
HAL Id: hal-01500313
https://hal.science/hal-01500313

Submitted on 3 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining two pheromone structures for solving the car
sequencing problem with Ant Colony Optimization

Christine Solnon

To cite this version:
Christine Solnon. Combining two pheromone structures for solving the car sequencing problem with
Ant Colony Optimization. European Journal of Operational Research, 2008, 3, 191, pp.1043-1055.
�10.1016/j.ejor.2007.04.037�. �hal-01500313�

https://hal.science/hal-01500313
https://hal.archives-ouvertes.fr

Combining two Pheromone Structures for

Solving the Car Sequencing Problem with Ant

Colony Optimization

Christine Solnon

LIRIS CNRS UMR 5205, University of Lyon I
Nautibus, 43 Bd du 11 novembre, 69622 Villeurbanne cedex, France

Abstract

The car sequencing problem involves scheduling cars along an assembly line while
satisfying capacity constraints. In this paper, we describe an Ant Colony Opti-
mization (ACO) algorithm for solving this problem, and we introduce two different
pheromone structures for this algorithm: the first pheromone structure aims at learn-
ing for “good” sequences of cars, whereas the second pheromone structure aims at
learning for “critical” cars. We experimentally compare these two pheromone struc-
tures, that have complementary performances, and show that their combination
allows ants to solve very quickly most instances.

Key words: Ant Colony Optimization, Car Sequencing Problem, Multiple
Pheromone Structures
PACS:

1 Introduction

The car sequencing problem involves scheduling cars along an assembly line
in order to install options (e.g., sun-roof or air-conditioning) on them. Each
option is installed by a different station, designed to handle at most a certain
percentage of the cars passing along the assembly line, and the cars requiring
this option must be spaced so that the capacity of the station is never exceeded.

This problem is NP-hard [Kis04]. It has been formulated as a constraint sat-
isfaction problem (CSP), and is a classical benchmark for constraint solvers
[DSvH88,GW99,Tsa93]. Most of these CSP solvers use a complete tree-search

Email address: christine.solnon@liris.cnrs.fr (Christine Solnon).

Preprint submitted to Elsevier Science 19 March 2007

approach to explore the search space in a systematic way, until either a so-
lution is found, or the problem is proven to have no solution. In order to
reduce the search space, this approach is combined with filtering techniques
that propagate capacity constraints to reduce variables’ domains. In particu-
lar, a dedicated filtering algorithm has been proposed for handling capacity
constraints [RP97]. This filtering algorithm is very effective to solve some
hardly constrained feasible instances, or to prove infeasibility of some over-
constrained instances. However, on some other instances, it cannot reduce
domains enough to make complete search tractable.

More recently, [GGP04] has proposed an integer programming model where
the objective is to find a sequence that minimizes the number of violated con-
straints subject to a set of linear integer constraints. This approach makes it
possible to rather quickly find solutions to difficult instances that are feasible.
However, it requires much longer computation times for reaching best-known
solutions for infeasible instances.

Hence, different incomplete approaches have been proposed, that leave out
exhaustivity, trying to quickly find approximately optimal solutions in an op-
portunistic way, e.g., local search [DT99,LLW98,PG02,MH02,GPS03,EGN05],
large neighbourhood search [PS04], IDWalk [NTG04], evolutionary algorithms
[WT95], or Ant Colony Optimization [Sol00,GGP04].

1.1 Ant Colony Optimization

The basic idea of Ant Colony Optimization (ACO) [DD99,DCG99,DS04] is
to model the problem to solve as the search for a minimum cost path in
a graph, and to use artificial ants to search for good paths. The behavior
of artificial ants is inspired from real ants: artificial ants lay pheromone on
components (edges and/or vertices) of the graph and each ant chooses its path
with respect to probabilities that depend on pheromone trails that have been
previously laid by the colony; these pheromone trails progressively decrease
by evaporation. Intuitively, this indirect stigmergetic communication means
aims at giving information about the quality of path components in order to
attract ants, in the following iterations, towards the corresponding areas of
the search space. Indeed, for many combinatorial problems, a study of the
search space landscape shows a correlation between solution quality and the
distance to optimal solutions [JF95,MF99,SH00].

Artificial ants also have some extra-features that do not find their counterpart
in real ants. In particular, they are usually associated with data structures
that contain the memory of their previous actions, and they may apply some
“daemon” procedures, such as local search, to improve the quality of computed

2

paths. In many cases, pheromone is updated only after having constructed
a complete path, and not during the walk, and the amount of pheromone
deposited is usually a function of the quality of the complete path. Finally,
the probability for an artificial ant to choose a component often depends not
only on pheromones, but also on some problem-specific local heuristics.

The first ant algorithm to be applied to a discrete optimization problem has
been proposed by Dorigo in [Dor92]. The problem chosen for the first experi-
ments was the Traveling Salesman Problem and, since then, this problem has
been widely used to investigate the solving capabilities of ants [DMC96,DG97].
The ACO metaheuristic, described in [DD99,DCG99,DS04], is a generaliza-
tion of these first ant based algorithms, and has been successfully applied
to different hard combinatorial optimization problems such as quadratic as-
signment problems [GTD99,MC99], vehicle routing problems [BHS99,GTA99],
constraint satisfaction problems [Sol02a], maximum clique problems [SF06], or
graph matching problems [SSG05].

1.2 Motivations and overview of the paper

We have proposed in [Sol00] a first ACO algorithm dedicated to permuta-
tion constraint satisfaction problems —the solution of which is a permutation
of a given tuple of values. Performances of this algorithm have been illus-
trated, among other problems, on the car sequencing problem. In this first
ACO algorithm for the car sequencing problem, pheromone is laid on couples
of consecutive cars in order to learn for promising sequences of cars.

