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Abstract

We consider a variant of the basic problem of the calculus of variations, where the La-
grangian is convex and subject to randomness adapted to a Brownian filtration. We solve
the problem by reducing it, via a limiting argument, to an unconstrained control problem
that consists in finding an absolutely continuous process minimizing the expected sum
of the Lagrangian and the deviation of the terminal state from a given target position.
Using the Pontryagin maximum principle we characterize a solution of the unconstrained
control problem in terms of a fully coupled forward-backward stochastic differential equa-
tion (FBSDE). We use the method of decoupling fields for proving that the FBSDE has
a unique solution. We exploit a monotonicity property of the decoupling field for solving
the original constrained problem and characterize its solution in terms of an FBSDE with
a free backward part.

2010 Mathematics Subject Classification. 49J05, 60G50, 60G99, 60H99, 93E20.
Keywords. Optimal stochastic control, calculus of variations, forward backward stochastic
differential equation, decoupling field.

Introduction

The basic problem of the calculus of variations consists in minimizing an integral functional
over a set of functions satisfying an initial and terminal condition. In this article we consider a
version of the basic problem, where the Lagrangian is convex and subject to random influences
supported by a Brownian motion W on a probability space (Ω,F , P ). More precisely, let
T ∈ (0,∞) and f : Ω × [0,∞) × R2 → R be a function, convex in the last two variables,
such that for all (x, a) ∈ R2 the mapping (ω, t) 7→ f(ω, t, x, a) is progressively measurable
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with respect to (Ft)t∈[0,∞), the augmented filtration generated by the Brownian motion W .
We show, under some additional analytic assumptions, existence of a solution of the following
problem:

Minimize Ĵ(X) = E
[∫ T

0
f(t,Xt, Ẋt)dt

]
over all absolutely continuous

and progr. mb. processes X satisfying X0 = x0 ∈ R and XT = 0.

(P)

We interpret t as time, Xt as the state and Ẋt as the velocity at time t.
Minimizing Ĵ(X) is a classical problem with many applications e.g. in physics, economics

and engineering. We refer to the scripts of Gelfand and Fomin [12], Clarke [7] and Evans [9]
for explicit applications and an overview on the deterministic version of the basic problem.
Stochastic examples of problem (P) have been recently analyzed in the context of closing
financial asset positions in illiquid markets (see e.g. the introduction in [15] for an overview). In
these applications f includes transaction costs, depending on the liquidation rate Ẋ; moreover
f can incorporate measures of the risk exposure, depending on the volume Xt of the remaining
position.

In order to prove existence of a process X minimizing the functional Ĵ(X) we study also a
related control problem without the constraintXT = 0, but with an additional term in the cost
functional penalizing any deviation of XT from zero. Let g : Ω×R→ R be a function, convex
in the second variable, such that for all x ∈ R the mapping ω 7→ g(ω, x) is FT -measurable.
We solve, under some nice analytic assumptions, the following unconstrained control problem:

Minimize J(X) = E
[∫ T

0
f(t,Xt, Ẋt)dt+ g(XT )

]
over all absolutely continuous

and progr. mb. processes X satisfying X0 = x0.

(UP)

We show that by setting the penalty function equal to g(x) = Lx2 and letting L → ∞ one
can reduce the constrained problem (P) to the unconstrained one (UP).

By following a classic Bellman approach for solving (UP) (at least if f and g are deter-
ministic functions), one obtains a non-linear Hamilton-Jacobi-Bellman (HJB) equation that is
difficult to solve. By the Pontryagin maximum principle an optimal solution of (UP) can be
characterized in terms of a forward-backward stochastic differential equation (FBSDE), where
the forward component describes the optimal state dynamics and the backward component
the dynamics of the so-called costate. The FBSDE for (UP) takes the form

Xt = x−
∫ t

0 f
∗
y (s,Xs, Ys) ds,

Yt = g′(XT )−
∫ T
t Zs dWs +

∫ T
t fx(s,Xs, f

∗
y (s,Xs, Ys)) ds,

(1)

where f∗(t, x, ·) denotes the convex conjugate of the function a 7→ f(t, x, a), f∗y its derivative
w.r.t. y and fx the derivative of f w.r.t. x. Notice that the FBSDE (1) is fully coupled, i.e.
the forward dynamics depend on the backward component Y , and the backward dynamics
on the forward part X. It is a longstanding challenge to find conditions guaranteeing that a
fully coupled FBSDE possesses a solution. Sufficient conditions are provided e.g. in [17], [23],
[20], [24], [8], [18] (see also references therein). The method of decoupling fields, developped
in [10] (see also the precursor articles [19], [11] and [18]), is practically useful for determining
whether a solution exists. A decoupling field describes the functional dependence of the
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backward part Y on the forward component X. If the coefficients of a fully coupled FBSDE
satisfy a Lipschitz condition, then there exists a maximal non-vanishing interval possessing a
solution triplet (X,Y, Z) and a decoupling field with nice regularity properties. The method
of decoupling fields consists in analyzing the dynamics of the decoupling field’s gradient in
order to determine whether the FBSDE has a solution on the whole time interval [0, T ].

We use decoupling fields since they provide an additional structure enabling to pass to the
limit when the constant L of the penalty function g(x) = Lx2 converges to infinity. Indeed,
we show that the corresponding decoupling fields uL are non-decreasing in L. We can thus
identify a limit u∞, which we further use for solving Problem (P). In addition, from the
convergence of uL we infer convergence of the corresponding solution processes (XL, Y L, ZL)
to a process triplet (X∞, Y∞, Z∞). We show that (X∞, Y∞, Z∞) can be characterized as
the unique solution of a pair of stochastic differential equations, where an initial and terminal
condition is imposed on the forward equation, but no condition on the second (see (12) and
Theorem 3.8). One can interpret the system as an FBSDE with a free backward component.
To the best of our knowledge, this type of FBSDE is new since it cannot be reduced to the
case studied in [29]. Moreover this FBSDE characterizes an optimal control for problem (P)
as (1) does for problem (UP).

The FBSDE (1) can be shown to possess a solution by using the so-called continuation
method, developed in [14, 28, 24]. In particular the problem (UP) has been solved already
using this method (see e.g. [6, Section 5]). The continuation method, however, does not
provide the existence of a decoupling field, which is fundamental in the present article for
passing to the limit as the penalty converges to infinity and for solving Problem (P).

Solutions of problem (P) and (UP) have been obtained under some additional structural
assumptions on the function f . One focus of the literature so far is set on cost functions f that
are additive. In [2] it is assumed that f takes the form f(t, x, a) = γt|x|p + ηt|a|p, where p > 1
and (η, γ) is a pair of non-negative progressively measurable processes. The particular form
allows to decouple the FBSDE (1), after a variable change. As the penality of any deviation
of XT from 0 increases to infinity, the backward part of the decoupled FBSDE converges to
a solution of a BSDE with singular terminal condition, a concept developed in [25], [26]. In
the setting of the present article, the solution processes (X,Y, Z) of (1) also converge as the
penalty tends to infinity. The limiting processes turn out to be a solution of a coupled pair
of stochastic differential equations, where an initial and terminal condition is imposed on the
first equation, but no condition on the second (see Theorem 3.8).

Solving a fully coupled FBSDE is also not necessary in the case where f is additive and
linear-quadratic (see [3] and [4]), and even in some additive and polynomial cases with a
Poisson measure as an additional source of randomness (see [13] and [16]).

The articles [22, 27] reformulate mass transportation problems as control problems impos-
ing a constraint on the terminal state and hence bearing similarities with Problem (P). In
contrast to the present article, the position process in both articles is assumed to be disturbed
by some Brownian noise; in [22] with constant and in [27] with freely controllable diffusion
coefficient. In addition, [22] link the unique optimal control to an FBSDE related to the
FBSDE (1). In contrast to our approach, the authors derive the FBSDE from the existence
of an optimal control, but do not use it for proving existence in the first place.

The article is organized as follows. In Section 1 we specify some basic assumptions on
the functions f and g under which we solve problem (UP) and (P) respectively. Moreover,
we explain how to obtain a solution of (UP) from a solution (X,Y, Z) of the FBSDE (1).
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Section 2.1 provides an overview of the method of decoupling fields. In Section 2.2 we apply
the method to solve problem (UP). Finally, in Section 3 we solve problem (P) by reducing it
to (UP).

1 Problem formulation via FBSDEs

Let T ∈ (0,∞) be a deterministic finite time horizon. LetW = (Wt)t∈[0,T ] be a d - dimensional
Brownian motion on a complete probability space (Ω,F ,P) and denote by (Ft)t∈[0,T ] the
smallest filtration satisfying the usual conditions and containing the filtration generated by
W .

Let A ⊆ R be a closed and connected set of possible control values satisfying inf A ≤ 0 <
supA. Let

g : Ω× R→ R

be measurable and
f : Ω× [0, T ]× R×A→ R

be measurable such that for all (x, a) ∈ R×A the mapping (ω, t) 7→ f(ω, t, x, a) is progressively
measurable. We make the following additional assumptions on f and g:

(C0) For every fixed pair (ω, t) ∈ Ω × [0, T ] the mappings (x, a) 7→ f(t, x, a) and x 7→ g(x)
are convex1, with f being strictly convex in a.

(C1) The mappings A 3 a 7→ f(t, x, a) and R 3 x 7→ f(t, x, a) attain a minimum at zero (for
all ω, t, x and all ω, t, a respectively). We also assume that f(t, 0, 0) = 0 for all t ∈ [0, T ].
Observe that f is then non-negative.

(C2) f is coercive, i.e. there exist p > 1 and b > 0 such that

∀(ω, t, x, a) ∈ Ω× [0, T ]× R×A : f(t, x, a) ≥ b|a|p.

(C3) g(·) restricted to [0,∞) is twice continuously differentiable, f(t, ·, ·) restricted to [0,∞)×
(A ∩ [0,∞)) is continuously differentiable, while fx(t, ·, ·) and fa(t, ·, ·) are continuously
differentiable on [0,∞) × A+, where A+ := A ∩ (0,∞). All second derivatives are
bounded on compacts in [0,∞)×A+ and all first derivatives are bounded on compacts
in [0,∞)× (A ∩ [0,∞)), uniformly in (ω, t).

(C4) The mapping x 7→ g(x) attains its minimum at zero (for all ω). We also assume that
g(0) = 0. Observe that g is then non-negative.

Remark 1.1. Note that the assumptions that f(t, 0, 0) = 0 for all t ∈ [0, T ] and g(0) = 0
can be relaxed to the assumptions that f(·, 0, 0) ∈ L1(Ω × [0, T ]) and g(0) ∈ L1(Ω). Indeed,
in this case one can consider the problems (UP) and (P) with f̃(t, x, a) = f(t, x, a)− f(t, 0, 0)

and g̃(x) = g(x) − g(0) instead of f and g and add E
[∫ T

0 f(t, 0, 0)dt+ g(0)
]
outside the

minimization problem.
1Note that here and in the sequel we follow the usual convention and omit the function argument ω.
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Problem (UP)

For (t, x) ∈ [0, T ]×R we define A(t, x) as the set of all progressively measurable α : Ω×[t, T ]→
A such that a.s. t 7→ α(·, t) is integrable. Hence the process

Xt,x,α
s := x−

∫ s

t
αudu (2)

is well-defined for all s ∈ [t, T ]. The dynamic version of problem (UP) then reads

Minimize J(t, x, α) := E
[∫ T

t
f(s,Xt,x,α

s , αs)ds+ g(Xt,x,α
T )

∣∣Ft] over all α ∈ A(t, x). (3)

The value function v : Ω × [0, T ] × R → [0,∞] of (3) is the random field that satisfies for all
(t, x) ∈ [0, T ]× R

v(t, x) = essinfα∈A(t,x) J(t, x, α). (4)

For simplicity we sometimes write Xα or just X instead of Xt,x,α. So, for given (t, x) ∈
[0, T ] × R, the goal is to choose the control α from the set A(t, x) of admissible controls in
such a way that J is minimized.

