reduced input power for the (even)
excitation, the power within the ring Yint reads as:

Yint = Ye K0A (ϕ) , (21)

where K0 is a coupling factor that depends only on the coupler characteristics:

K0 =
|X − iκ|2

2 (1− ρ)
2 =

1

2

(

1 + ρ

1− ρ

)

, (22)

and A (ϕ) is a normalized comb-like Airy function

A (ϕ) =
1

1 +m sin2 (ϕ/2)
, (23)

whose spectral selectivity depends on the parameter m

m =
4ρ

(1− ρ)
2 . (24)

We would like to emphasize that, for a given reduced input power Ye, neither
the microring internal power Yint nor the total phase shift ϕ are known quan-
tities, this being the nonlinear nature of the problem. To determine Yint and
ϕ in a self-consistent way, we need to suitably rewrite the expressions (20)
and (21) in order to put in evidence their simultaneous dependence on the
unknown parameter ϕ:

Yint

Ye

= K0A (ϕ) , (25a)

Yint

Ye

=
ϕ− ϕlin

2π Ye

. (25b)

The right-hand term of Eq. (25a) has the form of a comb-like Airy function,
while the right-hand term of Eq. (25b) describes a family of straight lines
whose slope is inversely proportional to Ye.
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Fig. 6 RHS (red solid line) and LHS (green solid line) of Eq. (26) traced against the
nonlinear phase shift ϕ. Here the parameters of the system are: χa=χb=0.6, d = 1, L = 20,
aeven = 1 and aodd = 0.

By equating (25a) and (25b) we get the following expression in the unknown
total phase shift ϕ:

K0

1 +m sin2 (ϕ/2)
=

ϕ− ϕlin

2πYe

, (26)

whose solution(s) as a function of Ye can be found either graphically [3] or
numerically. Moreover, if the microring resonances are sharp enough to be
assimilated to Lorentzian functions, these solutions can be also derived ana-
lytically as the roots of a third order algebraic equation (see Appendix B). The
system behavior as a function of the reduced input power Ye can be assessed
by referring to Fig. 6, where the left-hand side (LHS) and the right-hand side
(RHS) of Eq. (26) are plotted separately against the unknown total phase shift
ϕ. Intersection points between RHS and LHS represent the graphical solutions
of Eq. (26) and their projections of on the x-axis give directly the total phase
shift values associated to the different input powers Ye. For lower input power
(Ye = Y1), the RHS straight line intersects the LHS curve only in (a) and
its projection on the x-axis identifies the total phase shift of the microring
in the quasi linear regime (ϕ = ϕlin). When the input power Ye is increased
(Ye = Y2), the slope of the RHS line decreases progressively until intersecting
the LHS curve simultaneously in (b) and (c). In this conditions Eq. (26) admits
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arrows, the system evolves from the working point (a) (microring off-resonance, no mode
conversion) to the working point (c) (microring on resonance, complete mode conversion).
The system parameters are the same as in Fig. 6

two possible solutions which entail a bistable behavior. A further input power
increase (Ye = Y3) makes the system evolve toward further solution points
(d, e) thus tracing a complete hysteresis loop. It is now important to observe
that the intersection point (c) lies exactly on the peak of the RHS function,
and that the total phase shift associated to this solution is ϕ = 2π. In this
specific working point the microring is in a resonance condition and the ma-
trix J has, consequently, a diagonal structure which enables a complete mode
conversion. A possible functionalization of such a system is clearly a nonlinear
mode switch (or modal commutator). In fact, if the linear working point is
initially set to an anti-resonance of the microring (ϕ = ϕlin = π), as the input
power Ye of the mode is increased, the system is led from an initial condition
where no mode conversion takes place (J in diagonal form), to a condition of
complete mode conversion (J in anti-diagonal form). More explicitly, an even
(odd) mode tuned to an anti-resonance in the linear limit, would switch to an
odd (even) mode as the system is progressively driven through its hysteresis
cycle. The bistable nature of the system is clearly revealed in Fig. 7, where the
values of the total phase shift ϕ (blue solid line) are traced for increasing values
of the reduced (even-mode) input power Ye. On the same curve, also the solu-
tion points (a),(b),(c),(d) and (e) previously discussed in Fig. 6 are reported.
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As one can note, by following with the input power Ye the path highlighted by
the red dashed line, the system can be led from the point (a), corresponding to
a condition of mode decoupling (no mode conversion), to the point (c) where
the mode conversion is complete, thus confirming the potential applicability
of this configuration as a power-controlled mode switcher/converter.