Then, in [GPS03], we have proposed and compared different heuristics for solv-
ing the car sequencing problem in a greedy randomized way. These heuristics
aim at favoring the choice of critical cars during greedy constructions of se-
quences: these critical cars require hardly constrained options and should be
sequenced as soon as possible. We have shown that this very simple greedy
approach is able to solve many instances very quickly. We have also shown
that these greedy heuristics can be integrated within the ACO algorithm of
[Sol00] in a very straightforward way.

These greedy heuristics are very efficient and greatly help ants to solve the car
sequencing problem. However, designing such problem-dependent heuristics is
a difficult task that requires a good knowledge of the problem to solve. Hence,
a main objective of this paper is to answer the following question:

Would it be possible to use ACO to identify these critical cars, and solve the
car sequencing problem without integrating problem-dependent heuristics?

To answer this question, we introduce a new pheromone structure, that aims

3

at identifying critical cars, and we compare it with the greedy heuristic of
[GPS03]. We also study the integration of this new pheromone structure with
the pheromone structure introduced in [Sol00] and that aims at identifying
promising sequences of cars.

The paper is organized as follows. Section 2 formally defines the car sequenc-
ing problem we are considering here. Section 3 recalls the basic features of
the greedy randomized approach of [GPS03]. Section 4 describes the first
pheromone structure introduced in [Sol00] and that aims at identifying promis-
ing sequences. Section 5 introduces a new pheromone structure that aims at
identifying critical cars and Section 6 shows how these two pheromone struc-
tures may be combined. We experimentally compare the different pheromone
structures and the greedy heuristic in Section 7, and we compare our results
with two recent state-of-the-art local search approaches in Section 8.

2 The Car Sequencing Problem

We consider here the classical car sequencing problem introduced in [DSvH88].
A complete description of this problem and some benchmark instances may
be found in CSPlib [GW99]. This problem is a special case of the car se-
quencing problem proposed by Renault for the ROADEF challenge in 2005
[NC05,SCNA07]. In particular, the challenge problem introduces two different
priority levels for capacity constraints, and it introduces paint batching con-
straints. Considering the classical car sequencing problem allows us to focus
on heuristics for dealing with capacity constraints.

2.1 Definition of a Car Sequencing Problem

A car sequencing problem is defined by a tuple (C, O, p, q, r) such that

• C = {c1, .., cn} is the set of cars to be produced;
• O = {o1, .., om} is the set of different options;
• p : O → N and q : O → N define capacity constraints, i.e., for every option

oi ∈ O, each subsequence of qi consecutive cars on the line must not contain
more than pi cars that require option oi (see 2.2 for complete definition);
• r : C×O → {0, 1} defines option requirements, i.e., for each car ci ∈ C and

for each option oj ∈ O, rij = 1 if oj must be installed on ci, and rij = 0
otherwise.

4

2.2 Solution of a Car Sequencing Problem

Solving a car sequencing problem involves finding an arrangement of the cars
in a sequence, defining the order in which they will pass along the assembly
line, such that the capacity constraints are met. We shall use the following
notations to denote and manipulate sequences:

• a sequence, noted π =< ci1, ci2 , . . . , cik >, is a succession of cars;
• the set of all sequences that may be built with a set of cars C is noted ΠC ;
• the length of a sequence π, noted |π|, is the number of cars that it contains;
• the concatenation of two sequences π1 and π2, noted π1 · π2, is the sequence

composed of the cars of π1 followed by the cars of π2;
• a sequence π1 is a subsequence of another sequence π2, noted π1 ⊆ π2, if there

exists two (possibly empty) sequences π3 and π4 such that π2 = π3 · π1 · π4;
• the cost of a sequence π is the number of violated capacity constraints, i.e.,

cost(π)=
∑

oi∈O

∑

πk⊆π so that

|πk|=qi

violation(πk, oi)

where violation(πk, oi)=

0 if
∑

<cl>⊆πk

rli ≤ pi;

1 otherwise.

We can now define the solution process of a car sequencing problem (C, O, p, q, r)
as the search of a minimal cost sequence composed of all the cars to be pro-
duced.

3 Greedy randomized construction of sequences

Figure 1 describes a greedy randomized algorithm for constructing sequences:
starting from an empty sequence 1 , cars are iteratively added at the end of
the sequence until all cars have been sequenced. At each step, the set of can-
didate cars (cand) is restricted to the set of cars that introduce the smallest
number of new constraint violations (line 4) 2 . To break symetries, we also

1 The sequence π could be initialized to a non empty sequence in order to take into
account the last cars sequenced on the line the previous day, as it is the case in the
problem proposed by Renault for the ROADEF challenge.
2 Note that this elitist strategy, that discards cars introducing more constraint
violations, may not be optimal for solving over-constrained instances. To solve such
over-constrained instances, it may be preferable not to discard cars introducing more
constraint violations but to decrease the probability of selecting them, as proposed
in [Sol00,GGP04].

5

Input: an instance (C, O, p, q, r) of the car sequencing problem
a transition probability function p : C × P(C)× ΠC →]0; 1]

Output: a sequence π that contains each car of C once
1- π ←<>
2-while | π |≤| C | do

3- let C−π denote the set of cars of C that are not yet sequenced in π
4- cand ← {ck ∈ C−π|∀cj ∈ C−π,cost(π. < ck >) ≤ cost(π. < cj >) and
5- (∀oi ∈ O, rki = rji)⇒ (k ≤ j) }
6- choose ci ∈ cand w.r.t. probability p(ci, cand , π)
7- π ← π· < ci >
8- end while

9- return π

Fig. 1. Greedy randomized construction of a sequence of cars.

restrict the set of candidate cars to cars that require different options (line
5). Then, given this set of candidate cars, the next car is chosen with respect
to a transition probability function p: given a candidate car ci ∈ C, a set of
candidate cars cand ∈ P(C) (where P(C) is the set of all subsets of C), and
a partial sequence π ∈ ΠC , this transition function returns the probability of
actually choosing ci. This probability may be defined in different ways, and
Sections 4, 5 and 6 propose three different definitions for it, based on different
pheromone structures.