The next result shows that when starting with a non-negative initial position, then it can
not be optimal to choose α such that the position process is increasing or negative at some time
point. This result is coherent with the absence of transaction-triggered price manipulation
(see [1]). Note that for proving this statement we only need (C0), (C1) and (C4), but not
(C2) and (C3).

Proposition 1.2. Let (t, x) ∈ [0, T ] × [0,∞). If α ∈ A(t, x) is optimal in (3), then Xα
s =

x−
∫ s
t αrdr, s ∈ [0, T ], is non-increasing and non-negative. Moreover, for any α ∈ A(t, x) there

exists β ∈ A(t, x) such that Xβ is non-increasing and non-negative and J(t, x, β) ≤ J(t, x, α).

The proof of Proposition 1.2 is provided in the appendix. Observe that by symmetry,
when starting in a negative position, one can restrict the analysis to non-positive controls and
positions, with straightforward adjustments in the hypothesis (C3) (differentiability condition
for non positive values). In the following we consider only the positive case and always assume
that any positions and controls are non-negative.

The so-called Hamiltonian of the control problem (3) is defined by

H(t, x, a, y) := −ay + f(t, x, a),

for t ∈ [0, T ] and (x, a, y) ∈ R×A× R. Notice that

min
a∈A
H(t, x, a, y) = −f∗(t, x, y), (5)

where f∗(t, x, ·) is the convex conjugate of f(t, x, ·). Observe that condition (C2) guarantees
that f∗ assumes real values only. For the following observation we need both (C2) and (C3).

Remark 1.3. For all x, y ≥ 0 the following consideration holds: The minimum in (5) is
attained at a = f∗y (t, x, y), where f∗y denotes the partial derivative of f∗ with respect to y. This
partial derivative exists due to differentiability of f w.r.t. the last parameter a and (C2). More

5



precisely, using Fermat’s theorem applied to the minimization problem mina∈AH(t, x, a, y) =
mina∈A+ H(t, x, a, y) one can deduce

a = f∗y (t, x, y) = f−1
a (t, x, y), if y ∈ (fa(t, x, 0), fa(t, x, asup)) ,

where asup := supA and where f−1
a (t, x, ·) denotes the inverse of the function fa(t, x, ·), which

is strictly increasing.
Note that for y ∈ [0, fa(t, x, 0)] we have f∗y (t, x, y) = 0 and for y ∈ [fa(t, x, asup),∞) we

have f∗y (t, x, y) = asup. This means that we can extend f−1
a (t, x, ·) to the whole of [0,∞)

canonically, s.t. f∗y (t, x, y) = f−1
a (t, x, y) holds everywhere and this extended f−1

a (t, x, ·) is
still continuous and non-decreasing.

Finally notice the following straightforwardly verifiable properties of f∗y :
(i) f∗y (t, x, y) ≥ 0 for all t ∈ [0, T ] and x, y ≥ 0,
(ii) f∗y (t, x, 0) = 0 for all t ∈ [0, T ] and x ≥ 0,
(iii) f∗y (t, x, ·), which is defined on [0,∞), has A ∩ [0,∞) as its range for all t ∈ [0, T ] and

x ≥ 0.

The following observation will be of importance later on:

Remark 1.4. Assume that faa(t, x, a) > 0 holds for all (ω, t, x, a) ∈ Ω× [0, T ]× [0,∞)×A+

and that f∗y is weakly differentiable w.r.t. (x, y) on [0,∞)2 (for the definition of the weak
derivative see e.g. Section 2.1 in [32]). By applying the chain rule to the equation

fa(t, x, f
∗
y (t, x, y)) = fa(t, x, 0) ∨ y ∧ fa(t, x, asup)

we obtain

(
f∗yx(t, x, y), f∗yy(t, x, y)

)
=

{
(0, 0) , if y /∈ (fa(t, x, 0), fa(t, x, asup)) ,(
−fax
faa

(t, x, f∗y (t, x, y)), 1
faa

(t, x, f∗y (t, x, y))
)

, otherwise.
(6)

We remark that in order to have faa(t, x, a) > 0 for all (x, a) ∈ [0,∞) × A+ it is suffi-
cient to require local Lipschitz continuity of f∗y (t, x, ·) for all ω, t and all x ≥ 0. Indeed, for
fixed ω, t, x the above formula for f∗yy(t, x, y) is satisfied on the set of all y ≥ 0 satisfying
faa(t, x, f

∗
y (t, x, y)) > 0 and this set cannot be empty (due to strict convexity). Due to the

continuity of faa(t, x, f∗y (t, x, ·)) and the assumption of local boundedness of f∗yy(t, x, ·), the
reciprocal value of faa(t, x, f∗y (t, x, ·)) must remain bounded on compact subsets of [0,∞). In
particular faa(t, x, f∗y (t, x, y)) > 0 for all y ≥ 0, which means faa(t, x, a) > 0 for all a ∈ A+.

Next we consider for (t, x) ∈ [0, T ]× [0,∞) the so-called adjoint forward-backward stochas-
tic differential equation (FBSDE) for the control problem (3), given by

Xt,x
s = x−

∫ s
t f
∗
y (r,Xt,x

r , Y t,x
r )dr,

Y t,x
s = g′(Xt,x

T )−
∫ T
s Zt,xr dWr +

∫ T
s fx(r,Xt,x

r , f∗y (r,Xt,x
r , Y t,x

r ))dr,
(7)

for all s ∈ [t, T ]. To simplify the notations, when there is no ambiguity, (Xt,x, Y t,x, Zt,x) will
be denoted by (X,Y, Z). In this section and Sections 2.2 and 3 we mean by a solution to
(7) a triplet (X,Y, Z) = (Xt,x, Y t,x, Zt,x) of progressively measurable processes with values in
R× R× Rd such that
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(i) X and Y are continuous and non-negative processes,
(ii) the processes X, Y and s 7→ f∗y (s,Xs, Ys) are bounded and, finally,
(iii) the two equations (7) are satisfied a.s. for every fixed s ∈ [t, T ].
Note that under the above and due to (C3) the processes s 7→ f(s,Xt,x

s , f∗y (s,Xt,x
s , Y t,x

s )),
s 7→ fx(s,Xt,x

s , f∗y (s,Xt,x
s , Y t,x

s )), as well as the random variables g(Xt,x
T ) and g′(Xt,x

T ) are also
bounded. This implies that the stochastic integral

∫ ·
0 Z

t,x
r dWr is a BMO martingale (see e.g.

Proposition 1.1 in [5]). In particular for any p ≥ 1 it holds that

E

[(∫ T

0
|Zt,xr |2dr

)p/2]
< +∞. (8)

Remark 1.5. We require that any solution satisfies X,Y ≥ 0 to make sure that the equation
(7) is well defined. Notice that we only assume that g is differentiable on [0,∞) and that
f∗y (t, x, y), fx(t, x, f∗y (t, x, y)) are defined for x, y ≥ 0.

Constructing solutions to the above FBSDE is important for the following reason.

Proposition 1.6. Let (t, x) ∈ [0, T ] × [0,∞). If there exists a solution (Xt,x, Y t,x, Zt,x) of
(7), then the process α = (αs)s∈[t,T ] satisfying αs = f∗y (s,Xt,x

s , Y t,x
s ), s ∈ [t, T ], is an optimal

control for problem (3) with finite expected costs, i.e.

v(t, x) = J(t, x, α) <∞.

The proof of Proposition 1.6 is provided in the appendix.

Problem (P)

For all (t, x) ∈ [0, T ) × R let A0(t, x) := {α ∈ A(t, x) |Xt,x,α
T = 0 a.s.}. The dynamic version

of problem (P) then reads

Minimize Ĵ(t, x, α) := E
[∫ T

t
f
(
s,Xt,x,α

s , αs
)
ds
∣∣Ft] over all α ∈ A0(t, x). (9)

The value function v̂ : Ω × [0, T ) × R → [0,∞] of (9) is the random field that satisfies for all
(t, x) ∈ [0, T )× R

v̂(t, x) = essinfα∈A0(t,x) Ĵ(t, x, α). (10)

In order to solve problem (9), we choose a penalization method (cf. [31, Section III.6] for
problems with state constraint and [2] for a special case of Problem (P)). More precisely, we
consider variants of problem (3) with penalty functions gL(x) := Lx2, x ∈ [0,∞), L ∈ (0,∞)
and define

JL(t, x, α) := E
[∫ T

t
f(s,Xs, αs)ds+ gL(XT )

∣∣Ft] (11)

for (t, x) ∈ [0, T ]× [0,∞) and α ∈ A(t, x). We show in Subsection 2.2, under some additional
analytic conditions, that for all (t, x) ∈ [0, T ]×[0,∞) the FBSDE (7) associated to the problem
of minimizing JL has a solution (XL, Y L, ZL). In Section 3 we prove that (XL, Y L, ZL)
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converges to a process (X∞, Y∞, Z∞), as L→∞, that is characterized as the unique solution
of the coupled SDEs:

X∞s = x−
∫ s
t f
∗
y (u,X∞u , Y

∞
u )du, X∞T = limu→T X

∞
u = 0

Y∞s = Y∞r +
∫ r
s fx(u,X∞u , f

∗
y (u,X∞u , Y

∞
u ))du−

∫ r
s Z
∞
u dWu,

(12)

for all s ∈ [t, T ), r ∈ [s, T ). Observe that in contrast to (7), the terminal position constraint
translates here into a terminal condition on the first equation. On the second equation no
boundary conditions are imposed. Moreover, we show in Section 3 that the optimal control
α∞ = f∗y (·, X∞, Y∞) belongs to A(t, x) and solves problem (9).

2 Decoupling fields and problem (UP)

2.1 General results about the method of decoupling fields

As mentioned above, solving (7) is crucial in constructing optimal controls. In Section 2.2 the
solvability of (7) under the assumption that the functions f∗y , g′ and fx are uniformly Lipschitz
continuous in (x, y) ∈ [0,∞)2 and are zero if we plug in the special value (x, y) = (0, 0).

Note that even under these Lipschitz assumptions, it is not trivial to show well-posedness
of (7) due to its coupled nature. It is necessary to take more subtle structural properties into
account to conduct the proof. Our arguments are based on the so-called method of decoupling
fields which we briefly summarize in this section. Owing to their general significance, we treat
the theory of FBSDEs and their decoupling fields in a more general framework than might be
needed for investigating well-posedness of (7).

Let T > 0 be a fixed finite time horizon and (Ω,F , (Ft)t∈[0,T ],P) a complete filtered
probability space, where F0 consists of all null sets, (Wt)t∈[0,T ] is a d-dimensional Brownian
motion and Ft := σ(F0, (Ws)s∈[0,t]) with F := FT . For t ∈ [0, T ], x ∈ Rn we consider an
FBSDE of the form

Xt,x
s = x+

∫ s

t
µ(r,Xt,x

r , Y t,x
r )dr,

Y t,x
s = ξ(Xt,x

T ) +

∫ T

s
φ(r,Xt,x

r , Y t,x
r )dr −

∫ T

s
Zt,xr dWr,

(13)

for 0 ≤ t ≤ s ≤ T , where n,m ∈ N>0 and ξ : Ω× Rn → Rm, µ : [0, T ]× Ω× Rn × Rm → Rn,
φ : [0, T ] × Ω × Rn × Rm → Rm are measurable functions. Throughout the whole section µ
and φ are assumed to be progressively measurable with respect to (Ft)t∈[0,T ] and the random
variable ξ(x) is FT -measurable for all x ∈ Rn. The FBSDE (13) is a generalization of the
FBSDE (7).