6.2 Relation between Q-factor and mode-conversion power level

For a practical implementation of the device, it is useful to assess the de-
pendence between the microring quality factor Q, which finally quantifies the
maximum possible bandwidth of the signal to be processed, and the input
power level Ye of the point (c) where mode conversion takes place.
By observing Fig. (6), one can note that the (c) point has Cartesian coor-
dinates (x, y) = (2qπ,K0) with q integer, and that on each of the microring
resonances (for which ϕ = 2qπ), the value of the corresponding reduced input
power can be directly derived by simple inversion of Eq. (26):

Ye =
2qπ − ϕlin

K0
= (4qπ − 2ϕlin)

(

1− ρ

1 + ρ

)

, (27)

in which the explicit dependence from the ρ parameter is obtained through
Eq. (22).
As long as m is high enough to have well defined Lorentzian lineshapes, also
the quality factor Q of the resonator is linked to the coupling coefficient ρ
through the following relation:

Q =
ϕ0

2

( √
ρ

1− ρ

)

= qπ

( √
ρ

1− ρ

)

, (28)

where ϕ0 = 2qπ is the actual phase of the resonance peak chosen as working
point.
It should now be remembered that ρ represents the fraction of field which is re-
injected in the ring at each loop (Eq. 8), therefore, an increase (decrease) of ρ
produces an increase (decrease) of the K0 and Q parameters via Eqs. (22),(28)
with a corresponding decrease (increase) through Eq. (27) of the Ye reduced
point corresponding to the (c) point, as graphically evidenced in Fig. (8). As
the ρ coefficient approaches progressively to unity, the quality factor Q grows
towards infinity with a consequent enhancement of the nonlinear effect at the
expenses of a reduced available bandwidth for signal transmission. This dy-
namic is therefore typical of resonant systems encompassing third order (Kerr)
effects, as already evidenced in literature at both analytical and experimental
levels [13], [21], [8].

7 Conclusions

In summary, we have established the scattering matrix model of a two-mode
waveguide coupled to a single-mode racetrack ring resonator, in both linear
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Fig. 8 Evolution of microring quality factor Q (red solid line) and reduced power level Ye

(blue solid line) enabling mode conversion, as a function of the coupling parameter ρ. The
parameters of the system are the same as in Fig. 6.

and nonlinear Kerr regimes. The presence of the microring breaks the intrinsic
even/odd symmetry of the two-mode waveguide, thus enabling mode mixing.
In the loss-less case, energy can be totally transferred from even to odd modes
and vice versa, provided to operate on a resonance wavelength of the micror-
ing. The system can therefore act as a mode converter. We have also derived
the analytical expression for the internal field of the microring and, when Kerr
nonlinearity is effective, we have demonstrated mode-switching associated with
ring phase bistability. One key hypothesis of our model relies on the existence
of a phase matching condition between the microring propagation constant β
and the average value (βeven + βodd)/2 of the propagation constants of the
even and odd modes in the two-mode waveguide. This condition gives rise
to a particularly simple and compact form for the ternary coupler scattering
matrix. When relaxing this constraint on β, a scattering matrix representa-
tion for the ternary coupler can be still derived analytically, but the detailed
calculation proves to be too cumbersome to be presented in the frame of this
work. Nevertheless, the main symmetries of the matrix are preserved, so that
the main conclusions remain essentially the same, except for a slight shift of
the resonant frequencies of the system.
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A Considerations on the choice of the modal basis