In this section, we define the probability transition function proportionally to
a heuristic function η that locally evaluates the “hardness” of a candidate car
ci, i.e.,

p(ci, cand , π) =
[η(ci, π)]β

∑

ck∈cand [η(ck, π)]β

where β is a numerical parameter which allows one to tune the weight of the
heuristic in the transition policy: the higher β, the greedier the policy.

We have introduced and compared in [GPS03] five different definitions for the
heuristic function η. These definitions are based on utilization rates of required
options and aim at favoring the choice of cars requiring options that have high
demands with respect to capacities. The heuristic function of [GPS03] that
obtained the best average results is defined by the sum of the utilization rates
of the options required by the car, i.e.,

η(ci, π) =
∑

oj∈O

rij · utilRate(oj, C − π)

where utilRate(oj , C−π) is the utilization rate of option oj with respect to the
set C − π of cars that are not yet sequenced in π. This utilization rate is the

6

percentage of cars of C−π requiring oj with respect to the maximum number
of cars in a sequence of length |C−π| which could have oj while satisfying its
capacity constraint, i.e.,

utilRate(oj , C − π) =
qj ·

∑

ck∈C−π rkj

pj · | C − π |

An utilization rate close to 1 (resp. 0) indicates that the demand is very high
(resp. low) with respect to the capacity of the station.

4 A first pheromone structure for identifying good car sequences

Solving an instance (C, O, p, q, r) of the car sequencing problem involves find-
ing a permutation of the set of cars C that satisfies capacity constraints. This
problem can easily be modelled as the search for a best hamiltonian path in
a graph that associates a vertex with each car. Such hamiltonian path finding
problems are classical applications for the ACO metaheuristic: for these prob-
lems, ants lay pheromone on the graph edges in order to learn for promising
sequences of vertices. Based on this principle, we have proposed in [Sol00] a
first ACO algorithm for the car sequencing problem, and we briefly recall its
main features here.

Basically, the algorithm follows the MAX-MIN Ant System scheme [SH00].
First, pheromone trails are initialized to a given upper bound τmax1

. Then, at
each cycle every ant constructs a sequence, and pheromone trails are updated.
To prevent premature convergence, pheromone trails are bounded within two
given bounds τmin1

and τmax1
such that 0 < τmin1

< τmax1
. The algorithm

stops iterating either when an ant has found a solution, or when a maximum
number of cycles has been performed.

4.1 Pheromone structure

Pheromone is laid on couples of cars. For every couple of different cars (ci, cj) ∈
C × C, we associate a pheromone trail τ1(ci, cj). Intuitively, this pheromone
trail represents the learnt desirability of scheduling cj just after ci.

7

4.2 Construction of sequences by ants

At each cycle every ant constructs a sequence, following the greedy randomized
algorithm of Figure 1. To choose the next car ci to be added at the end of
the current sequence π, the transition probability function depends on two
factors: a pheromone factor which evaluates the learnt desirability of adding
ci at the end of π, and the heuristic factor η introduced in section 3, i.e.,

p(ci, cand , π) =
[τ1(cj, ci)]

α1 · [η(ci, π)]β
∑

ck∈cand [τ1(cj , ck)]α1 · [η(ck, π)]β
if the last car of π is cj

p(ci, cand , π) =
[η(ci, π)]β

∑

ck∈cand [η(ck, π)]β
if π =<>

As usually in ACO algorithms, α1 and β are numerical parameters that are
used to determine the relative weights of the two factors.

4.3 Pheromone updating step

Once every ant has constructed a sequence, pheromone trails are updated.
First, all pheromone trails are decreased in order to simulate evaporation, i.e.,
for each couple of different cars (ci, cj) ∈ C × C, the quantity of pheromone
τ1(ci, cj) is multiplied by a factor (1 − ρ1) where ρ1 is the evaporation rate
such that 0 ≤ ρ1 ≤ 1.

Then, the best ants of the cycle deposit along their paths a trail of pheromone
which is inversely proportional to the number of violated constraints: for each
sequence π constructed during the cycle, if the cost of π is minimal for this
cycle then, for each couple of consecutive cars < cj, ck >⊆ π, we increment
τ1(cj, ck) by 1/cost(π).

Finally, pheromone trails that are lower (resp. greater) than τmin1
(resp. τmax1

)
are set to τmin1

(resp. τmax1
). The goal of this pheromone bounding step is to

favor a better exploration of the search space by preventing the relative differ-
ences between pheromone trails from becoming too extreme during processing
[SH00].

5 A second pheromone structure for identifying critical cars

The heuristic function η combined with the first pheromone structure in the
transition probability function defined in Section 4 aims at favoring the choice

8

of critical cars, i.e., cars that require options with high utilization rates so that
they can hardly be scheduled without violating capacity constraints. We now
introduce a new pheromone structure for identifying these critical cars with
respect to past experiences of the colony.

5.1 Pheromone structure

Different cars may require a same subset of options, and all these cars are
equivalent with respect to the hardness of sequencing them. Hence, we group
the cars requiring the same options into classes, and we associate a pheromone
structure with every different class.

More formally, we define the class of a car ci ∈ C as the set of options required
by ci, i.e., classOf (ci) = {oj ∈ O|rij = 1}, and we denote by classes(C) the
set of all different car classes, i.e., classes(C) = {classOf (ci)|ci ∈ C}. Given
a car class cc ∈ classes(C), we note τ2(cc) the quantity of pheromone laying
on it. Intuitively, this quantity represents the past experience of the colony
concerning the difficulty of sequencing cars of this class without violating
capacity constraints.

The second pheromone structure introduced here is not managed according
to the MAX-MIN Ant System of [SH00]. Indeed, imposing lower and upper
bounds on pheromone trails and initializing them to the upper bound favor a
larger exploration of the search space at the beginning of the search but, as a
counterpart, increase the time spent before converging towards good solutions.
However, first experiments showed us that it is necessary to quickly identify
critical cars to build good solutions: without such identification (e.g., when
running the greedy algorithm of Figure 1 with the β parameter set to zero),
the constructed sequences violate hundreds of capacity constraints. Hence, to
favor a quicker feedback on the critical cars we only introduce a lower bound
τmin2

(that ensures that the probability of choosing a car cannot become null),
and pheromone trails are initialized to the lower bound τmin2

at the beginning
of the search.