Remark 2.1. Note that the decoupling field theory has been developed in a much more
general setting, where µ and φ can also depend on Z and/or where a diffusion part can be
added in the forward equation. See [11, 10, 18] for more details.

A decoupling field comes with an richer structure than just a solution (X,Y, Z).

Definition 2.2. Let t ∈ [0, T ]. A function u : [t, T ] × Ω × Rn → Rm with u(T, ·) = ξ a.e. is
called decoupling field for (ξ, (µ, φ)) on [t, T ] if for all t1, t2 ∈ [t, T ] with t1 ≤ t2 and any Ft1-
measurable Xt1 : Ω → Rn there exist progressively measurable processes (X,Y, Z) on [t1, t2]
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such that

Xs = Xt1 +

∫ s

t1

µ(r,Xr, Yr)dr,

Ys = Yt2 +

∫ t2

s
φ(r,Xr, Yr)dr −

∫ t2

s
ZrdWr, (14)

Ys = u(s,Xs),

for all s ∈ [t1, t2]. In particular, we want all integrals to be well-defined.

Some remarks about this definition are in place.

• The first equation in (14) is called the forward equation, the second the backward equation
and the third will be referred to as the decoupling condition.

• Note that, if t2 = T , we get YT = ξ(XT ) a.s. as a consequence of the decoupling
condition together with u(T, ·) = ξ. At the same time YT = ξ(XT ) together with
decoupling condition implies u(T, ·) = ξ a.e.

• If t2 = T we can say that a triplet (X,Y, Z) solves the FBSDE starting at time t1,
meaning that it satisfies the forward and the backward equation, together with YT =
ξ(XT ). This relationship YT = ξ(XT ) is referred to as the terminal condition.

Decoupling random fields can be pasted together, a useful property that has been already
observed from the link to quasilinear PDEs (see e.g. [8, 17, 18, 21]):

Lemma 2.3 ([10], Lemma 2.1.2). Let u be a decoupling field for (ξ, (µ, φ)) on [t, T ] and ũ be
a decoupling field for (u(t, ·), (µ, φ)) on [s, t], for 0 ≤ s < t < T . Then, the map û given by
û := ũ1[s,t] + u1(t,T ] is a decoupling field for (ξ, (µ, φ)) on [s, T ].

We want to remark that, if u is a decoupling field and ũ is a modification of u, i.e.
for each s ∈ [t, T ] the functions u(s, ω, ·) and ũ(s, ω, ·) coincide for almost all ω ∈ Ω, then
ũ is also a decoupling field to the same problem. Hence, u could also be referred to as
a class of modifications and a progressively measurable and in some sense right-continuous
representative exists if the decoupling field is Lipschitz continuous in x (Lemma 2.1.3 in [10]).

For the following we need to fix briefly further notation.
Let I ⊆ [0, T ] be an interval and u : I×Ω×Rn → Rm a map such that u(s, ·) is measurable

for every s ∈ I. We define

Lu,x := sup
s∈I

inf{L ≥ 0 | for a.a. ω ∈ Ω : |u(s, ω, x)− u(s, ω, x′)| ≤ L|x− x′| for all x, x′ ∈ Rn},

where inf ∅ := ∞. We also set Lu,x := ∞ if u(s, ·) is not measurable for every s ∈ I. One
can show that Lu,x < ∞ is equivalent to u having a modification which is truly Lipschitz
continuous in x ∈ Rn.

For an integrable real valued random variable F the expression Et[F ] refers to E[F |Ft],
while Et,∞[F ] refers to ess supE[F |Ft], which might be ∞, but is always well defined as the
infimum of all constants c ∈ [−∞,∞] such that E[F |Ft] ≤ c a.s. Additionally, we write ‖F‖∞
for the essential supremum of |F |.

Finally for a matrix A ∈ RN×n and a vector v ∈ Sn−1 := {x ∈ Rn : |x| = 1}, we define
|A|v := |Av| as the norm of A in the direction v.
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In practice it is important to have explicit knowledge about the regularity of (X,Y, Z).
For instance, it is important to know in which spaces the processes live, and how they react
to changes in the initial value.

Definition 2.4. Let u : [t, T ]× Ω× Rn → Rm be a decoupling field to (ξ, (µ, φ)).

1. We say u to be weakly regular if Lu,x <∞ and sups∈[t,T ] ‖u(s, ·, 0)‖∞ <∞.

2. A weakly regular decoupling field u is called strongly regular if for all fixed t1, t2 ∈ [t, T ],
t1 ≤ t2, the processes (X,Y, Z) arising in (14) are a.e unique and satisfy

sup
s∈[t1,t2]

Et1,∞[|Xs|2] + sup
s∈[t1,t2]

Et1,∞[|Ys|2] + Et1,∞
[∫ t2

t1

|Zs|2ds
]
<∞, (15)

for each constant initial value Xt1 = x ∈ Rn. In addition they are required to be
measurable as functions of (x, s, ω) and even weakly differentiable w.r.t. x ∈ Rn such
that for every s ∈ [t1, t2] the mappings Xs and Ys are measurable functions of (x, ω) and
even weakly differentiable w.r.t. x such that

ess supx∈Rn sup
v∈Sn−1

sup
s∈[t1,t2]

Et1,∞

[∣∣∣∣ d

dx
Xs

∣∣∣∣2
v

]
<∞,

ess supx∈Rn sup
v∈Sn−1

sup
s∈[t1,t2]

Et1,∞

[∣∣∣∣ d

dx
Ys

∣∣∣∣2
v

]
<∞,

ess supx∈Rn sup
v∈Sn−1

Et1,∞

[∫ t2

t1

∣∣∣∣ d

dx
Zs

∣∣∣∣2
v

ds

]
<∞. (16)

3. We say that a decoupling field on [t, T ] is strongly regular on a subinterval [t1, t2] ⊆ [t, T ]
if u restricted to [t1, t2] is a strongly regular decoupling field for (u(t2, ·), (µ, φ)).

Under suitable conditions a rich existence, uniqueness and regularity theory for decoupling
fields can be developed. The basis of the theory is Theorem 2.5 below, which is proven in
Chapter 2 of [10].
Assumption (SLC): (ξ, (µ, φ)) satisfies standard Lipschitz conditions (SLC) if

1. (µ, φ) are Lipschitz continuous in (x, y) with Lipschitz constant L,

2. ‖(|µ|+ |φ|) (·, ·, 0, 0)‖∞ <∞,

3. ξ : Ω× R→ R is measurable such that ‖ξ(·, 0)‖∞ <∞ and Lξ,x <∞.

Theorem 2.5 ([10], Theorem 2.2.1). Suppose (ξ, (µ, φ)) satisfies (SLC). Then there exists a
time t ∈ [0, T ) such that (ξ, (µ, φ)) has a unique (up to modification) decoupling field u on
[t, T ] with Lu,x <∞ and sups∈[t,T ] ‖u(s, ·, 0)‖∞ <∞.

This local theory for decoupling fields can be systematically extended to global results
based on fairly simple “small interval induction” arguments (Lemmas 2.5.1 and 2.5.2 in [10]).

Theorem 2.6 ([10], Corollaries 2.5.3, 2.5.4 and 2.5.5). Suppose that (ξ, (µ, φ)) satisfies (SLC).
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1. Global uniqueness: If there are two weakly regular decoupling fields u(1), u(2) to the cor-
responding problem on some interval [t, T ], then we have u(1) = u(2) up to modifications.

2. Global regularity: If there exists a weakly regular decoupling field u to this problem on
some interval [t, T ], then u is strongly regular.

3. If there exists a weakly regular decoupling field u of the corresponding FBSDE on some
interval [t, T ], then for any initial condition Xt = x ∈ R there is a unique solution
(X,Y, Z) of the FBSDE on [t, T ] satisfying

sup
s∈[t,T ]

E[|Xs|2] + sup
s∈[t,T ]

E[|Ys|2] + E
[∫ T

t
|Zs|2ds

]
<∞.

In order to have a notion of global existence we need the following definition:

Definition 2.7. We define the maximal interval Imax ⊆ [0, T ] of the problem given by
(ξ, (µ, φ)) as the union of all intervals [t, T ] ⊆ [0, T ], such that there exists a weakly regu-
lar decoupling field u on [t, T ].

Note that the maximal interval might be open to the left. Also, let us remark that we
define a decoupling field on such an interval as a mapping which is a decoupling field on
every compact subinterval containing T . Similarly we can define weakly and strongly regular
decoupling fields as mappings which restricted to an arbitrary compact subinterval containing
T are weakly (or strongly) regular decoupling fields in the sense of the definitions given above.

Finally, we have global existence and uniqueness on the maximal interval:

Theorem 2.8 (Global existence in weak form, [10], Theorem 5.1.11 and Lemma 5.1.12). Let
(ξ, (µ, φ)) satisfy (SLC). Then there exists a unique weakly regular decoupling field u on Imax.
This u is even strongly regular. Furthermore, either Imax = [0, T ] or Imax = (tmin, T ], where
0 ≤ tmin < T . In the latter case we have

lim
t↓tmin

Lu(t,·),x =∞. (17)

Note that in particular cases the last statement allows to show “strong global existence”,
i.e. Imax = [0, T ], via contradiction and, thereby, is the basis of the so-called method of
decoupling fields. We employ this idea in the section.

2.2 Solving problem (UP)

In this section we provide sufficient conditions for the FBSDE (7) to possess a unique solution
on [0, T ]. With Proposition 1.6 we then immediately obtain a solution of problem (UP).

In addition to conditions (C0) to (C4) we assume throughout this subsection the following
assumptions.

(D1) The functions (x, y) 7→ f∗y (t, x, y), (x, y) 7→ fx(t, x, f∗y (t, x, y)) and x 7→ g′(x) are
Lipschitz continuous on [0,∞) × [0,∞) and [0,∞) respectively, uniformly in (ω, t) ∈
Ω× [0, T ].

(D2) It holds that g′(0) = fx(t, 0, 0) = 0 for all (ω, t) ∈ Ω× [0, T ].
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We give an example of a generator satisfying (D1) and (D2) in Example 3.7 below. Notice that
in general the functions f∗y (t, ·, ·), g′, fx(t, ·, f∗y (t, ·, ·)) are defined only on [0,∞)× [0,∞), i.e.
for non-negative x, y. We extend them to the whole of R2 by projecting (x, y) to (x∨ 0, y ∨ 0)
and plugging the projected value in the respective function. Note that condition (D1) is still
maintained after this extension. By a slight abuse of notation we denote the new functions
again by f∗y (t, ·, ·), g′, fx(t, ·, f∗y (t, ·, ·)). Note that (D1) implies that these three functions are
weakly differentiable on the whole of R2. Furthermore the weak derivatives w.r.t. x vanish
whenever x ≤ 0 and the weak derivatives w.r.t. y vanish whenever y ≤ 0.

Now the parameter functions of the problem (7) satisfy (SLC), such that the theory of
decoupling fields can be applied. We next show that the problem is well-posed and can
be solved on the whole of [0, T ]. We start with an auxiliary result stating that if the initial
condition is positive, then the solution process of the forward equation remains always positive.

Lemma 2.9. Let u be a weakly regular decoupling field on [t, T ] such that u(s, 0) = 0 for all
s ∈ [t, T ]. Let x ∈ (0,∞) and (X,Y, Z) be the solution of FBSDE (7) on [t, T ] with initial
condition Xt = x > 0. Then it holds that Xs > 0 for all s ∈ [t, T ].