In Section 4, the matrix expression for the coupler has been obtained by treating the
two-mode waveguide (TMWG) as a system of mutually coupled single-mode waveguides
(SMWG), thus obtaining a description of the field evolutions in the fully single-mode
basis {e1, e2, e3}, where en denotes the unit (normalized) vector associated to the mode
propagating in the n-th single-mode channel. A possible alternative basis is the one using
{e1, eeven, eodd}, in which eeven (resp. eodd) denotes the even (resp. odd) amplitudes of the
modes in the two-mode waveguide (see Fig. 3). Within this alternative hybrid single/multi-
mode framework, the evolution equation takes the following form:

i
∂

∂z





F1

Feven

Fodd



 =





β χ1e χ1o

χ1e βeven 0
χ1o 0 βodd









F1

Feven

Fodd



 , (29)

where β denotes, as previously, the propagation constant of the upper SMWG, and βeven

(resp. βodd) stands for the propagation constant of the even (resp. odd) mode in the lower
TMWG. As far as coupling constants are concerned, we need an expression for both χ1e

(between mode 1 and mode even) and χ1o (between mode 1 and mode odd). This means
two degrees of freedom for a complete description of the coupler. Besides, thanks to their
intrinsic orthogonality, no direct coupling between the even and odd modes needs to be
accounted for.
On the other hand, within the framework exploited in Section (4), the TMWG is treated as
a system of two mutually coupled SMWG interacting with the upper SMWG, the coupling
being always limited to the nearest neighbour(s). For the sake of algebraic simplicity, the
three SMWG are assumed identical, sharing therefore the same propagation constant β. The
upper (resp. lower) coupling constant is denoted χa (resp. χb). In this basis, according to
Eq. (5):

i
∂

∂z





F1

F2

F3



 =





β χa 0
χa β χb

0 χb β









F1

F2

F3



 . (30)

The complex amplitudes of the modes can be transformed from one basis into the other by
means of the following rotation matrices:




F1

Feven

Fodd



 =





1 0 0

0
√
2/2

√
2/2

0 −
√
2/2

√
2/2









F1

F2

F3



 ,





F1

F2

F3



 =





1 0 0

0
√
2/2 −

√
2/2

0
√
2/2

√
2/2









F1

Feven

Fodd



 .

(31)
As a result, we get eventually:

i
∂

∂z





F1

Feven

Fodd



 =





β χa/
√
2 −χa/

√
2

χa/
√
2 β + χb 0

−χa/
√
2 0 β − χb









F1

Feven

Fodd



 . (32)

Eq. (32) should be now compared with Eq. (30). Note that the three modes {e1, eeven, eodd}
do not propagate at the same velocity, and that the coupling between e1 and eeven has the
same magnitude (but not the same sign) as that between e1 and eodd. Not only do we
recover the (rather obvious) fact that βeven = β+χb and βeven = β−χb: by identification,
we also determine a compact expression for the coupling constants χ1e = −χ1o = χa/

√
2.

In other words, the approach dealing with single mode waveguides is simpler, as one less
degree of freedom is required. Moreover, a multimode propagation problem looks more
easily tractable and understandable in terms of coupled single-mode channels, thus giving
an alternative picture with an immediate physical insight.

B Intersection of a Lorentzian function with a straight line

If the microring resonances are sharp enough to be assimilated to Lorentzian functions, then,
with a suitable variable substitution, Eq. (26) can be recast into the following equivalent
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form:
1

x2 + 1
=

x+ a

K
⇔

(

x2 + 1
)

(x+ a) = K, (33)

modelling the intersection of a Lorentzian curve with a straight line of horizontal intercept
(anchor point) a and its inverse slope K, as depicted in Fig. 9.
Eq. (33) is polynomial equation of the third-order, which is algebraically solvable by means
of the Cardano’s formula, and whose roots are parametrized by a and K. By operating the
substitutions: b = (a/3), z = x+ b, p′ = −b2 + (1/3) and q′ = b3 + b− (K/2), Eq. (33) can
be recast into its reduced cubic form:

z3 + 3p′z + 2q′ = 0, (34)

which allows to investigate the nature of the roots more easily. More specifically, Eq. (33)
admits three real (physical) solutions only if the factor:

R = (p′)3 + (q′)2 =
(

K ′
)2 − 2K ′b

(

b2 + 1
)

+
18b2 + 1

27
, K ′ = K/2 (35)

is strictly negative (R < 0).
The condition on the negative sign for R is fulfilled only if p′ < 0, that is if a >

√
3.

Therefore, in order to have R < 0 and thus three real solutions, the anchor point a of the
straight line must be located well outside the Lorentzian line shape. This first condition on
a being assured, the factor R is negative for values of the reduced slope K ′ lying within
the two roots of the polynomial (35). The explicit values for these roots can be evaluated
through the reduced discriminant:

∆′ = b2
(

b2 + 1
)

− 18b2 + 1

27
, (36)

which is a quantity unconditionally positive since b > (1/3). The two roots K ′

1,2 of (35) are

finally: K ′

1,2 = b
(

b2 + 1
)

±
√
∆′.

To summarize, for a given detuning a >
√

(3), the bistability range of the system described
by Eq. (33) corresponds to the zone where the reduced slope K ′ lies between the two roots
K1,2 of (35), where R < 0.
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third-order nonlinearity effects in very high-q wgm resonator cavity ringdown spec-



20 Yann G. Boucher et al.

troscopy. J. Opt. Soc. Am. B 32(3), 370–378 (2015). DOI 10.1364/JOSAB.32.000370.
URL http://josab.osa.org/abstract.cfm?URI=josab-32-3-370

14. Rukhlenko, I.D., Premaratne, M., Agrawal, G.P.: Analytical study of optical bistability
in silicon ring resonators. Opt. Lett. 35(1), 55–57 (2010). DOI 10.1364/OL.35.000055.
URL http://ol.osa.org/abstract.cfm?URI=ol-35-1-55

15. Sarid, D.: Analysis of bistability in a ring-channel waveguide. Opt. Lett. 6(11), 552–553
(1981). DOI 10.1364/OL.6.000552. URL http://ol.osa.org/abstract.cfm?URI=ol-6-11-
552

16. Shacham, A., Bergman, K., Carloni, L.: Photonic Networks-on-Chip for Future Gener-
ations of Chip Multiprocessors. Computers, IEEE Transactions on 57(9), 1246–1260
(2008). DOI 10.1109/TC.2008.78

17. Sherwood-Droz, N., Wang, H., Chen, L., Lee, B.G., Biberman, A., Bergman, K.,
Lipson, M.: Optical 4Ö4 hitless silicon router for optical Networks-on-Chip (NoC).
Opt. Express 16(20), 15,915–15,922 (2008). DOI 10.1364/OE.16.015915. URL
http://www.opticsexpress.org/abstract.cfm?URI=oe-16-20-15915

18. Stern, B., Zhu, X., Chen, C.P., Tzuang, L.D., Cardenas, J., Bergman,
K., Lipson, M.: On-chip mode-division multiplexing switch. Op-
tica 2(6), 530–535 (2015). DOI 10.1364/OPTICA.2.000530. URL
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-2-6-530

19. Sun, C., Yu, Y., Chen, G., Zhang, X.: Integrated switchable mode exchange for recon-
figurable mode-multiplexing optical networks. Opt. Lett. 41(14), 3257–3260 (2016).
DOI 10.1364/OL.41.003257. URL http://ol.osa.org/abstract.cfm?URI=ol-41-14-3257

20. Tamir, T.: Guided-Wave Optoelectronics. Springer-Verlag New York (1988)
21. Treussart, F., Ilchenko, V., Roch, J.F., Hare, J., Lefèvre-Seguin, V., Raimond, J.M.,
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