5.2 Construction of a sequence by an ant

Ants incrementally build sequences following the algorithm described in Fig.
1. To choose the next car ci to be added at the end of the current sequence π,
the transition probability function only depends on a pheromone factor which

9

evaluates the learnt hardness of the class of ci, i.e.,

p(ci, cand , π) =
[τ2(classOf (ci))]

α2

∑

ck∈cand [τ2(classOf (ck))]α2

where α2 is a numerical parameter which allows one to tune the weight of the
pheromone factor.

5.3 Pheromone updating step

Ants lay pheromone on car classes during the construction of sequences: each
time no more cars can be scheduled without introducing some new constraint
violations, some pheromone is added on the classes of the cars that still have
to be scheduled (thus indicating that the cars of this class should have been
scheduled earlier). The quantity of pheromone added is equal to the number of
new constraint violations introduced by the cars of this class. More precisely,
we modify the algorithm of Figure 1 by inserting between lines 5 and 6 the
following lines:

if ∀ci ∈ cand , cost(π. < ci >) > cost(π) then

for every car class cc ∈ {classOf(ci) | ci ∈ C − π} do

τ2(cc)← τ2(cc) + cost(π. < ci >)− cost(π)
(where ci is a car of the class cc)

Note that this pheromone laying procedure occurs during the construction
step, and not after all ants have completed their construction step, like in most
ACO algorithms. Indeed, the quantity of pheromone laid does not depend on
the global quality of the sequence but on the local evaluation of the car class
with respect to the partial sequence that is currently built. Note also that
every ant adds pheromone, and not only the best one(s) of the cycle.

Finally, pheromone is evaporated after every sequence construction. This is
done by multiplying the quantity of pheromone τ2(cc) laying on each car class
cc ∈ classes(C) by a factor (1−ρ2) where ρ2 is the evaporation rate such that
0 ≤ ρ2 ≤ 1.

6 Combining the two pheromone structures

The two proposed pheromone structures achieve two complementary goals:
the first one aims at identifying promising subsequences of cars; the second

10

one aims at identifying critical car classes. Hence, one can easily combine these
two complementary pheromone structures:

• Ants lay pheromone on couples of cars (ci, cj) ∈ C × C and the quantity
of pheromone τ1(ci, cj) represents the past experience of the colony with
respect to sequencing car cj just after car ci.

For this first pheromone structure, pheromone trails are bounded within
the interval [τmin1

; τmax1
] and they are initialized to the upper bound τmax1

.
Pheromone trails are updated at the end of each cycle, once every ant of
the colony has computed a complete sequence, and only the best ants of the
cycle lay pheromone.
• Ants also lay pheromone on car classes cc ∈ Classes(C) and the quantity of

pheromone τ2(cc) represents the past experience of the colony with respect
to the difficulty of sequencing cars of this class without violating constraints.

For this second pheromone structure, a lower bound τmin2
is imposed and

pheromone trails are initialized to this lower bound. Pheromone is laid by
every ant while it constructs a sequence, and the evaporation step occurs
at the end of every sequence construction by an ant.

The algorithm followed by ants to build sequences is the same as the one
displayed in figure 1. To choose the next car ci to be added at the end of
the current sequence π, the transition probability function depends on two
different pheromone factors, i.e.,

p(ci, cand , π) =
[τ1(cj, ci)]

α1 · [τ2(classOf (ci))]
α2

∑

ck∈cand

[τ1(cj , ck)]
α1 · [τ2(classOf (ck))]

α2

if the last car of π is cj

p(ci, cand , π) =
[τ2(classOf (ci))]

α2

∑

ck∈cand

[τ2(classOf (ck))]
α2

if π =<>

As usual, α1 and α2 are numerical parameters that are used to determine the
relative weights of the two pheromone factors.

Note that the greedy heuristic function η introduced in section 3, and com-
bined with the first pheromone structure in section 4 is no longer used in this
new transition probability. Indeed, this heuristic factor, that aims at identify-
ing critical cars, has been replaced by the second pheromone structure.

11

7 Experimental comparison of the pheromone structures and the

greedy heuristic

7.1 Considered algorithms and test suites

To compare the pheromone structures τ1 and τ2 and the greedy heuristic func-
tion η, we consider four different versions of the greedy randomized algorithm
of Figure 1, based on four different definitions of the transition probability
function p:

• in Greedy(η) the transition probability function is based on the greedy
heuristic function η as described in Section 3;
• in ACO(τ1, η) the transition probability function is based on a combination

of the first pheromone structure τ1 and the greedy heuristic function η as
described in Section 4;
• in ACO(τ2) the transition probability function is based on the second phe-

romone structure τ2 as described in Section 5;
• in ACO(τ1, τ2) the transition probability function is based on a combination

of the two pheromone structures τ1 and τ2 as described in Section 6.

All algorithms have been implemented in C and run on a 2GHz Pentium 4.

These four different versions are experimentally compared on a test suite of
82 instances generated by Perron and Shaw and described in [PS04]. In this
test suite, all instances have |O| = 8 options and |Classes(C)| = 20 different
car classes; capacity constraints are randomly generated while ensuring that
∀oi ∈ O, 1 ≤ pi ≤ 3 and pi < qi ≤ pi + 2. The number of cars |C| to be
sequenced varies between 100 and 500: 32 (resp. 21 and 29) instances have
100 (resp. 300 and 500) cars. All instances are feasible and have at least one
solution that satisfies all capacity constraints.