Proof. The forward equation of (7) together with the decoupling condition imply that for all
s ∈ [t, T ] it holds

Xs = x−
∫ s

t
f∗y (r,Xr, u(r,Xr))dr,

We have f∗y (r, 0, 0) = u(r, 0) = 0 for all r ∈ [t, T ] and, therefore, for all r ∈ [t, T ]

|f∗y (r,Xr, u(r,Xr))| ≤ Lf∗y (|Xr|+ Lu · |Xr|) = Lf∗y (1 + Lu)|Xr|,

where Lf∗y is a Lipschitz constant of f∗y w.r.t. the last two components (x, y) and Lu is a
Lipschitz constant of u w.r.t. x. Let θ : [t, T ]→ R be the unique solution to the ODE

θs = x−
∫ s

t
Lf∗y (1 + Lu)|θr|dr, s ∈ [t, T ].

It is straightforward to verify that θs = x · exp
(
−Lf∗y (1 + Lu)(s− t)

)
, s ∈ [t, T ], is the

solution. A comparison principle for ODEs implies that X ≥ θ > 0.

Theorem 2.10. The maximal interval associated with FBSDE (7) satisfies Imax = [0, T ].
Furthermore, the unique weakly regular decoupling field u on [0, T ] satisfies u(t, x) = 0 for all
x ≤ 0 and t ∈ [0, T ].

Proof. Suppose Imax = [0, T ] does not hold. Then Imax = (tmin, T ], where tmin ∈ [0, T ). We
show that this leads to a contradiction. Let u be the unique weakly regular decoupling field
on (tmin, T ]. We next show that there exists a uniform bound on ux. In the following let
t0 ∈ (tmin, T ] and x ∈ R be arbitrary. Let (X,Y, Z) be the solution of the corresponding
FBSDE (7) on [t0, T ] with initial condition Xt0 = x. We define the processes

Dt =
dXt

dx
, Ct =

dYt
dx

and Ψt = ux(t,Xt), t ∈ (t0, T ].

These objects are well defined due to strong regularity of u.
First, let us consider the case x ≤ 0. It is straightforward to verify that X,Y are both

constant: X = x and Y = 0. This is due to uniqueness and the fact that these constant
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processes together with Z = 0 solve the FBSDE as g′ vanishes for non-positive values. This
means that u(t0, x) = 0 for x ≤ 0, which implies ux(t0, x) = 0 for x ≤ 0.

Second, let us assume x > 0. Note that Lemma 2.9 implies that Xt > 0, a.s. for all
t ∈ [t0, T ]. This further entails Yt ≥ 0, a.s. Indeed, note that Y satisfies for all t ∈ [t0, T ]

Yt = E
[
g′(XT ) +

∫ T

t
fx(r,Xr, f

∗
y (r,Xr, Yr)) dr

∣∣∣∣Ft] .
Since g′ and fx are non-negative we have Yt ≥ 0, a.s. for all t ∈ [t0, T ].

By differentiating the forward equation w.r.t. the intial value x ∈ R one can show that D
satisfies the SDE

dDt = −
(
f∗yx(t,Xt, Yt)Dt + f∗yy(t,Xt, Yt)Ct

)
dt, (18)

with initial value Dt0 = 1. Notice that f∗y is not necessarily differentiable in a point (x, y) if
y ∈ {fa(t, x, 0), fa(t, x, asup)}. The function f∗y is, however, weakly differentiable. Throughout
the proof we define f∗yx(t, x, y) = f∗yy(t, x, y) = 0 whenever y ∈ {fa(t, x, 0), fa(t, x, asup)} (in
other words, we define (f∗yx, f

∗
yy) as in Remark 1.4). The chain rule for weak derivatives allows

to differentiate inside the integral in the forward equation (see e.g. Lemma A.2.5. of [10] and
Lemma A.3.1. of [10]).

We now show that D remains positive on the whole interval [t0, T ]. To this end let
τ ∈ [t0, T ] be a stopping time such that D is positive on [t0, τ ]. Then we have Ψt = CtD

−1
t

on [t0, τ ]. Note that

dD−1
t =

f∗yx(t,Xt, Yt)Dt + f∗yy(t,Xt, Yt)Ct

D2
t

dt

= D−1
t

(
f∗yx(t,Xt, Yt) + f∗yy(t,Xt, Yt)Ψt

)
dt,

on the stochastic interval [t0, τ ]. Consequently, it holds for all t ∈ [t0, T ]

D−1
t = exp

(∫ t

t0

f∗yx(s,Xs, Ys) + f∗yy(s,Xs, Ys)Ψsds

)
.

Since the decoupling field is weakly regular, ux and hence Ψ are bounded on [t0, T ]. Moreover,
f∗yx, f∗yy are uniformly bounded. Therefore, D−1 is bounded on [t0, τ ] by a constant that does
not depend on τ . This implies that D can never reach 0 and, therefore, we can choose τ = T .

Moreover, C satisfies for all the BSDE

−dCt = − dZt
dx

dWt + fxx(t,Xt, αt)Dtdt

+fxa(t,Xt, αt)
[
f∗yx(t,Xt, Yt)Dt + f∗yy(t,Xt, Yt)Ct

]
dt, (19)

on [t0, T ] with terminal condition CT = g′′(XT )DT , where αt := f∗y (t,Xt, Yt), t ∈ [t0, T ].
The dynamics of Ψ are now deduced from those of C and D using the product rule. For all
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t ∈ [t0, T ] it holds

dΨt = D−1
t dCt + CtdD

−1
t

= D−1
t

dZt
dx

dWt + f∗yy(t,Xt, Yt)Ψ
2
tdt

+
[
f∗yx(t,Xt, Yt)− fxa(t,Xt, αt)f

∗
yy(t,Xt, Yt)

]
Ψtdt

−
[
fxx(t,Xt, αt) + fxa(t,Xt, αt)f

∗
yx(t,Xt, Yt)

]
dt

= D−1
t

dZt
dx

dWt − fxx(t,Xt, αt)dt

+
[
f∗yy(t,Xt, Yt)Ψt + f∗yx(t,Xt, Yt)

]
[Ψt − fxa(t,Xt, αt)] dt. (20)

Considering (6) in Remark 1.4 we have for all t ∈ [0, T ], x, y ∈ [0,∞) that

f∗yy(t, x, y)1(0,∞)(x) =
1

faa
(t, x, f∗y (t, x, y))1(fa(t,x,0+),fa(t,x,asup))(y)1(0,∞)(x),

f∗yx(t, x, y)1(0,∞)(x) = −fax
faa

(t, x, f∗y (t, x, y))1(fa(t,x,0+),fa(t,x,asup))(y)1(0,∞)(x).

Together with (20) we obtain for all t ∈ [t0, T ]

dΨt = D−1
t

dZt
dx

dWt − fxx(t,Xt, αt)dt+ f∗yy(t,Xt, Yt) (Ψt − fxa(t,Xt, αt))
2 dt. (21)

To sum up, Ψ solves on [t0, T ] the BSDE with terminal condition ΨT = g′′(XT ) and driver

h(t, ψ) = −f∗yy(t,Xt, Yt)ψ
2 +

[
f∗yy(t,Xt, Yt)fxa(t,Xt, αt)− f∗yx(t,Xt, Yt)

]
ψ

+fxx(t,Xt, αt) + f∗yx(t,Xt, Yt)fxa(t,Xt, αt) (22)

= −(ψ − fxa(t,Xt, αt))
2

faa(t,Xt, αt)
1(fa(t,Xt,0),fa(t,Xt,asup))(Yt) + fxx(t,Xt, αt).

Lemma 2.11. Let L be a common Lipschitz constant for the functions in condition (D1).
Then it holds that

0 ≤ Ψs ≤ e2LTL(T + 1) (23)

a.s. for all s ∈ [t0, T ].

Proof. We first show Ψ ≥ 0 using the comparison theorem. To this end define

ĥ(t, ψ) := 0 ∧

((
−(ψ − fxa(t,Xt, αt))

2

faa(t,Xt, αt)
+ fxx(t,Xt, αt)

)
1(fa(t,Xt,0),fa(t,Xt,asup))(Yt)

)

for all ψ ∈ R and t ∈ [t0, T ]. Clearly, it holds that ĥ ≤ h. We claim that the zero process
solves the BSDE given by the driver ĥ and the terminal condition 0. Indeed, plugging ψ = 0
into the definition of ĥ, we notice that for all t ∈ [t0, T ] it holds(

−f
2
xa

faa
+ fxx

)
(t,Xt, αt) =

(
1

faa
det
(
D2f

))
(t,Xt, αt),

where D2f is the Hessian matrix of f with respect to the two variables x and a. D2f is sym-
metrical and positive semi-definite everywhere, since f is convex. Therefore, the eigenvalues
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of D2f are always non-negative. Moreover, we can calculate det
(
D2f

)
as the product of those

eigenvalues. Therefore, ĥ(t, 0) = 0, showing that 0 is a solution of the BSDE with parameters
(ĥ, 0). Finally, the fact that gxx ≥ 0 and the comparison theorem for BSDEs implies that
Ψ ≥ 0. Indeed, we can use the comparison principle for Lipschitz BSDEs since Ψ is bounded
on [t0, T ].

In order to show the upper estimate notice that by Equation (22) for all [t0, T ] and ψ ∈ R
we have

h(t, ψ) ≤
[
f∗yy(t,Xt, Yt)fxa(t,Xt, αt)− f∗yx(t,Xt, Yt)

]
ψ

+fxx(t,Xt, αt) + f∗yx(t,Xt, Yt)fxa(t,Xt, αt).

Let us remark that
−f∗yy(t, ·, ·)fxa(t, ·, f∗y (t, ·, ·)) + f∗yx(t, ·, ·)

is equal to ∂xf∗y (t, ·, ·)− ∂y(fx(t, ·, f∗y (t, ·, ·))) and

fxx(t, ·, f∗y (t, ·, ·)) + f∗yx(t, ·, ·)fxa(t, ·, f∗y (t, ·, ·))

to ∂x(fx(t, ·, f∗y (t, ·, ·))). By condition (D1), these functions are bounded by 2L and by L
respectively, and hence h(t, ψ) ≤ 2Lψ + L. By comparing Ψ with the solution of the BSDE
with terminal condition L and linear driver 2Lψ + L we arrive at (23).

According to the assumption (D1) by Lemma 2.11 the process Ψ is non-negative and
bounded from above, say by C ∈ [0,∞). Notice that C does not depend on x and t0. We
have |ux(t0, x)| = |ux(t0, Xt0)| = |Ψt0 | ≤ C, which is a contradiction to (17) in Theorem 2.8.

Therefore, there exists a unique weakly regular decoupling field u on [0, T ] associated with
FBSDE (7). According to Theorem 2.6 this implies for all t ∈ [0, T ] and x ∈ [0,∞) the
existence of a unique solution of (7). The property u(t, x) = 0, x ≤ 0, is a simple consequence
of the fact that (X,Y, Z) = (0, 0, 0) solve the FBSDE with the initial conditionXt = x ≤ 0.

Corollary 2.12. Let u be the unique weakly regular decoupling field associated to (7) from
Theorem 2.10. For all t ∈ [0, T ] and x ∈ [0,∞) there exists a unique solution (X,Y, Z) of
FBSDE (7). The processes X and Y are both bounded and non-negative and hence (X,Y, Z)
is a solution to (7) in the sense of Section 1.