7.2 Parameter settings

Each run of each considered algorithm is limited to 150000 constructions of
sequences: for ACO(τ1, η) and ACO(τ1, τ2) we have fixed the maximum num-
ber of cycles to 5000 and the number of ants to 30; for Greedy(η) and ACO(τ2)
we have fixed the maximum number of cycles to 150000 as a single sequence
is built at each cycle. Note that the construction of 150000 sequences roughly
corresponds to 20 (resp. 50 and 100) seconds of CPU time on a 2GHz Pentium
4 for instances with 100 (resp. 300 and 500) cars.

The setting of the other parameters is summarized in Table 1 and is discussed

12

Table 1
Parameter settings.

Heuristic η 1st pheromone structure 2nd pheromone structure

β α1 ρ1 τmin1
τmax1

α2 ρ2 τmin2

Greedy(η) 6 - - - - - - -

ACO(τ1, η) 6 2 1% 0.01 4 - - -

ACO(τ2) - - - - - 6 3% 1

ACO(τ1, τ2) - 2 1% 0.01 4 6 3% 1

below. To tune parameters, we have run algorithms on a subset of the test suite
instances that contains 32 instances (9 instances with 100 cars, 7 instances
with 300 cars and 16 instances with 500 cars). These 32 instances have been
selected for tuning parameters because they appeared to be the most difficult
ones for the greedy algorithm (other instances were trivially solved).

Both Greedy(η) and ACO(τ1, η) use the greedy heuristic η in their probability
transition function and have to set the parameter β that determines the weight
of this heuristic. Experiments have been done with different values for β,
ranging between 1 and 10. The best average results have been obtained when
it is fixed to 6 (eventhough rather equivalent results were obtained when β ∈
[4; 8]).

The three ACO variants use the pheromone structures τ1 and/or τ2 in their
probability transition functions and have to set the pheromone factor weight
α, the pheromone evaporation rate ρ, and the bounds τmin and τmax associated
with these pheromone structures. Setting these parameters makes it possible
to balance between two dual goals when exploring the search space: on the
one hand, one has to intensify the search around the most “promising” areas,
that are usually close to the best solutions found so far; on the other hand,
one has to diversify the search and favor exploration in order to discover new,
and hopefully more successful, areas of the search space. Diversification may
be emphasized in ACO algorithms by decreasing α —so that ants become
less sensitive to pheromone — or by decreasing ρ —so that pheromone evap-
orates more slowly— or by decreasing the difference between τmin and τmax

—so that the relative difference between pheromone factors decreases. When
increasing the exploratory ability of ants in this way, one usually finds bet-
ter solutions, but as a counterpart it takes longer to find them. This duality
has been observed on many different combinatorial problems such as, e.g.,
maximum clique problem [SF06] or constraint satisfaction problem [Sol02b].

We have chosen two different parameter settings for the two pheromone struc-
tures τ1 and τ2. Indeed, as pointed out in Section 5, the identification of critical
cars appears to be essential for building good solutions, so that one has to set

13

 40

 50

 60

 70

 80

 90

 100

 0.1 1 10 100

S
uc

ce
ss

 r
at

e
(5

0
ru

ns
 fo

r
ea

ch
 o

f t
he

 8
2

in
st

an
ce

s)

CPU time (logscale)

ACO(tau1,tau2)
ACO(tau2)

ACO(tau1,eta)
Greedy(eta)

Fig. 2. Comparison of Greedy(η), ACO(τ1, η), ACO(τ2), and ACO(τ1, τ2). Each
curve plots the evolution of the percentage of successful runs (over 50 runs on
each of the 82 instances) with respect to CPU time (in logscale).

α2 and ρ2 to values that favor intensification in order to have a quick feedback,
i.e., α2 = 6 and ρ2 = 0.03. On the contrary, we have chosen a setting that
ensures a good diversification of the search for the first pheromone structure,
i.e., α1 = 2 and ρ1 = 0.01 (as discussed in [GPS03]).

Note that the performances of the three ACO variants are rather stable with
respect to these pheromone parameter settings. For example, when running
ACO(τ1, τ2) with different values for α and ρ (with α1 ∈ {1, 2, 3, 4}, ρ1 ∈
{0.5%, 1%, 2%, 3%}, α2 ∈ {4, 6, 8, 10}, and ρ2 ∈ {1%, 2%, 3%, 5%}), the final
success rates (over 50 runs on each of the 82 instances) vary between 85.3%
for the worth configuration and 94.7% for the best one, whereas the average
is 91.3%.

7.3 Experimental comparison

Figure 2 displays the evolution of the percentage of successful runs (that have
found a solution) of the four considered algorithms with respect to CPU time.

Let us first compare Greedy(η) with ACO(τ2), as both algorithms build se-
quences with respect to a greedy heuristic that evaluates the hardness of car
classes, but differ on the way this estimation is done: Greedy(η) considers the

14

sum of the utilization rates of the required options, whereas ACO(τ2) “learns”
this with respect to past experiences of the colony. Figure 2 shows that the
success rate of ACO(τ2) is always more than 10% as high as the success rate
of Greedy(η): after 0.05 seconds of CPU-time, Greedy(η) and ACO(τ2) have
respectively solved 42.5% and 55.8% of the runs, whereas after 100 seconds of
CPU-time, they have respectively solved 65.6% and 77.6% of the runs.

Let us then compare Greedy(η) with ACO(τ1, η) (resp. ACO(τ2) with ACO-
(τ1,τ2)) to evaluate the benefit of integrating the first pheromone structure τ1

within the transition probability function. Figure 2 shows that at the begin-
ning of the solution process, the success rates of Greedy(η) and ACO(τ1, η)
(resp. ACO(τ2) and ACO(τ1, τ2)) are very close. Indeed, the setting of the
parameters for managing τ1 has been chosen in order to favor exploration so
that during the first cycles τ1 does not significantly influence transition proba-
bilities: at the beginning of the search process, pheromone trails are initialized
to the upper bound, τmax1

, so that after k cycles, the quantity of pheromone
is bounded between τmax1

· (1− ρ1)
k and τmax1

. Then, after five hundred or so
cycles (roughly corresponding to two, five, and ten seconds for instances with
100, 300 and 500 cars respectively), the first pheromone structure actually
influences ants so that the success rate of ACO(τ1, η) (resp. ACO(τ1, τ2)) be-
comes significantly higher than the success rate of Greedy(η) (resp. ACO(τ2)).

As a conclusion, let us note that the second pheromone structure τ2 allows
ants to solve very quickly (in less than 0.05 seconds) more than half of the
runs. The first pheromone structure τ1 needs more time to guide ants towards
better sequences (around two, five and ten seconds for instances with 100,
300, and 500 cars respectively), but actually improves the solution process so
that, at the end of the solution process, the combination of the two pheromone
structures allows ants to solve nearly 95% of the runs.

8 Comparison with other approaches

8.1 Considered approaches

We now compare the best performing of our four variants, ACO(τ1, τ2), with
two recent local search approaches, i.e., IDWalk and VFLS.

IDWalk [NTG04] is a new metaheuristic based on local search that appears
to obtain better results than other metaheuristics —such as tabu search and
simulated annealing— for solving the car sequencing problem among other
problems. Besides the maximum number of moves (MaxMv), this approach
introduces only one parameter, called Max, that determines the maximum

15

number of neighbours that are considered before performing every move. At
each iteration IDWalk chooses the first non decreasing neighbour, and if all the
Max considered neighbours deteriorate the current solution, IDWalk chooses
the best one over them. The Max parameter is automatically determined at
the beginning of the search by performing a few short walks (of 2000 moves)
with different possible values. This value is also reactively adapted during the
solution process when the length of the walk reaches some given limits. In
the case of the car sequencing problem, the neighbourhood is defined by the
set of all sequences that can be obtained by swaping any pair of cars that
have different car classes and such that at least one car is involved in one or
more constraint violations; the car that is involved in constraint violations is
chosen with respect to a probability that is proportional to the number of
constraints it violates. The initial sequence of cars from which the local search
is performed is constructed in a greedy way, using the η heuristic described in
Section 3.

VFLS (for “Very Fast Local Search”) [EGN05,EGN07] is the algorithm that
won the ROADEF challenge on the car sequencing problem [NC05,SCNA07].
In addition to capacity constraints, the ROADEF problem contains some extra
constraints that are related to car colors and that aim at minimizing solvents.
The implementation of VFLS considered in this comparison is an adaptation
of the one that have won the challenge, where data structures have been opti-
mized to focus on capacity constraints only. The VFLS algorithm is based on
a local search approach similar to the one proposed in [GPS03]: starting from
an initial sequence that is constructed in a greedy way using a heuristic based
on utilization rates, the algorithm chooses at each iteration the first neighboor
of the current solution that does not increase its cost. The considered neigh-
bourhood is defined by a set of five transformations (exchange of two cars,
insertion of a car backward or forward, and mirror and random permutations
of subsequences). The probability of choosing each of these transformations
respectively is 0.6, 0.13, 0.13, 0.13, and 0.01.

8.2 Test suite and experimental setup

We compare the three approaches on the 82 instances of the test suite provided
by Perron and Shaw. However, to discuss scale-up properties, we have gouped
these instances into three subsets with respect to the number of cars |C| to be
sequenced: the first group contains the 32 instances with 100 cars; the second
one contains the 21 instances with 300 cars; and the third one contains the 29
instances with 500 cars.

The three algorithms have been implemented in C or C++, and have been

16

 0

 20

 40

 60

 80

 100

 0.1 1 10

S
uc

ce
ss

 r
at

e
(5

0
ru

ns
 fo

r
ea

ch
 o

f t
he

 3
2

in
st

an
ce

s
w

ith
 1

00
 c

ar
s)

CPU time (logscale)

ACO(tau1,tau2)
VFLS

IDWalk

Fig. 3. Evolution of the percentage of successful runs with respect to CPU time for
ACO(τ1, τ2), VFLS, and IDWalk, on the 32 instances with 100 cars.

run on the same 2GHz Pentium 4 3 . Each algorithm has been run 50 times on
each instance.

8.3 Experimental Results

Figures 3, 4, and 5 show the evolution of the success rates with respect to CPU
time on instances with 100, 300, and 500 cars respectively. On the three figures,
we note that for very short CPU time limits ACO(τ1, τ2) is better than IDWalk,
which itself is better than VFLS: after 0.1 second of CPU time, ACO(τ1, τ2) has
solved more than 60% of the runs while VFLS and IDWalk have respectively
solved 6% and 25% of the runs. However, the success rate of VFLS increases
more steeply than the success rates of IDWalk and ACO(τ1, τ2). Therefore,
after a few seconds of CPU time, VFLS has clearly surpassed IDWalk. Fi-
nally, at the end of the processing time, VFLS has reached the success rate
of ACO(τ1, τ2) for the instances with 100 and 300 cars, whereas VFLS has
outperformed ACO(τ1, τ2) for the instances with 500 cars.

The fact that ACO(τ1, τ2) is outperformed by VFLS at the end of the pro-
cessing time for the largest instances that have 500 cars brings to the fore the

3 The code of IDWalk and VFLS have been kindly sent by their authors, and the
obtained results have been validated by the authors.

17

 0

 20

 40

 60

 80

 100

 0.1 1 10

S
uc

ce
ss

 r
at

e
(5

0
ru

ns
 fo

r
ea

ch
 o

f t
he

 2
1

in
st

an
ce

s
w

ith
 3

00
 c

ar
s)

CPU time (logscale)

ACO(tau1,tau2)
VFLS

IDWalk

Fig. 4. Evolution of the percentage of successful runs with respect to CPU time for
ACO(τ1, τ2), VFLS, and IDWalk, on the 21 instances with 300 cars.