Proof. We have seenX,Y ≥ 0 in the proof of Theorem 2.10. Furthermore, X is decreasing and,
therefore, X ≤ x. Boundedness of X together with the decoupling condition and Lipschitz
continuity of u in x as well as u(·, 0) = 0 imply that Y must also be bounded. Finally, Lipschitz
continuity of f∗y together with f∗y (·, 0, 0) = 0 implies boundedness of s 7→ f∗y (s,Xs, Ys).

3 Problem (P) in the Lipschitz case

In this section we turn to problem (P). We solve it by making similar assumptions on f as in
Subsection 2.2. More precisely, we assume conditions (C0) - (C4) as well as (D1) and (D2).
Moreover, we require the following conditions.

(D3) It holds that supA =∞ and fa(t, x, 0) = 0 for all (ω, t, x) ∈ Ω× [0, T ]× [0,∞).

(D4) The whole Hessian matrix D2f(t, x, a) of f w.r.t. (x, a) ∈ [0,∞)× (0,+∞) is uniformly
bounded independently of (ω, t, x, a) ∈ Ω× [0, T ]× [0,∞)× (0,+∞).

15



Note that assumption (D4) is equivalent to assuming that the components fxx, faa and
fxa = fax of the Hessian D2f are bounded. We denote by ‖fxx‖∞, ‖faa‖∞ and ‖fxa‖∞ the
respective uniform bounds of these mappings.

Due to Remark 1.4 assumption (D3) implies that f∗yy(t, x, y) = 1
faa

(t, x, f∗y (t, x, y)) for
y > 0, while f∗yy(t, x, y) = 0 if y ≤ 0. Together with boundedness of faa this implies that
for positive y the value f∗yy(t, x, y) can be uniformly bounded away from 0, while assumption
(D1) implies that f∗yy is bounded from above by some value ‖f∗yy‖∞ ∈ [0,∞) as well.

3.1 Solving problem (P) via a penalization method

For every (t0, x0) ∈ [0, T ) × (0,∞) and every penalty function gL(x) = Lx2, L > 0, we
have, according to Corollary 2.12 (see also Theorem 2.10 and Theorem 2.6) a unique solution
(XL, Y L, ZL) to the FBSDE (7) with initial condition Xt0 = x0, as well as a unique weakly
regular decoupling field uL associated with (7). For every L ∈ (0,∞) let vL : Ω×[0, T ]×R→ R
be the value function (4) of problem (3) with penalty function gL. According to Proposition 1.6
the strategy αLt := f∗y (t,XL

t , Y
L
t ), t ∈ [t0, T ], minimizes JL defined in (11), i.e. it holds that

vL(t0, x0) = JL(t0, x0, α
L) (24)

for non-negative x0.
One objective of this section is to show that, under the above assumptions, αL converges for

L → ∞ to an admissible strategy α∞ ∈ A0(t0, x0), which minimizes Ĵ(t0, x0, ·), i.e. provides
an optimal strategy for problem (9). We do so by first proving convergence of uL to some
limit u∞ and then showing convergence of XL to a limit X∞. This will finally lead us to the
limit α∞ ∈ A0(t0, x0).

Lemma 3.1. There exist constants C1, C2 ∈ (0,∞), which depend on T , ‖f∗yy‖∞, ‖fxx‖∞,
‖faa‖∞ and ‖fxa‖∞ only and are monotonically increasing in these values, such that for all
L > 0, t ∈ [0, T ) and a.a. x > 0 it holds that

1

C1

(
1

2L + (T − t)
) =: κLt ≤ uLx (t, x) ≤ γt := C2

(
1 +

1

T − t

)
. (25)

As a consequence, it holds for all L > 0, t ∈ [0, T ) and x > 0 that

x · κLt ≤ uL(t, x) ≤ x · γt. (26)

Proof. Let L > 0, t ∈ [0, T ) and x > 0 be fixed. Consider the processes (X,Y, Z) =
(XL, Y L, ZL) on [t, T ] solving FBSDE (7) with initial condition Xt = x, terminal condi-
tion g = gL and satisfying the decoupling condition via u = uL. Define Ψs := ux(s,Xs),
s ∈ [t, T ]. According to the proof of Theorem 2.10 (see (21)) the non-negative process Ψ
satisfies for all s ∈ [t, T ]

dΨs = Z̃sdWs −
(
fxx(s,Xs, αs)− f∗yy(s,Xs, Ys) (Ψs − fxa(s,Xs, αs))

2
)
ds,

and ΨT = g′′(XT ) = 2L, where αs := f∗y (s,Xs, Ys), s ∈ [t, T ]. Note that det(D2f) =

fxxfaa − f2
xa and faa(s,Xs, αs) = 1

f∗yy
(s,Xs, Ys) if Ys > 0. Consequently it holds for all
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s ∈ [t, T ]

dΨs = Z̃sdWs −
(
fxx(s,Xs, αs)1{Ys≤0}

+ f∗yy(s,Xs, Ys)
(
det(D2f)(s,Xs, αs) + 2fxa(s,Xs, αs)Ψs −Ψ2

s

))
ds.

We now define a generator h : Ω× [t, T ]× R→ R by

h(s, ψ) := fxx(s,Xs, αs)1{Ys≤0} + f∗yy(s,Xs, Ys)
(
det(D2f) + 2ψfxa − ψ2

)
(s,Xs, αs),

such that dΨs = Z̃sdWs−h(s,Ψs)ds, s ∈ [t, T ]. Furthermore, we define a generator ĥ : R→ R
via

ĥ(ψ) := ‖f∗yy‖∞
(
−2‖fxa‖∞ψ − ψ2

)
.

Convexity of f ensures that fxx ≥ 0 and that det(D2f) ≥ 0. Consequently, we obtain that
ĥ(ψ) ≤ h(s, ψ) for all s ∈ [t, T ] and ψ ∈ [0,∞). Let K1 := 2‖fxa‖∞‖f∗yy‖∞ ∈ [0,∞). Define
the deterministic, bounded and non-negative process ψ̂ : [t, T ]→ [0,∞) via

ψ̂s :=

(
eK1(T−s)

2L
+ ‖f∗yy‖∞(T − s)e

K1(T−s) − 1

K1(T − s)

)−1

, s ∈ [t, T ].

where an expression of the form ex−1
x is to be replaced by 1 = limx→0

ex−1
x in case x is

zero. Observe that ψ̂ solves the ODE dψ̂s = −ĥ(s, ψ̂s)ds, s ∈ [t, T ], with terminal condition
ψ̂T = 2L. The comparison principle implies Ψ ≥ ψ̂, which in turn implies κL ≤ Ψ for an
appropriately chosen C1 depending on TK1 and ‖f∗yy‖∞. This proves the lower bound in
(25). Together with the fact that u(·, 0) = 0 this implies directly the lower bound in (26).
Furthermore, using Lemma 2.9, we obtain that Ys = u(s,Xs) > 0 for all s ∈ [t, T ), which
simplifies the generator h as the first summand vanishes a.e.

We now prove the upper bound in (25). To this end define another locally Lipschitz
generator ȟ : R→ R via

ȟ(ψ) := K2 −K3ψ
2, ψ ∈ R,

where K2 := ‖fxx‖∞ + 3‖fxa‖2∞‖f∗yy‖∞ + 1 ∈ (0,∞) and K3 := 1
2‖faa‖∞ ∈ (0,∞). It holds

that
2fxaψ = 2

(√
2fxa

)( 1√
2
ψ

)
≤ 2‖fxa‖2∞ +

1

2
ψ2.

This together with the facts that f∗yy(s, x, y) ≥ 1
‖faa‖∞ for y ∈ (0,∞) and det(D2f) = fxxfaa−

f2
xa implies that h ≤ ȟ. Now define the deterministic and bounded process ψ̌ : [t, T ]→ R via

ψ̌s =

√
K2

K3

1 +
2(

1 + 2
(

2L
√

K3
K2
− 1
)−1

)
exp

(
2
√
K2K3(T − s)

)
− 1

 , s ∈ [t, T ].

Then ψ̌ solves the ODE dψ̌s = −ȟ(s, ψ̌s)ds, s ∈ [t, T ], with terminal condition ψ̌T = 2L. The
comparison principle implies Ψ ≤ ψ̌. Now observe that ψ̌ is monotonically increasing in L
and converges to √

K2

K3

(
1 +

2

exp
(
2
√
K2K3(T − s)

)
− 1

)
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for all s ∈ [t, T ] as L→∞. This implies for all s ∈ [t, T ] that

Ψs ≤
√
K2

K3
+

1

K3(T − s)
,

which is controlled from above by γs with C2 :=
√

K2
K3
∨ 1
K3

. Thus we have proven Ψ ≤ γ and,
therefore, the upper bound in (25). The estimate (26) follows from (25) since u(t, 0) = 0.

Lemma 3.1 implies in particular that for all (s, x) ∈ [0, T ) × (0,∞) the value |uL(s, x)|
can be uniformly bounded independently of L and ω. Also, uL(s, x) = 0 for x ≤ 0 according
to Theorem 2.10. This together with the next result proves pointwise convergence of uL for
L→∞.

Lemma 3.2. The mapping (t, ω, L, x) 7→ uL(t, ω, x) is progressively measurable while being
continuous and non-decreasing in L.

Proof. Consider the FBSDE given by the backward equation as in (7) and the forward equa-
tion, which is two-dimensional with the first component being identical to the forward equation
in (7) and the second having the form Ls = Lt for all s ∈ [t, T ], where Lt ∈ R is the initial value
for this second component of the two-dimensional forward equation. Furthermore, instead of
g′(XT ), we choose the terminal condition to be ĝ(x, L) := (0∨ (2x)∧C) · (0∨L∧C), x, L ∈ R,
where C > 0 is an arbitrary but fixed positive constant. Clearly, such an FBSDE satisfies
(SLC). We claim that its maximal interval is [0, T ]. To this end choose arbitrary t0 ∈ Imax and
x = Xt0 , L = Lt0 ∈ R and consider the corresponding (X,Y, Z) = (Xt0,x,L, Y t0,x,L, Zt0,x,L) on
[t0, T ]. We write

Ĉt =
dYt
dL

, D̂t =
dXt

dL
and γt = uL(t,Xt, Lt) =

∂u

∂L
(t,Xt, Lt), t ∈ [t0, T ],

where u : Ω× [0, T ]×R×R→ R is the unique weakly regular decoupling field on [t0, T ]. Using
the decoupling condition Yt = u(t,Xt, Lt) we obtain γt = Ĉt−ΨtD̂t, where Ψt = ux(t,Xt, Lt),
t ∈ [t0, T ]. Observe that D̂, Ĉ and Ψ satisfy similarly to (18) the dynamics

dD̂t = −
(
f∗yx(t,Xt, Yt)D̂t + f∗yy(t,Xt, Yt)Ĉt

)
dt,

similarly to (19) the dynamics

−dĈt = − dZt
dL

dWt + fxx(t,Xt, αt)D̂tdt

+fxa(t,Xt, αt)
[
f∗yx(t,Xt, Yt)D̂t + f∗yy(t,Xt, Yt)Ĉt

]
dt,

and similarly to (21) the dynamics

dΨt = D−1
t

dZt
dx

dWt − fxx(t,Xt, αt)dt

+f∗yy(t,Xt, Yt) (Ψt − fxa(t,Xt, αt))
2 dt,

18



where αt = f∗y (t,Xt, Yt), t ∈ [t0, T ]. This implies

dγt = dĈt −ΨtdD̂t − D̂tdΨt

=
dZt
dL

dWt − fxx(t,Xt, αt)D̂tdt

−fxa(t,Xt, αt)
[
f∗yx(t,Xt, Yt)D̂t + f∗yy(t,Xt, Yt)Ĉt

]
dt

+Ψt

(
f∗yx(t,Xt, Yt)D̂t + f∗yy(t,Xt, Yt)Ĉt

)
dt

−D̂tD
−1
t

dZt
dx

dWt + D̂tfxx(t,Xt, αt)dt

−D̂tf
∗
yy(t,Xt, Yt) (Ψt − fxa(t,Xt, αt))

2 dt

= f∗yy(t,Xt, Yt) (Ψt − fxa(t,Xt, αt)) γtdt+ ΓtdWt,

where Γt = dZt
dL − D̂tD

−1
t

dZt
dx , t ∈ [t0, T ]. Hence, the process γ satisfies a BSDE with linear

driver and bounded coefficients as Ψ is uniformly bounded according to the proof of Lemma
2.11. Note that for all x̃, L̃ ∈ R it holds

u(T, x̃, L̃) = (0 ∨ (2x̃) ∧ C) · (0 ∨ L̃ ∧ C),

such that ux(T,XT , LT ) and uL(T,XT , LT ) are both non-negative and uniformly bounded
(with the respective bounds depending on C). It follows that uL(t0, x, L) is non-negative and
also that γ is uniformly bounded, i.e. independently of t0.