 0

 20

 40

 60

 80

 100

 0.1 1 10 100

S
uc

ce
ss

 r
at

e
(5

0
ru

ns
 fo

r
ea

ch
 o

f t
he

 2
9

in
st

an
ce

s
w

ith
 5

00
 c

ar
s)

CPU time (logscale)

ACO(tau1,tau2)
VFLS

IDWalk

Fig. 5. Evolution of the percentage of successful runs with respect to CPU time for
ACO(τ1, τ2), VFLS, and IDWalk, on the 29 instances with 500 cars.

18

differences in the time complexities of these algorithms. Indeed, if there are
|C| = n cars to sequence and |classes(C)| = k different car classes, then the
complexity of constructing one sequence by an ant is in O(nk), the complexity
of the pheromone laying step is in O(n) and the complexity of the evapora-
tion step is in O(n2). As a comparison, the time complexity of performing
one move, in both IDWalk and VFLS, does not depend on the total number
of cars to be sequenced: each move is locally evaluated by considering only
a subsequence of cars and the time complexity of one move mainly depends
on the sizes (qi) of the gliding subsequences on which the capacity constraints
must be checked. In the test suite we have considered here, these sizes are
bounded between 2 and 5 for all instances.

9 Conclusion

We have introduced a new pheromone structure for solving the car sequenc-
ing problem. This pheromone structure aims at identifying critical cars and
experimental results have shown us that it obtains better results than the
greedy heuristic based on utilization rates. We have also shown that this new
pheromone structure may be combined with another pheromone structure that
aims at identifying good subsequences of cars.

This double pheromone structure may be related to previous work on multiple
pheromone matrices for solving other combinatorial optimization problems.
In particular, [IMM01] introduces two different pheromone structures to solve
bi-criteria optimization problems, where each pheromone structure is tailored
to one optimization criteria. [MR02] also introduces two different pheromone
structures, one for intensifying the search around good solutions, and one for
diversifying the search around apparently poorer areas of the search space.
Multi colony approaches such as, e.g., [MRS02,CRP04], also consider multiple
pheromone matrices. However, in these approches the different pheromone ma-
trices have an homogeneous structure, as these different pheromone matrices
are used by different ant colonies that work in parallel to solve a combinatorial
optimization problem.

We have shown in this paper that the combination of two complementary
pheromone structures makes it possible to obtain very competitive results on
the car sequencing problem, being able to solve many instances much quicker
than VFLS, the local search based algorithm that won the ROADEF 2005
challenge. However, on the largest instances and for longer time limits, ACO
is outperformed by VFLS. Hence, further work will mainly concern the inte-
gration of local search techniques within our “double” ACO algorithm. Indeed,
local search may be combined with the ACO metaheuristic in a very straight-
forward way: ants construct solutions exploiting pheromone, and local search

19

improves their quality by iteratively performing local moves. Actually, the
best-performing ACO algorithms for many combinatorial optimization prob-
lems are hybrid algorithms that combine probabilistic solution construction
by a colony of ants with local search [DG97,SH00,Sol02a,SF06,SSSG06].

Finally, even if it is not a criteria for comparing approaches, let us point out the
simplicity of our double ACO algorithm which is very easy to implement: the
C code corresponding to ACO(τ1, τ2) contains less than 300 lines (including
input/output issues). This is generally not the case of local search approaches
which have to use more sophisticated data structures in order to incrementally
evaluate moves.

Acknowledgements. Many thanks to Bertrand Estellon, Frédéric Gardi
and Karim Nouioua for giving the code of VFLS, and to Bertrand Neveu and
Gilles Trombettoni for giving the code of IDWalk.

References

[BHS99] B. Bullnheimer, R.F. Hartl, and C. Strauss. An improved ant system
algorithm for the vehicle routing problem. Annals of Operations Research,
89:319–328, 1999.

[CRP04] S.C. Chu, J.F. Roddick, and J.S. Pan. Ant colony system with
communication strategies. Information Sciences, 167:63–76, 2004.

[DCG99] M. Dorigo, G. Di Caro, and L.M. Gambardella. Ant algorithms for
discrete optimization. Artificial Life, 5(2):137–172, 1999.

[DD99] M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-
heuristic. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas
in Optimization, pages 11–32. McGraw Hill, UK, 1999.

[DG97] M. Dorigo and L.M. Gambardella. Ant colony system: A cooperative
learning approach to the traveling salesman problem. IEEE Transactions
on Evolutionary Computation, 1(1):53–66, 1997.

[DMC96] M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics – Part B: Cybernetics, 26(1):29–41, 1996.

[Dor92] M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian).
PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy,
1992.

[DS04] M. Dorigo and T. Stuetzle. Ant Colony Optimization. MIT Press, 2004.

20

[DSvH88] M. Dincbas, H. Simonis, and P. van Hentenryck. Solving the car-
sequencing problem in constraint logic programming. In Y. Kodratoff,
editor, Proceedings of ECAI-88, pages 290–295, 1988.

[DT99] A.J. Davenport and E.P.K. Tsang. Solving constraint satisfaction
sequencing problems by iterative repair. In Proceedings of the first
international conference on the practical applications of constraint
technologies and logic programming (PACLP), pages 345–357, 1999.

[EGN05] B. Estellon, F. Gardi, and K. Nouioua. Ordonnancement de véhicules :
une approche par recherche locale à grand voisinage. In Actes des
premières Journées Francophones de Programmation par Contraintes
(JFPC), pages 21–28, 2005.

[EGN07] B. Estellon, F. Gardi, and K. Nouioua. Real-life car sequencing: very
large neighborhood search vs very fast local search. European Journal of
Operational Research (EJOR), 2007.

[GGP04] M. Gravel, C. Gagné, and W.L. Price. Review and comparison of three
methods for the solution of the car-sequencing problem. Journal of the
Operational Research Society, 2004.

[GPS03] J. Gottlieb, M. Puchta, and C. Solnon. A study of greedy, local search
and ant colony optimization approaches for car sequencing problems.
In Applications of evolutionary computing, volume 2611 of LNCS, pages
246–257. Springer, 2003.

[GTA99] L.M. Gambardella, E.D. Taillard, and G. Agazzi. MACS-VRPTW:
A multiple ant colony system for vehicle routing problems with time
windows. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in
Optimization, pages 63–76. McGraw Hill, London, UK, 1999.

[GTD99] L.M. Gambardella, E. Taillard, and M. Dorigo. Ant colonies for the
quadratic assignment problem. Journal of the Operational Research
Society, 50:167–176, 1999.

[GW99] I.P. Gent and T. Walsh. Csplib: a benchmark library for
constraints. Technical report, APES-09-1999, 1999. available from
http://csplib.cs.strath.ac.uk/. A shorter version appears in CP99.

[IMM01] S. Iredi, D. Merkle, and M. Middendorf. Bi-criterion optimization
with multi-colony ant algorithms. In First International Conference
on Evolutionary Multi-Criterion Optimization, number 1993 in Lecture
Notes in Computer Science, pages 359–372. Springer, 2001.

[JF95] T. Jones and S. Forrest. Fitness distance correlation as a measure
of problem difficulty for genetic algorithms. In Proceedings of
International Conference on Genetic Algorithms, Morgan Kaufmann,
Sydney, Australia, pages 184–192, 1995.

[Kis04] T. Kis. On the complexity of the car sequencing problem. Operations
Research Letters, 32:331–335, 2004.

21

[LLW98] J.H.M. Lee, H.F. Leung, and H.W. Won. Performance of a comprehensive
and efficient constraint library using local search. In 11th Australian
JCAI, LNAI. Springer-Verlag, 1998.

[MC99] V. Maniezzo and A. Colorni. The Ant System applied to the quadratic
assignment problem. IEEE Transactions on Data and Knowledge
Engineering, 11(5):769–778, 1999.

[MF99] P. Merz and B. Freisleben. Fitness landscapes and memetic algorithm
design. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in
Optimization, pages 245–260. McGraw Hill, UK, 1999.

[MH02] L. Michel and P. Van Hentenryck. A constraint-based architecture for
local search. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications, pages 83–100, New York, NY, USA, 2002. ACM Press.

[MR02] J. Montgomery and M. Randall. Ant-pheromones as a tool for better
exploration of search space. In Third International Workshop on Ants
Algorithms (ANTS’2002), number 2463 in Lecture Notes in Computer
Science, pages 100–110. Springer, 2002.

[MRS02] M. Middendorf, F. Reischle, and H. Schmeck. Multi colony ant
algorithms. Journal of Heuristics, 8(3):305–320, 2002.

[NC05] A. Nguyen and V.-D. Cung. Le problème du car sequencing renault
et le challenge roadef’2005. In Premières Journées Francophones de
Programmation par Contraintes (JFPC 2005), pages 3–10, 2005.

[NTG04] B. Neveu, G. Trombettoni, and F. Glover. Id walk: A candidate list
strategy with a simple diversification device. In Proceedings of CP’2004,
volume 3258 of LNCS, pages 423–437. Springer Verlag, 2004.

[PG02] M. Puchta and J. Gottlieb. Solving car sequencing problems by local
optimization. In Applications of Evolutionary Computing (EvoCOP
2002), volume 2279 of LNCS, pages 132–142. Springer, 2002.

[PS04] L. Perron and P. Shaw. Combining forces to solve the car sequencing
problem. In Proceedings of CP-AI-OR’2004, volume 3011 of LNCS, pages
225–239. Springer, 2004.

[RP97] J.-C. Regin and J.-F. Puget. A filtering algorithm for global sequencing
constraints. In CP97, volume 1330 of LNCS, pages 32–46. Springer-
Verlag, 1997.

[SCNA07] C. Solnon, V.-D. Cung, A. Nguyen, and C. Artigues. Editorial: The car
sequencing problem: overview of state-of-the-art methods and industrial
case-study of the roadef’2005 challenge problem (to appear). European
Journal of Operational Research (EJOR), 2007.

[SF06] C. Solnon and S. Fenet. A study of aco capabilities for solving the
maximum clique problem. Journal of Heuristics, 12(3):155–180, 2006.

22

[SH00] T. Stützle and H.H. Hoos. MAX-MIN Ant System. Journal of Future
Generation Computer Systems, special issue on Ant Algorithms, 16:889–
914, 2000.

[Sol00] C. Solnon. Solving permutation constraint satisfaction problems with
artificial ants. In Proceedings of ECAI’2000, IOS Press, Amsterdam,
The Netherlands, pages 118–122, 2000.

[Sol02a] C. Solnon. Ants can solve constraint satisfaction problems. IEEE
Transactions on Evolutionary Computation, 6(4):347–357, 2002.

[Sol02b] C. Solnon. Boosting ACO with a preprocessing step. In Applications of
Evolutionary Computing, Proceedings of EvoWorkshops2002: EvoCOP,
EvoIASP, EvoSTim, volume 2279 of LNCS, pages 161–170. Springer-
Verlag, 2002.

[SSG05] O. Sammoud, C. Solnon, and K. Ghédira. Ant algorithm for the graph
matching problem. In Springer Verlag, editor, 5th European Conf.
on Evolutionary Computation in Combinatorial Optimization (EvoCOP
2005), volume LNCS 3448, pages 213–223, 2005.

[SSSG06] O. Sammoud, S. Sorlin, C. Solnon, and K. Ghédira. A Comparative Study
of Ant Colony Optimization and Reactive Search for Graph Matching
Problems. In G. Raidl and J. Gottlieb, editors, 6th European Conference
on Evolutionary Computation in Combinatorial Optimization (EvoCOP
2006), LNCS, pages 287–301. Springer, 2006.

[Tsa93] E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press,
London, UK, 1993.

[WT95] T. Warwick and E. Tsang. Tackling car sequencing problems using a
genetic algorithm. Journal of Evolutionary Computation - MIT Press,
3(3):267–298, 1995.

23