Therefore, for every C > 0, we have a unique weakly regular decoupling field u on [0, T ]
such that uL ≥ 0. Finally, if we choose the initial values x, L between 0 and C and consider
the corresponding FBSDE, we observe that Xt, Lt both stay in [0, C], such that the terminal
condition YT = 2XTL is satisfied, which means that X,Y solve FBSDE (7) with terminal
condition gL. Uniqueness of solutions implies uL(t0, x) = u(t0, x, L) and the monotonicity of
u in L is inherited by uL as C > 0 can be chosen arbitrarily large.

Now we can define u∞ : Ω× [0, T )× R→ R via

u∞(s, x) := lim
L→∞

uL(s, x), (s, x) ∈ [0, T )× R. (27)

Note that u∞ inherits progressive measurability from uL. Also note that for all s < T the
mapping uL(s, ·) is Lipschitz continuous w.r.t. x with Lipschitz constant γs, which does not
depend on L. Therefore, u∞(s, ·) is also Lipschitz continuous with the same Lipschitz constant.
Finally, note that for all s ∈ [0, T ) and all x ∈ (0,∞)

u∞(s, x) ≥ x · lim
L→∞

κLs =
x

C1(T − s)
. (28)

Now fix an initial condition (t0, x0) ∈ [0, T ) × (0,∞). As above we denote for every
L ∈ (0,∞) by (XL, Y L, ZL) the unique solution to the FBSDE (7) with initial condition
Xt0 = x0 and penalty function gL. In particular, for every L ∈ (0,∞) the process XL satisfies
by construction the ODE ẊL

t = −f∗y (t,XL
t , u

L(t,XL
t )), t ∈ [t0, T ]. According to Remark 1.3

and Lemma 3.2 the family of functions f∗y (t, ·, uL(t, ·)) is non-decreasing in L. A comparison
principle for ODEs then entails that XL is non-increasing in L. As XL is non-negative for all
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L ∈ (0,∞) by Corollary 2.12 we can define the progressively measurable, non-negative process
X∞ as an a.e. limit via

Xt0,x0,∞
t := X∞t := lim

L→∞
XL
t , t ∈ [t0, T ). (29)

Note that we refrain from defining X∞ at time T for the time being. This will be done after
the next lemma.

Lemma 3.3. It holds that limL→∞ u
L(·, XL

· )→ u∞(·, X∞· ) almost everywhere on Ω× [t0, T ).
Moreover, X∞ is the unique solution of the ODE

X∞t = x0 −
∫ t

t0

f∗y (s,X∞s , u
∞(s,X∞s ))ds, t ∈ [t0, T ). (30)

In particular, almost all paths of X∞ are absolutely continuous and non-increasing on [t0, T ).

Proof. First, observe that by Lemma 3.1 it holds for all s ∈ [t0, T ) that∣∣uL(s,XL
s )− u∞(s,X∞s )

∣∣ ≤ ∣∣uL(s,XL
s )− uL(s,X∞s )

∣∣+
∣∣uL(s,X∞s )− u∞(s,X∞s )

∣∣
≤ γs

∣∣XL
s −X∞s

∣∣+
∣∣uL(s,X∞s )− u∞(s,X∞s )

∣∣ .
By construction both summands on the right-hand-side converge to 0 as L→∞. Dominated
convergence implies for all t ∈ [t0, T )

lim
L→∞

∫ t

t0

f∗y (s,XL
s , u

L(s,XL
s ))ds =

∫ t

t0

f∗y (s,X∞s , u
∞(s,X∞s ))ds.

This proves that X∞ satisfies (30). Lipschitz continuity of f∗y and of u∞ for compact time-
intervals show that X∞ is the unique solution of this ODE. Absolute continuity and mono-
tonicity of the paths of X∞ are direct consequences of (30) and non-negativity of f∗y .

By Lemma 3.3 the limit limt→T X
∞
t exists and we can continuously extend the process

X∞ to the whole of [t0, T ] via X∞T := limt→T X
∞
t .

Lemma 3.4. It holds that X∞T = 0.

Proof. First, note that X∞T ≥ 0 a.s. Next, for every fixed (ω, s, x) the function f∗y (s, x, ·) :
[0,∞) → [0,∞) starts in zero and is strictly increasing with a derivative which is larger or
equal to 1

‖faa‖∞ almost everywhere. Using (28) and since X∞ has non-increasing paths, we
obtain for all t ∈ [t0, T )

X∞t = x0 −
∫ t

t0

f∗y (s,X∞s , u
∞(s,X∞s ))ds ≤ x0 −

∫ t

t0

1

‖faa‖∞
· X∞s
C1(T − s)

ds

≤ x0 −
X∞t

‖faa‖∞C1

∫ t

t0

1

(T − s)
ds.

Hence, it holds for t ∈ [t0, T )

X∞t

[
1 +

1

‖faa‖∞C1

∫ t

t0

1

(T − s)
ds

]
≤ x0.

Taking the limit t→ T implies that X∞T = 0 a.s.
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We next show that the process defined by

α∞s := f∗y (s,X∞s , u
∞(s,X∞s )) for s ∈ [t0, T ) and α∞T := 0 (31)

is optimal for problem (P). Notice that Lemma 3.4 implies that α∞ lies in the set A0(t0, x0).

Theorem 3.5. Let (t0, x0) ∈ [0, T )× (0,∞). The strategy α∞ ∈ A0(t0, x0) defined in (31) is
an optimal control for problem (9) and satisfies

v̂(t0, x0) = Ĵ(t0, x0, α
∞) <∞.

Moreover, it holds that limL→∞ v
L(t0, x0) = v̂(t0, x0).

Proof. Since the family of functions gL is non-decreasing in L we obtain that also the family
vL is non-decreasing in L. In particular, the limit v∞(t0, x0) := limL→∞ v

L(t0, x0) exists.
Since it holds that

vL(t0, x0) = essinfα∈A(t0,x0) J
L(t0, x0, α) ≤ essinfα∈A0(t0,x0) J

L(t0, x0, α) = v̂(t0, x0),

it follows that v∞(t0, x0) ≤ v̂(t0, x0).
Next, let us as above denote for every L ∈ (0,∞) by (XL, Y L, ZL) the unique solution

to the FBSDE (7) with initial condition Xt0 = x0 and penalty function gL. According to
Proposition 1.6 the strategy αLt := f∗y (t,XL

t , Y
L
t ), t ∈ [t0, T ], minimizes JL defined in (11).

This, together with non-negativity of g implies that

vL(t0, x0) ≥ E
[∫ T

t0

f
(
s,XL

s , α
L
s

)
ds
∣∣∣Ft0] . (32)

Note that XL converges to X∞ = Xt0,x0,α∞ a.s. for L → ∞ by definition. Since f∗y (s, ·, ·)
is continuous it follows again from Lemma 3.3 that αL = f∗y (·, XL

· , u
L(·, XL

· )) converges for
L→∞ to α∞ a.e. as well. Due to continuity of f(s, ·, ·) the process f(·, XL

· , α
L
· ) converges to

f(·, X∞· , α∞· ) for L → ∞ almost everywhere. Non-negativity of f , Fatou’s Lemma and (32)
then imply that

v∞(t0, x0) ≥ E
[∫ T

t0

f (s,X∞s , α
∞
s ) ds

∣∣∣Ft0] ≥ v̂(t0, x0).

This proves that

v̂(t0, x0) = v∞(t0, x0) = E
[∫ T

t0

f (s,X∞s , α
∞
s ) ds

∣∣∣Ft0] .
Finally, observe that finiteness of v̂(t0, x0) is a consequence of assumption (C3). Indeed, taking
the control αs = x0

T−t0 , s ∈ [t0, T ], shows that

v̂(t0, x0) ≤ E
[∫ T

t0

f

(
s,
T − s
T − t0

x0,
x0

T − t0

)
ds
∣∣∣Ft0] <∞.

We finally show that the limit decoupling field u∞ is the weak derivative of the value
function v̂ with respect to the x-variable.
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Theorem 3.6. The value function for Problem (P) satisfies for almost all (t, x)

v̂(t, x) =

∫ x

0
u∞(t, z) dz, a.s. (33)

Proof. We first prove that for all L > 0 the value function vL is weakly differentiable in x
with the weak derivative uL. To this end recall that αLs = f∗y (s,XL

s , Y
L
s ) is optimal in (3)

with penalty function gL and hence

vL(t, x) = E
[∫ T

t
f
(
s,XL

s , α
L
s

)
ds+ L

(
XL
T

)2 ∣∣Ft] . (34)

The strong regularity of uL entails that XL and Y L are weakly differentiable w.r.t. x. It is now
straightforward to show that vL is weakly differentiable and that we can differentiate under
the integral in (34) (see e.g. Lemma A.2.5. and Lemma A.2.4. of [10]). The weak derivative
of vL with respect to x is thus given by

vLx (t, x) = E
[∫ T

t

(
fx
(
s,XL

s , α
L
s

) d

dx
XL
s − fa

(
s,XL

s , α
L
s

) d

dx
αLs

)
ds− 2LXL

T

d

dx
XL
T

∣∣Ft] .
(35)

Notice that fa
(
s,XL

s , α
L
s

)
= fa

(
s,XL

s , f
−1
a (s,XL

s , Y
L
s )
)

= Y L
s . Also observe that 2LXL

T =

Y L
T . By applying the product rule to Y L d

dxX
L on the right-hand side of equation (35), we

further obtain vLx (t, x) = Y L
t = uL(t, x). With the fundamental theorem of calculus for weak

derivatives (see e.g. Lemma A.2.1. of [10]) we get vL(t, x) =
∫ x

0 u
L(t, z) dz a.e. Since uL

converges from below to u∞, monotone convergence implies equation (33).

Example 3.7. Let C ∈ (1,∞) and let η, γ : [0, T ]× Ω→ [0,∞) be progressively measurable
stochastic processes such that for all t ∈ [0, T ] it holds a.s. that ηt ≥ 1

C and max(ηt, γt) ≤ C.
Assume that for all t ∈ [0, T ], x ∈ R and a ∈ R it holds that f(t, x, a) = ηt

|a|3+2|a|2
|a|+1 + γt|x|2.

Then conditions (C0), (C1), (C2), (C3) and (C4) are satisfied. Moreover, it holds for all
t ∈ [0, T ], x ∈ R and a ∈ R a.s. that 2

C ≤ 2ηt ≤ faa(t, x, a) ≤ 4ηt ≤ 4C. This together with
(6) implies that [0,∞)2 3 (x, y) 7→ f∗y (t, x, y) is uniformly Lipschitz continuous. It follows
that (D1) is satisfied. Moreover, it follows that (D4) is satisfied. Observe that fa(t, x, a) = 0
if and only if a = 0. This implies (D2). Condition (D3) is also satisfied. Therefore, it follows
from Theorem 3.5 that α∞ is an optimal control in Problem (P).

3.2 The FBSDE associated to Problem (P)

We have shown in Subsection 3.1 that for every (t0, x0) ∈ [0, T )×(0,∞) the solution component
XL of the FBSDE (7) with initial condition XL

t0 = x0 and penalty function gL converges to
X∞ as L → ∞. Moreover, the associated decoupling field uL converges to u∞. This allows
to define a process Y∞ via Y∞ = u∞(·, X∞). The next result shows that also the solution
component ZL has a limit Z∞ and that the process (X∞, Y∞, Z∞) satisfies a system of
coupled SDEs. In contrast to (7), there are two constraints imposed on the forward process
X∞, while Y∞ is not required to satisfy any boundary conditions.

Theorem 3.8. Let (t0, x0) ∈ [0, T ) × (0,∞). For every L ∈ (0,∞) let (XL, Y L, ZL) be
the solution of the FBSDE (7) with initial condition XL

t0 = x0 and penalty function gL and
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let uL be the associated decoupling field. Let u∞ and X∞ be the limits of uL and XL as
L → ∞ defined in (27) and (29). Let Y∞ : Ω × [0, T ) → R satisfy for all t ∈ [0, T ) a.s. that
Y∞t = u∞(t,X∞t ). Then the sequence ZL converges in L2((t0, t) × Ω,Rd) for any t ∈ [t0, T )
to Z∞ and the process (X∞, Y∞, Z∞) satisfies for all t0 ≤ t ≤ r < T a.s. that

X∞t = x0 −
∫ t
t0
f∗y (s,X∞s , Y

∞
s )ds, X∞T = lims→T X

∞
s = 0

Y∞t = Y∞r +
∫ r
t fx(s,X∞s , f

∗
y (s,X∞s , Y

∞
s ))ds−

∫ r
t Z
∞
s dWs.

(36)

Proof. Let t0 ≤ t ≤ r < T . The fact that X∞ satisfies X∞t = x0 −
∫ t
t0
f∗y (s,X∞s , Y

∞
s )ds

follows from Lemma 3.3 and the definition of Y∞. By Lemma 3.4 it holds that X∞T = 0. It
follows from Theorem 2.10 that for all L > 0 it holds

Y L
t = Y L

r +

∫ r

t
fx(s,XL

s , f
∗
y (s,XL

s , Y
L
s ))ds−

∫ r

t
ZLs dWs. (37)

Applying Itô’s formula for L ≤ L′ we have

|Y L
t − Y L′

t |2 = |Y L
r − Y L′

r |2 −
∫ r

t
|ZLs − ZL

′
s |2ds−

∫ r

t
(ZLs − ZL

′
s )dWs

+ 2

∫ r

t
(Y L
s − Y L′

s )(fx(s,XL
s , f

∗
y (s,XL

s , Y
L
s ))− fx(s,XL′

s , f
∗
y (s,XL′

s , Y
L′
s )))ds.

By assumption (D1) there exists C > 0 such that for all s ∈ [t, r] and 0 < L ≤ L′

|fx(s,XL
s , f

∗
y (s,XL

s , Y
L
s ))− fx(s,XL′

s , f
∗
y (s,XL′

s , Y
L′
s ))| ≤ C(|XL

s −XL′
s |+ |Y L

s − Y L′
s |).

Thereby with Young’s inequality and taking the expectation, we obtain

E
∫ r

t
|ZLs − ZL

′
s |2ds ≤ E|Y L

r − Y L′
r |2

+2CE
∫ r

t
|Y L
s − Y L′

s |(|XL
s −XL′

s |+ |Y L
s − Y L′

s |)ds

≤ E|Y L
r − Y L′

r |2 (38)

+(2C + C2)E
∫ r

t
|Y L
s − Y L′

s |2ds+ E
∫ r

t
|XL

s −XL′
s |2ds.

Lemma 3.3 implies that XL
t → X∞t and Y L

t → Y∞t for L → ∞ a.s. Moreover, it holds for
all s ∈ [t, r] and L > 0 that max(XL

s , X
∞
s ) ≤ x0 and by (26) that max(|Y L

s |, |Y∞s |) ≤ γrx0.
By the dominated convergence theorem, the two sequences XL and Y L also converge in the
space L2((t0, r)×Ω,Rd). Combining this with (38), we deduce that ZL is a Cauchy sequence
in L2((t0, r)×Ω,Rd) and thus converges to Z∞. It is straightforward that the limit Z∞ does
not depend on the particular choice of r < T .

Again by assumption (D1)

|fx(s,XL
s , f

∗
y (s,XL

s , Y
L
s ))− fx(s,X∞s , f

∗
y (s,X∞s , Y

∞
s ))| ≤ C(|XL

s −X∞s |+ |Y L
s − Y∞s |),

and we can take the limit L→∞ in (37) to obtain

Y∞t = Y∞r +

∫ r

t
fx(s,X∞s , f

∗
y (s,X∞s , Y

∞
s ))ds−

∫ r

t
Z∞s dWs.

This completes the proof.
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Remark 3.9. It follows from (36), that the process

Y∞ +

∫ .

t0

fx(s,X∞s , f
∗
y (s,X∞s , Y

∞
s ))ds

is a non-negative local martingale on [t0, T ). Hence its limit at time T exists in [0,∞) a.s.
By the monotone convergence theorem, the integral has also a limit. Since both terms are
non-negative, we deduce that the limit Y∞T := limt→T Yt ∈ [0,∞) exists a.s. Note, however,
that Y∞T is not a given terminal condition, but part of the solution.

Remark 3.10. With Lemma 3.1 and Remark 3.9 we can describe the asymptotic behavior
of X∞t as t→ T . Indeed, it follows from the fact that Y∞t = u∞(t,X∞t ) for all t ∈ [t0, T ) and
from (26) that there exist C1, C2 ∈ (0,∞) such that for all t ∈ [0, T ) it holds

C1
X∞t
T − t

≤ u∞(t,X∞t ) = Y∞t ≤ X∞t · C2

(
1 +

1

T − t

)
.

In particular, it holds that

1

C2
Y∞T ≤ lim inf

t→T

X∞t
T − t

≤ lim sup
t→T

X∞t
T − t

≤ 1

C1
Y∞T .

Moreover, it follows that

lim inf
t→T

(
Y∞t
X∞t

)
= +∞.

Note that this behavior is similar to the weak terminal condition (1.3) in [2].

Next, we characterize (X∞, Y∞, X∞) as the unique solution of (36) within a class of
processes satisfying suitable integrability assumptions.

Theorem 3.11. Let (t0, x0) ∈ [0, T ) × (0,∞). The process (X∞, Y∞, Z∞) constructed in
Theorem 3.8 is the unique solution of (36) satisfying X∞, Y∞ ≥ 0, Z∞ ∈ L2((t0, t)× Ω,Rd)
for all t ∈ [t0, T ) and f∗y (·, X∞, Y∞) ∈ L2((t0, T )× Ω,R).

Proof. We first show that α∞ ∈ L2((t0, T ) × Ω,R), where α∞ is defined as in equation (31).
First, note that the Lipschitz continuity of f∗y (t, x, ·) (cf. assumption (D1)), assumptions (D3)
and (D4) and (6) prove that there exists a constant λ ∈ (0,∞) such that for all t ∈ [0, T ],
x, y ∈ [0,∞) it holds a.s.

faa(t, x, f
∗
y (t, x, y)) ≥ λ. (39)

This, together with assumptions (C1) and (D3), shows that for all t ∈ [0, T ], x, a ∈ [0,∞) it
holds a.s.

f(t, x, a) = f(t, x, 0) + fa(t, x, 0)a+

∫ a

0
(a− s)faa(t, x, s)ds ≥

λ

2
a2,

It now follows from Theorem 3.5 that α∞ is square-integrable.

We now turn to the uniqueness proof. To this end let (X̂, Ŷ , Ẑ) be another solution
of (36) satisfying X̂, Ŷ ≥ 0, Ẑ ∈ L2((t0, t) × Ω,Rd) for all t ∈ [t0, T ) and f∗y (·, X̂, Ŷ ) ∈
L2((t0, T ) × Ω,R). Let us denote by α̂ the process satisfying α̂s = f∗y (s, X̂s, Ŷs), s ∈ [t0, T ].
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Our objective is to prove that (X̂, Ŷ , Ẑ) coincides with (X∞, Y∞, X∞) by using Gronwall’s
lemma. To do so, we first show

lim
t→T

E[(Y∞t − Ŷt)(X∞t − X̂t)] = 0. (40)

Recall that for every fixed (ω, s, x) the function f∗y (s, x, ·) : [0,∞)→ [0,∞) starts in zero and
is strictly increasing with a derivative which is larger or equal to 1

‖faa‖∞ almost everywhere.
This implies for all t ∈ [t0, T ), r ∈ [t, T ) a.s.

X̂t ≥ X̂t − X̂r =

∫ r

t
f∗y (s, X̂s, Ŷs)ds ≥

1

‖faa‖∞

∫ r

t
Ŷsds.

Consequently, with the product rule we obtain for all t ∈ [t0, T ), r ∈ [t, T ) a.s.

(T − t)Ŷt = (T − r)Ŷr +

∫ r

t
Ŷsds+

∫ r

t
(T − s)fx(s, X̂s, α̂s)ds−

∫ r

t
(T − s)ẐsdWs

≤ (T − r)Ŷr + ‖faa‖∞X̂t +

∫ r

t
(T − s)fx(s, X̂s, α̂s)ds−

∫ r

t
(T − s)ẐsdWs.

Taking conditional expectations we obtain for all t ∈ [t0, T ), r ∈ [t, T )

(T − t)Ŷt ≤ E
[
(T − r)Ŷr

∣∣Ft]+ ‖faa‖∞X̂t + E
[∫ r

t
(T − s)fx(s, X̂s, α̂s)ds

∣∣∣∣Ft] . (41)

Notice that the last conditional expectation is well defined as the process fx(·, X̂, α̂) is non-
negative by (C1) and the non-negativity of X̂, Ŷ .

The non-negativity of fx(·, X̂, α̂) further entails that Ŷ is a non-negative supermartingale
on [t0, T ) and hence 0 ≤ E[Ŷr|Ft] ≤ Ŷt a.s. for all t ∈ [t0, T ) and r ∈ [t, T ). Consequently,
limr→T E

[
(T − r)Ŷr|Ft

]
= 0. Thus, by letting r ↑ T in (41), we obtain for all t ∈ [t0, T )

(T − t)Ŷt ≤ ‖faa‖∞X̂t + E
[∫ T

t
(T − s)fx(s, X̂s, α̂s)ds

∣∣∣∣Ft]
≤ ‖faa‖∞X̂t + (T − t)E

[∫ T

t
fx(s, X̂s, α̂s)ds

∣∣∣∣Ft] . (42)

Observe that this inequality also holds true with (X̂, Ŷ , α̂) replaced by (X∞, Y∞, α∞).
It follows from assumptions (D2) and (D4) that for all t ∈ [t0, T ], x ∈ [0, x0] and a ∈ [0,∞)

it holds
|fx(t, x, a)| ≤ ‖fxx‖∞x0 + ‖fxa‖∞a.

This together with the assumption that α̂ ∈ L2((t0, T )× Ω,R) ensures that

E
[∫ T

t0

fx(s, X̂s, α̂s)ds

]
<∞. (43)

Next, observe that Hölder’s inequality and Jensen’s inequality prove for all t ∈ [t0, T ) that

E[X∞t X̂t] ≤
√
E[(X∞t )2]E[X̂2

t ] ≤ (T − t)

√
E
[∫ T

t
(α∞r )2dr

]
E
[∫ T

t
(α̂r)2dr

]
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This, together with α̂, α∞ ∈ L2((t0, T )× Ω,R), implies

lim
t→T

1

T − t
E[X∞t X̂t] = 0. (44)

Equation (42) yields

E[ŶtX
∞
t ] ≤ E

[
‖faa‖∞

X̂tX
∞
t

T − t
+ X̂tE

[∫ T

t
fx(s, X̂s, α̂s)ds

∣∣∣∣Ft]
]

≤ ‖faa‖∞E

[
X̂tX

∞
t

T − t

]
+ x0E

[∫ T

t
fx(s, X̂s, α̂s)ds

]
.

With (44) and (43) we obtain limt↑T E[ŶtX
∞
t ] = 0.

Similarly, one can show limt↑T E[ŶtX̂t] = limt↑T E[Y∞t X∞t ] = limt↑T E[Y∞t X̂t] = 0, which
entails (40).

Finally, we show that there exists a constant C ∈ [0,∞) such that

|α∞s − α̂s| ≤ C|X∞s − X̂s|, s ∈ [t0, T ], (45)

almost everywhere. It then follows from Gronwall’s lemma that α∞ = α̂ and X∞ = X̂ and
hence also Y∞ = Ŷ and Z∞ = Ẑ.

To prove (45) observe that the product rule implies

E[(Y∞t − Ŷt)(X∞t − X̂t)]

= −E
[∫ t

t0

(fx(s,X∞s , α
∞
s )− fx(s, X̂s, α̂s))(X

∞
s − X̂s) + (Y∞s − Ŷs)(α∞s − α̂s) ds

]
,

(46)

where the expectation of the Brownian integral part vanishes since Z∞, Ẑ ∈ L2((t0, t)×Ω,Rd)
and X∞ and X̂ are bounded. Notice that Y∞s = fa(s,X

∞
s , α

∞
s ) and Ŷs = fa(s, X̂, α̂s).

Furthermore, convexity of f ensures that for all t ∈ [0, T ] and a, â, x, x̂ ∈ [0,∞) we have

(fx(t, x, a)− fx(t, x̂, â))(x− x̂) + (fa(t, x, a)− fa(t, x̂, â))(a− â) ≥ 0.

Monotone convergence and (40) yield, by letting t ↑ T in (46),

E
[∫ T

t0

(fx(s,X∞s , α
∞
s )− fx(s, X̂s, α̂s))(X

∞
s − X̂s) + (Y∞s − Ŷs)(α∞s − α̂s) ds

]
= 0,

which further implies

(fx(s,X∞s , α
∞
s )−fx(s, X̂s, α̂s))(X

∞
s −X̂s)+(fa(s,X

∞
s , α

∞
s )−fa(s, X̂, α̂s))(α∞s −α̂s) = 0, (47)

almost everywhere. Using strict monotonicity of fa and Lipschitz continuity of fx and fa
(with Lipschitz constant L) we obtain

λ|α∞s − α̂s|2

≤ (fa(s,X
∞
s , α

∞
s )− fa(s,X∞s , α̂s)) (α∞s − α̂s)

=
(
fa(s,X

∞
s , α

∞
s )− fa(s, X̂s, α̂s)

)
(α∞s − α̂s) +

(
fa(s,X

∞
s , α̂s)− fa(s, X̂, α̂s)

)
(α∞s − α̂s)

=−
(
fx(s,X∞s , α

∞
s )− fx(s, X̂s, α̂s)

)
(X∞s − X̂s) +

(
fa(s,X

∞
s , α̂s)− fa(s, X̂, α̂s)

)
(α∞s − α̂s)

≤L
(
|X∞s − X̂s|+ |α∞s − α̂s|

)
|X∞s − X̂s|+ L|X∞s − X̂s||α∞s − α̂s|

≤
(
L +

2L2

λ

)
|X∞s − X̂s|2 +

λ

2
|α∞s − α̂s|2,
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where we use the Young inequality in the last step. Now a straightforward transformation
yields (45).

Appendix

Proof of Proposition 1.2. Without loss of generality we assume that t = 0. For all β ∈ A(0.x)

we write J (x, β) :=
∫ T

0 f(s,Xx,β
s , βs)ds+ g(Xx,β

T ).
Let α ∈ A(0, x) be optimal in (3). First, we show that Xα is non-negative. To this end

define the measurable set B := {infs∈[0,T ]X
α
s < 0} and the stopping time2

σ := σα := inf{s ∈ [0, T ] |Xs < 0}.

Note that B = {σ < T} and that σ is equal to ∞ on Bc. Furthermore, Xα
σ = 0 on B.

Now, define β as the strategy which coincides with α on [0, σ ∧ T ], but is 0 on the interval
(σ ∧ T, T ]. Notice that α = β on Bc. Now let ω ∈ B. Then Xβ

s (ω) = 0 for all s ∈ [σ(ω), T ],
but Xβ

s (ω) = Xα
s (ω) for s ∈ [t, σ(ω)]. Also, for s ∈ [σ(ω), T ],

f(s,Xα
s , αs)(ω)− f(s,Xβ

s , βs)(ω) = f(s,Xα
s , αs)(ω)− f(s, 0, 0)(ω) ≥ 0,

due to (C1). Note that for s > σ(ω) in a sufficiently small neighbourhood of σ(ω) the left
hand side of the previous inequality is strictly larger than zero. Moreover, (C4) yields

g(Xα
T )(ω) ≥ g(Xβ

T )(ω) = g(0) = 0.

Therefore, J (x, α)(ω) > J (x, β)(ω) for all ω ∈ B, which due to the optimality of α can only
mean P(B) = 0. In other words Xα is non-negative a.s.

Next, we show that Xα does not have any points of increase on [0, T ]. To this end we
define the stopping times

ρ := ρα := inf

{
s ∈ [0, T ]

∣∣Xα
s > inf

r∈[0,s]
Xα
r

}
and

τ := τα := inf

{
s ∈ [0, T ]

∣∣ s > ρ and Xα
s = inf

r∈[0,s]
Xα
r

}
.

Let γ be the strategy which is zero on (ρ ∧ T, τ ∧ T ], but is equal α otherwise. Note that
(ρ ∧ T, τ ∧ T ] is empty and α = γ on

B̂ :=

{
sup
s∈[0,T ]

(
Xα
s − inf

r∈[0,s]
Xα
r

)
≤ 0

}
,

the event where Xα is non-increasing. Now let ω ∈ B̂c. Then ρ(ω) < T and (ρ(ω), τ(ω) ∧ T ]
is non-empty with γ(ω) vanishing on this interval and Xγ(ω) being constant Xγ

ρ(ω)(ω) on this
interval. Furthermore, condition (C1) implies that for all s ∈ (ρ(ω), τ(ω) ∧ T ]:

f(s,Xα
s , αs)(ω)− f(s,Xγ

s , γs)(ω) = (f(s,Xα
s , αs)(ω)− f(s,Xα

s , 0)(ω))

+ (f(s,Xα
s , 0)(ω)− f(s,Xγ

s , 0)(ω))

≥ 0.

2Here and in the sequel we use the convention inf ∅ = ∞.
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Note that for s > ρ(ω) in a sufficiently small neighbourhood of ρ(ω) we have a strict inequality.
Therefore,

∫ T
0 f(s,Xα

s , αs)(ω)ds >
∫ T

0 f(s,Xγ
s , γs)(ω)ds. Moreover, (C4) and the convexity of

g imply that it is non-decreasing on the positive half-line, such that

g(Xα
T )(ω) ≥ g(Xγ

T )(ω),

and hence J (x, α)(ω) > J (x, γ)(ω). Due to optimality of α we have P(B̂c) = 0. Therefore,
the position process of an optimal strategy is non-increasing.

The second statement of the proposition can be shown with similar arguments: if Xα is
not non-increasing, then we can construct β such that Xβ is non-increasing and J(0, x, β) ≤
J(0, x, α). If in addition Xβ is not non-negative, then one can transform β to γ as above so
that Xγ is non-negative, non-increasing and J(0, x, γ) ≤ J(0, x, β).

Proof of Proposition 1.6. We adapt the proof of Theorem 5.2 in [30] to our setting and we
assume again without loss of generality that t = 0. First note that J(0, x, α) <∞ follows from
boundedness of the processes X and α and condition (C3). Next, let ᾱ ∈ A(0, x) and let X̄ =
X0,x,ᾱ be the associated state process. For the purpose of showing that J(0, x, ᾱ) ≥ J(0, x, α)
we can assume by Proposition 1.2 that X̄ is non-increasing and non-negative, such that it is
in fact bounded. Let us define δX := X̄ −X and δα := ᾱ− α. Note that X̄0 = X0 = x, such
that δX0 = 0. Also, observe that δX is a bounded process. Since g is convex we have a.s.

YT δXT − Y0δX0 = YT δXT = g′(XT )δXT ≤ g(X̄T )− g(XT ). (48)

At the same time Itô’s formula proves that

YT δXT − Y0δX0 =

∫ T

0
δXsdYs +

∫ T

0
Ysd(δXs)

= −
∫ T

0
(δXs)fx(s,Xs, αs)ds+

∫ T

0
(δXs)ZsdWs −

∫ T

0
Ys(δαs)ds,(49)

where all expressions are well-defined due to the boundedness of X, Y and α = f∗y (·, X·, Y·).
Now note that for all s ∈ [0, T ]

Ha(s,Xs, αs, Ys) = −Ys + fa(s,Xs, f
∗
y (s,Xs, Ys)) = −Ys + Ys = 0.

Together with the convexity of H this implies for all s ∈ [0, T ]

H(s, X̄s, ᾱs, Ys)−H(s,Xs, αs, Ys) ≥ Hx(s,Xs, αs, Ys)(δXs) +Ha(s,Xs, αs, Ys)(δαs)

= fx(s,Xs, αs)(δXs).

Thus, due to the definition of H it holds for all s ∈ [0, T ]

f(s, X̄s, ᾱs)− f(s,Xs, αs) = H(s, X̄s, ᾱs, Ys)−H(s,Xs, αs, Ys) + Ys(δαs)

≥ fx(s,Xs, αs)(δXs) + Ys(δαs). (50)

This implies together with (49):

YT δXT − Y0δX0 ≥
∫ T

0

(
f(s,Xs, αs)− f(s, X̄s, ᾱs)

)
ds+

∫ T

0
(δXs)ZsdWs, (51)
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where f(s,Xs, αs) − f(s, X̄s, ᾱs), although possibly not integrable w.r.t. s, is in any case
bounded from above and where

∫ ·
0(δXs)ZsdWs is a BMO process, such that both integrals are

well defined. Combining (51) with (48) we obtain

g(X̄T )− g(XT ) ≥
∫ T

0

(
f(s,Xs, αs)− f(s, X̄s, ᾱs)

)
ds+

∫ T

0
(δXs)ZsdWs

a.s. or

g(X̄T ) +

∫ T

0
f(s, X̄s, ᾱs)ds ≥ g(XT ) +

∫ T

0
f(s,Xs, αs)ds+

∫ T

0
(δXs)ZsdWs

a.s., which is true even if
(∫ T

0 f(s, X̄s, ᾱs)ds
)

(ω) =∞ for some ω as the right-hand-side of the
inequality is a finite number a.s. Taking the expectation on both sides leads to J(0, x, ᾱ) ≥
J(0, x, α), which shows optimality of α.
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